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ABSTRACT 9 

Due to their low computational complexity, reduced wiring cost, and flexibility of scaling up, 10 

decentralized multiple channel active control systems are attractive in many applications. In a 11 

decentralized multiple channel active control system, a number of small subsystems are 12 

constructed, which are updated independently with only the associated error signals. In this letter, 13 

a time domain two channel decentralized control algorithm is proposed to achieve the similar noise 14 

reduction performance as the centralized one. Auxiliary filters are introduced to filter the reference 15 

signal for control filter update and a novel design method is proposed to shape the frequency 16 

response of the auxiliary filters. The simulation results using the measured impulse responses 17 

demonstrate the efficacy of the proposed algorithm for broadband noise control.  18 
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I. INTRODUCTION 23 

Active noise control (ANC) technique has gained significant attention in mitigating noise by 24 

generating anti-noise using a control algorithm. The filtered-x least mean square (FxLMS) 25 

algorithm is the most commonly used algorithm in ANC applications due to its robustness and low 26 

computational complexity.1,2 To achieve global noise control, a centralized multiple channel ANC 27 

system can be employed, which requires many secondary path models for generating the filtered 28 

reference signals and all the error signals to update the control filters. When the number of channels 29 

increases, the computational complexity of the centralized algorithm increases significantly, and 30 

the complexity and cost of wiring and communication overhead between error sensors and the 31 

controller cause a big problem.3-5  32 

      Many approaches have been proposed to reduce computational complexity of multiple channel 33 

systems. Murao et al. proposed a mixed-error approach by combining all the error signals into one 34 

and used it for centralized control; however, the system possesses high communication load to 35 

feed all the error signals to the centralized controller.6 Alternatively, a distributed control approach 36 

has been proposed by considering each secondary source as a node in a ring network, in which the 37 

computational burden is distributed across all the nodes, but at the cost of high transmission 38 

bandwidth and delay.7  39 

      Due to their low computational complexity, reduced wiring cost, and flexibility of scaling up, 40 

decentralized multiple channel ANC systems are attractive in many applications, in which a 41 

number of smaller subsystems are employed to update the control filter independently with only 42 

the associated error signal. A study on a two channel frequency domain decentralized ANC 43 

(DANC) system shows that the system stability cannot be maintained if the control signals are not 44 

constrained in magnitude.8 A practical stability condition for decentralized feedback ANC systems 45 
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has been derived by taking into account the geometrical configuration of secondary sources and 46 

error sensors.9 It has been found that reducing the number of channels and the distance between 47 

secondary loudspeakers and error microphones can increase system stability but at the cost of 48 

smaller noise reduction.10 49 

      Recently, it is shown that a two channel DANC system can achieve the same noise reduction 50 

performance as the centralized one by shaping the eigenvalues of a 2×2 matrix for each frequency 51 

bin properly such that they lie on the right complex domain.11 However, it only considers single 52 

frequency. An et al. proposed a time domain multiple channel DANC system for controlling 53 

periodic disturbances recently, but their method has two limitations.12 First, N nonlinear equations 54 

are required to be solved to shape the eigenvalues of an N×N matrix for each frequency, which 55 

remains an open problem without knowing whether a solution exists or not; second, when 56 

converting the solution from frequency to time domain, the design of the auxiliary filter to filter 57 

the reference signal (to be used in the FxLMS algorithm) is complicated. The sensitive shaping 58 

parameters and the filter delay introduced in their system affect the convergence speed of the 59 

control algorithm.    60 

       In this letter, a novel two channel DANC framework in time domain is proposed for 61 

controlling broadband noise. Similarly to Ref. 12, the DANC solution in the frequency domain is 62 

obtained first and then the optimized time domain algorithm is developed. The novelties of this 63 

work are two-fold. First, the genetic algorithm (GA) is employed to compute the DANC solution 64 

in the frequency domain, where different frequency bins can have different convergence behaviors 65 

with the steepest descent algorithm.13 The solution obtained from the GA undergoes a scaling 66 

process so that different frequencies have roughly the similar convergence behaviors, which is 67 

crucial for broadband control. Second, a new and simple FIR filter design method is adopted for 68 



4 
 

designing the auxiliary filters. The simulation results using the measured acoustic paths 69 

demonstrate the effectiveness of the proposed algorithm. 70 

II. THE PROPOSED ALGORITHM 71 

A. Framework description 72 

Table I shows the framework of the proposed time domain two channel decentralized algorithm. 73 

The first step is to find a DANC solution in the frequency domain. To do so, a 2×2 frequency 74 

response matrix S of the secondary paths is constructed and then the GA is employed to obtain the 75 

diagonal matrix C of the DANC for each frequency. In principle, different step sizes can be used 76 

for controlling different frequency disturbances using the frequency domain steepest descent 77 

algorithm, whereas a single step size has to be used in full band time domain DANC algorithm. 78 

This poses a challenge in the system design. As described later, it is necessary to scale the C 79 

matrices to compensate for the different convergence behaviors across the frequencies. After that, 80 

the auxiliary FIR filters for filtering the reference signal are designed based on the obtained scaled 81 

C matrices.  82 

 83 

TABLE I. Procedure of the proposed algorithm. 84 

Step 1: Construct a 2×2 frequency response matrix S of the secondary paths for each 

frequency. 

Step 2: Shape eigenvalue in frequency domain by finding a diagonal matrix C using the 

GA so that the eigenvalues of CS are at right complex domain. 
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Step 3: Scale C for each frequency using Eq. (4) and (5) to balance the different 

convergence behaviors across the frequency bins. 

Step 4: Design the auxiliary FIR filter Ri(z) using Eq. (7). 

Step 5: Carry out the control operation by updating the control filters using Eq. (8). 

 85 

B. Eigenvalue shaping in frequency domain 86 

Shaping eigenvalue with the GA is the second step. Following the same iterative learning rule for 87 

a two channel decentralized controller for each frequency, the input to the control sources can be 88 

computed iteratively as8  89 

1 ,k k k     y y I CS y Cp( ) ( ) [ ] ( )                                      (1) 90 

where ( )ky  is the input to control source at iteration k, p  represents the primary disturbances at 91 

the error sensors, I is the identity matrix, µ is the step size, C = diag([c1, c2]), which is to be 92 

obtained, S denotes the 2×2 frequency response matrix of the secondary paths. To design a 93 

controller that achieves the optimal noise reduction performance, the stability condition is that the 94 

real part of the eigenvalues of the matrix CS must be positive.11 The diagonal matrix C can then 95 

be optimized to push the eigenvalues of CS to the right complex domain. 96 

  When C = SH, Eq. (1) represents the updating equation for the centralized controller. On the 97 

other hand, when C = H
dS ( H

dS  is a diagonal matrix formed by taking the diagonal elements of S), 98 

Eq. (1) represents the updating expression for the conventional DANC. In the following paragraph, 99 

the GA is used to shape the eigenvalues of CS appropriately to be at the right complex domain.14 100 

To do so, the optimization for C can be formulated as  101 
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where 1 and ,Re ( )i   denote a constant function and real part of the ith eigenvalue, respectively. 103 

Because it is difficult to apply the GA directly to solve Eq. (2), the above optimization problem 104 

has to be reformulated so that the objective function is differentiable. To start, C is assumed to be 105 

a product of two diagonal matrices and can be expressed as H
ddiag{ }C a S . Two functions θmax(a) 106 

= H
dmax (diag( ) )i

i
 a S  and θmin(a) = H

dmin (diag( ) )i
i

 a S  are defined in the range [-π π]. Thus, 107 

the optimization problem can be reformulated as 108 

    
max min

4 4

max ( ) 0 min ( ) 0arg min ( ) 1 ( ) 1 ,  
 

     a a aa a a                       (3) 109 

subjected to l i ub a b  and 0 2ia    , where 1 ( ) is an indicator function, bl and bu are the 110 

positive lower and upper limits of the magnitude of elements of a. The details for applying the GA 111 

to find the solution can be found in Ref. 13. 112 

C. Scaling of C matrices 113 

For a DANC system in the frequency domain, the upper bound of step sizes for different 114 

frequencies are different when a steepest descent algorithm is employed, indicating that different 115 

frequencies exhibit different convergence behaviors.8,11 As the proposed algorithm is implemented 116 

in full band time domain, only one step size can be employed to incorporate the whole frequency 117 

of interest. To address the step size-inconsistency across the two domains, it is necessary to scale 118 

the obtained C matrices from Subsection II-B to mitigate the effect of the different convergence 119 
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behaviors. In principle, C matrices can be scaled such that the resulting DANC system have 120 

roughly the same upper bound of step sizes across the frequencies.  121 

       Because it is time consuming to tune the scales of the C matrices manually, we propose to 122 

compute the scales mathematically in the following manner. Let the frequency response of the 123 

auxiliary filters Ri() (i = 1, 2) to be 124 


GA,( ) ( ) , 1,2iiR C i  


                                               (4)     125 

where ψ(ω)>0 denotes the positive scale for frequency ω, and GA ( )
*

,iC   is the ith diagonal element 126 

of the solution  for GAC . The scale ψ(ω) is computed as 127 

 H
GA

22
( ) ( ) ( ) ( ) ( ) .      C S S S                                     (5) 128 

It is found empirically that the expression in Eq. (5) can mitigate the effect of the different 129 

convergence behaviors. 130 

D. Auxiliary FIR filter design 131 

The frequency response of the auxiliary filter can be expressed in a compact form as Ri(ω) = 132 

F(ω)i, where F(ω) = [1, e-jω,…, e-jω(L-1)] is the transform vector and i = [i0, i1, …, i(L–1)]T is 133 

the filter coefficient vector. Considering the real and imaginary parts for all the angular frequencies 134 

k (k =1, 2, …, K), a linear equation can be constructed from Eq. (4) as 135 
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where Re(ꞏ) and Im(ꞏ) denotes the real and imaginary parts, respectively. Denoting the first matrix 137 

of the left hand side of Eq. (6) as A and the right hand side of Eq. (6) as vector b, it can be expressed 138 

as Ai = b. The optimum solution for i, which is the filter coefficient vector of the ith auxiliary 139 

filter, can be obtained as  140 

H 1 H
iρ = (A A) A b .                                                           (7) 141 

Unlike the auxiliary filter design method reported in Ref. 12, this proposed method does not 142 

include any additional delay in the filter, i.e., the effect of the additional delay on convergence 143 

speed of the control algorithm is mitigated. Here, the length of the auxiliary filter L is the same as 144 

the length of secondary paths Ls.  145 

E. The time domain control algorithm 146 

Figure 1 depicts the schematic diagram of the proposed algorithm, where x(n) is the reference 147 

signal, yi(n) is the ith (i =1, 2) control signal and Wi(z) denotes the transfer function of the ith 148 

control filter, pj(n) is the primary disturbance at the jth (j =1, 2) error sensor, Sij(z) denotes the 149 

acoustic transfer function from the ith secondary source to the jth error sensor and  sij(n) denotes 150 

its corresponding impulse response and ej(n)  is the residual error signal at the jth error sensor.  151 
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       Ri(z) denotes the transfer function for filtering the reference signal for the ith control filter, the 152 

frequency response of which is optimized based on the GA described in subsection II-B and they 153 

are designed as FIR filters following the procedure described in subsection II-D. Unlike the 154 

conventional DANC system, the reference signal x(n) is filtered through the designed auxiliary 155 

filter Ri(z) and the Lw-tap ith control filter is updated independently with respect to the ith error 156 

signal using the FxLMS algorithm as 157 

( 1) ( ) ( ) ( ),i i i in n n e n  w w r                                                 (8) 158 

where wi(n) is the ith control filter coefficient vector, µ is the step size parameter, and ri(n) = [ri(n), 159 

ri(n–1), …, ri(n – Lw+1)]T is the tap delayed vector of the filtered reference signal ri(n) for the ith 160 

control filter with Lw denoting the length of control filter. 161 

 162 

 163 

Fig. 1. Schematic diagram of the proposed time domain two channel decentralized algorithm. 164 

 165 
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III. SIMULATIONS 166 

In this section, simulations are carried out to demonstrate the noise reduction performance of the 167 

proposed algorithm as compared to the conventional time domain decentralized FxLMS algorithm, 168 

the centralized FxLMS algorithm, and the mixed-error approach reported in Ref. 6. In the 169 

simulations, the primary paths and secondary paths are FIR filters of length 256 and 128, 170 

respectively, which were measured in a normal room at the Tech Lab of University of Technology 171 

Sydney. The space between the centers of the two secondary loudspeakers was 0.1 m; the primary 172 

noise source was placed at 1.0 m away from the secondary sources; the distances from the center 173 

of the secondary loudspeakers to their respective error microphones was set as 0.1 m. The primary 174 

and secondary paths were obtained with a white noise excitation. Each of the control filter Wi(z) is 175 

considered as 256-tap FIR. The sampling frequency used in the simulation is 4 kHz. All the 176 

simulation results are ensembled over 50 independent trials and smoothed by moving average 177 

method using a window of 256 samples. The normalized mean square error (MSE) is used as the 178 

metric for comparison.12  179 

      First, the values of GA, ( )iC 


 are obtained from the GA for frequencies ranging from 1 Hz to 180 

2000 Hz with an incremental step of 1 Hz and the corresponding scale parameters ψ(ω) are 181 

calculated. The filter for the ith auxiliary filter is obtained as a 128-tap FIR filter (L=128). The ith 182 

control filter is updated using the ith filtered reference signal and ith error signal following the 183 

learning rule in Eq. (8). Two types of noises are considered for the simulation, where the first one 184 

is a white noise and the second is a traffic noise recorded from a highway. A white Gaussian 185 

measurement noise with signal to noise ratio (SNR) of 40 dB is considered to mimic a practical 186 

environment. 187 
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      Figure 2 depicts the normalized MSE curves for a zero-mean white Gaussian noise with unit 188 

variance, where the primary path changes after 100 s. The variation in the primary path was 189 

obtained by shifting the primary noise source by 0.2 m towards the control sources and then rotated 190 

clockwise by an angle of 30° and pointed towards the secondary sources for demonstrating the 191 

tracking performance of the control filters. One can observe from Fig. 2(a) that the conventional 192 

decentralized algorithm with the maximum possible step size µ = 4×10–7 (without stability issue) 193 

achieves a noise reduction of around 11 dB with a slow convergence. A higher value of step size 194 

results in algorithmic divergence for the conventional decentralized algorithm, which can be 195 

observed from Fig. 2(b).  196 

 197 

(a)                                                                      (b) 198 

Fig. 2. Normalized MSE curves for zero-mean white Gaussian noise using different algorithms 199 

when they (a) converge and (b) diverge.   200 

 201 

      The proposed decentralized algorithm with its maximum possible step size µ = 1×10–9 achieves 202 

around 23-26 dB noise reduction with a faster convergence speed, whereas the mixed-error 203 

approach with step size µ = 3×10–6 achieves around 12 dB noise reduction, whose control 204 
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performance is better than the conventional decentralized algorithm but not as good as the 205 

proposed algorithm. The centralized algorithm with maximum step size µ = 3×10–5 achieves 206 

around 23-26 dB noise reduction with the fastest convergence among the four algorithms. The step 207 

sizes of the proposed algorithm and centralized one in Fig. 2(a) are chosen by trial and error in 208 

such a way that they achieve similar steady state noise reduction without any stability issue. The 209 

step sizes of the conventional decentralized algorithm and the mixed-error approach in Fig. 2(a) 210 

are also chosen by trial and error to provide the best possible noise reduction. Higher values of 211 

step sizes for the four algorithms compared to the chosen values cause algorithmic divergence or 212 

stability issue as shown in Fig. 2(b). It is clear that the upper bound step size for the centralized 213 

algorithm is larger than that for the other algorithms. 214 

      Figure 3 shows the results for the traffic noise recorded from a highway. The normalized MSE 215 

curves for this case are depicted in Fig. 3(a), and the power spectral density (PSD) of the sum of 216 

two residual error signals with and without control are shown in Fig. 3(b). The conventional 217 

decentralized algorithm performs the worst, and the noise reduction performance of the 218 

conventional decentralized algorithm deteriorates significantly from 500 Hz to 1500 Hz and there 219 

is little control above 1500 Hz. The mixed-error approach is better. The proposed decentralized 220 

algorithm and the centralized algorithm perform the best with similar noise reduction. The step 221 

sizes of the four algorithms are chosen in the similar way as that for the white noise case. The 222 

strength of the proposed algorithm is that each controller only uses its own (nearest) error signal 223 

for update, this avoids processing and wiring for other error signals.     224 

 225 
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 226 

(b)                                                                      (b) 227 

Fig. 3. (a) Normalized MSE curves for traffic noise using different algorithms and (b) the power 228 

spectral density with and without noise control. 229 

 230 

      The proposed algorithm for the two channel DANC requires 4Lw + 2Ls + 2 multiplications per 231 

sample and 4Lw + 2Ls – 4 additions per sample. Table II presents the computation complexity of 232 

the 4 algorithms, and an example is provided for straight forward comparison, where Lw = 256 and 233 

Ls = L = 128. It can be observed that the computational complexity of the proposed algorithm is 234 

same as the conventional decentralized algorithm and the mixed error approach, and it is less than 235 

its centralized counterpart. In addition to high computational complexity, the centralized ANC 236 

system has the highest cost of wiring and the largest communication overhead compared to other 237 

algorithms. Despite having vested with reduced complexity, the mixed error approach still needs 238 

to communicate with the two error sensors for each control filter update. It is worth noting that the 239 

mixed error approach uses mixed secondary path estimates, which are the transfer functions from 240 

the ith secondary source to the mixed error signal.6 The conventional DANC system and the DANC 241 

system with the proposed algorithm require the least cost of wiring and communication overhead; 242 

nevertheless, the proposed algorithm requires some preprocessing of the estimated secondary paths 243 
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before control operation. It is worth noting that the secondary paths are assumed to be perfectly 244 

estimated offline in advance before being used in the algorithm. If the secondary paths change 245 

drastically, re-estimation of secondary paths is required followed by the preprocessing to design 246 

the auxiliary filters. The variation of secondary paths might affect the performance of the system, 247 

which will be investigated in the future. 248 

   249 

TABLE II. Computational complexity per sample of different algorithms. 250 

Algorithms Multiplication (×) Addition (+) Example 

   (×) (+) 

Centralized 6Lw + 4Ls + 4 6Lw + 4Ls – 6 2052 2042 

Conventional decentralized 4Lw + 2Ls + 2 4Lw + 2Ls – 4 1282 1276 

Mixed-error Approach 4Lw + 2Ls + 2 4Lw + 2Ls – 4 1282 1276 

Proposed 4Lw + 2Ls + 2 4Lw + 2Ls – 4 1282 1276 

 251 

       252 

IV. CONCLUSION 253 

In this work, a time domain decentralized adaptive control algorithm is proposed for the two 254 

channel ANC system. The frequency responses of the auxiliary filters are optimized using the GA 255 

followed by a scaling process. Unlike the existing methods, a simplified filter design method is 256 

developed. The simulation results with the measured acoustic paths demonstrate that the proposed 257 

algorithm is able to achieve similar noise reduction performance as the centralized algorithm. The 258 

convergence behavior and noise reduction performance of the proposed algorithm is better than 259 

the conventional decentralized algorithm and the mixed-error approach despite having the fact that 260 
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the upper bound step size for the proposed algorithm is smaller than that for the centralized 261 

algorithm. Future work includes extending the proposed algorithm to multichannel ANC systems 262 

with large channel number (>2) for broadband noise control.  263 
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