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Abstract: This study aims to identify the vulnerable landscape areas using landslide frequency ratio
and land-use change associated soil erosion hazard by employing geo-informatics techniques and the
revised universal soil loss equation (RUSLE) model. Required datasets were collected from multiple
sources, such as multi-temporal Landsat images, soil data, rainfall data, land-use land-cover (LULC)
maps, topographic maps, and details of the past landslide incidents. Landsat satellite images from
2000, 2010, and 2019 were used to assess the land-use change. Geospatial input data on rainfall,
soil type, terrain characteristics, and land cover were employed for soil erosion hazard classification
and mapping. Landscape vulnerability was examined on the basis of land-use change, erosion hazard
class, and landslide frequency ratio. Then the erodible hazard areas were identified and prioritized at
the scale of river distribution zones. The image analysis of Sabaragamuwa Province in Sri Lanka
from 2000 to 2019 indicates a significant increase in cropping areas (17.96%) and urban areas (3.07%),
whereas less dense forest and dense forest coverage are significantly reduced (14.18% and 6.46%,
respectively). The average annual soil erosion rate increased from 14.56 to 15.53 t/ha/year from year
2000 to 2019. The highest landslide frequency ratios are found in the less dense forest area and
cropping area, and were identified as more prone to future landslides. The river distribution zones
Athtanagalu Oya (A-2), Kalani River-south (A-3), and Kalani River- north (A-9), were identified as
immediate priority areas for soil conservation.
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1. Introduction

Land-use change is one of the threats to soil erosion, and it worsens the global environmental
problem. Soil erosion is one of the main reasons of land degradation [1,2]. Soil erosion is a natural
phenomenon that is defined as detachment of the soil particles and transport due to the action of
an erosive agent such as wind, water, gravity, or anthropogenic perturbations [3–5]. Soil erosion by
water is known as water erosion. There are several types of water erosion: splash erosion, sheet or
interrill, rill, gully or ravine [6,7]. Gully erosion is a vital indicator to identify the soil erosion hazard [8].
The kinetic energy of water drops detaches the soil particles and water flows on the surface by creating
narrow cannels. Gully erosion can be described as accumulated surface runoff in narrow cannels and
removal of the soil from considerable depths [9].
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Land-use change and soil erosion can be accelerated by human activities, such as expansion of
agricultural activities, urbanization, and deforestation. This situation is exacerbated by unpredictable
rainfall patterns with high-intensity rainfall [10–12]. These changes ultimately contribute to
sedimentation in water bodies and landslides in vulnerable slope lands. Land-use land-cover
(LULC) dynamics can help explain the present situation of soil erosion and land vulnerability for
future planning [13,14]. Moreover, Pradhan et al. [15] highlighted that soil erosion could be minimized
by adjusting certain factors, such as LULC changes.

Geo-informatics is an efficient technology and can be used to integrate various datasets and assess
ecosystem dynamics, such as soil erosion [15,16]. Geo-informatics and modelling-based approaches
have been successfully incorporated to reduce the challenges and quantify the assessment process due
to the complex nature of soil erosion assessment [15–19]. Subsequently, a good deal of soil erosion
models have been developed and integrated with geo-informatics to assess soil erosion in agricultural
landscapes. Nampak et al. [18] proposed the revised universal soil loss equation (RUSLE) model,
which was initially developed by Renard et al. [20], to easily incorporate geo-informatics techniques
with digitally available data, such as satellite images and elevation and rainfall data, to generate highly
precise outcomes. An integrated approach that utilizes the RUSLE model and geo-informatics can
provide cost-effective support to resource inventory [1].

Researchers have observed that soil erosion initiates landslides due to irreversible threats of
slope stability and ecosystem functionality [13,14,21]. The rate of landslides can be minimized by
adjusting the factors responsible for soil erosion hazard, such as LULC [15,22]. Moreover, several
researchers observed the correlation between soil erosion rate and the land-use change [14,18,19].
The frequency ratio probability algorithm has been widely applied in geographic information systems
(GIS) and remote sensing environments for landslide susceptibility analysis [23–26]. In addition,
several soil erosion hazard assessments were conducted by combining the RUSLE model and frequency
ratio method [8,27]; and the USLE model and frequency ratio method [23]. The frequency ratio
has been employed in several studies to assess the relationship between soil erosion hazard and
land-use classes [14,22,28].

Soil erosion is one of the main problems of agricultural development in Sri Lanka. Weather-related
natural disasters, such as landslides and flood events, have remarkably increased recently;
these disasters have been severely influenced by the soil erosion process [29]. The Central Highlands of
Sri Lanka is vulnerable to soil erosion hazard [21,29–31]. Hewawasam [30] reported that gully formation
is common in poorly maintained tea lands at Central Highlands of Sri Lanka, and numerous landslides
occurred in agricultural hillslopes. Hence, gully erosion is one of the causes to create more vulnerable
hillslopes for landslides in Central Highlands of Sri Lanka. Poesen [2] stated water erosion induces
the environmental hazards such as landslides in tropical hillslopes. Hemasinghe et al. [32] concurred
with the idea that land-use changes are strongly related to slope failure occurrences. Hence, land-use
change, soil erosion hazard related to landslide incidence needs to be assessed for soil conservation.

In recent years, several soil erosion assessments and landslide hazard assessments were conducted
in Central Highlands of Sri Lanka to identify the causative factors and severity of the situation [12,33–35].
Most of these studies applied the RUSLE model for soil erosion assessments in different watersheds
i.e., Kotmale watershed [33], Kelani river basin [12], Kiridi Oya river basin [36], and Kalu ganga river
basin [37]. The landslide susceptibility assessments have been explored and suggested the spatial
prediction of landslides using geo-informatics technology, i.e., logistic regression [32,38], analytic
hierarchy process [39,40], entropy method [31], and spatial multi criteria evaluation [39]. Although
numerous factors such as slope, elevation, aspect, profile curvature, topography were evaluated,
rainfall and land-use change were recognized as a significant contribution on landslide initiation in
Central Highlands of Sri Lanka [29,32,41]. However, none of the studies conducted identified and
prioritized highly susceptible areas for soil erosion.

Furthermore, Diyabalanage et al. [34] found that the LULC structure and composition in Central
Highlands have been changed during last few decades due to expansion of infrastructure development
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programs. Hewawasam [30] revealed severe soil erosion could be observed due to deforestation and
different agricultural practices in Central Highlands during the last four decades. In contrast, soil
erosion can be controlled by planning and implementing proper watershed development plans and
land-use management practices [42]. Therefore, highly susceptible areas need to be identified and
prioritized prior to the implementation of soil conservation practices. Hence, the present study aims to
identify the vulnerable landscape areas using frequency ratio and land-use change associated with
soil erosion hazard. The selected study site is Sabaragamuwa Province in the Central Highlands of
Sri Lanka. This study focuses on overall soil erosion assessment, including gully erosion. Land-use
change and soil erosion hazard and their associated dynamics are assessed using geospatial data and
the RUSLE model combined with a GIS environment. Intense soil erosion leads to a state of extremely
hazardous environmental disturbance. Hence, the present study assesses the intensity of soil erosion
in Sabaragamuwa Province by using the RUSLE model. In terms of research originality, this study
provides a new approach in landscape vulnerability assessment by combining three methods: landslide
frequency ratio method, soil erosion severity, and land-use change assessments. In particular, the study
used this new approach to identify the spatial distribution of soil erosion hazard during the period of
2000–2019. Furthermore, landslide frequency ratio, erosion hazard class, and land-use change were
used to prioritize the vulnerable areas for soil conservation in Sabaragamuwa Province in the Central
Highlands of Sri Lanka.

2. Materials and Methods

2.1. Study Area

Sabaragamuwa, which is one of the Provinces in the southwestern side of the Central Highlands
in Sri Lanka, is a highly sensitive area for environmental deterioration and natural disasters [29].
Its coverage is 4952 km2, and it is located between the longitude of 80◦12′3” E and 80◦56′12” E and
between the latitude of 7◦22′28” N and 6◦13′59” N. The altitude of the study area ranges from 0 to
2177 m above mean sea level. The mean altitude is approximately 1085.5 m. Sabaragamuwa consists
of two districts, namely, Ratnapura and Kegalle. The climate is characterized as humid with tropical
monsoon weather. The annual average rainfall is greater than 3200 mm [10]. Most of the rainfall
(southwest monsoon and second inter-monsoon) occurs in May–August, October, and November.
The province has 16 agro-ecological regions covering all the three major climate zones (wet, dry,
and intermediate zones). Tropical rain forests, such as parts of ‘Sinharaja’ and ‘SriPada’, are also
located in this province. Sabaragamuwa is drained by four major rivers, namely, the Kelani, Kalu, Gin,
and Walawe rivers, located at the western and southern parts of the country. Kelani river, which is one
of the major rivers, provides water supply to the capital city of Colombo and sourcing water for other
purposes, including power generation [12]. The location map of Sabaragamuwa Province in Sri Lanka
is shown in Figure 1a, and a digital elevation map (Figure 1b), slope angle map (Figure 1c), and river
distribution map (Figure 1d).
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Figure 1. (a) Location map of Sabaragamuwa Province in Sri Lanka; (b) digital elevation map; (c) slope 
angle map; (d) river distribution map. 
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that Sri Lanka is one of the cloudiest places in the world. In this context, three different satellites were 
used to acquire the dataset. Two images of each year from same satellite were considered covering 
the whole study area. Six images, two images on the same day, were used to create a mosaic for image 
classification [17]. The image analysis tool in ArcGIS 10.4 was used for image processing. The 
radiometric and atmospheric correction for each acquired image was applied. Then, the mosaic 
datasets were geometrically corrected and registered as a WGS 84 datum for UTM zone 44N 
projection. The pan-sharpening method was employed by merging multispectral and panchromatic 
subsets to enhance the spatial resolution of the image [18,19]. The multi-spectral data with 30 m pixel 

Figure 1. (a) Location map of Sabaragamuwa Province in Sri Lanka; (b) digital elevation map; (c) slope
angle map; (d) river distribution map.

2.2. Remote Sensing Data and Image Processing

Landsat dataset from Landsat 5, 7, and 8 (path 141, row 56) for the years 2000, 2010, and 2019
were downloaded from the website of the USGS Earth Explorer (https://earthexplorer.usgs.gov/) and
used to delineate the LULC classes of the region. Nay, Burchfield, and Gilligan [43] have highlighted
that Sri Lanka is one of the cloudiest places in the world. In this context, three different satellites were
used to acquire the dataset. Two images of each year from same satellite were considered covering
the whole study area. Six images, two images on the same day, were used to create a mosaic for
image classification [17]. The image analysis tool in ArcGIS 10.4 was used for image processing.
The radiometric and atmospheric correction for each acquired image was applied. Then, the mosaic
datasets were geometrically corrected and registered as a WGS 84 datum for UTM zone 44N projection.
The pan-sharpening method was employed by merging multispectral and panchromatic subsets to
enhance the spatial resolution of the image [18,19]. The multi-spectral data with 30 m pixel resolution
and four spectral bands (blue, green, red, and near infrared) were used for image classification.
The details of the downloaded Landsat dataset are given in Table 1.

Table 1. Landsat imagery for the years 2000, 2010, and 2019.

Satellite Image Cloud Cover (%) Data Acquisition Date Resolution (m)

LC08_L1TP_141055_20190220_20190222_01_T1.tar 15.85
20-02-2019 30 × 30LC08_L1TP_141056_20190220_20190222_01_T1.tar 9.32

LT05_L1TP_141055_20100126_20161017_01_T1.tar 11.00
26-01-2010 30 × 30LT05_L1TP_141056_20100126_20161017_01_T1.tar 2.00

LE07_L1TP_141055_20000123_20170213_01_T1.tar 7.00
23-01-2000 30 × 30LE07_L1TP_141056_20000123_20170213_01_T1.tar 8.00

https://earthexplorer.usgs.gov/
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2.3. Land-Use Land-Cover Change

The image analysis technique was applied to delineate the LULC classes from the satellite images.
The image analysis algorithms can be divided into two categories: pixel-based image classifiers and
object-based image classifiers [18]. The object-based image classification method has been used as a
robust and accurate method for image classification [17,18]. The selection of optimum segmentation is
one of the challenges in the object-based image classification method [19]. Hence, the mixed method
was used to classify the images [17]. The images’ multi-temporal Landsat 7 (ETM+) and 8 (OLI) bands
(5, 4, and 3) and Landsat 5 (TM) bands (4, 3, and 2) with false-color composites were used to distinguish
the different land-cover types and classify the land area into homogenized groups. An interactive
supervised classification method was used to classify the images initially. The tool entails a supervised
classification method that can speed up the classification process. On average 80 training data sets
were considered for each LULC class. Seven land-use classes were defined from the classified images,
prior knowledge of the area, and the LULC map of the Land Use Policy Planning Department (LUPPD)
of Sri Lanka. The land use classes were classified according to the Anderson classification scheme,
as in Burian et al. [44]. Table 2 shows the details of the land use classes. The same methodology
was employed to create other image layers for land-use change detection. The time-series of the
multispectral datasets of the study area was analyzed. The land-use classes were retrieved for 2000,
2010, and 2019, respectively, from the Landsat images. The LULC change was investigated from 2000
to 2019 and quantified the change during this period. An accuracy assessment is required to ensure
the correctness of information on the LULC change driven from the Landsat images. Thus, image
classification accuracy assessment was performed using approximately 289 ground control points
for each image. The field data, google map, and land-use maps produced by the LUPPD were used
for further validation and verification by the above land-use classes generated from the Landsat
satellite image dataset. The image accuracy was quantified with a confusion matrix by computing
user’s accuracy (accounting for errors of commission), producer’s accuracy (accounting for errors of
omission), overall accuracy, and the Kappa coefficient for each corresponding image. This method for
the accuracy assessment is widely used by other researchers in similar studies [45,46].

Table 2. The details of land-use classes.

Land Use Type Description

Dense forest
Primary forest in Sabaragamuwa Province: lowland evergreen rainforest, lower
montane forest, and upper montane forest such as part of “Sinharaja” Forest and part
of “SriPadha” Peak wildness sanctuary

Less dense forest The forest shorter than the primary forest or secondary forest such as shrubs and bushes

Cropping area The area used to cultivate agricultural crops such as tea, rubber, coconut export
agriculture crops, horticultural crops, and home gardens.

Paddy The area used to grow paddy cultivation
Urban area The urban area including roads, buildings, and settlements
Streams The area represents streams and tributaries
Water bodies The area consists of tanks and reservoirs

2.4. Soil Erosion Assessment

Soil erosion can be examined using various soil erosion models. The most popular empirical
base models are the universal soil loss equation (USLE) model [47] and the RUSLE model [20,48].
These models are widely employed in agricultural and hilly watershed applications [12,16,18,33].
In this study, the RUSLE model (Equation (1)) is employed with geo-informatics techniques to assess
the average annual soil loss rate. The RUSLE model [20] can be mathematically expressed as given
in Equation (1):

A = R × K × LS × C × P (1)

The RUSLE model (Equation (1)) uses the average annual soil erosion rate (A) in soil mass per unit
area per year (tons/ha/year). The R is rainfall erosivity factor (MJ mm ha−1 h−1yr−1), K represents soil
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erodibility factor (t ha h MJ−1mm−1), LS is slope length and steepness factor (dimensionless), C indicates
crop management factor (dimensionless) while P denotes land management factor (dimensionless).
The RUSLE model is often used as an index method to determine the relationship amongst climate
(R-factor), soil (K-factor), topography (LS-factor), land use (C-factor), and land management (P-factor)
and how each factor affects soil erosion caused by raindrop impact on surface runoff [15,16,49].

Geo-spatial input data on rainfall, soil, and terrain factors and land cover and management
practices were used for soil erosion hazard classification and mapping. All spatial layers were generated
in raster format with 60 m resolution by using grid-based GIS analysis. Rainfall erosivity (R-factor) was
calculated using 30 years of precipitation data, whilst soil erodibility (K-factor) was derived using a soil
map with the local soil conditions prepared by the Department of Irrigation (1984). The L and S-factors,
which are also known as topographic parameters (slope length, steepness, and shape), were derived
from the digital elevation model (DEM) [50]. The crop management (C-factor) and conservation
practices (P-factor) were computed from the values using the recent literature [12,36,42].

2.5. Data Processing for Factor Generation

The rainfall erosivity (R-factor) represents the influence of rainfall on soil erosion [47,51]. Thirty
years of daily rainfall data (1988–2018) from eight rain-gauge stations (Aranayake, Deraniyagala,
Ratnapura, Pelmadulla, Yatiyantota, Ehaliyagoda, Embilipitiya, and Godakawela) were collected from
the Department of Meteorology and the Department of Agriculture in Sri Lanka. The mean annual
precipitation can be found in the Supplementary Material (Table S1 and Figure S1). R-factor estimation
was performed using the following (Equation (2)), as proposed by Wickramasinghe and Premalal in
1988 [52] for the Sri Lankan condition [33,53]:

R = (972.75 + 9.95 × P)/100 (2)

where, R is the annual rainfall erosivity (MJ mm ha−1 h−1 yr−1), and P is the mean annual precipitation
(mm). The calculated R factor for each station was converted to a raster surface with a 60 m grid
cell by using interpolation techniques (IWD) for the spatial analysis in ArcGIS. A similar method
was employed by the Wijesundara, Abeysingha, and Dissanayake [36] in Kiridi Oya river basin,
Fayas et al. [12] in Kelani river basin and Dissanayake, Morimoto, and Ranagalage [33] in Kotmale
watershed. The R-factor ranges between 152.5 to 399 MJ mm ha−1 h−1yr−1. The higher value indicates
high capability of rainfall to cause soil erosion while lower value shows low capability of rainfall to
cause soil erosion [54].

The soil erodibility (K-factor) indicates the soil susceptibility to erosion, which is dependent on soil
type and properties of the soil, such as texture, organic matter, and permeability [15]. The K-factors in
this study were obtained from the previous studies of Wijesekera and Samarakoon [53] and Senanayake,
Munasinghe, and Wickramasinghe [42]. The most prominent soil type in Sabaragamuwa is the
red-yellow Podzolic soil with steeply dissected hilly and rolling terrain characteristics. The K-factors
of the different types of local soil are given in Table 3. The values of these factors were used to generate
the K-factor map of the Province. The K-factor values range from 1 to 0.27 t ha h MJ−1mm−1. The soil
erosion susceptibility increases with higher K-factor values [55].

Table 3. Details of the soil erodibility values (t ha h MJ−1mm−1) adopted from Fayas et al. [12];
Senanayake, Munasinghe, and Wickramasinghe [42]; Wijesekera and Samarakoon [53].

Soil Type K-Factor Value

Reddish-Brown Latasolic 0.17
Reddish-Brown Earth 0.27

Alluvial soils 0.31
Red-Yellow Latasol 0.33
Non-Calsic Brown 0.35



Remote Sens. 2020, 12, 1483 7 of 18

Pradhan et al. [15] reported that topographic factors represent the length (L) and steepness
(S) of a slope. These factors can provide the terrain characteristics of a given site, and they are
considered altogether to identify the combined effect of the slope angle and the slope length. The DEM,
which can be used to identify the terrain characteristics (slope length and steepness) for this study,
was generated using the digital contour map (1:50,000) from the Survey Department of Sri Lanka
(Figure 1b). Equation (3) adopted from Moore and Burch [56,57] was used to compute the slope length
and steepness (LS-factor). Slope angle and flow accumulation were extracted from DEM by using
ArcGIS (Figure 1c,d). The LS-factor is dimensionless. The LS-factor values range between 0 and 293.5.
The higher LS-factor value means a higher impact on soil loss while lower value means lower impact
on soil loss [15,58].

LS = (Flow accumulation × Cell size/22.13)0.4
× sin (Slope angle in degrees/0.0896)1.3 (3)

The crop management (C-factor) corresponds to ground cover management, such as the effect
of soil disturbance due to changes in land-use pattern. The C-factor map was developed using the
LULC image classification map derived from Landsat satellite data. The values for each land-use class
(Table S2) in the study area were drawn from past studies [42,59]. The C-factor is dimensionless and its
values vary between 0 and 1. The C-factor value closer to zero means well protected land cover while
this value reaches 1 for barren land [16]. The present study’s values ranged from a minimum value
of 0.2 to maximum value of 0.73. The conservation practice (P-factor) entails the use of the soil loss
ratio with a specific conservation practice, particularly soil loss due to tillage practices [20,53]. P-factor
is the conservation support-practices factor which is also dimensionless [58,60]. The values of the
P-factor range from 0 to 1, in which high values were assigned to steep areas with no conservation
practices, whilst low values correspond to built-up-land and plantation areas with strip and contour
cropping [58,61]. This means the higher values indicate no conservation while lower values indicate
sufficient conservation practices. P-factor values of this study ranged from 0 to 1. In this study, the P
factor was attributed from past studies. Table S2 in the Supplementary Material provides the details of
C-factor and P-factor values for each land-use class.

The R, K, LS, C, and P-factor maps were computed by means of the ArcGIS environment. The spatial
analyst extension and the raster calculator in ArcGIS 10.4 software were employed to estimate soil
erosion loss (ton/ha/year) by using the RUSLE model and generated the soil erosion hazard map for
the years of 2000 and 2019. These soil erosion hazard maps were reclassified into five classes: very low
(0–5 t/ha/year), low (5–10 t/ha/year), moderate (10–20 t/ha/year), high (20–50 t/ha/year), and very high
(>50 t/ha/year) in accordance with the previous classifications of Vrieling, Sterk, and Beaulieu [62] and
Pradhan et al. [15]. The soil erosion rates for years 2000 and 2019 were calculated separately to find out
the change during this period.

2.6. Landslide Inventory Map and Frequency Ratio Calculation

Based on the severity of the damages (number of deaths and injured from the landslide event) 163
landslides incidents were selected from the ‘Desinventar’ disaster information system of the United
Nations International Strategy for Disaster Reduction (http://www.desinventar.lk:8081/DesInventar/)
for the period from 2000 to 2019 to develop a landslide inventory map in GIS environment, to assess
the relationship between the landslide incidents and soil erosion. The frequency ratio model is a
probabilistic model with a reasonably high-prediction accuracy, and it is simple to use [63]. Landslide
frequency ratio (LFR) can be computed using following equation (Equation (4)) as described by several
researchers [22,64–66].

LFR =
N(Si)/N(Ni)∑
N(Si)/

∑
N(Ni)

(4)

where,
N(Si): the number of pixels containing landslides in class (i),
N(Ni): total number of pixels having class (i),

http://www.desinventar.lk:8081/DesInventar/
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ΣN(Si): total number of pixels containing landslide,
ΣN(Ni): total number of pixels in the whole area of basin.
The frequency ratio method was employed to evaluate the correlation between soil erosion hazard

and land use change of the study area. The frequency ratio was computed for each land-use class
and soil erosion hazard class. The landslide incidents were overlaid on the erosion hazard map and
land-use map to identify the correlation on landslide incidents. According to Shahabi and Hashim [66]
and Meena, Ghorbanzadeh, and Blaschke [22] the average value of the landslide frequency ratio is
1 for the occurrence of landslide incidents in a particular area. The frequency ratio more than 1 (>1)
refers to higher spatial correlation and less than 1 (<1) refers to lower spatial correlation, regarding the
occurrence of landslide incidents.

Furthermore, the landscape vulnerability was assessed and ranked based on the frequency ratio,
soil erosion rates, and land-use change for soil conservation. The ranking was applied for each
river distribution zone (RDZ). This study considered the flowing area of respective rivers within the
administrative boundary (Sabaragamuwa Province) as a river distribution zone. The DEM was used to
extract RDZs of the study area as per the drainage characteristics (as shown in Figure 2) and delineated
into nine RDZs for prioritization. These nine delineated RDZs are coded as A-1 (Area-1), A-2 (Area-2),
A-9 (Area-9). Moreover, this study explored the land-use change at RDZs level due to its importance
for soil conservation. The number of landside incidents in each RDZ was used to compute the LFR.
The soil erosion hazard classes and land-use change together with LFR were used to rank the RDZs.
The overall methodology is illustrated in Figure 2.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 21 
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3. Results

3.1. LULC Change

Olofsson et al. [67] emphasized the importance of a validation process to achieve good study
outcomes. Here, the confusion matrix was employed to assess the overall accuracy of the image
classification. The overall accuracy is 86.89% for 2000, 96.70% for 2010, and 84.4% for 2019, with Kappa
coefficients of 0.8438, 0.9150, and 0.8152, respectively. The confusion matrix between ground truth
data and land-use classes for 2019 are given in Table 4 and respective values of commission, omission,
producer accuracy and user’s accuracy are given in Table 5. The rest of the confusion matrix tables for
2000 and 2010 are given in the Supplementary Material (Tables S3 and S4).

Table 4. Confusion matrix between ground truths and land-use classes.

Land Use Classes
Ground Truth Data

A B C D E F G Total

A Water bodies 29 2 1 32
B Dense forest 40 1 6 47
C Streams 3 20 23
D Paddy 1 29 1 1 1 33
E Urban area 1 2 30 1 34
F Cropping area 1 1 4 2 50 9 67
G Less dense forest 1 6 46 53

Total 33 41 24 36 33 59 63 289

Table 5. Respective values of commission, omission, producer accuracy, and user’s accuracy for
classified land-use classes for 2019.

Commission Omission Producer Accuracy User’s Accuracy

Water bodies 9.4 12.1 87.9 90.6
Dense forest 14.9 2.4 97.6 85.1

Streams 13.0 16.7 83.3 87.0
Paddy 12.1 19.4 80.6 87.9

Urban area 11.8 9.1 90.9 88.2
Cropping area 25.4 15.3 84.7 74.6

Less dense forest 13.2 27.0 73.0 86.8

The land-use classes were categorized according to the land-use classes level-II, of the Anderson
classification scheme [19] namely, dense forest, less dense forest, water body, stream, paddy, cropping
area, and urban area. Tea and rubber plantations and home gardens, as per LUPPD classification, cannot
be clearly distinguished in the images; hence, they were considered as cropping areas. The processed
LULC maps for 2000, 2010, and 2019 are given in Figure 3a–c. The respective findings from the analysis
are given in Table 6.

The overall LULC change is deduced by comparison. The cropping areas and the urban areas in
Sabaragamuwa Province have increased by 17.96% and 3.07%, respectively. Simultaneously, the less
dense forest and the dense forest in the Province have decreased by 14.18% and 6.46%, from 2000 to
2019, respectively. Anthropogenic activities, such as expansion of agriculture activities in cropping
areas, soil tillage, crop harvesting, land levelling and trench digging during quarrying [2,68], urban
and infrastructure development, deforestation, and abandonment of agricultural lands due to low
productivity are the likely reasons of LULC change in this period. For instance, the extent of tea
plantations in Sabaragamuwa Province has increased by 58.71 km2 from 2008 to 2015, according to the
land-use statistics of LUPPD.
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Table 6. Land-use change between 2000 and 2019.

Land Use Classes
2019 2010 2000 2019–2000

Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Dense forest 971.84 19.63 1064.54 21.51 1292.09 26.09 −320.25 −6.46
Less dense forest 1124.87 22.72 1930.24 39.00 1827.00 36.90 −702.13 −14.18

Cropping area 2379.23 48.05 1483.97 29.98 1490.20 30.09 889.03 17.96
Paddy 230.11 4.65 284.5 5.75 155.13 3.13 74.98 1.52

Urban area 154.9 3.13 96.21 1.94 3.21 0.06 151.69 3.07
Water bodies 24.22 0.49 26.84 0.5 23.86 0.48 0.36 0.01

Streams 34.25 0.69 45.78 0.92 59.20 1.20 −24.95 −0.51
Other (due to cloud cover) 32.42 0.65 19.5 0.39 101.15 2.04

4951.83 100 4951.58 100 4951.84 100

3.2. Soil Erosion Hazard

The slope length and steepness factor (LS-factor) map generated by Equation (3) is shown in
Figure 4a. The rainfall erosivity (R-factor) map covering 30 years is shown in Figure 4b. The soil
erodibility (K-factor) map is shown in Figure 4c. The crop management (C-factor) map and the
conservation practice (P-factor) map are shown in Figure 4d, and Figure 4e, respectively. The generated
soil erosion hazard map for the year 2019 can be found in Figure 4f.
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The soil erosion hazard map of Sabaragamuwa Province (Figure 4f) shows 9.5% of the area in
the high-erosion hazard category and 3.4% in the very-high category. This finding indicates that
approximately 13% of the total land area of Sabaragamuwa Province is highly vulnerable to soil erosion.
In addition, approximately 22% of the total land area is moderately vulnerable to soil erosion. Findings
further reveal the average annual soil erosion is 14.56% in the year 2000 and it has increased to 15.53%
in the year 2019 (Table 7). Literature shows the average soil erosion rate for a tropical region is often
less than 10 t ha−1 year −1 [69]. However, findings indicate higher soil erosion rates than the average of
a tropical region. The details of soil erosion category, rate, and respective land area are given in Table 7.

Jayasinghe, Wijekoon, and Gunatilake [38] reported that landslides frequently occur in cultivated
agricultural lands with red-yellow Podzolic soil types and steeply dissected, hilly, and rolling terrains.

Table 7. The details of soil erosion category, rates, and land area.

Category
2000 2019

Erosion Rate Area km2 % Area km2 %

Very low 0–5 1871.69 37.797 1761.24 35.566
Low 5–10 1479.29 29.873 1452.28 29.327

Moderate 10–20 1055.59 21.316 1095.86 22.130
High 20–50 442.47 8.935 472.12 9.534

Very high >50 102.96 2.079 170.5 3.443

4952.00 100.00 4952.00 100.00

Average annual soil erosion 14.56 t/ha/year 15.53 t/ha/year

3.3. Land-Use Change and Its Correlation with Landslides

This study estimated the LFR for each land-use class in 2019. The LFR of each land-use class
can be found in Table 8. The higher LFR (>1) was observed in a less dense forest area, cropping area,
streams, and urban areas. The findings indicate higher correlation between these land-use classes and
landslide incidents [22,66,70].
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Table 8. The landslide frequency ratio for each land-use type.

Land-Use Class Area (Km2) Percentage No of Landslides Percentage LFR

Dense forest area 971.84 19.63 14 11.02 0.56
Water bodies 24.22 0.49 0 0.00 0.00

Streams 34.25 0.69 1 0.79 1.14
Cropping area 2379.23 48.05 71 55.91 1.16

Less dense forest 1124.87 22.72 34 26.77 1.18
Urban area 154.90 3.13 4 3.15 1.01
Paddy area 230.11 4.65 2 1.57 0.34

The prominent land-use change in each RDZ was calculated to find out the correlation between
land-use change and landslide incidents. The land-use change in each RDZ is provided in
Supplementary Material Table S5. The most prominent land-use changes of RDZs are observed
in cropping area and less dense forest classes. As revealed in Table 7, LFR is greater than 1 in cropping
area (1.16) and less dense forest classes (1.18). The LFR is greater than 1 indicating a higher correlation
between land-use change and landslide incidents [22,71]. Furthermore, Figure 5 shows the percentage
of land-use change and LFR over each RDZ. The following RDZs, A-2, A-3, A-4, and A-9, show the
LFR is greater than 1. Overall, these results indicate that increasing cropping area may contribute to
inducing the landslide occurrence at RDZs (Figure 6a).

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 21 

 

Table 8. The landslide frequency ratio for each land-use type. 

Land-Use Class Area (Km2) Percentage No of Landslides Percentage LFR 
Dense forest area 971.84 19.63 14 11.02 0.56 

Water bodies 24.22 0.49 0 0.00 0.00 
Streams 34.25 0.69 1 0.79 1.14 

Cropping area 2379.23 48.05 71 55.91 1.16 
Less dense forest 1124.87 22.72 34 26.77 1.18 

Urban area 154.90 3.13 4 3.15 1.01 
Paddy area 230.11 4.65 2 1.57 0.34 

The prominent land-use change in each RDZ was calculated to find out the correlation between 
land-use change and landslide incidents. The land-use change in each RDZ is provided in 
supplementary material Table S5. The most prominent land-use changes of RDZs are observed in 
cropping area and less dense forest classes. As revealed in Table 7, LFR is greater than 1 in cropping 
area (1.16) and less dense forest classes (1.18). The LFR is greater than 1 indicating a higher correlation 
between land-use change and landslide incidents [22,72]. Furthermore, Figure 5 shows the 
percentage of land-use change and LFR over each RDZ. The following RDZs, A-2, A-3, A-4, and A-9, 
show the LFR is greater than 1. Overall, these results indicate that increasing cropping area may 
contribute to inducing the landslide occurrence at RDZs (Figure 6a). 

 
Figure 5. The percentage of land-use change and landslide frequency ratio (LFR) over the river 
distribution zones (RDZs). 

3.4. Soil Erosion Hazard and its Correlation with Landslide 

Areas highly susceptible to soil erosion need to be identified and prioritized for the 
implementation of soil conservation practices. A map of the RDZs is presented in Figure 6a. A 
landslide inventory map was also developed (Figure 6b). The soil erosion hazard map was overlaid 
with the landslide inventory and RDZ map, as shown in Figure 6c. Then, from Figure 6c, the areas 
under the different classes of erosion hazard were computed for each RDZ to obtain the 
corresponding landslide frequency ratio. 

Figure 5. The percentage of land-use change and landslide frequency ratio (LFR) over the river
distribution zones (RDZs).Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 21 

 

   

(a) (b) (c) 

Figure 6. (a) River distribution zones map; (b) landslide inventory map; (c) soil erosion hazard map 
with landslide locations. 

The soil erosion hazard class of each RDZ is correlated with the LFR as a method of statistical 
analysis. The utilization of the frequency ratio is based on ‘the observed relationships between the 
distribution of landslides and soil erosion hazard classes to reveal the correlation between these two 
related phenomena in the study area’ [72,73]. The LFR was calculated from the analysis of the land 
extent of the RDZ and the number of landslide incidents. The LFR of RDZs are given in Table 9. 

Table 9. Landslide frequency ratios of the RDZ. 

ID RDZ 
Code 

Name of the 
RDZ 

Extent 
(km2) 

Extent 
% (a) 

No of 
Landslides 

Landslide 
Occurrence  

% (b) 

Frequency 
Ratio (b/a) 

1 A-1 Maha Oya 549.02 11.09 17 10.43 0.94 

2 A-2 
Athtanagalu 

Oya 
89.19 1.80 6 3.68 2.04 

3 A-3 
Kalani River-

south 
453.80 9.16 24 14.72 1.61 

4 A-4 Kalu River 1388.01 28.03 49 30.06 1.07 
5 A-5 Weli Oya 522.79 10.56 7 4.29 0.41 

6 A-6 
Welawe River-

north 
565.69 11.42 11 6.75 0.59 

7 A-7 
Welawe River-

south 
306.18 6.18 1 0.61 0.10 

8 A-8 Kuda Oya 405.04 8.18 7 4.29 0.53 

9 A-9 
Kalani River-

north 
672.44 13.58 41 25.15 1.85 

  Total   4952.16 100.00 163   

The LFR in each of the RDZ was plotted to examine their relationships. Figure 7a shows the 
distribution of the LFRs amongst the RDZs. The extent of the soil erosion hazard classes was 
computed for each RDZ. The soil erosion hazard classes were plotted against the extent of each RDZ 
in percentages based on the computed values. The plot output is given in Figure 7b. 

Figure 6. (a) River distribution zones map; (b) landslide inventory map; (c) soil erosion hazard map
with landslide locations.

3.4. Soil Erosion Hazard and Its Correlation with Landslide

Areas highly susceptible to soil erosion need to be identified and prioritized for the implementation
of soil conservation practices. A map of the RDZs is presented in Figure 6a. A landslide inventory map
was also developed (Figure 6b). The soil erosion hazard map was overlaid with the landslide inventory
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and RDZ map, as shown in Figure 6c. Then, from Figure 6c, the areas under the different classes of
erosion hazard were computed for each RDZ to obtain the corresponding landslide frequency ratio.

The soil erosion hazard class of each RDZ is correlated with the LFR as a method of statistical
analysis. The utilization of the frequency ratio is based on ‘the observed relationships between the
distribution of landslides and soil erosion hazard classes to reveal the correlation between these two
related phenomena in the study area’ [71,72]. The LFR was calculated from the analysis of the land
extent of the RDZ and the number of landslide incidents. The LFR of RDZs are given in Table 9.

Table 9. Landslide frequency ratios of the RDZ.

ID RDZ
Code Name of the RDZ Extent (km2) Extent % (a) No of

Landslides
Landslide

Occurrence % (b)
Frequency
Ratio (b/a)

1 A-1 Maha Oya 549.02 11.09 17 10.43 0.94
2 A-2 Athtanagalu Oya 89.19 1.80 6 3.68 2.04
3 A-3 Kalani River-south 453.80 9.16 24 14.72 1.61
4 A-4 Kalu River 1388.01 28.03 49 30.06 1.07
5 A-5 Weli Oya 522.79 10.56 7 4.29 0.41
6 A-6 Welawe River-north 565.69 11.42 11 6.75 0.59
7 A-7 Welawe River-south 306.18 6.18 1 0.61 0.10
8 A-8 Kuda Oya 405.04 8.18 7 4.29 0.53
9 A-9 Kalani River-north 672.44 13.58 41 25.15 1.85

Total 4952.16 100.00 163

The LFR in each of the RDZ was plotted to examine their relationships. Figure 7a shows the
distribution of the LFRs amongst the RDZs. The extent of the soil erosion hazard classes was computed
for each RDZ. The soil erosion hazard classes were plotted against the extent of each RDZ in percentages
based on the computed values. The plot output is given in Figure 7b.
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of each RDZ.

As shown in Figure 7a, the highest landslide frequency ratios, with values near 2, are for A-2,
A-9, and A-3. The land-use class of these RDZs is prominently a cropping area (Table S5). The highest
percentage extent of ‘high’ and ‘very-high’ soil erosion categories fall within A-2, A-3, and A-9 RDZs
(Figure 7b). Pradhan et al. [15] reported a rise in LFR for areas in the ‘high’ and ‘very-high’ soil erosion
classes; the current study is in line with the previous study. They also revealed that if the landslide
frequency ratio is greater than 2, more landslides are likely to occur.

Other studies have shown that a few of the critical areas are responsible for the heavy-load
sediment yields in the watersheds [35,73]. Hence, priority should be given to RDZs with high
categories of soil erosion hazard for conservation, as these RDZs can significantly reduce the total
sediment yield. The priority rankings of the RDZs were based on LFR, average soil erosion rate,
and area of land-use change. As shown in Figures 5 and 7a,b and Table 10, land-use change, the values
of LFR, and soil erosion rate are ranging from high to very high for RDZs of A-3 (Kelani River-south),
A-2 (Attenagalu Oya), and A-9 (Kelani River-north). Hence, A-2, A-3, and A-9 are the priority RDZs
for soil conservation. The list of prioritized RDZs in Sabaragamuwa Province for soil conservation is
shown in Table 10.
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Table 10. Prioritization of RDZ in Sabaragamuwa Province.

RDZ Code Name of RDZ
Minimum
Elevation

(m)

Maximum
Elevation

(m)

Landslide
Frequency

Ratio
Sign of Land-Use Change

Average
Erosion Rate

(t/ha/yr.)
Priority

A-1 Maha Oya 46.86 1023.64 0.94 Cropping area, less dense forest 7.7 5
A-2 Athtanagalu Oya 36.25 395.64 2.04 Cropping area, less dense forest 27.5 1
A-3 Kelani River- south 1.14 1906.15 1.61 Cropping area, dense forest 18.9 2
A-4 Kalu River −6.58 2057.9 1.07 Cropping area, less dense 11.9 3
A-5 Weli Oya 79.82 2177.38 0.41 Dense forest, less dense 10.6 5
A-6 Welawe River- north 49.26 1341.45 0.59 Cropping area, dense forest 6.6 6
A-7 Welawe River- south 29.49 1320 0.1 Less dense forest, cropping area 17.8 5
A-8 Kuda Oya −2.00 1354.13 0.53 Cropping area, urban area 15.9 4
A-9 Kelani River- north 4.92 1299.02 1.85 Cropping area, paddy area 20.6 1

4. Discussion

In this study, LULC change, soil erosion hazard, and their associated dynamics of Sabaragamuwa
Province were evaluated using the RUSLE model combined with a GIS environment. The study
employed a new approach by combining three methods: landslide frequency ratio method, soil erosion
severity, and land-use change assessments. Results reveal that nearly 13% of the total land area of
the province is highly vulnerable to soil erosion and around 22% of the total land area is moderately
vulnerable to soil erosion. Findings further indicate the average soil erosion rate in years 2000 and
2019 are also higher than the average of tropical countries (<10 t ha−1year−1) [33]. The assessment of
LULC change shows higher correlation between land-use classes and landslide incidents. In addition,
RDZs of A-2, A-3, and A-9 reported the highest landslide frequency ratios. Overall, these results are in
line with previous studies [12,39]. Landslides occur frequently in Sri Lanka. Approximately 30.7% of
its total land area is highly susceptible to landslides [30,32]. The Sabaragamuwa Province has been
declared as one of the landslide-prone areas in the country [31,32,74]. Hewawasam [30] reported that
35%, 20%, 10%, 13%, and 8% of the landslides occurred in tea, rubber, coconut, paddy, and vegetable
cultivated lands, respectively, by analyzing 200 landslides in the Central Highlands. The present study
shows a change in land-use, particularly the increase in cropping areas, including tea and rubber
plantations, while decreasing the dense and less dense forest cover in Sabaragamuwa Province from
2000 to 2019. Hence, increasing cropping area may contribute to induce landslide occurrence at RDZs.
This rapid change of land-use may affect erosion hazard levels and landslide vulnerability. The soil may
be permanently damaged due to inappropriate land levelling, causing a decrease in soil quality during
extensive agricultural activities. In most cases, land levelling results in increased surface and subsurface
soil erosion, due to the soil erodibility of newly exposed subsoil. In addition, land levelling may
increase the landslide susceptibility of sloping lands [2]. Hence, implementation of soil conservation
strategies with appropriate land-use planning practices are more important to reduce erosion hazards.
Dissanayake, Morimoto, and Ranagalage [33] have also claimed a similar result and recommend soil
conservation on agricultural lands to reduce soil erosion for food security. Thereby, the priority should
be given to RDZs of A-2, A-3, and A-9 for soil conservation. In addition, socio-economic factors,
such as land ownership problems and high cost of land preparation, affect farmers who seldom use
soil conservation practices in hilly areas. Therefore, soft engineering conservation and management
practices, such as ecological farming practices, planning, and prioritizing areas for soil conservation
to reduce the risk of landslide vulnerability, should have to be considered for a sustainable land-use
management system. The proper identification of land-use systems, appropriate soil conservation
practices and techniques can help to minimize soil erosion. Future research could be focused on
investigating the pattern of average soil erosion rate and total estimated soil erosion against LFR at RDZ
level, using a statistical method to predict the effect of soil erosion rates on the occurrence of landslide
incidents at RDZ level. Furthermore, high-intensity tropical rainfall within a short duration due to
the effect of climate variation is also another influential factor of soil erosion hazard. Assessments on
soil erosion hazard under the impact of rainfall variation (i.e., amount and intensity) in the Central
Highlands are recommended for further study. In addition, the factors on geological and tectonic
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details, such as distance to faults, lithology, and profile curvature, also need to be considered for
future studies.

5. Conclusions

Freely available multi-temporal satellite data can be successfully employed for land-use mapping
and change detection, subsequently providing data for soil erosion hazard modelling in a GIS
environment. The proposed approach can help effectively, to produce landscape vulnerability
assessment and prioritize the area for soil conservation as part of the sustainable land-use management
process. This study reveals substantial evidence for the correlation between land-use change and
landslide incidents through the LFRs. Furthermore, the highest LFRs are found for A-2, A-3, and A-9,
indicating their immediate prioritization for soil conservation. The land-use class of these RDZs is
prominently a ‘cropping area’, such as tea and rubber plantations. The change of forest lands into
cultivation areas can be regarded an important factor of landslide initiation. The present study provides
a policy direction for soil conservation at the RDZs level for the sustainable management of land
resources in the Central Highlands of Sri Lanka.
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