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Minimizing variability in language sampling analysis: A practical way to calculate text 

length and time variability and measure reliable change when assessing clients 

Language sampling has long been considered a useful tool in language research and 

clinical practice. By collecting and examining functional language use at the discourse level, 

clinicians and researchers gain valuable insight into a person’s everyday communication 

abilities. Because of its reported relationship to functional language, Language Sample 

Analysis (LSA) has been considered an ecologically valid assessment method (Dietz & Boyle, 

2018; Paul, Norbury, & Gosse, 2017). However, functional language can be highly variable as 

it differs between individuals and between instances of language use.  

This paper reviews current applications of LSA across the range of clinical 

populations in both research and clinical practice. While these populations may differ, the 

principles of LSA and the issues that clinicians must address in applying LSA remain the 

same, and so language sampling is discussed within this paper as an approach to language 

assessment, rather than as method of assessing any specific group of clients, patients, 

students, or research participants. In particular, we highlight how a simple factor such as 

variability in language sample length can impact commonly used clinical measures in LSA, 

and the interpretation of clinical and research data. Variability can affect clinical decision 

making for individual clients by impacting the clinician’s ability to detect meaningful change. 

We propose a simple but statistically sound method to help clinicians and researchers 

determine the length of language samples needed when conducting repeated sampling with 

individuals and to detect change as a result of intervention. This method can be applied to 

any of the commonly reported linguistic variables discussed below that are measured as a 

proportion of the total language sample. The paper has two parts: the main paper discusses 

variability in LSA and shows clinicians how they might use the Reliable Change Index (RCI) to 
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make decisions in their clinical practice; the supplementary digital material acts as a parallel 

resource that provides the details of the statistical calculation behind the RCI. Clinicians and 

researchers are invited to use this resource to replicate the methods outlined in this main 

paper, and apply the methods proposed herein to other proportional language measures.  

The information LSA generates can be used to describe the linguistic ability of an 

individual at a given time, to look for features of disordered language or impaired cognition 

as reflected in language, as a source of comparative or normative data in clinical 

populations, as outcome measures for interventions, and to observe change over time 

(Boyle, 2014; Finestack, Payesteh, Rentmeester Disher, & Julien, 2014). As well as describing 

communication impairment (Cherney, Shadden, & Coelho, 1998; Muller, Guendouzi, & 

Wilson, 2008), LSA has been used to diagnose mood disorder (Rude, Gortner, & Pennebaker, 

2004), cognitive functioning in relation to dementia (The Nun Study; Riley, Snowdon, 

Desrosiers, & Markesbery, 2005), and personality type (Mehl, Gosling, & Pennebaker, 2006; 

Pennebaker & King, 1999).  

 Recently, there has been debate in the research literature about various aspects of 

language sampling and analysis. These discussions occur across the range of practice areas 

including aphasia (see Aphasiology Vol 32, Issue 4; e.g., Dietz & Boyle, 2018), child language 

development and impairment (e.g., Finestack et al., 2014; Gillam et al., 2018; Pavelko & 

Owens Jr, 2017; Guo, Eisenberg, Bernstein Ratner, & MacWhinney, 2018) and adolescent 

communication (Nipplold, Vigeland, Frantz-Kaspar, & Ward-Lonergan, 2017).  

While language sampling may be considered a “gold standard” for assessing spoken 

discourse (Dietz & Boyle, 2018, p. 461), there is debate about which measures at the macro-

linguistic and micro-linguistic levels of discourse best represent meaningful change over 

time following intervention for an individual. Further, concerns have been raised about the 
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validity, reliability, and stability of LSA measures over time (Dietz & Boyle, 2018) and across 

different clinical populations. These concerns are important to consider as they impact the 

interpretation of findings and utility of LSA across cohorts, and the magnitude of change in 

individuals following intervention.  

This paper discusses key issues associated with variability of language sampling 

measures and proposes a way of dealing with two aspects of measurement associated with 

variability when using them: sample length and change over time with repeated measures. 

The proposed method for dealing with the effect of length of samples relates to commonly 

used micro-linguistic measures that are calculated as a proportion of total discourse (i.e., 

number of words produced). This method can be applied to a range of proportional 

linguistic measures such as Type Token Ratio (TTR), a measure of lexical diversity, Correct 

Information Units (CIUs), a measure of relevant information as a proportion of total words 

(to learn how CIUs are calculated, see Nicholas & Brookshire, 1993), and Propositional 

Density (PD), a measure of informativeness calculated by identifying words in the language 

sample that carry meaning or propositional information (e.g., verbs, adverbs, adjectives, 

conjunctions) as a proportion of total words (see Turner & Greene, 1977).  

RANGE, VALIDITY, AND RELIABILITY OF LSA MEASURES  

Spoken or written language samples may be analyzed in a variety of ways depending 

on the purpose of clinical assessment, data collection, or research question(s). For example, 

a language sample may be analyzed for its information content (e.g., T-units, CIUs, or PD), 

semantic content (e.g., TTR, number of different words (NDW), moving average type token 

ratio (MATTR)), or syntactic structure (e.g., mean length of utterance (MLU), grammatical 

and complete sentences) at the micro-linguistic level, or for discourse structure and 

interaction features at the macro-linguistic level. A recent review by Bryant and colleagues 
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found that 536 different linguistic measures had been used in analysis of language samples 

in aphasia research over the past 40 years (Bryant, Ferguson, & Spencer, 2016). Likewise, in 

an investigation of linguistic features in the discourse of people with Alzheimer’s dementia, 

Fraser, Meltzer, and Rudzicz (2016) analyzed 370 linguistic features through a variety of 

computerized methods. These studies highlighted the number of different measures 

available to clinicians and researchers when performing LSA. 

Despite the variety of measures used in research and clinical practice, relatively little 

is known about the reliability of many measures reported in the literature (Armstrong, 2018; 

Dietz & Boyle, 2018). Establishing reliability of measures can assist with both diagnosis (i.e., 

differentiating features of typical linguistic behavior from impaired) and differential 

diagnosis (i.e., differentiating between different disorders), both of which are highly 

relevant to clinical practice. If measures are reliable, the validity of the measure can be 

determined. Once the reliability is quantified statistically, then it can be properly taken into 

account in determining the clinical significance of change over time for an individual or 

group of individuals; that is, determining what may constitute reliable (and supposedly 

meaningful) change over time. de Riesthal and Diehl (2018) argued that work on 

establishing and ensuring the validity and reliability of language sampling measures is of 

high need in order to develop the usefulness of LSA as an assessment method for 

intervention effects, both clinically and in research. To detect meaningful change following 

intervention, the sources of variation associated with each linguistic measure need to be 

acknowledged, discussed, and, if possible, quantified so that meaningful comparisons can 

be made across data sets or clinical assessment points, and then the effects of intervention 

can be measured. In the literature, this is referred to as reliable change – change in a 

measure for an individual (as opposed to change in the mean of a group) that can be 
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attributed to true growth in linguistic performance rather than variability inherent within 

the measure being applied. Unicomb, Colyvas, Harrison, and Hewat (2015) applied Jacobsen 

and Truax’s (1991) Reliable Change Index to account for variability and detect change in 

single cases following treatment of stuttering (discussed further below). Variability, 

however, may stem from different sources within a sample, and some of the common 

sources also are discussed below.  

Types of variability 

Variability is inherent in language production due to sociolinguistic variables such as 

the topic and genre of the text or discourse produced by an individual, the audience and the 

mode of production (spoken or written), and the speaker/writer’s stance in relation to what 

is being spoken or written about (Halliday & Matthiessen, 2004). Other sources of variation 

that impact on LSA measures and therefore affect test-retest reliability relate to fluctuations 

in the individual (e.g., cognitive status, wellbeing such as tiredness, levels of distraction) at 

the times of testing (Boyle, 2014). These intra-individual sources of  variability are referred 

to as random variations rather than systematic or “special cause” variations (Karimi et al., 

2013) and are commonly encountered in clinical practice. Cognitive factors in particular, 

such as working memory (Lalonde & Frush Holt, 2014) and phonological short-term memory 

(Newbury, Oetting & Stockman, 2015) in language development in children, are important 

sources of variation. Cognitive factors also are relevant to language changes in the aging 

population and those with acquired language disorders (Kemper, Greiner, Prenovost, & 

Mitzner, 2001; Kemper, Thomson, & Marquis, 2001). While these factors are all clinically 

relevant and impact day-to-day performance of an individual, there are two, test-retest 

reliability of measures (stability of the measure over time) and language sample length, that 
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can be easily assessed and controlled by both clinicians and researchers to allow reliable use 

and interpretation of LSA measures. 

Test-retest reliability 

Test-retest reliability, or stability of a measure over time, has been investigated for 

various measures and clinical populations (Altman, Goral, & Levy, 2012; Cameron, 

Wambaugh, & Mauszycki, 2010; Stark, 2010). Cameron et al. (2010) specifically investigated 

test-retest reliability (i.e., the stability of a measure over time) within-subjects with 

repeated sampling of a linguistic measure, CIUs, in adults with aphasia. In this study, CIUs 

were shown to have instability in sequential samples, and changing mood was hypothesised 

as a contributing factor. Using a different measure of informativeness, PD, for three large 

age cohorts of women participating in the Australian Longitudinal Study on Women’s 

Health, Ferguson, Spencer, Craig and Colyvas (2014) found that PD calculated from written 

language samples remained stable over time (i.e., did not vary significantly with age) on 

repeated measures every three years over 16 years. PD is a measure that has been 

associated with cognitive functioning (Kemper, Thomson, et al., 2001). However, in a 

separate study involving a subset of the Australian Longitudinal Study of Women’s Health 

cohort, Spencer and colleagues found a significant amount of within-subject variability over 

repeated sampling of 625 participants who wrote on each survey occasion. This variation 

was evident despite the language elicitation task remaining the same over the five survey 

periods across 16 years (Spencer et al., 2012). The authors identified text length variability 

to be one of the most prominent factors in test-retest reliability. 

Text length variability 

Text length of language samples has been widely recognized as a source of 

variability, particularly in measures of lexical diversity (e.g., Brookshire & Nicholas, 1994a; 
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Fergadiotis & Wright, 2011; Fergadiotis, Wright, & West, 2013). In 1994, Brookshire and 

Nicholas sought to establish the effect of text length variability on the use of CIUs as they 

were concerned that short language samples (100 words) might affect the test-retest 

stability of the measure (Brookshire & Nicholas, 1994a). In the area of adult aphasia, 

Brookshire and Nicholas (1994a) reported that a typical language sample task using single 

pictures or picture sequences for adults (e.g., the Cookie Theft Picture in the Boston 

Diagnostic Aphasia Examination; Goodglass, Kaplan, & Barresi, 2001) resulted in fewer than 

100 words. Their empirical investigation found that the level of instability for repeated 

sampling was considerable. They discovered test-retest stability of CIUs improved as sample 

size increased to 300-400 words. On the basis of their analysis, they recommended that 

clinicians and researchers collect sample lengths (across a variety of stimuli, therefore not 

controlling for genre) of 300-400 words in people with aphasia (Brookshire & Nicholas, 

1994b). Fergadiotis and colleagues (2015) also explored factors affecting stability of lexical 

diversity measures in 422 healthy adult speakers. They were interested in determining the 

validity of four commonly reported indices of automated (computer generated) lexical 

diversity. While two of the four measures were reported to be free of systematic effects of 

text length, the authors recommended that text length be reported in all research to aid 

evaluation and interpretation of results across studies. These reports add weight to calls by 

Finestack and colleagues (2014) in relation to LSA with children that researchers should 

consistently and systematically report details of language sampling including text length, 

contextual factors, elicitation task parameters, and transcription and coding procedures to 

allow results from the research to be more easily interpreted and applied in clinical practice. 

The prominence of text length as an issue in LSA for both child and adult clinical 

populations relates to its impact on the work of the clinician who is confronted with the 
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time-consuming task of collecting, transcribing, and analyzing discourse. These factors are 

known to be barriers to implementing LSA in clinical settings (Armstrong, 2000; Bryant, 

Spencer, & Ferguson, 2017). Moreover, while eliciting longer language samples may be 

relatively straightforward for children and adults without language disorders, it can be 

challenging to obtain elaboration on topics from those with communication difficulties.  

In summary, one of the main challenges to reliability in LSA comes from the 

variability inherent in natural language production. To illustrate the extent of the impact of 

variability and how it is accounted for in research, we conducted a scoping review of the 

literature. 

A SCOPING REVIEW OF THE LITERATURE 

This review focused on a few key measures that are frequently applied in studies 

employing LSA across pediatric and adult populations: MLU, TTR, NDW, CIUs  (Nicholas & 

Brookshire, 1993) PD,  and other measures of information content (see Pritchard, Hilari, 

Cocks, & Dipper, 2017). While PD is not as frequently used as the other measures, it 

employs similar methods to calculate information content; that is, it is a measure examining 

the proportion of one language structure as a factor of another, in this case propositions as 

a proportion of total words. 

In May 2019, we searched four journal databases: CINAHL, Medline, Scopus, and 

Embase for peer-reviewed journal articles using LSA and the aforementioned measures to 

assess the language of children or adults. The search was completed using the terms “Mean 

Length of Utterance” OR “Type Token Ratio” OR “Number of Different Words” OR “Correct 

Information Units” OR “Main Concepts” OR “Content Units” OR “Propositional Density” OR 

“Idea Density” OR “Propositional Idea Density” AND “Language Sample Analysis” OR 

“Discourse Analysis”. The search was limited to original research studies (i.e., not reviews or 
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editorials) published in the last 10 years (2010-2019 inclusive), written in English (although 

analyzing any language), and published in peer-reviewed journals. Studies were excluded if 

they did not use LSA and at least one of the above measures to assess changes in language 

over time (e.g., as the result of intervention, or as a longitudinal assessment of language 

development, recovery, or decline) and/or did not report the results of these measures for 

groups or individuals.  

The search process yielded 306 results. All studies were imported into an Endnote X9 

library and were screened by the second author to remove duplicates. The titles and 

abstracts of each study were screened, and those that did not meet the inclusion criteria for 

review were excluded. The full texts of all remaining articles were retrieved so they could be 

examined. The search process is illustrated in Figure 1. 

Thirty-two studies met criteria for inclusion in this review. Data were extracted 

relating to purpose of LSA (e.g., assess language change over time longitudinally or from 

intervention), study design, population, language sample elicitation procedure, results of 

analysis (including any reported values of specific language measures), and identified 

sources of variability and how they were addressed. The quality of included studies was not 

assessed. An integrative review method (Whittemore & Knafl, 2005) was employed to 

synthesize the findings across studies. A table summarizing the key information of included 

studies is available as supplementary digital content file 1 (docx document). 

Characteristics of review studies 

 Language sample measures were used in the included studies to: measure change 

associated with intervention (n = 14), assess longitudinal change (n = 13), examine the test-

retest stability of measures (n = 4), and determine if changes in the environment affected 

discourse production through repeated measurement (n = 1). The included studies used LSA 
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to assess the language of children (n = 17) and adults (n = 15). The majority of included 

studies analysed language in English (n = 28). Other languages included Spanish (n = 4), 

Norwegian, Farsi, and French (n = 1 each). Three studies analysed more than one language 

(all English and Spanish). 

Most studies (n = 20) had 20 participants or fewer, and four studies had more than 

100 participants. Participant numbers ranged from one to 1723. Change over time was 

reported in each study for the sample as a whole (n = 21), for individual participants (n = 8), 

or for both groups and individuals (n = 3). Studies used a range of methods to analyze 

change over time. Group studies predominantly used statistical comparisons to identify 

significance of change (n = 17). Studies also reported change descriptively (n = 6) or 

employed statistical modelling to identify factors affecting longitudinal change (n = 4). Two 

group studies used the results of previous studies to determine post-treatment intervention 

gains: one applied previously calculated Minimally Detectable Change (MDC) score, while 

another compared data to Reliable Change Index (RCI) scores. Studies that examined 

individual changes primarily did so using descriptive statistics (n = 5), though some also used 

effect sizes (n = 3) and statistical analysis with ANOVAs (n = 1). Three studies that examined 

individual growth determined change using predetermined scores: one used previously 

reported MDC scores, one compared to reported developmental norms, and one used a 

pre-set score of 10 percentage points. 

Sources of variation 

Most of the sources of variation reported within the included studies came from 

differences between individuals within study cohorts. However, when considering the 

application of LSA in clinical contexts, the within-subject sources of variation are of greater 

importance, so these sources were the focus of this review. Sample/text length and type 
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were each noted by a number of studies as within-subject sources of variation that have the 

potential to influence clinical or research findings. We have chosen to focus on sample 

length variability within this paper to examine this source of variability and propose a 

potential solution.  

Sample length variation 

 Many studies included language productivity measures that provided some 

information to quantify the amount of discourse that was produced and analyzed. However, 

the reporting of sample length across the reviewed studies was largely inconsistent. These 

measures included the total number of words (n = 13), number of utterances (n = 7), and 

number of C-units (n = 1). Three studies reported sample size in terms of duration in 

minutes. The remaining eight studies did not report any information on sample length. The 

absence of sample length information in research studies is problematic as it impedes 

accurate evidence-based clinical applications of language sampling methods. As noted 

previously, text length affects the variability of measures. Clinicians and researchers 

therefore require knowledge of sample length to determine whether language measures 

provide reliable information about a client’s communication. 

 In five studies, an effort was made to control for text length variability by analyzing 

samples of a set length. In four studies, the researchers collected an approximate number of 

utterances to analyze (Griffith et al., 2017; Preis & McKenna, 2014; Rice et al., 2010; Smith 

et al., 2014), and in one study a 200-word subset of the collected language samples was 

analyzed (Kirmess & Lind, 2011). Two studies performed pairwise comparisons of sample 

lengths at pre- and post-treatment and found no statistically significant difference in the 

length of samples (Medina et al., 2012; Silkes et al., 2019). These studies suggest one 

possible way that clinicians can control for text-length variability – by comparing samples of 
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the same length. However, this method can be problematic as it can lead to clinicians 

discarding meaningful and useful portions of a discourse sample that might inform clinical 

decision-making. In order to include full language samples, clinicians therefore require some 

other means of controlling text length. 

Assessing changes in single case intervention studies 

Of the 13 studies that assessed change in language samples as the result of 

intervention, four studies applied a multiple baseline approach to determine individual 

variation in measures prior to intervention. In these studies, the researchers collected 

between three and nine pre-treatment language samples, allowing them to assess natural 

variation in the language of individual participants. By quantifying natural variation for the 

individual, researchers determined what change post-intervention was attributable to the 

intervention and therefore showed the effectiveness of the treatment under investigation 

(Boyle, 2014). In contrast to this approach, most reviewed intervention studies collected 

language samples at three key time points: one sample prior to the intervention (pre-

treatment), one sample immediately following intervention (post-treatment), and one 

sample sometime later that would demonstrate treatment effects were maintained (follow-

up). Where multiple baselines were not used, researchers did not have individual data to 

determine variability or the degree of change attributable to the intervention. See 

Supplementary Data File 1 for details of treatment changes in the studies discussed above. 

 Within the intervention studies that used time-point comparisons, six studies 

assessed group change over time, and three studies measured change for individuals. In the 

studies that employed case-based designs, the assessment of variability was limited. 

Kirmess and Lind (2011) noted that the diagnosis of individual participants (e.g., type of 

aphasia, concurrent apraxia of speech) and the cause of the diagnosis (e.g., intercranial 
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hemorrhage versus vascular stroke) may have contributed to variability. Language modality 

(spoken versus written; Obermeyer & Edmonds, 2018) and text length (Kirmess & Lind, 

2011; Wambaugh, Wright, Nessler, & Mauszycki, 2014) also were noted in discussions as 

factors that could contribute to variability in LSA. However, while Kirmess and Lind (2011) 

controlled for text length, no further procedures were employed to control or account for 

variability in the data. Indeed, the change resulting from intervention in these studies was 

determined descriptively (Kirmess & Lind, 2011; Wambaugh et al., 2014), with some 

reference to effect sizes (Kirmess & Lind, 2011), or by using a predetermined, arbitrary 

indicator of change (ten percentage points; Obermeyer & Edmonds, 2018). 

The measurement of individual change from pre-treatment to post-treatment is 

more consistent with the type of comparison that a clinical speech-language pathologist 

might use when assessing a client to determine if intervention has been successful. While 

the collection of multiple baseline data points may offer the opportunity to measure 

individual variability, Boyle (2014) noted that “Clinicians rarely have the luxury of using such 

a practice” (p. 977). We are aware of one study that has investigated reliable change in 

individuals following intervention in single cases of pediatric stuttering treatment (Unicomb 

et al., 2015). However, given that these studies are limited, clinicians and researchers need 

to draw on data collected from studies conducted by researchers whose specific aim is to 

assess language sample variability, and that are appropriate for application to their own 

assessment contexts, to determine if actual change has occurred.  

Ideally, these variability estimates would be drawn from studies employing repeated 

measures designs to determine the test-retest reliability of language sample measures. This 

review identified four such studies that examined individual variability over time and test-

retest reliability using repeated measures. While these studies make a start towards 
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identifying if measures are stable over time using analysis of variance or correlation 

coefficients, only one calculated MDC for measures including CIUs and words per minute 

(WPM) that could then be applied to future studies (Boyle, 2014). This application was then 

evident in a later study by Rose et al. (2016) that applied Boyle’s MDC scores to measure 

treatment outcomes. 

Overall, our scoping review demonstrates that, while variability from various sources 

is widely acknowledged, there are few published studies available that estimate the total 

variability from various sources and model the effects of changing parameters in their 

experimental designs. We aim to address this with a method to assist clinicians and 

researchers to account for variability in LSA and reliably determine meaningful change. 

TEXT LENGTH AND TIME-BASED VARIABILITY AND HOW TO ACCOUNT FOR IT 

When speech-language pathologists assess clients or when researchers implement 

case-study designs (e.g., to measure individual change over time resulting from an 

intervention), they need access to methods that assess whether changes within an 

individual are likely to be real rather than just a result of variability within the measure 

itself. So how should clinicians and researchers assess variability to distinguish real change 

when they use LSA to measure change over time? To answer this question, we applied 

statistical methods to create a model for clinicians and researchers. This model is outlined in 

multiple steps to: (a) show how the variability of a measure is associated with text length; 

(b) demonstrate that the binomial distribution provides a good foundation for a statistical 

model for that variability; (c) adjust the binomial variability model to account for more or 

less variation than expected; (d) determine the variability associated with repeated 

measurements, i.e., time-based variability; (e) provide a formula for the Reliable Change 

Index (RCI) based on combining both text length and time-based variability; (f) create a table 
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based on the RCI formula to illustrate how the RCI varies and to use it to make clinical 

decisions (i.e., has a person’s language ability actually changed or is it due to variation in the 

measure); (g) use RCI to make decisions about the size of a language sample needed for 

clinical applications of LSA; and (h) apply the RCI to other LSA measures. While the case we 

use to illustrate application of RCI focuses on the measure of PD, the spreadsheet in 

Supplementary Digital Content file 2 and instructions in Supplementary Digital Content file 3 

illustrate how to adapt the method demonstrated here to discourse measures other than 

PD that may be more suitable to a clinician’s or investigator’s particular needs (e.g., TTR, 

CUIs).   

Text length variability 

Many discourse measures are reported as a proportion of a total text (p = x/n), for 

example, PD (p) reports number of propositions (x) as a proportion of the total number of 

words (n); e.g., 55 propositions in a 100-word sample gives PD = 0.55. The variability in the 

measure is exhibited clearly in Figure 2a which shows how the measure of PD varies less 

with an increased number of words in the sample. Any measure with a similar method of 

calculation would most likely be subject to the effect of text length (e.g., percent correct 

information units, which reports CIUs as a proportion of total words, and TTR, which reports 

number of different words as a proportion of total words).  

To explore the effects of text length variability on PD, we analyzed the comments (n 

= 37,705 texts of 10 or more words) given as responses to a survey item from a longitudinal 

study (Australian Longitudinal Study of Women’s Health). PD was determined for each text 

comment using the Computerized Propositional Idea Density Rater (CPIDR) software 

(Covington, 2007). Details of the survey, the response data, and analyses are described in 

Ferguson et al. (2014). Briefly, the survey involved women responding to an open question 
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asking them about their health or changes in their health over the past three years and this 

survey was repeated every three years (and is ongoing).  

To illustrate the magnitude of variability in PD according to text length, PD for each 

language sample was plotted against text length for texts of 10 to 200 words (totalling 

36,879 of the 37,705 texts in the data set), illustrated in Figure 2a. The figure shows that the 

amount of variability (i.e., the spread of data points around the mean) progressively 

declines as the sample size increases. This is shown more clearly in Figure 2b where the 

variability in PD is summarised as the standard deviation (SD) for all the comments within 

each text length and is plotted against text length. Again, it is clear to see the amount of 

variation in the measure decreases as text length increases.  

Binomial distribution as a model for text length variability 

As language sample measures such as PD examine linguistic features as a proportion 

of the total text (total number of words), the binomial distribution is expected to provide a 

useful model as its mathematical basis accounts for proportions where the text length 

varies. This is confirmed in Figure 2b where predictions based on the binomial model show a 

similar pattern to those from the data with varying text length. Further confirmation of this 

effect was obtained using a separate source of data, a book by Agatha Christie (1920; see 

Supplementary Digital Content file 3). These tests indicate that the binomial model would 

be a good foundation for determining variability in PD due to text length.  

Does the binomial model need adjustment? 

Before using the methods proposed here to assess reliable change for any language 

sample measure, the mathematically based binomial distribution needs to be checked for 

applicability to real-world application. Experience has shown the observed variability might 

be systematically more or less than expected for a given text length. In Figure 2b, the SDs for 
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the observed data are systematically smaller than those calculated from the binomial 

distribution for a given text length. Therefore, an adjustment needs to be made to the 

variability estimates predicted by the binomial model to ensure it correctly matches the 

particular language measure. From a detailed analysis of three text sources, an adjustment 

of 0.9 was determined as being suitable for use with PD, i.e., the variability for PD was less 

than expected and should be 90% of that obtained from the binomial model. See 

Supplementary Digital Content file 3 for the details behind this analysis. This check would 

normally be carried out by researchers to determine the correction factor that would then 

be used by clinicians as described below in assessing change. If this step was not done, 

significance tests would not be as accurate as possible. 

 Time-based variability for repeated measures 

Additional factors examined for their relationship with the variability of PD were 

differences over time and between subjects. The study participants in the Australian 

Longitudinal Study of Women’s Health were surveyed every three years (five times at the 

time of our study), so each person could provide up to five text comments. The study 

contained three factors: text length, variability due to multiple measurements over time, 

and different subjects. When repeating measurements over time, it is likely there will be 

some differences from time to time. It was necessary to fit a statistical model to determine 

the three components jointly so that correct estimates of each of the variability terms, 

including the time-based term, were obtained by adjusting for all the factors in the study. 

The variability for differences between time periods had SD = 0.017 (see the Supplementary 

Digital Content file 3 for additional explanation and the analysis). 

Reliable Change Index (RCI) 
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The RCI is a measure of the likely range of change scores for a measure between two 

time points, if there was no true difference in scores. If a change in score was less than the 

RCI, then it is likely the difference does not reflect a real change, just measurement 

variability. This provides a simple test for change scores as those greater than (or equal to) 

the RCI are deemed statistically significant.  

Jacobson and Truax (1991) presented an approach based on the normal distribution 

but that was not appropriate for LSA as the normal distribution assumes the variability is the 

same under all circumstances. As has been noted above, variability depends in part on text 

length. A new formula has been developed based on the binomial distribution to allow 

adjustment for text length. The development of the RCI formula and the details behind it 

can be found in the Supplementary Digital Content file 3.  

The notion of clinically meaningful change also is important in a clinical context and 

is discussed in Jacobson and Truax (1991) and Jacobson et al. (1999) but is different from 

RCI. We do not propose to discuss this here, but once a clinician can define the size of 

change that is beneficial, the methods in this paper can be used to determine a suitable text 

length so that the RCI would be able to detect a clinically significant change. The approach is 

described below. 

 Using RCI to make decisions about changes in individuals 

Table 1 below provides a series of worked examples that show how the RCI can be 

applied to determine if an individual’s language sample shows real change in PD. The table 

demonstrates how RCIs vary with text length and time and how a change over time can be 

assessed. The table is available as an Excel workbook for download from Supplementary 

Digital Content file 2 so that clinicians or researchers can carry out their own calculations for 

language measures without having to do them manually. 
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The first six columns of the table provide the basic calculations to assess PD at two 

time points. For example, the second row (example A) in the table shows a comparison 

between two texts, both with length of 100 words, the first containing 50 propositions and 

the second 40. Hence the proportion at time 1 is p1 = 0.50 and at time 2 is p2 = 0.40. The 

difference between them (p1-p2) in the 7th column is 0.10. Now the question to be 

answered is whether this change is statistically significant at the level chosen, α = 0.05 in 

this case, and hence reliable. As the difference 0.10 for (p1-p2) is smaller than RCILT = 0.132, 

i.e., the RCI incorporating both text length and time variation, the change is not significant 

and hence not a reliable change (i.e., a treatment has had no real effect on PD as the change 

in the linguistic measure from sample 1 to sample 2 is not large enough). In the 3rd row of 

the table (example B), the difference is larger, (p1-p2) = 0.20, and it also is larger than RCILT 

= 0.129, hence the difference is statistically significant, and it is a reliable change. If we look 

at example A and increase the text length to 200 words but keep the proportions the same 

such that the difference between the two testing periods is still 0.10, then this difference is 

significant as the RCI is 0.099. This illustrates the importance and effect of text length; the 

longer the text chosen, the greater the power to detect differences between samples.  

To illustrate how to use the RCI, we will draw data from Table 1 using a fictional case. 

FC was a 78-year-old female taking part in a fictional research study investigating the 

effectiveness of a language intervention targeting informativeness in aging adults exhibiting 

symptoms of early cognitive decline. FC was a relatively healthy participant in this study 

who expressed concerns about her memory. A spoken language sample was taken as part of 

the assessment battery to explore pre-intervention levels of informativeness using PD. At 

this time (time 1), her language sample was 421 words in length and contained 198 

propositions, giving p1 = 198/421 = 0.47. After 12 weeks of intervention (time 2), the 
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assessment battery was repeated. Another spoken language sample was analysed. This 

language sample contained 517 words and 311 propositions, p2 = 311/517 = 0.60. If we 

refer to the table, we can see that the change in PD from time 1 to time 2 is 0.13 and this 

value is greater than the RCI value of 0.074. This is an increase in informativeness as 

measured by PD and can be considered a significant and reliable change at the chosen alpha 

level of 0.05. Such a change suggests that the intervention was effective in improving FC’s 

language informativeness, as measured by PD.  

Using RCI to make decisions about the size of a language sample 

Once the RCI has been determined for the measure and clinicians and researchers 

decide what constitutes a clinically meaningful change, the next step is to determine how 

large a language sample is needed to detect the clinically important change. This can be 

done using the spreadsheet in Supplementary Digital Content file 2 by varying the sample 

size while keeping the proportions the same until the RCI becomes smaller than the clinically 

meaningful change. For example, if the clinically meaningful change was 0.10 as in the 

example above, then a total sample length of 200 words would be sufficient because at this 

text length the RCI = 0.099, which is smaller than the set value that represents meaningful 

change.   

Application of this method to other LSA measures 

 This method of using the binomial distribution to measure reliable change can be 

applied to any proportional language measure (e.g., CUIs, TTR) because they are affected by 

text length in the same way we have illustrated with PD. The two steps that need to be 

considered to make this most appropriate for a particular measure are the adjustment 

factor for the binomial distribution and the size of the time-based variability. However, it 

will take considerable time before researchers or diligent clinicians get around to 
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determining these two components. It is proposed that an immediate benefit could be 

obtained by clinicians by adopting an adjustment factor of 1.0 and a time-based variability 

setting of 0.02 in the RCI calculator presented in Supplementary Digital Content file 2 to 

create an estimate of reliable change. Although these settings might not be the most 

accurate for a given measure, it is expected they would provide a good working 

approximation until improved values can be determined. The benefit of doing this 

immediately would be that clinicians would begin to use an approach with good statistical 

underpinnings, and this might lead to greater uniformity in decision making. Subjective 

judgments by different clinicians (and researchers) about what constitutes a real change 

would be removed. Also, with greater use of this approach, there will be more motivation to 

do the development work to improve the variability estimates for each measure. Without 

using a tool like the RCI, clinicians will continue using their subjective judgement about what 

represents real change in language performance. 

CONCLUSIONS 

In this paper, we have demonstrated an approach to studying and accounting for 

variability in LSA, using PD as an illustrative example for assessing changes in individuals. 

Text length and time-based variability were quantified, and a suitable statistical model was 

proposed that could then be used by clinicians and researchers to assess changes over time.  

This approach could be applied to other LSA measures that examine a part of language as a 

proportion of total discourse. The simple method we have developed accounts for text 

length variation using the binomial distribution combined with time-based variability to 

estimate reliable change when clinicians or researchers repeat measurements to assess the 

language of an individual. The Excel workbook in Supplementary Digital Content file 2 has 

been provided so clinicians and researchers can calculate RCIs in their own practice and 
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make accurate decisions when they assess change. This can also assist clinicians and 

researchers in avoiding errors by assuming that a change in a linguistic measure is significant 

when it is not (i.e., when change is only due to variability in the measure, which may result 

from insufficiently large text lengths). This method also can help avoid the opposite error 

where clinically meaningful change may not be detected by other methods as the sample 

length is too small. 

Accounting for the impact of text length would facilitate comparisons of some 

commonly used measures across research studies to build a more reliable picture of change 

over time in individuals with communication disorders as a result of treatment or with other 

time-based variables (e.g., aging). These outcomes also can provide clinicians with clearer 

guidance on assessing the discourse of their clients. However, to take advantage of this, 

studies need to report clearly all the details of their sample collection approach, especially 

text length at the individual level, if reliable changes are to be assessed. This method will 

also provide a foundation for clinicians and researchers to estimate how large a language 

sample is required in order to minimize some sources of variability and increase reliability of 

the measure(s) being used. In advocating for a reasonable and reliable way to compare 

samples, we acknowledge that language is a complex phenomenon and can be affected by a 

range of variables only mentioned briefly in this paper and commonly encountered in 

clinical practice. We have focussed on two sources of variability, text length and time-based 

changes, and their impact on commonly used language sampling measures. Collecting 

repeated measurements from an individual at appropriate time intervals is important in 

detecting response to intervention both clinically and in research. Reliability reporting of 

typical results for measures used in LSA is important to enable better interpretation of 

results which may (or may not) indicate meaningful change in an individual over time. We 
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echo previous calls for clinicians and researchers to accurately report language sample text 

length with all language sampling measures used and propose a simple calculator for RCI 

values to assist in determining how much language is needed from an individual in order to 

minimize variability of that measure in repeated sampling over time. In using this method, 

clinicians and researchers can more accurately determine change in language over time 

when making decisions about individuals with and without language impairments. 
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Figure Captions 

FIGURE 1 Search and inclusion process for reviewed studies. 

FIGURE 2 Variability of PD as a function of text length for the survey comments from the 
Australian Longitudinal Study of Women’s Health; (a) plot of PD (expressed as propositions 
per 1 word) for each comment against comment text length and (b) the plotted points are 
the standard deviations of the PDs for all comments at each text length in (a). The line in (b) 
is the standard deviation for the binomial distribution at each text length taking p as the 
mean of all the PD data. 
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