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Abstract— 3D object reconstructions obtained from 2D or
3D cameras are typically noisy. Probabilistic algorithms are
suitable for information fusion and can deal with noise robustly.
Consequently, these algorithms can be useful for accurate
surface reconstruction. This paper presents an approach to
estimate a probabilistic representation of the implicit surface
of 3D objects. One of the contributions of the paper is the
pipeline for generating an accurate reconstruction, given a set
of sparse points that are close to the surface and a dense noisy
point cloud. A novel submapping method following the topology
of the object is proposed to generate conditional independent
Gaussian Process Implicit Surfaces. This allows inference and
fusion mechanisms to be performed in parallel to later propa-
gating information through the submaps. Large datasets can
efficiently be processed by the proposed pipeline producing
not only a surface but also the uncertainty information of the
reconstruction. We evaluate the performance of our algorithm
using simulated and real datasets.

Keywords: Gaussian Process Implicit Surfaces, Skeleton
Extraction, Bayesian Fusion, Conditionally Independent Maps.

I. INTRODUCTION

Digitizing real-world objects for applications such as 3D
printing requires accurate and high-resolution surface recon-
struction. Although the use of 2D or 3D cameras makes this
process efficient and cost-effective, it poses a challenge in the
quality of the reconstructed surface. Object reconstruction
from an image sequence is a key and well-studied problem
in robotics and computer vision.

In the literature, there are a wide variety of methods
for 3D reconstruction, a survey on this topic can be found
in [1]. These methods vary in terms of the map representa-
tion, the data structure, the type of estimation, and other
algorithmic differences, but only a few are probabilistic.
Ref [2], for instance, is a well-known non-probabilistic
open-source image to 3D reconstruction pipeline. It includes
camera pose estimation, then multi-view stereo for dense
map triangulation.

There are several contexts where probabilistic methods
have demonstrated their effectiveness. For instance, due to
its inherent uncertainty modelling, can highlight areas that
might require. This representation can also guide active map-
ping approaches to revisit uncertain areas during the scanning
processes. Another advantage of the probabilistic methods is
the ability to fuse multiple sources of information. The pop-
ular Octomap approach [3], for instance, utilises occupancy
probabilistic estimation to model the reconstructed object as
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Fig. 1. The proposed approach takes as input sparse 3D points reconstructed
from visual SLAM methods and fuse it with noisy dense points obtained
from depth or consecutive images. a) The noisy dense point cloud with
normals is colored by submaps based on the proposed skeleton extraction
algorithm. These dense points are used as training points for an efficient
version of GPIS algorithm. In addition, an accurate sparse point cloud(in
black) is fused with their specific conditionally independent GPIS (submap)
and information is propagated across submaps. b) The final surface repre-
sentation obtained by the algorithm given only as input a noisy point cloud
with normals and accurate sparse points. c) Final reconstruction is colored
by variance values from low (light grey) to high (dark grey) uncertainty.

part of a 3D grid (voxel grid). Also in a probabilistic manner,
other approaches use Markov random field inference [4]
to model the joint distribution over discrete occupancy and
continuous appearance variables at each voxel given all input
images. The problem in general with grid approaches is the
need for discretisation, which hinders the ability to represent
the surface properly.

Methods that leverage the space representation in a con-
tinuous manner can also be found in the literature. For in-
stance, [5] proposes an approach for 3D shape reconstruction
with images from a single camera based on Gaussian Process
Latent Variable Models (GPLVM), which is a non-linear and
probabilistic Gaussian Process based reduction technique.

Also exploiting Gaussian Processes (GP), [6], [7], [8]
and [9] use Gaussian Process Implicit Surfaces (GPIS)
allowing not only to deal with probabilistic information, but
also to represent the uncertainty in the surface reconstruction.
In this way, uncertainty information can be used for accurate
grasping applications [6], to recover occupancy or meshes at
arbitrary resolutions [8] or to improve the prediction of the
surface. Any of these approaches integrate nicely to fusion
algorithms.

The main issue with Gaussian Process-based algorithms,
however, is the cubic computational complexity on the num-
ber of training points that prohibits applications for large-
scale data. One solution to this computational constraint is
the use of partitions a.k.a. “submaps”. Prior work on mapping
using submaps has been presented in the literature [10], [11].
The work in [12] exploits Conditional Independent (CI)



submaps and Bayesian fusion updates for 2.5D terrain
mapping. We leverage this approach to reduce further the
complexity of the already efficient GPIS method proposed
in [9] for 3D object reconstruction using implicit surfaces.
CI submapping in 2.5D representation requires partitions
along one direction given the planarity of these maps. 3D
surface reconstructions, however, require reasoning on the
shape to partition the data in a meaningful way. In this paper,
we propose the use of a skeletonization technique [13] for
automatic partitioning of the 3D data following its hidden
topology.

Other efficient and simple probabilistic representations
such as sparse 3D points are the typical output of indirect
methods for vision-based Simultaneous Localization and
Mapping (SLAM) algorithms such as in [14]. The challenge
is later to recover a dense probabilistic representation from
the optimised sparse points. Our work here aims to tackle
this specific problem; generating accurate probabilistic dense
representations from a set of optimised sparse points and a
set of noisy dense points with normals.

The approach proposed in this paper exploits a recently
published efficient GPIS algorithm based on inducing points
and gradients [15]. We use it as part of a skeleton-based
CI submapping framework that takes advantage of Bayesian
fusion to recover an accurate surface reconstruction (with
uncertainty) given optimised sparse points and a dense
noisy point cloud with normals. The proposed method also
enforces continuity amongst the CI-submaps by using the
Forward Propagation (FP) update proposed in [10], which
we refer to as D-SKI-CI-Fusion. Fig. 1 shows the input and
output of the approach and Fig. 2 presents its pipeline.

The remainder of the paper is structured as follows.
Section II gives an overview of the proposed approach.
Section III describes background on GPIS and the effi-
cient approximation used. Then the approach, including the
submapping based on skeletonisation and fusion algorithms,
is detailed in Section IV. The results and evaluation are pre-
sented in Sections V. Finally, the conclusions are discussed
in Section VI.

II. APPROACH OVERVIEW

Given a 3D reconstruction application from 2D or 3D
cameras, the proposed approach takes as an input a set
of sparse points Z (so-called keypoints) extracted from a
feature-based visual SLAM algorithm and a point cloud
with normals X obtained from multiple depth or consecutive
images. It is assumed that Z is closer to the surface of the
reconstructed object than X . This is a reasonable assumption
as Z represents the points that have been triangulated during
the SLAM estimation algorithm. The noise of X and Z is
assumed to be normally distributed; thus Z has a smaller
variance than X . Fig. 1.a) shows an example of the input
and output of the approach in a simulated dataset.

Our probabilistic approach aims to estimate an accurate
implicit surface with uncertainty information of the 3D object
p(γ|X,Z), where γ is the real implicit surface. We assume
that γ is normally distributed. The devised approach consists
of the following stages (refer to Fig. 2)):

1) A skeletonization algorithm is used to generate over-
lapping partitions based on Z following the object’s

topology. Then following these partitions, X is divided
into n overlapping subsets.

2) An efficient GPIS model is then trained per subset
using the corresponding points and normals Xsi , and
used to create the submaps si for i = 1 . . . n at the
query points X∗si , producing a probabilistic implicit
surface prior per submap, which is considered as the
prior distribution p(γsi |Xsi). Note that X∗si are chosen
by following the noisy point cloud normals to define
points inside and outside the surface.

3) In parallel, the keypoints Zsi that belong to the si
submap are fused with the corresponding prior implicit
surface using the maximum a posteriori estimation
p(γsi |Xsi , Zsi) ∝ p(γsi |Xsi)p(Zsi |γsi).

4) The forward propagation algorithm proposed in [10]
is applied to update the submaps s1...n in a sequential
manner given the difference in the overlapping parts
of the submaps.

5) Once all the keypoints have been fused and the in-
formation has been propagated to the last submap,
the surface is recovered using both, the mean and
covariance information of all the updated GPIS to
recover the final p(γ|X,Z).

III. D-SKI BASED GAUSSIAN PROCESS MODEL

A. Gaussian Process
Gaussian Process (GP) [16] is a stochastic nonparametric

machine learning technique that aims to represent a dis-
tribution over functions. The smoothing and generalisation
information of the GP models are expressed in a kernel
Kij = k(xi,xj) and its hyperparameters θ [16]. Once the
kernel has been fully characterised using training points
X = {x1, . . . ,xnx

}, the f(x) ∼ GP(µ, P ) model can be
used to infer the probabilistic value at any arbitrary testing
point X∗ using,

µ =K(X∗, X)[K(X,X) + σ2I]−1γ, (1)

P =−K(X∗, X)[K(X,X) + σ2I]−1K(X∗, X)T

+K(X∗, X∗) ,
(2)

where σ2 is the variance of the additive independently
distributed Gaussian noise of the input data, I the iden-
tity matrix and γ represents the input value. The matrix
K(X∗, X) is the nx × nx∗ covariance matrix between the
nx training and nx∗ testing points.

Given a specific kernel, its hyperparameters θ are learned
using the maximum log-likelihood estimation to model the
spatial correlation of input data. The log-likelihood

log p(γ|X,θ) = −1

2
(γTK−1γ γ+log |Kγ |+nx log 2π), (3)

where |Kγ | represents the matrix determinant of Kγ =
K(X,X) + σ2I and nx

2 log 2π is a normalisation constant,
with nx as the number of training points.

B. Gaussian Process Implicit Surfaces with Derivatives
Formally, an implicit surface is defined as the surface

described in Euclidean space which satisfies f(x) = 0, where
x ∈ Rd. In other words, the underlying surface is defined by
the 3D points with null values.



Fig. 2. Overall pipeline of the proposed approach.

Gaussian Process Implicit Surfaces [6], [17], [18], [7],
[19], combine both notions, GP and implicit surfaces, in a
continuous probabilistic representation of the 3D surface. In
this work, as defined before, γ is the real implicit surface,
and p(γ|X) is the prior distribution of this surface defined
by the noisy point cloud with normals X = {x1, . . . ,xnx

},
which we model by a GP(µ, P ).

GPIS with derivatives information [16], [19], [20] have
been used to predict a more reasonably implicit surface by
using the points and gradients during training, instead of
adding arbitrary points with negative and positive values to
represent the points inside and outside the surface respec-
tively. In our case, the targeted implicit function is the null
value on the surface with gradients, which are equivalent to
the normals of the surface. Given that the derivative of a GP
can also be regarded as a GP, the covariance function with
derivatives can be written as following,

cov

(
f(x),

∂f(x′)

∂x′i

)
= −∂k (x,x

′)

∂xi
,

cov

(
∂f(x)

∂xi
,
∂f(x′)

∂x′j

)
=
∂2k (x,x′)

∂xi∂x′j
.

(4)

Given nx of d dimension with derivatives, computing the
GP requires to solve an inversion of a positive definite
matrix of dimension nx(d+1). Therefore, the computational
complexity is O

(
n3xd

3
)
. In addition, the inference will cost

O (nxd) and O
(
n2xd

2
)

per testing point.

C. Structured Kernel Interpolation with Derivatives (D-SKI)
To reduce GPIS model’s computational complexity and

improve its scalability, in this work, we proposed to use the
scaling GP algorithm to achieve fast kernel learning [15], and
prediction with derivatives information [9]. As pointed out
before, given (3), there is a need to invert a matrix of the size
of the training points. This becomes much worse when the
derivatives are used as input. To avoid this cubic complexity,
we have opted to use the recently proposed structured kernel
interpolation framework with derivatives (D-SKI) [9]. D-
SKI is based on the structured kernel interpolation method
(SKI) [15] and the matrix-vector multiplications method
(MVMs) [21] adding the derivatives as an extension. SKI
uses an approximate kernel function with inducing points,
enabling fast MVM by implementing interpolation to repro-
ject the input dataset onto a grid generated by the inducing

points,
K(X,X) ≈WK(U,U)WT , (5)

where U is a grid of inducing points m, and W is an nx×m
sparse matrix of interpolation weights.

If the input information involved with normals after an
approximate kernel used, the GP will try to fit the function
value and the gradients information separately, but this will
cause the kernel no longer to be positive definite. D-SKI
uses a differentiate approximate kernel function to solve
this problem [9]. The target scaling kernel function with
derivatives can be written[

K (∂K)T

∂K ∂2K

]
≈
[

W
∂W

]
K(U,U)

[
W
∂W

]T
=[

WK(U,U)WT WK(U,U)(∂W )T

(∂W )K(U,U)WT (∂W )K(U,U)(∂W )T

]
, (6)

where W and ∂W are sparse matrices with assumption of
quintic interpolation [22]. Note that the final computational
complexity of D-SKI is O

(
nxd6

d +m logm
)
.

IV. SKELETON-BASED CONDITIONALLY INDEPENDENT
SUBMAPPING

Although D-SKI substantially reduces the complexity of
GPIS, large 3D reconstructions are still intractable for most
GP-based methods. In our previous work [12], CI submaps
were proposed to address this problem. As pointed out
in [12], each submap should meet the conditionally in-
dependence property to prevent discontinuities in the 3D
reconstructions and to achieve an optimal map once the
information has been propagated through the submaps. Note
that the CI property is a desired condition that can be
achieved by overlapping partitions arranged in a tree-like
structure. Following this tree-like structure requirement, we
proposed a skeletonization algorithm that partitions the data
in a meaningful way, while respecting the CI property and
maintaining similar submaps size.

A. Skeletonization Algorithm
While the submaps could be generated by dividing the

input data into equal slices (e.g., horizontal or vertical slices),
this approach would not leverage the shape of the input
data to create meaningful submaps, nor would it generate
submaps with an equal number of points. This is particularly
relevant when non-structured objects are reconstructed. As



(a) Keypoints (b) Point Cloud Contraction through Laplace-Beltrami operator (c) Skeleton

Fig. 3. Point cloud skeletonization: the keypoints a) are contracted by iter-
ative application of the Laplace-Beltrami operator b). The contracted point
cloud is then transformed into a tree using farthest distance sampling c).

an alternative, we consider the creation of submaps that
follow the shape of the input data. Skeletonization algorithms
naturally rise as a simple method for topologically traversing
the data in a tree structure.

Amongst the skeletonization algorithm available in the lit-
erature [23], several methods have been specifically designed
for point clouds. Amongst the popular methods, Tagliasacchi
et al. [24] proposed a skeletonization method that can be used
on incomplete point clouds where the points and the normals
of these points are used to generate median axis keypoints.
Later on, Cao et al. proposed to use a surface contraction
based on Laplacian contraction [13]. As the latter method
does not require normals, which in our case are initially not
reliable, it is a good candidate for our application.

The method proposed by Cao et al. [13] relies on the
Laplace-Beltrami operator, which is defined by building a
local neighbourhood for each point of the point cloud. The
Laplace-Beltrami operator is then used to iteratively contract
the point cloud (following the idea from Au et al. [25]). Once
the contraction’s convergence is reached, a set of nodes is
generated from the point cloud using farthest point sampling.
The nodes are then connected by considering the connectivity
through the local neighbourhood. This result in a graph
which is then trimmed to generate a proper skeleton (see
Fig. 3).

While building the nodes of the skeleton, the algorithm
keeps track of the association between the nodes and the
points from the point cloud. This information is then used
to build the submaps. In contrast with Cao et al. [13],
we propose to use k-nearest neighbours in the farthest
distance sampling to generate submaps that have a similar
number of points. This replacement is critical to ensure a
constant computational time in the processing of a submap.
Furthermore, in the trimming of the graph, we transform
the skeleton graph into a tree as shown in Fig. 4.b) to be

(a) CI-submapping (b) Original and Final Skeleton

Fig. 4. The transformation of the skeleton into a submapping graph in b)
is achieved by enforcing the conditional independent property shown in a).

able to propagate between submaps while respecting CI (as
a consequence, CI submaping is naturally better suited for
shape with genus 0).

B. CI-Submapping
The CI submaps are built by considering an overlapping

section between two submaps to allow adjacent information
propagation. The conditional independence property assumes
that consecutive submaps si and si+1 are independent given
the overlapping section, therefore non-consecutive are strictly
independent. An illustration of the CI submapping represen-
tation is shown in Fig. 4.a), in which the overall map S
is divided into three submaps: si composed by a + b, si+1

composed by b + c and the last submap is conformed by
b+ d.

Splitting the data based on the proposed skeletonisation
algorithm using Z and propagating the subdivisions to the
noisy point cloud with normals, we obtain Xsi . Then a GPIS
is trained, and inference is performed on each X∗si using D-
SKI algorithm to obtain n CI GPIS submaps GPsi(µsi , Psi).
Following our example on Fig. 4.a) the CI GPIS for si and
the consecutive si+1 are given by,

µsi =
[
µa
µb

]
, µsi+1

=
[
µb
µc

]
, (7)

Psi =

[
Pa Pab
Pba Pb

]
, Psi+1

=

[
Pb Pbc
Pcb Pc

]
. (8)

Note that the overlapping part is critical to deal with disconti-
nuities related to applying independently per submap D-SKI-
CI inference and fusion as discussed in the next section.

C. Forward Propagation
The FP algorithm allows the transfer of information from

the s++
i−1 submap to the si, taking into account the difference

on the overlapping part. Following [10] the FP step is as
follows,

T = Pcb(Pb)
−1 (9)

P acb = TP ab (10)

P ac = Pc + T (P abc − Pbc) (11)

µac = µc + T (µab − µb) (12)

where the superscript corresponds to the information used
to update the current submap. For instance, in the case of
µac , the superscript represents the information coming from
the non-common part of the previous submap, a, and the
subscript c makes reference to the part of the submap that
it’s being updated.

In this way, Equations (11) and (12) are used to update
the submap si+1, as follows:

µsi+1
=
[

µb
µac

]
, Psi+1 =

[
Pb (P acb)

T

P acb P ac

]
. (13)

The algorithm in general starts from the first submap
s1 and applies Bayesian fusion on the common and non-
common parts, thus s+1 = s++

1 . Then FP is used to propagate
the information to the next submap s2 using the difference
between the common part, updating only the non-common
part of s2. After this operation s2 is updated s+2 and fusion



(a) (b) (c) (d) (e)

Fig. 5. Illustration of the implicit surface in a submap of the Stanford Bunny at given query points. a) σ2 values after D-SKI. As moving away from
the surface, in both directions outside-inside, the σ2 increases. b) σ2 values after D-SKI and fusion without forward propagation. Sparse to dense fusion
reduces the uncertainty inside of submap, but the σ2 values at the junction edge of this submap still need to be improved. c) After forward propagation
and fusion, σ2 values of certainty have significantly improved. d) µ values converge into the surface after FP and fusion used. It is very clear that points
inside are with negative values and outside are with positive values. e) If the large values of σ2 and µ have been taken from this submap, the result has
some testing points around the surface.

is applied, thus becoming s++
2 . This process continues for

all the submaps until the last submap sn is updated by FP
after the fusion process described in the following section.

D. Sparse to Dense Fusion

The Bayesian fusion step aims to incorporate the accurate
information contained in the sparse keypoints Z into the
prior D-SKI GPIS inference. By using the full covariance
matrix, correlation is propagated across the whole submap,
i.e., a fusion step will not only update a single query point
at the location of the sparse point, but also the neighbouring
points. This allows us to improve the estimate of the posterior
implicit surface of the i-th submap, even if the keypoints are
very sparse, i.e., p(γsi |Xsi , Zsi).

Given the GP prior and the keypoints, the maximum a
posteriori estimation is used to update each submap with
the keypoints lying in the submap. The update of the mean
and covariance values of the CI GPIS in Equations (1) and
(2) is performed as follows:

µ+ = µ+ PHT (HPHT +R)−1(γZ −Hµ) (14)

P+ = P − PHT (HPHT +R)−1HP (15)

with γZ representing the implicit surface value at the key-
points Z, H is a special observation matrix equal to one near
the keypoint location and zero for the rest, and R a diagonal
matrix representing the noise variance of the keypoints.
Note that Bayesian fusion update is applied to each submap
independently after each submap gets updated through the
fusion step. For the sake of simplicity, we dropped the si
subscript in the update equations.

Note that the D-SKI GPIS model trained per submap only
requires O

(
nxd6

d/ns +m logm
)
, making the dense 3D

reconstruction problem tractable. The fusion algorithm runs
in parallel for the ns submaps and it requires O((n∗x/ns)3).
FP runs in a sequential manner adding a negligible term
because the inversion required in (9) is only on the number of
points on the overlapping areas that are small by design. The
total cost of our algorithm mainly depends on the number of
inducing points, submaps and testing 3D points.

To summarize, the proposed approach gives the oppor-
tunity to process hundreds of thousands of dense noisy
points, which is almost impossible to achieve effectively with
standard GPs.

V. EVALUATION

In this section, we present results first evaluating the D-
SKI-CI-Fusion in simulated data and later we validate the
approach with real data.

A. Implementation
Fig. 1.a) shows the dataset used for the evaluation of

the approach. The 30mm Stanford Bunny1 dataset is down-
sampled by 20% (as per [9]) and σX = 0.05cm noise is
added to emulate the noisy dense point cloud and only 5%
of the original Bunny dataset with no noise is used to emulate
the keypoints. The full approach was implemented in Matlab
and ran on an Intel i7-8650U CPU@1.9GHz.

As an illustration of the whole pipeline in a cross-section,
Fig. 5 shows the D-SKI-CI-Fusion obtained at the query
points X∗s5 in the submap obtained by the skeletonization
algorithm described in Section IV, using the noisy data of
the Stanford Bunny provided in Fig. 1.a). The underlying
surface, represented by the keypoints Zs5 at this cross-section
are shown as small red circles. Note that the accuracy of the
GPIS model depends on the noise of the initial dense point
cloud and could cause large errors even after GPIS inference.
The ability to combine mean and variance information allows
filtering the large errors from the mean prediction, generating
a better approximation of the real surface. Following our
cross-section example, Fig. 5.e) shows the filtered prediction
that lies near the keypoints.

We only use query points within a distance radius of d
(based on the point cloud variance) of the training points.
This guarantees that the training points are near the surface,
reducing the complexity of querying in a regular grid. Every
submap is normalised based on the size of the enclosing
area to aid the convergence of the training algorithm. After
inference, the re-scaling factor used to normalise the input
is applied back. Note that we use the Thin Plate kernel [7]
with D-SKI approximation.

B. Error Evaluation
A qualitative evaluation of the surface reconstruction with

Poisson algorithm is presented Fig. 6. The five reconstruc-
tions display the distance from the vertex of the Poisson
reconstruction to the closest point in the original triangular
mesh. The reconstruction from the initial noisy data X is
shown in Fig. 6.a). From the figure, we can observe an

1http://graphics.stanford.edu/data/3Dscanrep/.



(a) (b) (c) (d) (e)

Fig. 6. Comparison of the input and output surface reconstructions, coloured by distance error. a) Reconstruction from initial sensor dataset, b) only use
keypoints to reconstruct surfaces, c) D-SKI-CI without forward propagation and fusion, d) D-SKI-CI-Fusion with linear partition instead of skeletonization
partition, e) D-SKI-CI-Fusion after forward propagation and fusion. The surface reconstructions were obtained by Poisson algorithm using the same
parameters.

inaccurate mesh due to the induced noise, even though
Poisson inherently filtered some of it. The reconstruction
using only keypoints as input to Poisson is shown in Fig. 6.b).
The smooth surface is lacking details, resulting in a less
accurate reconstruction compared to our proposed method
in Fig. 6.e). The D-SKI with skeletonization CI submapping
right before FP and fusion is shown in Fig. 6.c). The dis-
continuity between submaps is visible, resulting in artefacts
caused by Poisson on the bunny’s back. Fig. 6.d) shows D-
SKI-CI-Fusion using a linear partition along the horizontal
axis instead of skeletonization. This linear partitioning causes
larger errors in the ears, possibly due to the hyperparameters
fitting, i.e., the ear correlations are different from the body.
The final reconstruction shows a reduction of the error across
the whole body as the partitions based on topology help
hyperparameters fitting (ears are in different submaps than
the body). This is further reduced by fusion and forward
propagation steps updating the initial D-SKI-CI.

Given that this dataset is not too large, the computation
of the standard GPIS algorithm [7] with no derivatives and
no submaps is actually feasible. GPIS takes 33 minutes,
while our algorithm achieves a 35% reduction in the final
computation time with the same accuracy.

To study the influence of the point cloud noise on the
quality of our algorithm’s final result, we perform a test
varying the amount of noise added to the ground-truth. To
show the validity of our algorithm, we compute the minimum
distance from each point of the prediction to the real surface.
For the root mean square error (RMSE) evaluation, the final
prediction is downsampled to the same resolution as the
initial dataset, which allows for a fair comparison.

Fig. 7. Comparison of RMSE for different approaches: initial data, D-SKI
before FP and fusion and D-SKI after FP and fusion implemented.

Fig. 7 shows the RMSE over all the input and predicted
points (before and after fusion) with the real surface. The
distance is computed from point to the closest point on the
initial mesh of the ground truth. From left to the right colored
bars, the correspondences are the initial noisy dataset, the D-
SKI prediction using the noisy dataset without fusion and our
final approach D-SKI after FP and fusion. It is clear that the
GPIS algorithm filters the most amount of noise, keeping
it constant even with an increased noise variance. Note the
error reduction ranges from 8% to 32% given an increment
of noisy of σX = 1.2mm.

C. Missing Data

SLAM algorithms might produce point clouds with miss-
ing data due to areas with lack of texture or surface’s mate-
rial. Fig 8.a) show simulated missing data in the dense point
cloud and the reconstructed surface applying our approach
in Fig 8.b) coloured by error. Fig 8.c) shows the variance,
something to point our here is the low variance in the missing
data. This is due to the fusion step with the keypoints,
that makes the variance low given this accurate information.
Other regions that require attention are highlighted here by
the variance such as the back paw, motivating the use of
active mapping algorithms.

(a) Noisy dense points (b) Distance error (c) Variance

Fig. 8. Surface reconstruction from partial leg missing. a) Point cloud, b)
coloured by distance to the ground-truth and c) coloured by variance.

D. Experimental Validation

To test the D-SKI-CI-Fusion algorithm in real and more
challenging scenarios, data from the TUM dataset [26], the
large scale Jenolan caves [27], and an additional in-house
dataset representing the carcass of a lamb were used.

From the TUM dataset, we chose the challenging (low
texture) sequence of “Freiburg3 Teddy”, which was ac-
quired with an RGBD camera and reconstructed using both



(a) (b) (c) (d) (e) (f)

Fig. 9. Surface reconstructions for Teddy Bear dataset. a) Submapping graph, b) initial noisy point cloud by coloured submaps, c) D-SKI-CI-Fusion, d)
ORB-SLAM, e) MVE mesh, f) histogram of the angles between smoothed and original normals (in degree).

ORB-SLAM [14] and Multi-View Environment (MVE) al-
gorithm [2] (RGB only). ORB-SLAM camera poses and
keypoints (ORB features) are optimised in an online setup
and a post-processing step computes the dense point re-
constructions using the original depth and the optimised
camera poses. MVE, on the other hand, after the optimisation
computes an implicit surface as a multi-scale hierarchical
signed distance field volumetric representation (stored in an
octree). It uses marching cubes to extract the zero-level set
to provide the mesh. We aim to benchmark the proposed
approach against these two reconstruction methods in a
qualitative and quantitative manner. We use ORB-SLAM
keypoints and dense points to performed D-SKI-CI-Fusion.

Given the keypoints Z and the dense noisy point cloud
X from ORB-SLAM, we applied the proposed D-SKI-CI-
Fusion approach to recover a denoised point reconstruction.
The results are shown in Fig. 9.c). As a qualitative com-
parison, the results of ORB-SLAM and MVE are shown
in Fig. 9.d) and 9.e) respectively. Note that the skeleton
CI mapping, the noisy point cloud submapped are shown
in the subfigures a) and b) respectively. As a quantitative
evaluation, we iteratively average the ten closest neighbours
to smooth the normals and get the histogram of the an-
gles between the orginal and smoothed normal for each
reconstruction. The histograms in Fig. 9.f) show that our
method produces normals with less noise than ORB-SLAM
and MVE.

Secondly, we have acquired lamb carcass images in a
chiller, in which the body was hanging on a rail. A multiple
3D cameras system have scanned the whole carcass at small
increments. A Visual-SLAM algorithm [28] was used to
reconstruct the 3D carcass with camera poses and sparse
points. This algorithm does not produce a dense reconstruc-
tion and MVE failed to recover a meaningful surface. The
sparse points from the visual-SLAM algorithm were used as
the keypoints Z. The dense data was obtained by recovering
the noisy 3D points directly from the depth images at a set
poses output of the SLAM algorithm.

The reason why MVE failed is due to labels attached to the
carcass which were moving with the ventilation of the room.
This unstable environment makes a challenging example
in which the data collected from the sensors will not be
accurate, and in some case, a double surface representation
can be found. The results of the skeletonisation algorithm,
noisy point cloud and the reconstruction after D-SKI-CI-

(a) (b) (c)

Fig. 10. D-SKI-CI-Fusion method applied to Lamb carcass. a) Submapping
graph, b) initial noisy point cloud colored by submaps, c) D-SKI-CI-Fusion
surface reconstruction with Poisson algorithm.

(a) (b) (c)

Fig. 11. D-SKI-CI-Fusion method applied to the Jenolan Caves dataset.
Zoomed in regions show a detail of the caves. a) Skeleton, b) initial noisy
point cloud colored by submaps, c) D-SKI-CI-Fusion final point cloud.

Fusion with Poisson are shown in Fig. 10.
Finally, in order to show that our algorithm can cater

for larger amounts of data we have included the Jenolan
caves dataset [27], which contains more than one million
points. Fig. 11.a) shows the skeleton of this data. Note
that although this dataset contains loops, our skeletonization
approach can deal with them to produce a CI partition
arranged on a tree structure. Fig. 11.b) shows the original
point cloud coloured by submaps and the final reconstruction
after applying Poisson algorithm is shown in Fig. 11.c).

Table I shows the number of points on the sensor data, the
keypoints, median points per submap and final points were
utilised as part of the algorithm for the Freiburg3 Teddy, lamb
carcass, Jenolan caves and simulated datasets. The median
submap time is also shown here. This time considers all steps
except for skeletonization. Note that some submaps size is
variable. It is clear from the table that carcass and Jenolan



TABLE I
DATASETS POINTS AMOUNTS AND RUNNING TIME

X Median Xsi X∗ Median X∗
si

Z Median Zsi Nsubmaps Average Time/si
Stanford Bunny 6,964 602 77,123 4,587 1,741 138 17 80.952 s
Freiburg Teddy 17,703 968 65,261 2,665 9,530 568 25 105.9 s
Lamb carcass 169,317 2,809 727,247 8,582 7,028 129 81 222.372 s
Jenolan Caves 1,009,630 3,750 4,554,780 11,250 252,407 963 357 247.284 s

caves datasets are quite challenging in terms of the amount
of data managed and fused.

VI. CONCLUSIONS

This paper presents a probabilistic approach for recovering
dense 3D reconstructions from a set of optimised 3D points
and a noisy point cloud with normals. The algorithm, first
subdivides the dense point cloud into a Conditionally Inde-
pendent submaps following the shape of the object. Note that
for objects with structured shapes such as rooms or tables,
simple linear partitions will produce by the algorithm. After
partitioning the data, an efficient GPIS algorithm is used
to predict a probabilistic implicit surface that after filtering
is fused with optimised points commonly provided by a
feature-based SLAM algorithm. The forward propagation
algorithm is finally used to correlate the submaps improving
the inference.

Our approach is capable to deal with large-scale data
and reconstruct an accurate surface that contains uncertainty
information, giving the ability to highlight issues on the final
reconstruction.

Note that the devised approach could also work without
the optimised points, to simply filtered the noisy point cloud
or to fuse sequential noisy data. Future work considers
extending this algorithm to recover occupancy information,
which provides with the ability to be used beyond object
reconstruction.
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