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Abstract
Development of acoustic and optoacoustic on-chip technologies calls for new solutions to guiding,
storing and interfacing acoustic and optical waves in integrated silicon-on-insulator systems. One
of the biggest challenges in this field is to suppress the radiative dissipation of the propagating
acoustic waves, while co-localizing the optical and acoustic fields in the same region of an
integrated waveguide. Here we address this problem by introducing anti-resonant reflecting
acoustic waveguides (ARRAWs)—mechanical analogues of the anti-resonant reflecting optical
waveguides. We discuss the principles of anti-resonant guidance and establish guidelines for
designing efficient ARRAWs. Finally, we demonstrate examples of the simplest silicon/silica
ARRAW platforms that can simultaneously serve as near-IR optical waveguides, and support
strong backward Brillouin scattering.

1. Introduction

Almost all conventional optical step-index waveguides are unsuitable for confining and supporting
the low-loss propagation of acoustic waves. This is because the high refractive index materials making up
the core of optical waveguides tend to support acoustic waves propagating at larger velocities than in the
low-refractive index cladding layers [1]. Consequently, acoustic waves do not experience total internal
reflection (TIR) at the core-cladding interface, and dissipate by free propagation into the cladding.
Conversely, acoustic waveguides relying on a reversed design—with the acoustically slow material making
up the core, and the fast material the cladding—usually do not guide optical waves, due to a general
association between refractive index and material density. Therefore, if we are to pursue systems
implementing efficient interaction between propagating optical and acoustic waves, and particularly
Brillouin scattering, we need to look beyond the simple physics of TIR.

A number of designs have been put forward to address this challenge [1–4]. In some, the waveguides are
suspended in air by either sparsely positioned [5–7] or specifically engineered supporting structures [8]. In
others, both light and sound are guided along line defects of phoxonic crystals [9–11]. Finally, a
combination of the desired material properties—high refractive index and low stiffness—has been
identified in chalcogenides, allowing researchers to revisit step-index architectures for optoacoustic
waveguides [12, 13].

In this work, we suggest a simple, novel class of waveguides capable of supporting the simultaneous
propagation of co-localized optical and acoustic waves, based on the concept of anti-resonant reflection
optical waveguides (ARROWs) [14]. ARROWs were originally studied to enable low-loss optical guidance in
the earliest integrated optical waveguides [15]. At that time, integrated photonic devices relied on a small
contrast of refractive index inducing TIR between the doped silica medium making up the core, and the
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pure silica of the cladding. In ARROWs however, this design was inverted, allowing light to be guided in a
low-refractive-index (fast) core, surrounded by a high-refractive-index (slow) cladding. This is achieved by
engineering the cladding to behave like a Fabry–Perot layer operating at the anti-resonance condition [16,
17]. Variations of ARROWs are now widely used in liquid core waveguides developed for biomolecular
detection [18–20].

As we show here, the acoustic analogue of such waveguides—anti-resonant reflecting acoustic
waveguides (ARRAWs), are capable of guiding acoustic waves through an acoustically fast core due to
anti-resonances in the acoustically slow cladding. For example, in the particular designs of silicon/
silica/silicon planar and cylindrical waveguides depicted in figure 1, the acoustic field of ARRAW modes
would be predominantly localized to the silicon core.

Furthermore, such ARRAWs can simultaneously support the conventional TIR guidance of light in the
high-refractive index core, and consequently amplify local optoacoustic interactions between the
co-localized optical and acoustic waves, including Brillouin scattering. Out of the two interaction
mechanisms previously identified as contributing to Brillouin effects: photoelasticity and radiation pressure
[21–23], the former relies on the acoustic field locally modifying the refractive index of the bulk of the
medium, forming a moving grating for the optical fields. This effect necessarily relies on the spatial overlap
between the optical and acoustic field, and the built-up amplitude of the induced acoustic field, quantified
by the mechanical quality factor of the acoustic mode Qm. Here we will analyze in detail how ARRAWs can
be optimized to support high-Qm acoustic, as well as optical modes, co-localized in the core of the
waveguide, giving rise to strong backwards Brillouin scattering.

The paper is structured as follows: in the two following sections we discuss ARRAW behavior in planar
and cylindrical waveguides. Since sound can propagate in a solid medium in the form of both transverse
waves (referred to throughout as S waves) and longitudinal waves (P waves), characterized by different
velocities, we expect that ARRAW waveguides will exhibit a richer structure of modes than their optical
counterparts. For each structure we highlight special, optics-like cases in which shear waves become
decoupled from the longitudinal components, and the system is an analogue of an anti-resonant optical
waveguide. Finally, we demonstrate how cylindrical ARRAW waveguides can be used to support
simultaneous and co-localized optical and acoustic modes in the core of the waveguide, and discuss how
such structures thus support efficient backward Brillouin scattering.

2. ARRAW condition in planar structures

In this section, we consider the simplest geometry of a planar waveguide, shown schematically in
figure 1(a). The central section of the waveguide—the core (marked as ‘3’)—is made up of the same
material as the semi-infinite outermost cladding layers (‘1’ and ‘5’), and supports S waves with velocity v(1)

s ,
larger than the respective velocity v(2)

s in the inner cladding layers ‘2’ and ‘4’ (v(1)
s > v(2)

s ). Similar ordering
is established for the velocities of P waves in the core and cladding (v(1)

p > v(2)
p ). While a more realistic

design of the waveguide would include a finite outermost cladding layer surrounded by air, we focus on the
semi-infinite model to stress that the acoustic guidance is induced solely by the anti-resonance in the
cladding layer, rather than reflection from the solid-air interface. We also make two approximations about
all the considered materials, neglecting their viscosities, and assuming isotropic elastic responses (see
appendix C for the values of elastic parameters used here). These approximations allow us to develop
tractable analytical models for the physics of ARRAW. Furthermore, for the application in Brillouin
scattering [1], we will only consider modes with larger quality factors Qm > 100, for which the small losses
introduced by viscosity can be considered as additive to the radiative dissipation [21]. Here we demonstrate
the ARRAW behavior in the particular platform consisting of a silicon waveguide core and outer cladding,
and a silica inner cladding. This choice is motivated by the advancement of the fabrication protocols for
these materials, and the significant interest in implementing platforms for Brillouin interaction in
silicon [1].

The waveguiding modes of these structures are found by solving the elastic equation of motion in each
layer j,

ρ(j) d2

dt2
u(j) = ∇ · T(j), (1)

relating the density ρ(j), displacement field u(j), and stress tensor T(j) [24]. Stress is related to strain
S(j) = ∇Su(j)—the symmetrized gradient of the displacement field—via Hooke’s law and the rank 4
stiffness tensor c(j), by the dyadic product T(j) = c(j) : S(j). In isotropic media, this relationship can be
expressed through the Lamé parameters λ(j) and μ(j) as T(j)

kl = 2μ(j)S(j)
kl + λ(j)δklS

(j)
nn. To obtain the solution,
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Figure 1. Schematics of (a) planar and (b) cylindrical waveguides. In both systems the acoustically fast core is made of the same
material as the outermost cladding, and supports both longitudinal (P) and shear (S) waves with velocities larger than the
respective velocities in the slow inner claddings. The propagation along the waveguide (ẑ axis) is characterized by the
wavenumber β which is constant throughout the structure, and the transverse wavenumbers k(j)

s/p in medium ‘j’.

we use the ansatz
u(r⊥, z, t) = U(r⊥)ei(βz−Ωt) + c.c., (2)

where c.c. denotes the complex conjugate, Ω and β are the angular frequency and the longitudinal
wavenumber of the mode, respectively, and r⊥ is the transverse coordinate. The fields in neighboring layers
are related via the elastic boundary conditions, which require the continuity of the normal components of
the adjacent stress tensors, and all the components of the adjacent displacement fields [24]. The waveguide
modes are found by requiring that the amplitudes of incoming fields in the outer-most layers (‘1’ and ‘5’ in
the planar structure—see figure 1(a)) vanish. For a planar structure, these modes are found in the basis of
shear and longitudinal planewaves in each of the layers, with the transverse wavevectors in medium ‘j’
denoted by k(j)

s and k(j)
p , respectively. Details of the calculations are given in appendix A.

2.1. Out-of-plane polarization (pure shear)
We first consider the case of pure shear waves, with solely out-of-plane displacement fields (u(j)

x = u(j)
z = 0).

These are uncoupled from longitudinal modes throughout the structure (see the derivations in appendix A
or [24]). The guidance condition (vanishing amplitude of incoming waves in the outermost layer) yields a
rather complex transcendental equation relating Ω, β and k(j)

s/p (not shown here). However, it can be
simplified by considering separately the modes which are symmetric and anti-symmetric with respect to the
ŷ-ẑ symmetry plane of the structure at x = 0. The resulting transcendental equations for the symmetric and
anti-symmetric modes can be expressed as

(
−1 + eick(1)

s rs

)
− e2idk(2)

s rs

(
−rs + eick(1)

s

)
= 0, (3)

(
1 + eick(1)

s rs

)
− e2idk(2)

s rs

(
rs + eick(1)

s

)
= 0, (4)
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respectively, where as marked in figure 1, c and d are the thicknesses of the core and cladding layers, and

rs =
k(1)

s μ(1) − k(2)
s μ(2)

k(1)
s μ(1) + k(2)

s μ(2)
, (5)

is the acoustic reflection coefficient for a pure S wave propagating in medium ‘1’, reflecting off the interface
with medium ‘2’.

2.1.1. Optics-like anti-resonance condition
We note that equations (3) and (4) also describe the symmetric and antisymmetric s-polarized optical
waveguiding modes, if we replace rs with the optical reflection coefficient for non-magnetic materials
ropt = (k(1) − k(2))/(k(1) + k(2)). This is thanks to the purely transverse nature of these modes, and the close
mapping between acoustic and optical boundary conditions (with the continuity of tangential components
of the electric field, and of normal components of the magnetic field, mirroring the continuity of acoustic
displacement and normal stress components, respectively).

Furthermore, to further explore the analogy to optics for ARRAWs, we can simplify the conditions given
in equations (3) and (4) by eliminating the dependence on the thickness of the core layer (c) from the
transcendental equations. To this end, we choose the core radius c to correspond to the lowest order
symmetric modes supported by the core: [14]

k(1)
s c = (2n + 1)π, (6)

for n = 0, 1, 2, . . . , and arrive at the simplified symmetric ARRAW condition from (3)

e2ik(2)
s d = rs. (7)

Similarly, the lowest order antisymmetric modes (4) are found for a core width satisfying

k(1)
s c = 2nπ, (8)

which simplifies (4) to the ARRAW condition given in (7), identical to the symmetric ARRAW modes.
To simplify this condition even further, we can consider waves propagating in the core at a glancing

incidence to the cladding interface, where the reflection coefficient rs ≈ −1. We then retrieve from (7) the
approximate relation:

k(2)
s d = (2 m + 1)

π

2
, (9)

for m = 0, 1, 2, . . . , which can be used to identify anti-resonant behavior in the dispersion of acoustic
waveguides. This condition is analogous to that found for ARROWs, which reads k(2)d = (2m + 1)π/2.

2.1.2. Exact dispersion relation
The complete, exact dispersion relation of the symmetric, pure shear modes of the planar waveguide with
arbitrary core radius c is found by solving (3) numerically, and includes families of both conventionally
guided and leaky modes. To differentiate between the two, and to establish a parallel between acoustic and
optical frameworks, we arbitrarily choose the largest shear velocity of the system v(1)

s as a reference, and
define an acoustic effective mode index

neff =
Re(β)

k(1)
s,0

, (10)

where k(1)
s,0 = Ω/v(1)

s . Conventionally guided modes, characterized by a real longitudinal wavenumber β, and
the acoustic field propagating predominantly in the slow cladding layer thus correspond to
1 < neff < v(1)

s /v(2)
s . Conversely, leaky modes found for neff < 1 have complex longitudinal wavenumber.

These features are demonstrated in figure 2, where we analyze the symmetric, pure shear modes of a
Si(core)/SiO2(inner cladding)/Si(outer cladding) planar waveguide. For this setup, the ratio of shear
velocities v(1)

s /v(2)
s ≈ 1.42. The core width is set to c = 1μm, and we vary the cladding width d from

approximately 0 to d = 0.5μm—a range of sizes which, for acoustic modes propagating at frequency
Ω/2π = 15 GHz, spans k(2)

s,0 d ≈ 0 to 4π. In figure 2(a) we plot the effective mode index neff , and in (b) the

normalized attenuation parameter Im(β)/k(1)
s,0 .

In figure 2(a) we clearly identify the families of modes conventionally guiding the acoustic waves in the
inner cladding layer, characterized by 1 < neff < v(1)

s /v(2)
s . These modes exhibit purely real transverse

wavenumbers in the cladding (k(2)
s ), and purely imaginary transverse wavenumbers in the core (k(1)

s ). This

4
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Figure 2. (a) Dispersion relation, (b) normalized loss, and (c) field distribution plots for out-of-plane polarized symmetric shear
modes of a planar waveguiding structure with core width c = 1μm. In (a) horizontal gray dotted lines correspond to the analytic
conditions for odd core resonance (6) with n = 0, 1, and colored dashed lines are described by the cladding anti-resonance
condition given in (9) with m = 0, 1 and 2. Thicker black lines denote the dispersion of conventionally guided (A) and (B) and
leaky shear (C–E) modes shown in (c).

indicates oscillatory behavior of the fields in the cladding, along the transverse direction x̂, and exponential
localization of the fields to the interfaces in the core. We clearly identify these features in the two upper
panels of figure 2(c), which show the displacement field profile of two modes depicted as A and B in
figure 2(a) and (b), differentiated by the number of nodes of the displacement field in the cladding (with
k(2)

s d ≈ 3π/2 in A and 5π/2 in B).
Modes below the shear core sound line (neff < 1) are characterized by complex wavenumbers β, and

k(j)
s ’s, meaning that the field in the core does not simply exponentially decay with x away from the

core/cladding interface, but exhibits oscillations governed by Re(k(1)
s ). Simultaneously, in a manner

consistent with optical leaky modes, the imaginary part of k(1)
s becomes negative, and the outgoing fields

increase exponentially with x outside the structure. Just below the neff = 1 line, the glancing modes form
flat-dispersion sections where acoustic waves are confined predominantly to the core (see panels C and E in
figure 2(c); modes C, D and E were selected to match the local minima of normalized loss Im(β)/k(1)

s . This
behavior is described approximately by the horizontal gray dotted lines depicting resonances of the core
(n = 0 in (6)), which cross with the colored dashed lines indicating the cladding anti-resonance (m = 0, 1, 2
in (9)) near the minimum of the loss function. This agreement breaks down for mode D, which lies far
below the neff = 1 line, and does not meet the glancing incidence criterion. We also identify a prominent
anti-crossing behavior near the crossings between the resonances of the core (horizontal dotted gray lines)
and resonances of the cladding (k(2)

s d = mπ, anti-crossings marked with hollow circles). At these points
the cladding transmission reaches a local maximum, suppressing the formation of a waveguiding
mode.

This simple analysis allows us to identify the ARRAW modes as the leaky acoustic modes localized to the
fast medium, and found at the local minima of loss, right below the sound-line corresponding to the
velocity of waves in the fastest medium (core)—here illustrated as modes C and E. As we show below, this
definition naturally extends to polarizations and media supporting the propagation of P waves.

5
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Figure 3. (a) Dispersion relation, (b) normalized loss, and (c) field distribution plots for in-plane polarization symmetric modes
of a planar waveguiding structure with core width c = 1μm, with orange and blue lines respectively denoting shear and
longitudinal contributions to the total (green lines) field, which is continuous at interfaces. Note that the thicknesses of cladding
layers d differ slightly for various modes. Characteristics of the selected modes are described in details in the text.

2.2. In-plane polarization
In-plane polarization of the waveguiding modes (u(i)

y = 0) necessarily couples the in-plane shear (S) and
longitudinal (P) waves. Consequently, the transcendental equation for the modes is more complex (see
derivation in appendix A), even if we focus on a particular symmetry of both the components. Nevertheless,
it submits to numerical solution. As in the out-of-plane polarization case, we focus on symmetric modes for
simplicity. Furthermore, to observe anti-resonant behavior of longitudinal waves, characterized by
substantially longer wavelengths (since v(2)

p /v(2)
s ≈ 1.6), we consider claddings of larger thickness,

comparable to the longitudinal wavelength in the cladding medium.
In the following discussion, it is useful to draw from the analytical framework presented in appendix A,

and treat S (shear) and P (longitudinal) components of the acoustic wave (denoted as us and up) as if they
were independent, and characterize regimes in which these components behave as evanescent
(exponentially decaying away from interfaces in either direction), conventionally guided (in the inner
cladding) or leaky waves. While, as we show below, the coupling between the S and P waves necessarily blurs
the characteristics of these regimes, this approach is instructive in developing intuition about the in-plane
polarization acoustic guidance.

The dispersion relations and loss of the symmetric, in-plane modes are shown in figures 3(a) and (b),
respectively. The field distributions (separated into S and P components described as the norms of us and
up fields defined in appendix A) of modes marked as A–F are shown in (c), chosen to best represent 4
distinct regimes of acoustic guidance. The first, denoted in figure 3(a) as conventional S and evanescent P
(1 < neff < v(1)

s /v(2)
s ), is characterized by real β, k(2)

s , and imaginary k(1)
s (indicating conventional S guidance

in the cladding), as well as purely imaginary transverse P wave k(i)
p ’s (indicating surface states with fields

exponentially decaying away from the interface in the core and the outer layer). Two examples of such
modes are shown in panels A and B in figure 3(c).

6
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For neff < 1, β becomes complex, and the shear components of the fields diverge exponentially outside
of the structure as in the out-of-plane case (see panels C–F), as expected for the leaky S modes. In
particular, as neff is reduced below v(1)

s /v(2)
p ≈ 0.89, we first find the regime (neff > v(1)

s /v(1)
p ≈ 0.6) in which

P components become conventionally guided in the inner cladding (see modes D and E). Modes found in
this regime exhibit very particular characteristics, as they mix the conventional-like localization of the P
waves with the leaky-like exponential increase of displacement fields in the outer cladding layer (see blue
lines in D and E) due to the negative imaginary component of k(1)

p (resulting from complex β, or
equivalently, coupling to the S waves). Furthermore, for particular geometric parameters the normalized
loss of these modes (figure 3(b)) appears to dip toward 0—a behavior which we identify with the onset of
the simultaneous anti-resonant guidance of S waves (note the localization of S waves represented by orange
lines to the core in D and E) and conventional P guidance.

Finally, further reducing neff below v(1)
s /v(1)

p brings us to the leaky S and P regime, in which the
displacement fields of both the P and S contributions oscillate in the core and in the inner cladding layer.
We can therefore expect to find modes for which both the P and S waves build up an anti-resonance in the
inner cladding, by approximately meeting the ARRAW condition given for S waves in (9). These conditions
will not be fulfilled exactly, since the transverse wavenumbers k(2)

s and k(2)
p are imaginary, and the two

components are coupled. Nevertheless, we can find ARRAW modes, such as the one shown in panel F,
which meet our previous definition: they are characterized by a local minimum of loss, lie immediately
below the neff = v(1)

s /v(1)
p sound line, and exhibit a strong localization of both the P and S components in

the core.
We should also note that the combination of Si/SiO2 materials forbids the formation of modes with

both S and P components which are conventionally guided, since the regions of effective mode velocities
(v(2)

s , v(1)
s ) and (v(2)

p , v(1)
p ) do not overlap. Such regions could be found for other combinations of materials,

e.g. Si/As2S3 or SiO2/As2S3.

3. ARRAW modes in cylindrical waveguides

In order to bring the concept of ARRAW closer to applications in nonlinear optical systems, we now
investigate ARRAW behavior in cylindrical waveguides, as shown schematically in figure 1(b). In these
designs, the core (medium ‘1’) of radius a is surrounded by a cladding ‘2’ of thickness d and, as for layered
waveguides, the core and outer semi-infinite layer ‘3’ are made up of the same material. The mathematical
formulation of this problem is discussed in detail in appendix B, where we expand the fields into a basis of
torsional (S wave components only) and dilatational modes. For simplicity, we will consider only the
azimuthally symmetric case (m = 0), in which the two are decoupled, and the torsional modes have
azimuthal component u = uθθ̂ only [24] (see appendix B). We thus arrive at a system much like that found
in planar waveguides, where one family of modes (torsional) depends on the shear velocities only, while the
other family (dilatational) mixes S and P components. We thus expect to recover the optics-like ARROW
characteristics of the former, and the ARRAW-like, complex modes of the latter.

3.1. Torsional modes
In figure 4(a) we present the dispersion of torsional modes, and identify two families of modes: conventional
S, with 1 < neff < v(1)

s /v(2)
s , and leaky S, with neff < 1. The azimuthal (and only) component of the

displacement field is shown, for a collection of modes, in figure 4(c). For A and B, the conventionally
guided S modes are localized to the cladding layer, and decay exponentially in the outermost layer due to
the purely imaginary transverse wavenumber k(3)

s = iκ(3)
s (with κ(3)

s > 0). For the leaky modes C–E, we find
that the effective mode index neff of all the modes increases with the cladding thickness d, until the
dispersion crosses into the conventional S guidance regime. In particular, by tracing the evolution of the
branch with modes C and D, we see that as the dispersion approaches the v(1)

s sound line, oscillations in the
cladding layer become more pronounced, and the anti-resonant response becomes significantly stronger,
leading to substantial quenching of losses, as observed previously in optical ARROW systems.

3.2. Dilatational modes
Dilatational modes share the fundamental dispersion characteristics of in-plane modes in planar
waveguides, with the four regimes marked in figure 5(a) and illustrated in figure 5(c), mixing evanescent,
conventional, and leaky characteristics of the S (orange lines) and P (blue lines) waves of the displacement
field. Parameters of the waveguides considered in this calculation are identical to those discussed in
section 3.1.

In particular, for v(1)
s /v(1)

p < neff < v(1)
s /v(2)

p we again find the peculiar modes (C and D) characterized
by very small loss, for which the P waves have the dual characteristic of conventional-like localization to the

7
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Figure 4. (a) Dispersion, (b) loss, and (c) field distribution plots of azimuthally symmetric (m = 0) torsional modes of a
cylindrical waveguide. Radius of the silicon core is set to 0.5 μm, and the cladding thickness d (cladding region is marked with
gray background in (c)) is normalized by the wavelength of S-waves in the cladding material (silicon) λ(2)

s ≈ 0.25μm at the
angular frequency of 2π × 15 GHz. Field distributions represent conventionally guided S (A,B), and leaky (C–E) modes.

inner cladding, and leaky-like exponential growth in the outer cladding. For these modes, S waves are
clearly localized through the anti-resonance to the core of the waveguide.

Furthermore, as for the in-plane modes of the planar waveguide, we expect to find the ARRAW modes
right below the fastest sound velocity v(1)

p line, in the leaky S and P regime. While these modes are not
clearly defined by a dip in loss, we can nevertheless identify ARRAW behavior in the field distributions of
the mode. For example, mode E carries the characteristics of both the S and P components localized to the
core, and oscillatory behavior of the components in the cladding layer.

The above-identified ARRAW modes would clearly not constitute very good acoustic waveguiding
channels, as their normalized loss barely reaches 10−2 (see point F in figure 3 and point E in figure 5). This
is mostly due to the fact that the core layers of both the planar and cylindrical systems investigated to this
point are too narrow to fit multiple wavelengths of the longer, P acoustic waves (k(1)

p a, k(1)
p c � π). While

their geometric parameters were chosen to provide insights into the different regimes of operation of
layered acoustic waveguides, we can now consider systems with larger core thicknesses that will provide
much better examples of ARRAW guidance, characterized by lower losses and stronger localization of the
field to the core, for application in nonlinear Brillouin scattering.

4. Stimulated Brillouin scattering in cylindrical ARRAWs

In the previous section, we considered the acoustic response of cylindrical silicon/silica ARRAWs. Below, we
show that such systems, slightly modified to suppress acoustic losses, can simultaneously support
propagation of conventionally guided optical waves, and—thanks to the co-localization of optical and
acoustic excitations—enable nonlinear Brillouin scattering of light propagating through the waveguide. We
will focus on the particular case of backward stimulated Brillouin scattering (BSBS) [2, 23]. In BSBS, two

8
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Figure 5. (a) Dispersion, (b) loss and (c) field distribution plots of azimuthally symmetric (m = 0) dilatational modes of a
layered cylindrical waveguide (structure and parameters are identical as in figure 4).

counter-propagating optical modes with wavenumbers ki and frequencies ωi (i = 1, 2) couple via scattering
with an acoustic wave characterized by β and Ω. The general phase- and frequency-matching conditions

k1 + Re(β) = k2, ω1 +Ω = ω2, (11)

can be simplified if we consider the special case of intra-modal BSBS [22], in which the
counter-propagating optical fields occupy the same mode. Furthermore, since the acoustic frequencies (up
to tens of GHz) are much smaller than the ones corresponding to optical waves in the visible and IR range
(ω1 ≈ ω2 ∼ 2π × 3 × 1014 Hz � Ω), we find a simple relationship between the acoustic and optical
wavenumbers: β ≈ 2|k1|.

The nonlinear Brillouin interaction can be used to transfer energy between the two propagating optical
fields, at the rate determined by the Brillouin gain Γ [1, 21, 23, 25]. In a typical realization, Brillouin
interaction amplifies the flux of energy of a weak Stokes optical field P (S) co-propagating (for forward SBS)
or counter-propagating (BSBS) with respect to a much stronger pump field P (p) according to P (S)(z)
= P (S)(0) exp

(
ΓP (p)z

)
. The Brillouin gain coefficient can be expressed as

Γ = 4ω1

Qm

∣∣∣Q(PE)
1 +Q(MB)

1

∣∣∣2

EbP (1)P (2)
, (12)

where Eb denotes the energy density of the acoustic wave, and P (i) describes the energy flux of optical mode
i. Q(PE)

1 and Q(MB)
1 describe two physical processes governing the Brillouin interaction: the photoelastic

effect and radiation pressure (referred to as the moving boundary, or MB effect), respectively [26], localized
in the bulk and at the boundary of the waveguide. We expect, and verify, that the ARRAWs will primarily
enhance the former effect, quantified by the transverse overlap integral between the electric (e(i)) and
acoustic (u) fields:

Q(PE)
1 = −ε0

∫
d2rε2

a

∑
ijkl

[e(1)
i ]∗e(2)

j pijkl∂ku∗
l =

∫ ∞

0
drQ̃(PE)

1 (r), (13)
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Figure 6. Brillouin interaction between conventionally guided optical and acoustic ARRAW modes of a layered cylindrical
waveguide. (a) Dispersion relation (blue lines) and mechanical quality factors Qm (dashed orange lines) of the highest-Qm

ARRAW modes for increasing cladding thickness d for the cylindrical structure with core radius a = 2μm and operating at
frequency Ω/2π = 15 GHz. (b) SBS gain Γ calculated for the ARRAW modes identified in (a) mediating interaction between
optical TM modes (top panel), TE (central panel) and hybrid HE and EH modes (bottom panel) phase-matched to the acoustic
mode (11) and characterized by the lowest effective optical mode index nopt

eff . (c) SBS interaction between the acoustic mode
identified as corresponding to the maximum of Qm in (a) as A and the HE17 optical mode. The three panels represent the
displacement field separated into S and P components, the axial Poynting vector Pz of the optical mode, and the dominant, real
part of the overlap function Q̃(PE)

1 (r) originating from the PE interaction defined in (13). (d) SBS gain between the acoustic mode
marked as A in (a) and the phase-matched HE modes of decreasing order (and increasing effective optical mode index) HE17

through HE12.

and the Pockels tensor (pijkl). The interaction due to the radiation pressure is typically negligible for
waveguides with transverse sizes over 1 μm [21]. Finally, Qm is the mechanical quality factor, typically used
in lieu of the propagation loss, and here defined by the real and imaginary components of the longitudinal
acoustic wavenumber Qm = Re(β)/[2Im(β)].

For simplicity, we focus on the interaction between conventionally guided optical TM, TE and hybrid
(HE/EH) modes localized to the core of the waveguide [27].

To optimize the BSBS gain, we look for parameters of the system that will simultaneously maximize the
mechanical quality factors Qm, and the overlap term Q(PE)

1 :

4.1. Optimizing the mechanical quality factor
The mechanical quality factor Qm is optimized by tuning the geometric parameters of the structure (core
radius a and cladding thickness d), and mechanical frequency Ω. Since the underlying physics of acoustic
systems is linear, the modes are invariant under simultaneous rescaling of the geometric parameters and
wavelength (or inverse frequency), and consequently, we can consider two of these three parameters as
independent. Here, we fix Ω/2π = 15 GHz, and optimize a and d. For clarity, in figure 6(a) we show the
dispersion relation and mechanical quality factors of the highest-Qm ARRAW modes lying right below the
last sound line (neff � v(1)

s /v(1)
p ), as function of the cladding thickness d. For each of the ARRAW modes

10
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Table 1. Backwards SBS gain between acoustic ARRAW modes and optical modes of a silicon/silica/silicon cylin-
drical waveguide shown in figure 1(b). For each waveguide geometry and acoustic frequency Ω we choose the mode
with maximum mechanical quality factor Qm and calculate BSBS gain coefficient Γ (given in (Wm)−1) governing
Brillouin coupling between TMl, TEl, HE1l and EH1l optical modes. Optical wavelengths λ are given for reference,
and setups for which the gain is smaller than 5 (Wm)−1 are dismissed.

Geometry Acoustics Optics

TMl TEl HE1l EH1l

a/d Ω/2π Qm l λ Γ l λ Γ l λ Γ l λ Γ
(μm) (GHz) (μm) (μm) (μm) (μm)

1.5/2.82 15 570 4 1.89 23.5 4–0 — <5 7 2.03 42.6 7–1 — <5
3 2.19 44.3 6 2.39 37.8
2 2.62 28.1 5 3.50 5.2
1 3.17 10.8 4–2 — <5
0 3.80 <5

2/1.2 15 1815 6 1.83 46.5 6 1.85 7.6 7 1.92 90.2 7 1.96 8.5
5 2.02 110.9 5 2.08 6.6 6 2.15 113.4 6 2.22 6.5
4 2.29 99.1 4–0 — <5 5 2.45 81.9 5–1 — <5
3 2.63 62.8 4 2.83 43.3
2 3.04 30.8 3 3.27 17.9
1 3.50 11.6 2 3.74 5.4
0 3.94 <5 1 — <5

2.5/1.74 15 4247 7 1.94 177.9 7 1.97 13.0 9 1.86 121.2 9 1.88 15.0
6 2.13 195.8 6 2.18 10.5 8 2.03 200.5 8 2.07 12.5
5 2.36 151.2 5 2.42 7.9 7 2.24 175.5 7 2.30 9.6
4 2.64 98.7 4–0 — <5 6 2.49 122.6 6 2.87 5.1
3 2.96 55.6 5 2.79 73.1 5–1 — <5
2 3.32 26.8 4 3.14 37.5
1 3.70 10.8 3 3.52 15.9
0 4.01 <5 2 3.87 5.6

1 — <5
1/1.14 30 1815 6 0.91 294.7 6 0.92 58.7 7 0.96 704.8 7 0.98 65.2

5 1.01 891.4 5 1.04 54.8 6 1.07 888.3 6 1.11 49.2
4 1.15 793.4 4 1.18 40.0 5 1.23 628.6 5 1.27 34.3
3 1.31 492.8 3 1.36 27.2 4 1.41 338.7 4 1.46 23.0
2 1.52 240.8 2 1.56 18.0 3 1.64 140.2 3 1.68 15.1
1 1.75 93.5 1 1.78 12.0 2 1.87 42.1 2 1.91 8.9
0 1.97 25.2 0 1.98 8.1 1 2.04 16.6 1 — <5

denoted with solid blue lines, we identify a resonant dependence of the Qm on d. These features clearly
point to the resonances in the reflection within the cladding layer, and the ARRAW nature of the guidance.

Since we aim to optimize the waveguiding properties of the structure, we consider larger core radii
a = 2μm, which offer mechanical quality factors over 1000 (structures with different core radii are analyzed
in table 1). As the maximum Qm increases with the core radius (see results in table 1), it is tempting to favor
the larger core geometries. However, we should note that our calculations do not account for the viscous
losses in the material, which typically limit the Qm to the order of ∼ 1000, and thus suppress the advantage
of eliminating the acoustic radiative dissipation channels. Furthermore, it was shown in previous reports
that the PE contribution to SBS gain exhibits an approximate a−2 scaling with the transverse dimension of
the waveguide [21].

4.2. Overlap term Q(PE)
1

The particular choice of the optical mode which can undergo BSBS coupling via a selected ARRAW mode is
predominantly limited by the phase-matching condition (11), which dictates the magnitude of the
longitudinal wavenumber k1 of the optical mode. Therefore, the only parameters which we can optimize
here are the type of optical mode (TE, TM or hybrid), and its effective mode index nopt

eff . We first focus on
the lowest nopt

eff (and high-order) modes supported by the core, and later (figure 6(d)) explore the
dependence on the order of the optical mode. In particular, in figure 6(b) we analyze the BSBS gain
coupling between these three types of modes (TM4, TE4 and EH17/HE17) as a function of cladding
thickness—a parameter which should have little effect on the optical guidance, but governs the ARRAW
behavior. We find that the gain closely follows the dependence of the quality factor Qm, suggesting that
neither the overlap integral Q(PE)

1 nor the normalization factors Eb and P (i) change significantly with d.
The orange dot in the plots in figure 6(a) and (b) denotes the parameters of optical and acoustic modes

analyzed in detail in figure 6(c). The radial profile of the acoustic field, shown in the top panel of

11
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figure 6(a), indicates significant localization to the core—as expected for large-Qm ARRAW modes.
Together with the core-localized optical mode (middle panel), this results in a strong localization of the
Q̃(PE)

1 (r) overlap integral kernel shown in the bottom panel.
To further enhance the Brillouin gain, we can consider changing the geometric parameters of the

waveguide (e.g. core radius a), operating mechanical frequency Ω, or explore coupling to different orders of
the optical modes. We provide a comparison of selected BSBS ARRAW systems in table 1, and find a few
guiding principles for designing such systems.

• As reported by Rakich et al [21], the smaller cross section waveguides yield larger BSBS
gain—however, this principle trades off against the sharp decrease in mechanical quality factor for
small core radii; simultaneous increase of mechanical frequencies (e.g. toward 30 GHz frequency)
should allow us to retain high Qm’s due to the linear nature of the acoustic physics, but the overall
gain would likely become suppressed by the increased non-radiative acoustic losses at higher
frequencies,

• Dependence on the order of optical mode (or effective optical mode index) is not monotonic, and in
fact is the smallest for the most homogeneous field of the lowest order mode; this dependence is
shown, for a number of hybrid modes from HE17 to HE12, in figure 6(d).

4.3. Comparison to other BSBS waveguides
It is instructive to compare the nonlinear performance of the investigated ARRAW to other BSBS
waveguiding systems. The mechanical quality factor Qm of our structure can easily reach 103, which is a
result comparable to that found in suspended waveguides, in which the radiative dissipation of acoustic
waves is suppressed, and Qm becomes limited by the intrinsic viscous losses in silicon [8, 28]. Furthermore,
the maximum Brillouin gain found in our system (nearly 1000 (Wm)−1) is of a similar order to that
reported in GHz BSBS systems, including those based on sub-micron silicon slot waveguides where the
optoacoustic interaction is dominated by radiation pressure [29], or relying on materials with different
optoacoustic properties, such as chalcogenides [12].

4.4. Outlook
Our simple designs can be further modified to better suit integrated platforms by considering finite
outer-cladding layers or multiple anti-resonant layers. The principles of ARRAW guidance can also be
combined with other mechanisms, for example by using the anti-resonant reflection to suppress the
acoustic dissipation from exposed cores of rib waveguides into the substrate. Alternatively, the entire
designs could be reversed and implement optical anti-resonant guidance and conventional acoustic
TIR.

5. Summary

We have proposed a new type of multilayered optoacoustic anti-resonant reflecting acoustic waveguide
capable of supporting the simultaneous and co-localized guidance of GHz acoustic and near-IR optical
signals. While the optical waves are TIR-guided in the high-refractive index core, the acoustic waves are
localized to the core by anti-resonant reflection in the inner cladding layer. This mechanism can be
harnessed to efficiently suppress the dissipation of acoustic waves into the outermost layers, and enable
efficient Brillouin scattering between the counter-propagating optical waves. Our estimates indicate that
silicon/silica ARRAWs can match the record performance of backward stimulated Brillouin scattering in
silicon/silica platforms without relying on sub-micron confinement of fields or interactions induced by
radiation pressure.
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Appendix A. Planar waveguide

In this section we present the transfer matrix method used to derive transcendental conditions for
waveguiding modes of the planar structure shown in figure 1(a).

12



New J. Phys. 22 (2020) 053011 M K Schmidt et al

A.1. Out-of-plane polarization
We start with the simpler case of out-of-plane polarization, in which modes are composed of shear waves
only, and displacement fields have uy components only, meaning that the boundary conditions demand the
continuity of uy components of the displacement field and continuity of the Txy element of the stress tensor.

We use the ansatz

u(j)(x, z, t) = ŷ

(
u(j)
+eik

(j)
s x + u(j)

− e−ik
(j)
s x

)
ei(βz−Ωt) + c.c., (A.1)

where u(j)
+ and u(j)

− are undetermined coefficients for the right- and left-propagating fields in the jth layer
respectively. We can thus represent the boundary conditions at x = xj between the jth and (j + 1)th layer as

[
eik

(j)
s xj e−ik

(j)
s xj

k(j)
s μ(j)eik

(j)
s xj −k(j)

s μ(j)e−ik
(j)
s xj

]
︸ ︷︷ ︸

M(j)(xj)

[
u(j)
+

u(j)
−

]
︸ ︷︷ ︸

ũ(j)

=

[
eik

(j+1)
s xj e−ik

(j+1)
s xj

k(j+1)
s μ(j+1)eik

(j+1)
s xj −k(j+1)

s μ(j+1)e−ik
(j+1)
s xj

]
︸ ︷︷ ︸

M(j+1)(xj)

[
u(j+1)
+

u(j+1)
−

]
︸ ︷︷ ︸

ũ(j+1)

.

(A.2)
We now multiply both sides by

[
M(j+1)(xj)

]−1
to obtain

[
M(j+1)(xj)

]−1
M(j)(xj)ũ(j) .

= S(j)ũ(j) = ũ(j+1). (A.3)

This formalism relates the fields in the last medium j = 5 with the first medium j = 1 (S(all)ũ(1) = ũ(5)),
through the matrix

S(all) = S(4)S(3)S(2)S(1). (A.4)

To find waveguiding modes, we require that fields in the first and the last mediums should be outgoing
only, i.e.

ũ(1) =

[
0

u(1)
−

]
, ũ(5) =

[
u(5)
+

0

]
. (A.5)

This condition only holds when S(all)
22 = 0, which defines a 4th order polynomial in the quantities k(i)

s . We
can simplify it by considering the symmetric and anti-symmetric modes of the structure separately.
Expressing the field u(3) through the transfer matrix, imposing the above symmetry conditions, and
accounting for the vanishing of the incident wave in medium 1, we arrive at the resonance condition:(

W±S(2)S(1)
)

22
= 0, (A.6)

where W± imposes the symmetry/antisymmetry of u(3) at x = 0, and is defined by

W± =

[
1 0
1 ±1

]
. (A.7)

The condition (A.6) is equivalent to equations (3) and (4).

A.2. In-plane polarization
For in-plane polarization, the displacement fields lie in the x̂-ŷ plane, and they have both longitudinal and
transverse contributions. Importantly, these two contributions exhibit different transverse wavevectors. The
displacement field components thus have two right- and left-propagating field coefficients each (u(j)

p,± and

u(j)
s,±):

u(j)
p (x, z, t) =

[(
x̂k(j)

p + ẑβ
)

u(j)
p+eik

(j)
p x +

(
−x̂k(j)

p + ẑβ
)

u(j)
p−e−ik

(j)
p x

]
ei(βz−Ωt) + c.c., (A.8)

u(j)
s (x, z, t) =

[(
−x̂β + ẑk(j)

s

)
u(j)

s+eik
(j)
s x +

(
x̂β + ẑk(j)

s

)
u(j)

s−e−ik
(j)
s x

]
ei(βz−Ωt) + c.c., (A.9)

u(j)(x, z, t) = u(j)
p (x, z, t) + u(j)

s (x, z, t). (A.10)

The relevant elements of the stress tensor which need to be continuous at each interface are T(j)
xx , and T(j)

xz .
The matrices M(j)(x) and vectors ũ(j) are thus given by:

ũ(j) =
[

u(j)
p+ u(j)

p− u(j)
s+ u(j)

s−

]T
, (A.11)
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M(j)(x) =

⎡
⎢⎢⎢⎣

k(j)
p eik

(j)
p x −k(j)

p e−ik
(j)
p x −βeik

(j)
s x βe−ik

(j)
s x

βeik
(j)
p x βe−ik

(j)
p x k(j)

s eik
(j)
s x k(j)

s e−ik
(j)
s x

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎥⎥⎦ , (A.12)

with

m31 =
[
(λ(j) + 2μ(j))(k(j)

p )2 + λ(j)β2
]

eik
(j)
p x, (A.13)

m32 =
[
(λ(j) + 2μ(j))(k(j)

p )2 + λ(j)β2
]

e−ik
(j)
p x, (A.14)

m33 = −2μ(j)βk(j)
s eik

(j)
s x, (A.15)

m34 = −2μ(j)βk(j)
s e−ik

(j)
s x, (A.16)

m41 = 2μ(j)βk(j)
p eik

(j)
p x, (A.17)

m42 = −2μ(j)βk(j)
p e−ik

(j)
p x, (A.18)

m43 = μ(j)
[(

k(j)
s

)2 − β2
]

eik
(j)
s x, (A.19)

m44 = −μ(j)
[(

k(j)
s

)2 − β2
]

e−ik
(j)
s x. (A.20)

As in the previous section, this formulation of matrices M(j) allows us to construct matrices S(j) as in (A.4),
which will readily mix the S and P components of the fields in layers j and j + 1. This behavior signals
coupling between the S and P waves through scattering at interfaces.

To find waveguiding modes, we again require that fields in the first and the last layers should be outgoing
only, i.e.

ũ(5) =

⎡
⎢⎢⎢⎢⎣

u(5)
p+

0

u(5)
s+

0

⎤
⎥⎥⎥⎥⎦ , ũ(1) =

⎡
⎢⎢⎢⎢⎣

0

u(1)
p−

0

u(1)
s−

⎤
⎥⎥⎥⎥⎦ . (A.21)

Thus, we formulate the transfer problem as ũ(5) = S(all)ũ(1), and look for the solutions to

det

[
(S(all))22 (S(all))24

(S(all))42 (S(all))44

]
= 0, (A.22)

for discrete values of β and fixed Ω. As discussed in the main text, this transcendental equation will have
both real and complex solutions, corresponding to conventional and ARRAW modes, respectively. Treating
the real and imaginary parts of β as independent variables and applying one of the many standard
multi-dimensional root-finding algorithms is computationally intensive and time-consuming. However, by
treating β as a complex variable, we are able to apply methods of complex analysis; (A.22) is analytic
everywhere except along a branch cut on the real axis. In order to calculate the dispersion relations
presented in the main text, we applied the global complex roots and pole finding (GRPF) algorithm developed
in [30].

Appendix B. Cylindrical waveguide

In this section we present the transfer matrix method used to derive transcendental conditions for
waveguiding modes of the cylindrical structures shown in figure 1(b).

B.1. Basis of modes for a layered cylindrical waveguide
The problem in question is that of a cylindrical rod of isotropic material and infinite length, as shown in
figure 1(b). The problem is solved using cylindrical coordinates (r, θ, z) and assuming a time-harmonic
solution of the form

u(r, θ, z, t) = U(r, θ)ei(βz−Ωt) + c.c. (B.1)

14



New J. Phys. 22 (2020) 053011 M K Schmidt et al

The relevant elements of the stress tensor in cylindrical coordinates are identified as [24]

Trr = λ

(
∂rur +

1

r
∂θuθ +

ur

r
+ ∂zuz

)
+ 2μ∂rur, (B.2)

Trθ = μ

(
1

r
∂θur −

uθ

r
+ ∂ruθ

)
, (B.3)

Trz = μ (∂zur + ∂ruz) . (B.4)

A convenient expansion for the modes of the cylinder can be derived by expressing the displacement fields u
through two scalar potentials Φ and Ψ as

u = A∇Φ + B∇× (ẑΨ) + C∇×∇× (ẑΨ), (B.5)

where A, B and C are free coefficients [24]. These potentials are solutions to the scalar wave equations[
∇2

⊥ +

(
∂2

∂z2
− 1

v2
p

∂2

∂t2

)]
Φ(r, θ, z, t) =

[
∇2

⊥ +

(
Ω2

v2
p

− β2

)]
φ(r, θ)ei(βz−Ωt) = 0, (B.6)

[
∇2

⊥ +

(
∂2

∂z2
− 1

v2
s

∂2

∂t2

)]
Ψ(r, θ, z, t) =

[
∇2

⊥ +

(
Ω2

v2
s

− β2

)]
ψ(r, θ)ei(βz−Ωt) = 0, (B.7)

where we have made a similar ansatz for the scalar fields as for u (see (B.1)). The resulting equations for the
transverse scalar fields φ and ψ can be solved by supposing an azimuthal dependence of eimθ, which yields
the radial dependence of the potentials as solutions to the Bessel equation χm(kir) (we will comment on the
particular choice of χ), where k2

i = (Ω/vi)2 − β2 for i = p (φ) or s (ψ).
We thus arrive at the general form of the displacement field:

Ur = Akpχ
′
m(kpr) + Biβksχ

′
m(ksr) + Cim

χm(ksr)

r
, (B.8)

Uθ = Aim
χm(kpr)

r
− Bmβ

χm(ksr)

r
− Cksχ

′
m(ksr), (B.9)

Uz = Aiβχm(kpr) + Bk2
sχm(ksr). (B.10)

Therefore, we can observe that in the axially symmetric case, when m = 0, the displacement field decouples
into torsional modes with only a uθ component (A = B = 0), and dilatational modes (C = 0) with ur and uz

components. We will focus on this case throughout.

B.2. Torsional modes
Just as for the planar waveguide structure, we can decompose the displacement field in each layer into a
basis of outgoing and incoming waves. This is determined by the choice of the functions χ from the family
of Bessel and Hankel functions. To represent the outgoing wave, we choose χ in the form of Hankel
functions of the first kind H(1)

0 ; we will suppress the (1) superscript in all the following equations for clarity.
To describe the incoming waves, we could use the Hankel functions of the second kind. However, since H(2)

diverge at r = 0, we instead consider the Bessel functions of the first kind J(1) —while this component will
not strickly describe incoming waves only, our expansion will remain complete. The displacement field is
thus given by

u(j)(r, z, t) = θ̂
(

u(j)
+H′

0(k(j)
s r) + u(j)

− J ′0(k(j)
s r)

)
ei(βz−Ωt). (B.11)

Here the derivatives of special Bessel and Hankel functions (denoted by ′) are calculated with respect to the
entire argument of the respective function. The only relevant non-zero component of the stress tensor is
Trθ . Thus, the matrices M(j)(r) and coefficient vectors ũ(j) defined in appendix A are given by

ũ(j) =
[

u(j)
+ u(j)

−

]T
, (B.12)

M(j)(r) =

[
H′

0(k(j)
s r) J ′0(k(j)

s r)
μ(j)k(j)

s (2H′′
0 (k(j)

s r) + H0(k(j)
s r)) μ(j)k(j)

s (2J ′′0 (k(j)
s r) + J0(k(j)

s r))

]

=

[
−H1(k(j)

s r) −J1(k(j)
s r)

μ(j)k(j)
s H2(k(j)

s r) μ(j)k(j)
s J2(k(j)

s r)

]
. (B.13)
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The waveguiding condition is formulated in exactly the same manner as for the planar structure, by
connecting the vectors of coefficients in the outermost ũ(3) and innermost layer ũ(1) through the M matrices
(see A.3), and requiring that the innermost field is non-singular at r = 0 (no outgoing wave in layer (1);
u(1)
+ = 0) and the outermost field has no incoming wave components (since the Bessel function can be

expressed as a sum of incoming and outgoing waves, we put u(3)
− = 0).

B.3. Dilatational modes
Following the same arguments as in the previous subsection, we again write down the displacement field as
a sum of ‘+’ and ‘−’ components, with each one including contributions from both the P and S waves:

u(j)
p (r, z, t) =

[(
r̂k(j)

p H′
0p + ẑiβH0p

)
u(j)

p+ +
(

r̂k(j)
p J ′0p + ẑiβJ0p

)
u(j)

p−

]
ei(βz−Ωt) + c.c., (B.14)

u(j)
s (x, z, t) =

[(
r̂iβH′

0s + ẑk(j)
s H0s

)
u(j)

s+ +
(

r̂iβJ ′0s + ẑk(j)
s J0s

)
u(j)

s−

]
ei(βz−Ωt) + c.c., (B.15)

u(j)(x, z, t) = u(j)
p (x, z, t) + u(j)

s (x, z, t), (B.16)

where we have introduced the abbreviations H0i = H0(k(j)
i r) and J0i = J0(k(j)

i r), for i = s, p. The relevant
components of the stress tensor are Trr and Trz. Therefore, we obtain the coefficients vectors

ũ(j) =
[

u(j)
p+ u(j)

p− u(j)
s+ u(j)

s−

]T
, (B.17)

and matrices M for each layer j

M(j)(r) =

⎡
⎢⎢⎣

k(j)
p H′

0p k(j)
p J ′0p iβH′

0s iβJ ′0s

iβH0p iβJ0p k(j)
s H0s k(j)

s J0s

m31 m32 m33 m34

m41 m42 m43 m44

⎤
⎥⎥⎦ , (B.18)

where

m31 = 2μ(j)(k(j)
p )2H′′

0p − λ(j)
(
(k(j)

p )2 + β2
)

H0p, (B.19)

m32 = 2μ(j)(k(j)
p )2J ′′0p − λ(j)

(
(k(j)

p )2 + β2
)

J0p, (B.20)

m33 = 2iβμ(j)(k(j)
s )2H′′

0s, (B.21)

m34 = 2iβμ(j)(k(j)
s )2J ′′0s, (B.22)

m41 = 2iβμ(j)k(j)
p H′

0p, (B.23)

m42 = 2iβμ(j)k(j)
p J ′0p, (B.24)

m43 = μ(j)k(j)
s

(
(k(j)

s )2 − β2
)

H′
0s, (B.25)

m44 = μ(j)k(j)
s

(
(k(j)

s )2 − β2
)

J ′0s. (B.26)

Again, we formulate the waveguiding condition by relating vectors ũ(1) and ũ(3) via M matrices, and require
that the innermost (outermost) layer has no outgoing (incoming) components. The resulting
transcendental equation can also be solved numerically using the GRPF algorithm.

Appendix C. Material properties of silicon and silica

Throughout this work, we use isotropic models for both silicon and silica, characterized with the properties
listed in table C1.

The isotropic models for silica and silicon are an approximation included to facilitate the development
of the analytical formalism presented in this work, based on published data [31, 32]. Future applications
and design of optoacoustic waveguides implementing the principles or ARRAW guidance will likely require
a full numerical solution based on the anisotropic description of the stiffness tensor of both the materials.
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Table C1. Elastic and photoelastic properties of silicon and silica.

Material Density (kg m−3) Young modulus (GPa) Poisson ratio Photoelastic tensor (p11, p12, p44)

Silicon 2329 162 0.22 (−0.094, 0.017, −0.051)

Silica 2203 73.1 0.17 (0.12, 0.27, −0.075)
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