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Highlights:

� The Sydney rock oyster microbiota is influenced by location and season. 

� QX disease-resistance influences the Sydney rock oyster microbiota in winter. 

� A shifting microbiota before the QX disease period could contribute to QX disease 

dynamics.
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14 Abstract:
15 Queensland unknown (QX) disease is a significant cause of economic loss for the Sydney rock 

16 oyster (SRO) aquaculture industry. Evidence is emerging that QX disease is multi-factorial in 

17 nature, with a number of environmental and host factors contributing to disease dynamics. 

18 Efforts to mitigate the impacts of QX disease are primarily focused on breeding for disease 

19 resistance however, the mechanisms that drive disease resistance are poorly understood. One 

20 potential factor influencing disease resistance is the microbiota. To determine the influence of 

21 location, season and disease resistance on the SRO microbiota, we used 16S rRNA (V1 – V3 

22 region) amplicon sequencing. The microbiota of six SRO families with two categorised as QX-

23 resistant and four as QX-susceptible, deployed to two different locations (Port Stephens and 

24 Wallis Lake, NSW, Australia) and over two seasons (Austral summer and winter), were 

25 characterised. As expected, the SRO microbiota was distinct to the microbial community found 

26 in seawater. Further, the SRO microbiota was significantly influenced by location and season, 

27 with operational taxonomic units (OTUs) assigned to the Candidatus Hepatoplasma and 

28 Endozoicomonas genera identified as significant drivers of microbiota dissimilarity between 

29 locations and seasons. Disease resistance also significantly influenced the SRO microbiota but 

30 only at the winter time point which is before the typical QX disease period. Overall, OTUs 

31 assigned to the Mycoplasma, Borrelia and Endozoicomonas genera were over-represented in 

32 QX-resistant SRO microbiota, whereas members of the Pseudoalteromonas, Vibrio, and 

33 Candidatus Hepatoplasma genera were over-represented in QX-sensitive microbiota. These 
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34 findings confirm the influencing role of location and season on the microbiota structure as 

35 evidenced in other molluscan species, but also provide preliminary evidence that the microbiota 

36 assemblage before the QX disease period may be important for resistance to disease and may 

37 provide new avenues for managing SRO aquaculture in the future. 

38
39 Keywords: Microbiota, Sydney rock oyster, QX disease, 16S rRNA, disease resistance  

40

41 1. Introduction

42

43 The Sydney rock oyster (SRO; Saccostrea glomerata) is native to Australia, where it is one of 

44 the most intensively cultivated oyster species (O'Connor & Dove, 2009; Schrobback et al., 

45 2014). However, since the mid-1970’s production of this species has been impacted by QX-

46 disease, which can recurrently cause up to 90% mortality in affected estuaries (Department of 

47 Primary Industries, 2016; Nell, 2007; O'Connor & Dove, 2009; Peters & Raftos, 2003; 

48 Schrobback et al., 2014). The aetiological agent for QX disease is a spore-forming protozoan 

49 parasite called Marteilia sydneyi. This parasite has an infection cycle that typically enters 

50 through the palps and gills in summer and ends in the oyster digestion gland, impacting nutrient 

51 uptake and ultimately causing starvation and death through autumn and into winter (Kleeman 

52 et al., 2002; Nell, 2007; Wolf, 1979).

53

54 To mitigate the impacts of QX disease, the New South Wales Department of Primary Industries 

55 (NSW DPI) has led a selective breeding program using both mass selection methods and family 

56 based breeding that has greatly reduced SRO mortalities, with some families showing 85% 

57 survival through one cycle of disease (Dove et al., 2020). There is evidence that increased 

58 levels of resistance in some families may be linked to higher activity of phenoloxidase, an 

59 enzyme thought to be involved in oyster defence mechanisms (Newton et al., 2004), yet the 

60 full mechanism(s) for resistance remain unresolved.

61

62 The oyster microbiota is emerging as a factor in disease dynamics (King et al., 2019a) and is 

63 an unexplored factor in SRO QX disease resistance. The potential protective role of the mollusc 

64 microbiota has been characterised previously, with some microbial members providing anti-

65 pathogen activities (Offret et al., 2019; Prado et al., 2009). In other studies, the microbiota 

66 appears to contribute to disease dynamics, for the Pacific oyster it has been demonstrated that 

67 summer mortality in France is due to a progressive replacement of non-virulent commensal 
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68 vibrios with pathogenic vibrios indicating that microbiota dysbiosis precedes mortality (Lemire 

69 et al., 2015). Similarly, Pacific oyster mortality syndrome is polymicrobial in nature with a 

70 recent study showing that the viral Ostreid Herpesvirus 1 (OsHV-1) suppresses Pacific oyster 

71 immunity, allowing opportunistic bacterial pathogens such as Vibrio species to thrive (de 

72 Lorgeril et al., 2018). Interestingly, the microbiota of Pacific oyster families bred for resistance 

73 to OsHV-1 were significantly different to their disease-susceptible counterparts and had a 

74 significantly reduced abundance of Vibrio species (King et al., 2019c). In SROs, only one study 

75 has investigated the QX-disease-affected microbiota by comparing the digestive gland of QX-

76 infected and uninfected oysters (Green & Barnes, 2010). In QX-infected oysters, bacterial 

77 diversity was substantially reduced, with the microbiota dominated by a Rickettsiales-like 

78 operational taxonomic unit (OTU). 

79

80 A first step in understanding the role of a microbiota in disease dynamics is characterising its 

81 composition and determining the factors that shape its structure. In previous studies in other 

82 oyster species, the oyster microbiota has been shown to be influenced by both environmental 

83 and host factors including location, temperature, infection state, season, genetics, life stage and 

84 resistance to  disease (Green & Barnes, 2010; King et al., 2012; King et al., 2019b; King et al., 

85 2019c; Lokmer & Wegner, 2015; Lokmer et al., 2016a). However, there is a paucity of studies 

86 examining the factors that influence the SRO microbiota assemblage. Therefore, to characterise 

87 the influence of location, season and disease-resistance (genetics) on the SRO microbiota, six 

88 SRO families with varying degrees of resistance to QX disease were deployed into two 

89 locations and sampled in the Austral summer and winter. Understanding the mechanism(s) that 

90 drive disease-resistance, including the potential contribution of the microbiota to disease, are 

91 imperative for the successful and sustainable management of SRO aquaculture.

92

93 2. Materials and methods

94

95 2.1. Experimental design and sampling

96

97 Fourty-four different Saccostrea glomerata families from the 2015 year class were deployed 

98 in the Port Stephens (32°43’12.81”S 152°03’40.52”E) and Wallis Lake (32°11’21.3”S 

99 152°29’09.7”E) estuaries in NSW, Australia. Wallis Lake is a wave-dominated barrier estuary 

100 whereas Port Stephens is a tide-dominated drowned valley estuary (Roy et al., 2001). These 
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101 estuaries are approximately 70 km apart and are not affected by QX disease. These sites were 

102 selected to remove the influence of infection- or disease-state on the microbiota. For this study, 

103 six families from the 2015 class were selected according to their predicted level of resistance 

104 to QX disease using the Estimated Breeding Values (EBVs), which provides an estimation of 

105 how well families will perform for a particular trait and the likelihood of passing those traits to 

106 their progeny. As EBV is only a predictor, we selected six different families with a predicted 

107 range of QX disease resistance to ensure that we had sufficient oyster numbers for comparing 

108 the microbiota of oysters with differing QX disease resistance. Subsequent exposure of these 

109 families to QX disease at Lime Kiln Bar in the Georges river (33°59’19”S 151°03’21”E) 

110 demonstrated that four of the families exhibited �50% survival (characterised as QX-

111 susceptible), while the other two families displayed >50% survival (QX-resistant; Table 1). 

112

113 Five oysters per family were collected from each site in the 2017 Austral summer (January) 

114 and Austral winter (June), four and nine months after deployment respectively (120 oyster 

115 samples in total). Oysters were randomly collected by farmers from cultivation trays, placed 

116 into labelled plastic bags, transported to the laboratory on ice (3 - 4 hours) and stored whole in 

117 their shell at -800C for later processing. Because oyster leases could only be accessed by boat, 

118 seawater samples were collected from jetties (piers) approximately 800 metres away from the 

119 oyster leases. The jetties face the oyster leases and are suspended over water that are a few 

120 metres deep ensuring no sediment was suspended from the bottom during collection. Ten litres 

121 of surface seawater samples were collected and kept on ice during transport to the laboratory. 

122 Triplicate seawater samples of 2000 mL for each sampling time were filtered with Durapore 

123 Membrane Filters (0.22 µm pore size) for subsequent microbiota analyses. All filtered samples 

124 were frozen in liquid nitrogen upon collection in sterile 5 mL cryotubes and kept at -800C prior 

125 to analysis.

126
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127 Table 1: 2015 year class Sydney rock oyster average family survival (n = 3, ± SD) following 

128 exposure to QX disease at Lime Kiln Bar, Georges river. Oysters were deployed to Lime Kiln 

129 Bar on 12 December 2016 and oyster survival was counted on 20 September 2017.

Family line Average survival (%)

F25 59.67 ± 0.58

F22 55.33 ± 3.06

F18 19.67 ± 3.79

F03 3.33 ± 2.31

F32 2.67 ± 3.06

F37 0.67 ± 1.15

130

131 2.2. Measurement of environmental parameters, nutrients and chlorophyll a in seawater

132

133 Environmental parameters (temperature, oxygen, pH, and conductivity) were measured at 

134 jetties adjacent to the oyster leases using a WTW multiprobe meter (Multi 3430, Germany) at 

135 the time of oyster sample collections. For nutrient analysis, 50 mL triplicate seawater samples 

136 were syringe filtered through a 0.45 �m filter into 50 mL sterile falcon tubes, transported to 

137 the laboratory on ice, and frozen at -200C. Nutrient analysis (nitrite (NO2
-), nitrate (NO3

-), 

138 ammonia (NH3) and phosphate (PO4
3-)) was performed by Envirolab Services Pty Ltd (Sydney, 

139 New South Wales, Australia). From the 10 L of seawater collected above, triplicate 200 mL 

140 aliquots were filtered through glass microfiber filters (0.7 µm pore size) and stored at -800C 

141 for subsequent chlorophyll-a analyses. Chlorophyll a was analysed based on a 

142 Spectrophotometric method described previously (Ritchie, 2006). 

143

144 2.3. DNA extractions and 16S rRNA amplicon sequencing

145

146 DNA extractions commenced only after the last sample had been collected and frozen. Samples 

147 were randomly thawed in batches of 20 and all samples were processed using a single DNA 

148 extraction kit. Thawed oysters were washed under running tap water to remove debris. Using 

149 sterile instruments, each oyster was carefully opened using a shucking knife and the oyster 

150 flesh excised and placed onto a Petri dish. Approximately 25-50 mg of adductor muscle tissue 

151 was then excised using a sterile scalpel blade and placed into a 1.5 mL Eppendorf tube for 

152 subsequent DNA extraction using the Qiagen DNeasy Blood and Tissue DNA extraction Kit 
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153 (Qiagen, Germany), according to the manufacturer’s instructions. Haemolymph is often used 

154 to study the oyster microbiota (Lokmer et al., 2016a; Lokmer et al., 2016b) but can be difficult 

155 to extract from small oysters and is not possible to extract once oysters have been frozen. To 

156 minimise variation, we decided to freeze oysters so they could be later processed together. 

157 Therefore, the adductor muscle was selected for microbiota analysis as it contains haemolymph 

158 sinuses thus allowing us to easily sample the haemolymph. This approach has been successfully 

159 used before (King et al., 2019b; King et al., 2019c). The instruments used to process the 

160 oysters, including the shucking knife, were cleaned, soaked in 1:15 bleach solution for 15 min 

161 and then rinsed with sterile Milli-Q water prior to use and between samples. DNA from filtered 

162 seawater samples were extracted using the PowerWater DNA Isolation Kit (MoBio, USA) 

163 according to the manufacturer’s protocol.

164

165  The V1–V3 region of the 16S rRNA gene was amplified by PCR using the 27F (5′-

166 AGAGTTTGATCMTGGCTCAG-3′) and 519R (5′- GWATTACCGCGGCKGCTG-3′) 

167 primer pair (Lane, 1991; Turner et al., 1999). The PCR cycling conditions were as follows: 

168 94°C for 2 min, followed by 30 cycles of 94°C for 30s, 50°C for 30s and 72°C for 30s and a 

169 final extension of 72°C for 10 min. Amplicons were sequenced using the Illumina MiSeq 

170 platform (2 × 300 bp) at the Ramaciotti Centre for Genomics (University of New South Wales, 

171 Sydney, Australia). Raw data files in FASTQ format were deposited in NCBI Sequence Read 

172 Archive (SRA) with the study accession number (SRP234946) under Bioproject number 

173 PRJNA593911. 

174

175 2.4. Bioinformatics analyses 

176 Demultiplexed paired-end reads were combined using FLASH (Magoč & Salzberg, 2011) and 

177 trimmed using Mothur (Schloss et al., 2009) (Parameters: maxhomop = 5, maxambig = 0, 

178 minlength = 471, maxlength = 501). Fragments were clustered into operational taxonomic units 

179 (OTUs) at 97% sequence similarity, and chimeric and singleton sequences were identified and 

180 removed using VSEARCH (Rognes et al., 2016). Taxonomic assignment of OTUs were 

181 performed in QIIME version 1.9.1 (Caporaso et al., 2010) using the UCLUST algorithm 

182 (Edgar, 2010) against the SILVA v128 dataset (Quast et al., 2013). Mitochondrial and 

183 chloroplast data were filtered out of the dataset and the remaining reads were rarefied to the 

184 same depth to remove the effect of sampling effort upon analysis. For beta diversity, the relative 

185 abundance of OTUs was calculated and all OTUs with a relative abundance below 0.1% were 
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186 filtered from the dataset. Alpha diversity indices, including species richness (Chao1), species 

187 evenness (Simpson) and species diversity (Shannon index) were calculated using QIIME 

188 (Caporaso et al., 2010).

189 2.5. Statistical analyses

190

191 Alpha diversity metrics were compared between groups using a Kruskal-Wallis test. All beta 

192 diversity analyses were performed with a Bray-Curtis dissimilarity index. To easily visualise 

193 how samples related to one another and observe distance matrices between groups, non-metric 

194 multidimensional scaling analysis (nMDS) with three dimensions (3D) was used. Patterns 

195 elucidated by the 3D nMDS were statistically tested using a permutational multivariate analysis 

196 of variance (PERMANOVA) with 9999 permutations using transformed (square root(x)) data. 

197 To identify the OTUs driving the difference between the microbial assemblage at different 

198 locations or time points, SIMPER analysis was used. All alpha and beta diversity comparisons 

199 were performed in the PAST statistical environment (Hammer et al., 2001). To determine 

200 whether the relative abundances of OTUs were significantly different between oyster groups 

201 with differing QX-resistance, a Welch’s T-Test was performed using the STAMP (Statistical 

202 Analysis of Metagenomic Profiles) software package version 2.1.3 (Parks et al., 2014). A file 

203 listing the relative abundance of all OTUs was used as input data along with a metadata file 

204 containing location, sampling time and QX-resistance group information. A Welch’s T-Test 

205 with a p-value of  <0.05 as a statistical cut-off was used. To visualise the significant difference 

206 in the relative abundance of OTUs between the QX-sensitive QX-and resistant groups at a 

207 single location at each sampling time, extended error bar plots with corrected p-values were 

208 produced.

209 3. Results

210

211 Following amplicon sequencing of the 132 samples (oysters and seawater), data were rarefied 

212 to 7,178 reads retaining a total of 753,690 reads from 105 samples (Supplementary Table 1). 

213 After data filtering, a total of 1,889 OTUs were observed across the entire dataset. Of these, 

214 1,619 and 190 OTUs were unique to the oyster and seawater microbiota respectively, with only 

215 80 OTUs found in both the oyster and seawater samples. 

216
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217 3.1. The SRO microbiota is distinct from the seawater microbiota

218

219 Across the entire dataset, species richness, evenness and diversity were higher in seawater 

220 samples relative to the SRO adductor muscle microbiota (Figure 1 and Supplementary Table 

221 2). When grouping all SRO or seawater samples, an 3D nMDS analysis revealed that the 

222 composition of the SRO and seawater microbiota were distinct from one another 

223 (Supplementary Figure 1), with these differences confirmed as significantly different by 

224 PERMANOVA (F = 13.54, p = 0.0001). SIMPER analysis revealed a 99.1% dissimilarity 

225 between the SRO and seawater microbiota, with Candidatus Hepatoplasma genus (OTU 

226 14887) and Endozoicomonas genus (OTU 3829) over-represented in SRO microbiota and 

227 driving 5.7% and 2.9% of the difference respectively (Figure 2 and Supplementary Table 3). 

228 In seawater, the Candidatus Actinomarina genus (OTU 22961) and NS5 marine group genus 

229 (OTU 5409) were over-represented, driving 4.2% and 3.6% of the difference respectively 

230 (Figure 2 and Supplementary Table 3). 

231

232 Figure 1: Box and whisker plot of species richness (A), evenness (B) and diversity (C) for SRO 

233 and seawater microbiota. The x in the box plot is the mean of the dataset.
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234

235 Figure 2: Microbiota composition of SRO (A) and seawater samples (B) in Port Stephens 

236 (upper panels) and Wallis Lake (lower panels) showing the top 20 dominant and remaining 

237 taxa in January (underlined by blue bar) and June (underlined by red bar). The right bars in 

238 each panel show the mean abundance of each taxon within each group. Data is summarised at 

239 the genus level.

240

241 3.2. Location is a factor shaping the SRO microbiota 

242

243 Overall, Port Stephens had higher temperatures, pH and chlorophyll a at each time point, 

244 whereas Wallis Lake had higher levels of dissolved oxygen relative to Port Stephens. A rainfall 

245 event occurred during the June (winter) sampling at Port Stephens which likely explains the 

246 decrease in conductivity and increase in nutrients during this time point (Table 2). 

247

248 When the total SRO microbiota deployed in Port Stephens and Wallis Lake were compared, 

249 species richness and diversity were statistically higher in Wallis Lake (p = 0.029 and p = 0.007 

250 respectively, Supplementary Figure 2A and Supplementary Table 4). However, no statistical 

251 difference in alpha indices was observed when SRO microbiota from Port Stephens and Wallis 

252 Lake were independently compared in January and June (Supplementary Figure 2B and 

253 Supplementary Table 4).
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255 Despite some overlap, a 3D nMDS plot showed that SRO microbiota clustered according to 

256 location (Figure 3A) and were significantly different according to site (PERMANOVA, F = 

257 8.955, p = 0.0001). This effect of location was also evident within each season in January 

258 (Figure 3B and 3C; PERMANOVA, F = 5.117, p = 0.0001) and June (PERMANOVA, F = 

259 11.81, p = 0.0001). Across the entire dataset, the SRO microbiota at Port Stephens and Wallis 

260 Lake were 90.5% dissimilar to one another. Similarly, in January and June, the SRO microbiota 

261 from the two sites were 90.3% and 91.9% dissimilar respectively. Interestingly, the main 

262 dissimilarity contributor, Candidatus Hepatoplasma genus (OTU 14887), was over-

263 represented at Port Stephens in January contributing 17.7% to the dissimilarity between 

264 microbiota however, was over-represented at Wallis Lake in June contributing 9.6% of the 

265 microbiota dissimilarity (Supplementary Table 5). Additionally, a member of the 

266 Endozoicomonas genus (OTU 1831) was over-represented in Wallis Lake in both January and 

267 June contributing 3.0% and 6.4% respectively.

268  
269 Figure 3: 3D nMDS plots of total SRO microbiota (A) and those from January (B) and June 

270 (C) show separation according to location.
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271 Table 2: Environmental parameters in Port Stephens and Wallis Lake at time of sampling

272

Time
Temperature

(0C)
pH

DO

(mg/L)

Conductivity

(µS/cm)

NO3

(mg/L)

NO2
-

(mg/L)

NH3

(mg/L)

PO4
3-

(mg/L)

Chlorophyll 

a

(µg/ml)

Rainfall*

Port Stephens

 

January 27.8 8.0 8.18 53.3 <0.005 0.004 ± 0.0 0.012 ± 0.003 0.014 ± 0.003 11.41 ± 1.48

Rainfall 2 days before 

sampling (0.4 mm). Monthly 

total rainfall was 69.9mm 

June 24 8.3 8.88 27.6 0.047 ± 0.01 <0.005 0.038 ± 0.001 <0.005 23.03 ± 3.13

Rainfall over 6 days 

including during sampling 

(average 23.65 mm/day). 

Monthly total rainfall was 

315.1mm 

Wallis Lake

January 24 7.2 9.5 53.9 <0.005 0.004 ± 0.0 0.013 ± 0.004 0.007 ± 0.001 9.05 ± 0.62

Rainfall event 2 days before 

sampling (2.0 mm). Monthly 

total rainfall was 89.2mm 

June 18.3 8.2 9.07 53.6
0.014 ± 

0.014
<0.005 0.018 ± 0.001 <0.005 9.52 ± 0.57

Rainfall over 3 days before 

sampling (average 5.6 

mm/day). Monthly total 

rainfall was 188.1mm 

273
274 *Data obtained from (Bureau of Meteorology, 2019)
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275 3.3. Season is a factor shaping the SRO microbiota 

276

277 We next examined whether seasonality influenced the SRO microbiota within a given location. 

278 There were no statistical differences in alpha diversity in either Port Stephens or Wallis Lake 

279 (Supplementary Figure 2C and Supplementary Table 4). However, 3D nMDS plots revealed 

280 the SRO microbiota at both sites tended to cluster according to sampling time (Figure 4). This 

281 seasonal variability was more pronounced in Port Stephens (PERMANOVA, F = 10.42, p = 

282 0.0001) than Wallis Lake (PERMANOVA, F = 3.451, p = 0.0001). At Wallis Lake, the SRO 

283 microbiota was 86.5% dissimilar with OTUs assigned as members of the Endozoicomonas 

284 genus (OTU 1831) and the Candidatus Hepatoplasma genus (OTU 14887) over-represented 

285 in January and June respectively, contributing 8.1% and 10.4% to the microbiota dissimilarity 

286 (Supplementary Table 6). At Port Stephens, there was 92.7% dissimilarity in SRO microbiota 

287 composition between seasons, with an OTU assigned to the Candidatus Hepatoplasma genus 

288 (OTU 14887) over-represented in January and contributing 16.8% to the dissimilarity. In June, 

289 OTUs assigned as Vibrio (OTU 2), Mycoplasma (OTU 14900) and Pseudoalteromonas (OTU 

290 8917) were over-represented, contributing 6.6%, 5.6% and 5.0% to the dissimilarity between 

291 seasons respectively (Supplementary Table 6).
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293  

294 Figure 4: 3D nMDS plots of SRO microbiota in Port Stephens (A) and Wallis Lake (B) 

295 separating according to time of sampling.

296 3.4. The effect of QX-resistance on the SRO microbiota

297

298 Across times and sites, we analysed differences in the oyster microbiota between SROs with 

299 different levels of resistance to QX disease. Families were grouped as QX-sensitive if survival 

300 was �50% and QX-resistant if displayed >50% survival (Table 1). Species richness was higher 

301 in the QX-sensitive group at Port Stephens in January (Average: 74 ± 3.26 vs 143.38 ± 77.87, 

302 p = 0.039; Supplementary Table 7). No other significant differences in alpha diversity indices 

303 were observed between the QX groups in each location at each time point (Supplementary 

304 Table 7). PERMANOVA showed statistically significant differences in the microbiota 

305 structure of different QX-resistance groups only in June at both locations (Table 3). 

306

307 At Port Stephens in June, SIMPER analysis revealed a 75.7% dissimilarity between the QX-

308 sensitive and QX-resistant groups with two OTUs (OTU 12669 and OTU 14900) from the 

309 Mycoplasma genus over-represented in the QX-resistant group and contributing 9.6% and 

310 9.2% to the microbiota dissimilarity. OTUs belonging to the Pseudoalteromonas (OTU 8917) 
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311 and Vibrio (OTU 2) genera were over-represented in the QX-sensitive group contributing 6.4% 

312 and 6.1% to the microbiota dissimilarity (Supplementary Table 8), while another OTU assigned 

313 to the Vibrio genus (OTU 1) was over-represented in the QX-resistant microbiota contributing 

314 5.6% dissimilarity (Supplementary Table 8). Additionally, two Mycoplasma OTUs (OTU 

315 12669 and OTU 14900) were over-represented in the QX-resistant group, contributing 9.6% 

316 and 9.2% to the microbiota dissimilarity. At Wallis Lake in June, SIMPER revealed 77.9% 

317 microbiota dissimilarity between the QX groups. A member assigned to the Candidatus 

318 Hepatoplasma genus (OTU 14887) was over-represented in the QX-sensitive group and 

319 contributed 15.86% of the microbiota dissimilarity, whereas 5 OTUs, all assigned to the 

320 Endozoicomonas genus (OTUs 1831, 3829, 6283, 3483 and 4530), were over-represented in 

321 the QX-resistant microbiota.

322

323 Table 3. PERMANOVA results comparing the microbiota of QX-sensitive (F03, F18, F32 

324 and F37) and QX-resistant (F022 and F025) families at each location and time point.

325

Port Stephens Wallis Lake

January F = 1.184, p = 0.2233 F = 1.1, p = 0.263

June F = 1.562, p = 0.0491 F = 1.614, p = 0.0378

326

327 To further decipher beta diversity patterns between QX-resistant and -sensitive SRO’s, 

328 STAMP with a Welch’s T-Test was used. This analysis identified members of the Vibrio (OTU 

329 2, p = 0.003) and Colwellia (OTU 3670, p = 0.028) genera with significantly higher relative 

330 abundance in the QX-sensitive group from Port Stephens in June (Figure 5A). In Wallis Lake, 

331 a member assigned as the Thiohalocapsa genus (OTU 11899) had a significantly higher 

332 relative abundance in QX-sensitive oysters (p = 0.025), whereas OTUs assigned to the Borrelia 

333 (OTU 651, p = 0.038) and Endozoicomonas (OTU 4530, p = 0.047) genera had a significantly 

334 higher relative abundance in QX-resistant oysters (Figure 5B).
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335

336 Figure 5: Extended error bar plots showing OTUs with a significant difference in relative 

337 abundance between the QX-sensitive (QX - S) and resistant groups (QX - R) at Port Stephens 

338 (A) and Wallis Lake (B) in June.

339 4. Discussion

340

341 This study investigated the influence of location, season and oyster genetics (QX-resistance) 

342 on shaping the SRO microbiota. Despite the filter-feeding nature of oysters, our results indicate 

343 that the SRO microbiota is highly distinct from the planktonic microbiota within the 

344 surrounding seawater. It is possible that part of the observed variation is due to the seawater 

345 samples being collected from jetties 800 m from the oyster leases however, it is unlikely that 

346 the main bacterial patterns in the seawater would substantially vary across this small distance. 

347 Additionally, it is also possible that a part of the observed variation is due to the use of different 

348 DNA extraction kits for the oysters and water samples. Nevertheless, the patterns we observed 

349 are consistent with previous studies on the microbiota of the Pacific oyster (Lokmer et al., 

350 2016a; Lokmer et al., 2016b).

351

352 The microbiota varies between oyster tissues (King et al., 2012; King et al., 2020; Lokmer et 

353 al., 2016b) however, some overlap is observed such as the genus Mycoplasma which is 

354 dominant in the adductor muscle, gill, stomach, digestive gland and haemolymph (Green & 

355 Barnes, 2010; King et al., 2012; King et al., 2019b; King et al., 2020; Wegner et al., 2013). 

356 Here, we elected to use the adductor muscle as it allows sampling of the circulatory 

357 haemolymph from the sinuses. Overall, the SRO microbiota was dominated by OTUs assigned 

358 to the Candidatus Hepatoplasma, Endozoicomonas and Mycoplasma genera. Candidatus 
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359 Hepatoplasma has been found associated with various marine organisms such as starfish 

360 (Nakagawa et al., 2017), Norway lobsters (Meziti et al., 2012), corals (van de Water et al., 

361 2018) and starlet sea anemones (Mortzfeld et al., 2016). However, the function of this 

362 bacterium in marine organisms, including SROs, is unknown. Mycoplasma is consistently 

363 identified in healthy oysters including Eastern oysters, Pacific oyster and SROs (Green & 

364 Barnes, 2010; King et al., 2012; King et al., 2019b; King et al., 2019c; Wegner et al., 2013) 

365 suggesting that these bacteria are potentially important for oyster health. Members of the 

366 Endozoicomonas genus have been found to be associated with numerous marine organisms 

367 (Neave et al., 2016) such as sponges (Nishijima et al., 2013; Rua et al., 2014) and corals (Bayer 

368 et al., 2013; Ziegler et al., 2016) with members of this genus previously shown to comprise a 

369 large proportion of the Indo-Pacific (Roterman et al., 2015; Zurel et al., 2011) and Black-

370 Lipped pearl oyster  (Dubé et al., 2019) bacterial communities. In sponges and corals, these 

371 bacteria play a role in nitrogen and carbon recycling, provision of proteins to their hosts and 

372 production of antibiotics (Neave et al., 2017; Nishijima et al., 2013; Rua et al., 2014) and may 

373 suggest a similar role in SROs. 

374

375 4.1. The SRO microbiota is influenced by location

376

377 The same oyster families were deployed in Port Stephens and Wallis Lake reducing the 

378 influence of genetics as a confounding factor in our analyses and allowing us to investigate 

379 whether location or season influence the composition of the SRO microbiota. Consistent with 

380 previous studies that have characterised the influence of location on the oyster microbiota 

381 (King et al., 2012; Ossai et al., 2017; Roterman et al., 2015; Trabal et al., 2012; Zurel et al., 

382 2011), we observed that SRO microbiota was significantly different between two sites which 

383 are approximately 70 km apart and differ in estuarine type (Roy et al., 2001). Data collected in 

384 this study identified higher chlorophyll a concentrations and temperature in Port Stephens 

385 relative to Wallis Lake. While both estuaries have similar percentages of agricultural land 

386 usage in their respective catchments (approximately 30%), Port Stephens has significantly 

387 higher sediment and nutrient inputs compared to Wallis Lake (Roper et al., 2011). Given the 

388 higher nutrient and sediment loads at Port Stephens, these factors could explain the microbiota 

389 variability between the locations. A member of the Endozoicomonas genus (OTU 1831) was 

390 more abundant in Wallis Lake than in Port Stephens at both sampling times. In coral species, 

391 the anthropogenically influenced coral microbiota (Pocillopora verrucosa and Acropora 

392 hemprichii) was marked by a reduction of Endozoicomonas relative abundance (Ziegler et al., 
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393 2016), suggesting that the lower relative abundance of this bacteria in SROs at Port Stephens 

394 could be related to the higher nutrient and sediment loads.

395

396 4.2. The SRO microbiota is influenced by season

397

398 In a number of marine organisms, including corals (Sharp et al., 2017) and Pacific oysters 

399 (Pierce et al., 2016; Zurel et al., 2011), there is evidence for significant temporal heterogeneity 

400 in microbiota composition. Consistent with these findings, we observed a significant influence 

401 of season (summer versus winter) on the SRO microbiota for both locations. At Port Stephens, 

402 seasonal shifts in environmental conditions were dominated by changing temperature, 

403 chlorophyll a and conductivity, while at Wallis Lake, seasonal changes in environmental 

404 parameters were mostly driven by temperature and pH. Previous studies have characterised the 

405 influence of temperature on the oyster microbiota (Lokmer & Wegner, 2015; Pierce et al., 

406 2016) and salinity perturbations have also been observed to influence the oyster microbiota 

407 (del Refugio Castañeda Chávez et al., 2005; Larsen et al., 2013). Seasonal shifts in the SRO 

408 microbiota were characterised by changes in the relative abundance of several OTUs, including 

409 those assigned to the Candidatus Hepatoplasma and Vibrio genera. Interestingly, we observed 

410 inverse patterns for the relative abundance of an OTU assigned to the Candidatus 

411 Hepatoplasma genus (OTU 14887) between the two sampling sites. At Port Stephens, this 

412 OTU was significantly more abundant in summer, while at Wallis Lake, it was considerably 

413 more abundant in winter. The environmental data collected at the time suggests no similarities 

414 between the Port Stephens summer and Wallis Lake winter samples that could explain this 

415 pattern (conductivity was similar for these two sampling points but conductivity did not change 

416 between the Wallis Lake summer and winter sampling points) and this OTU was rare or absent 

417 in the seawater communities, therefore future studies should increase the suite of 

418 environmental parameters collected to explain these patterns. At both locations, a member of 

419 the Vibrio genus (OTU 2) had a higher relative abundance in winter than in summer. This 

420 pattern is interesting given that Vibrio typically exhibit preferences for warm water 

421 temperatures. However, some Vibrio species such as Vibrio splendidus, have elsewhere been 

422 found to be most abundant during winter and spring (Arias et al., 1999; Pujalte et al., 1999). It 

423 is also conceivable that other environmental factors, such as chlorophyll a or nutrient levels, 

424 underpinned the higher winter relative abundance of this Vibrio species (OTU 2).

425

426 4.3. The SRO microbiota is influenced by disease resistance
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427

428 Oyster genetics have previously been shown to influence the Pacific oyster microbiota structure 

429 (King et al., 2019c; Wegner et al., 2013), with the microbiota of disease-resistant Pacific 

430 oysters showing a significantly different structure to disease-susceptible oysters (King et al., 

431 2019c). However, the influence of genetics on the Pacific oyster microbiota can be superseded 

432 by stress, such as temperature perturbations (Wegner et al., 2013). In this study, we observed 

433 significant differences of the microbiota between QX-resistant and QX-susceptible oysters, but 

434 only in winter (June). This pattern suggests that there is a synergistic interaction of genetics 

435 and environmental drivers in shaping the SRO microbiota, which is consistent with previous 

436 studies in marine organisms such as Pacific oysters (Wegner et al., 2013) and corals (Klaus et 

437 al., 2005). While QX disease typically occurs between November to May (Bezemer et al., 

438 2006; Rubio et al., 2013), infections by M. sydneyi that cause no mortality (Adlard & Wesche, 

439 2005) have been observed between May to July (Rubio et al., 2013), corresponding to the 

440 period where microbiota heterogeneity between resistance groups was observed in this study. 

441 This could indicate that the microbiota assemblage prior to the peak mortality period is 

442 important and could contribute to QX disease dynamics, although future studies should 

443 consider performing a temporal study to capture possible microbiota dynamics. 

444

445 A previous study characterising the influence of disease-resistance on Pacific oyster microbiota 

446 identified disease-susceptible oysters as having a higher absolute abundance of Vibrio species 

447 (King et al., 2019c). Interestingly, this pattern is consistent with observations made in this 

448 study, where at Port Stephens we observed an over-representation of an OTU assigned to the 

449 Vibrio genus (OTU 2) in QX-susceptible oysters. Vibrio species are commonly implicated as 

450 pathogens affecting marine molluscs such as clams, mussels and oysters (Paillard et al., 2004; 

451 Travers et al., 2015). For example, Vibrio species have a crucial role in summer mortalities of 

452 Pacific oysters (de Lorgeril et al., 2018; Garnier et al., 2007; King et al., 2019b; Lemire et al., 

453 2015; Petton et al., 2015; Saulnier et al., 2010; Sugumar et al., 1998) with a non-virulent Vibrio 

454 community replaced by a pathogenic one (Lemire et al., 2015). Given their role in marine 

455 molluscs and other oyster diseases, investigating whether Vibrio species influence QX-disease 

456 dynamics would be of interest. At Wallis Lake, an OTU assigned to the Endozoicomonas genus 

457 (OTU 4530) was significantly over-represented in the QX-resistant oysters. Endozoicomonas 

458 bacteria have found to be associated with many marine organisms such as sponges, corals and 

459 oysters (Dubé et al., 2019; Neave et al., 2016; Roterman et al., 2015; Zurel et al., 2011). Given 

460 the importance of Endozoicomonas species in sponges and corals (Neave et al., 2017; 
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461 Nishijima et al., 2013; Rua et al., 2014), future studies should investigate their potential role 

462 in QX-resistant oysters.

463 5. Conclusion

464 There is emerging evidence that the microbiota of benthic organisms, including oysters, are 

465 dynamic and driven by multiple factors, but the impact of location, season and genetics (disease 

466 resistance) on the SRO microbiota have not been reported previously. Understanding the 

467 factors that drive SRO microbiota composition are pivotal when deciphering the role of the 

468 microbiota during disease events, and to explain microbiota shifts prior to, or during, disease. 

469 However, this is currently hindered by a paucity of SRO microbiota studies. This study 

470 demonstrated that the SRO microbiota assemblage is influenced by location and season, which 

471 highlights the importance of performing temporal studies at individual locations as interpreting 

472 microbiota patterns from other locations or time points can lead to erroneous microbiota 

473 explanations. Further, breeding for QX disease resistance (genetics) was found to influence the 

474 SRO microbiota although this was only observed in the winter. This sampling time point is 

475 before the typical QX disease period, which may indicate that a microbiota shift could be a 

476 factor in QX disease dynamics. Overall, these data suggest that there is a synergistic interaction 

477 of genetics and environmental drivers in shaping the SRO microbiota. 
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Supplementary Table 1: Remaining samples for each SRO family and seawater after 
rarefication to 7,178 reads.

Port Stephens Wallis LakeSample
January June January June

F18 3 5 5 4
F22 5 5 4 5
F25 2 5 4 5
F03 2 5 4 4
F37 3 5 3 5
F32 1 4 3 3
Seawater 2 3 3 3



Supplementary Table 2: Kruskal-Wallis test of alpha diversity indices between total SRO and 
total seawater microbiota, including species richness (Chao1), species evenness (Simpson) and 
species diversity (Shannon).  

Comparison H p-value
Richness of SRO (n =94) vs seawater (n =11) 28.25 1.06E-07
Evenness of SRO (n =94) vs seawater (n =11) 15.64 7.65E-05
Diversity of SRO (n =94) vs seawater (n = 11) 20.06 7.52E-06



Supplementary Figure 1: 3D nMDS plot showing separation of the SRO and seawater 
microbiota samples. 



Supplementary Table 3: SIMPER analysis comparing the SRO and seawater microbiota. The 
top 10 OTUs are displayed with their dissimilarity contribution and mean representation. 
Dissimilarity contribution is cumulative. 

Taxon Contrib. % Mean 
SRO

Mean 
Water

Candidatus Hepatoplasma genus (OTU 14887) 5.736 10.6 0.0481
Candidatus Actinomarina genus (OTU 22961) 4.171 0.0467 7.86
NS5 marine group genus (OTU 5409) 3.641 0.0603 6.75
Endozoicomonas genus (OTU 3829) 2.917 5.38 0.0101
Oceanospirillales order (OTU 12673) 2.554 0.0655 4.82
Endozoicomonas genus (OTU 1831) 2.441 4.5 0
Vibrio genus (OTU 2) 2.255 4.07 0.485
Mycoplasma genus (OTU 14900) 1.885 3.48 0
OM43 clade genus (OTU 6156) 1.867 0.0424 3.47
Arcobacter genus (OTU 6697) 1.787 3.31 0



Supplementary Figure 2: Box and whisker plots of species richness, evenness and diversity 

of total SRO microbiota from Port Stephens and Wallis Lake (A), SRO microbiota from Port 

Stephens and Wallis Lake at each season (B) and SRO microbiota from January and June at 

each location (C). A single asterisk and two asterisks indicate a statistical significance of 

p<0.05 and p<0.01 respectively.



Supplementary Table 4: Kruskal-Wallis ANOVA test of alpha diversity indices between 
location and season including species richness (Chao1) species evenness (Simpson) and 
species diversity (Shannon).  

Comparison H p-value
Location (January and June)

Richness in Wallis Lake (n =49) vs Port Stephens (n =45) 4.768 0.02899
Evenness in Wallis Lake (n =49) vs Port Stephens (n =45) 3.769 0.05221
Diversity in Wallis Lake (n =49) vs Port Stephens (n =45) 7.199 0.007294

Location (January)
Richness in Wallis Lake (n =23) vs Port Stephens (n =16) 2.935 0.08667
Evenness in Wallis Lake (n =23) vs Port Stephens (n =16) 3.134 0.07669
Diversity in Wallis Lake (n =23) vs Port Stephens (n =16) 3.551 0.05951

Location (June)
Richness in Wallis Lake (n =26) vs Port Stephens (n =29) 2.251 0.1335
Evenness in Wallis Lake (n =26) vs Port Stephens (n =29) 1.201 0.2732
Diversity in Wallis Lake (n =26) vs Port Stephens (n =29) 3.254 0.07126

Season in Wallis Lake
Richness in January (n =23) vs June (n =26) 0.2508 0.6165
Evenness in January (n =23) vs June (n =26) 0.006421 0.9361
Diversity in January (n =23) vs June (n =26) 0.04013 0.8412

Season in Port Stephens
Richness in January (n =16) vs June (n =29) 2.6 0.1069
Evenness in January (n =16) vs June (n =29) 0.9918 0.3193
Diversity in January (n =16) vs June (n =29) 0.506 0.4769



Supplementary Table 5: SIMPER analysis of the SRO microbiota between Port Stephens and 
Wallis Lake. The top 10 OTUs are displayed with their dissimilarity contribution and mean 
representation. Dissimilarity contribution is cumulative.

Taxon Contrib. %
Port 

Stephens 
mean

Wallis 
Lake 
mean

January and June
Candidatus Hepatoplasma genus (OTU 14887) 10.05 12 9.27
Endozoicomonas genus (OTU 1831) 4.859 0.0341 8.6
Vibrio genus (OTU 2) 4.309 7.7 0.73
Endozoicomonas genus (OTU 3829) 3.961 3.75 6.88
Mycoplasma genus (OTU 14900) 3.919 6.81 0.423
Arcobacter genus (OTU 6697) 3.611 3.79 2.87
Pseudoalteromonas genus (OTU 8917) 3.323 5.88 0.077
Mycoplasma genus (OTU 12669) 2.896 5.04 0.119
Mycoplasma genus (OTU 14921) 2.865 2.69 3.2
Mycoplasma genus (OTU 14937) 2.69 3.81 1.6

January
Candidatus Hepatoplasma genus (OTU 14887) 17.66 31.2 0
Arcobacter genus (OTU 6697) 6.468 6.15 6.12
Mycoplasma genus (OTU 14921) 5.095 4.66 6.3
Endozoicomonas genus (OTU 3829) 4.732 5.89 7.02
Endozoicomonas genus (OTU 1831) 3.028 0 5.35
Photobacterium genus (OTU 3) 2.826 0.0871 4.87
Endozoicomonas genus (OTU 6283) 2.761 3.23 4.13
Mycoplasma genus (OTU 14937) 2.737 2.88 3.35
Pseudomonas genus (OTU 12985) 2.304 0.589 3.97
Aquibacter genus (OTU 12017) 2.054 3.63 0.153

June
Candidatus Hepatoplasma genus (OTU 14887) 9.6 1.43 17.5
Endozoicomonas genus (OTU 1831) 6.38 0.0528 11.5
Vibrio genus (OTU 2) 6.115 11.9 1.31
Mycoplasma genus (OTU 14900) 5.283 9.45 0.218
Pseudoalteromonas genus (OTU 8917) 5.051 9.12 0.111
Mycoplasma genus (OTU 12669) 4.38 7.82 0.0338
Endozoicomonas genus (OTU 3829) 3.424 2.56 6.76
Cobetia genus (OTU 2869) 2.916 5.22 0.00536
Mycoplasma genus (OTU 14937) 2.432 4.32 0.0595
Endozoicomonas genus (OTU 6283) 2.282 2.03 3.78



Supplementary Table 6: SIMPER analysis of the SRO microbiota between the two sampling 
times in Port Stephens and Wallis Lake. The top 10 OTUs are displayed with their dissimilarity 
contribution and mean representation. Dissimilarity contribution is cumulative.

Taxon Contrib. % Mean 
January

Mean 
June

Wallis Lake
Candidatus Hepatoplasma genus (OTU 14887) 10.37 0 17.5
Endozoicomonas genus (OTU 1831) 8.142 5.35 11.5
Endozoicomonas genus (OTU 3829) 4.412 7.02 6.76
Mycoplasma genus (OTU 14921) 3.803 6.3 0.453
Arcobacter genus (OTU 6697) 3.623 6.12 0
Photobacterium genus (OTU 3) 2.96 4.87 0.0177
Endozoicomonas genus (OTU 6283) 2.756 4.13 3.78
Pseudomonas genus (OTU 12985) 2.382 3.97 0.0707
Mycoplasma genus (OTU 14937) 1.995 3.35 0.0595
Endozoicomonas genus (OTU 1993) 1.965 0 3.33

Port Stephens
Candidatus Hepatoplasma genus (OTU 14887) 16.77 31.2 1.43
Vibrio genus (OTU 2) 6.575 0.00697 11.9
Mycoplasma genus (OTU 14900) 5.612 2.01 9.45
Pseudoalteromonas genus (OTU 8917) 5.008 0 9.12
Arcobacter genus (OTU 6697) 4.553 6.15 2.49
Mycoplasma genus (OTU 12669) 4.288 0 7.82
Endozoicomonas genus (OTU 3829) 3.401 5.89 2.56
Mycoplasma genus (OTU 14937) 3.171 2.88 4.32
Cobetia genus (OTU 2869) 2.854 0.0313 5.22
Mycoplasma genus (OTU 14921) 2.695 4.66 1.6



Supplementary Table 7: Kruskal-Wallis ANOVA test of alpha diversity indices between QX- 
sensitive and QX-resistant groups including species richness (Chao1), species evenness 
(Simpson) and species diversity (Shannon).  

Comparison H p-value
Port Stephens in January

Richness in QX-sensitive (n =9) vs QX-resistant (n =7) 4.26 0.039
Evenness in QX-sensitive (n =9) vs QX-resistant (n =7) 2.692 0.1009
Diversity in QX-sensitive (n =9) vs QX-resistant (n =7) 2.692 0.1009

Wallis Lake in January
Richness in QX-sensitive (n =15) vs QX-resistant (n =8) 0.6003 0.4385
Evenness in QX-sensitive (n =15) vs QX-resistant (n =8) 0.0375 0.8465
Diversity in QX-sensitive (n =15) vs QX-resistant (n =8) 0.0375 0.8465

Port Stephens in June
Richness in QX-sensitive (n =19) vs QX-resistant (n =10) 0.6086 0.4353
Evenness in QX-sensitive (n =19) vs QX-resistant (n =10) 1.771 0.1833
Diversity in QX-sensitive (n =19) vs QX-resistant (n =10) 1.895 0.1687

Wallis Lake in June
Richness in QX-sensitive (n =16) vs QX-resistant (n =10) 2.669 0.1023
Evenness in QX-sensitive (n =16) vs QX-resistant (n =10) 0.1 0.718
Diversity in QX-sensitive (n =16) vs QX-resistant (n =10) 0.5444 0.4606



Supplementary Table 8: SIMPER analysis comparing the SRO microbiota of QX-sensitive 
and QX-resistant groups at Port Stephens and Wallis Lake in June. The top 10 OTUs are 
displayed with their dissimilarity contribution and mean representation. Dissimilarity 
contribution is cumulative.

Taxon Contrib. % Mean 
QX-resistant

Mean 
QX-sensitive

Port Stephens
Mycoplasma genus (OTU 12669) 9.644 10.9 6.19
Mycoplasma genus (OTU 14900) 9.27 12.7 7.76
Pseudoalteromonas genus (OTU 8917) 6.394 7.59 9.92
Vibrio genus (OTU 2) 6.11 7.24 14.4
Vibrio (OTU 1) 5.662 8.42 0.0667
Mycoplasma genus (OTU 14937) 5.115 5.42 3.74
Cobetia genus (OTU 2869) 4.655 2.24 6.78
Arcobacter genus (OTU 6697) 4.591 6.57 0.345
Marinilabiaceae family (OTU 2173) 3.33 2.42 4.11
Endozoicomonas genus (OTU 6283) 2.644 3.69 1.15

Wallis Lake
Candidatus Hepatoplasma genus (OTU 
14887) 15.86 15.6 18.6
Endozoicomonas genus (OTU 1831) 9.846 11.8 11.3
Endozoicomonas genus (OTU 3829) 4.867 9.2 5.24
Endozoicomonas genus (OTU 1993) 3.495 1.89 4.23
Endozoicomonas genus (OTU 6283) 3.248 5.59 2.64
Gammaproteobacteria class (OTU 6670) 3.003 4.5 0.0679
Endozoicomonas genus (OTU 3483) 2.109 3.33 1.56
Flavobacteriaceae family (OTU 12808) 2.105 0.0111 3.16
Endozoicomonas genus (OTU 1949) 1.975 1.04 2.45
Endozoicomonas genus (OTU 4530) 1.769 3.25 1.4


