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Highlights

A2: Extracting Cyclic Switchings from DOB-nets for Rejecting
Excessive Disturbances

Wenjie Lu†‡∗ and Dikai Liu‡

• Proposed an Attention-based Abstraction (A2) approach to analyze a
Disturbance OBserver network (DOB-net) that actively rejects exces-
sive external disturbances.

• Quantized and abstracted the learned DOB-net via A2 and then ob-
tained a key Moore machine network that partially reveals the interplay
between the learned control strategy and disturbances.

• Found switching mechanisms in the resultant control for rejecting var-
ious unobservable (in a statistical sense) disturbances.

• Analyzed the captured switching mechanisms via an analogy to hybrid
approaches for often-saturated systems and found that the discrete-
event subsystem can be obtained by the proposed A2.



A2: Extracting Cyclic Switchings from DOB-nets for
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Abstract

Reinforcement Learning (RL) is limited in practice by its poor explainability,
which is responsible for insufficient trustiness from users, unsatisfied interpre-
tation for human intervention, inadequate analysis for future improvement,
etc. This paper seeks to partially characterize the interplay between dy-
namical environments and a previously-proposed Disturbance OBserver net
(DOB-net). The DOB-net is trained via RL and offers optimal control for a
set of Partially Observable Markovian Decision Processes (POMDPs). The
transition function of each POMDP is largely determined by the environ-
ments (excessive external disturbances). This paper proposes an Attention-
based Abstraction (A2) approach to extract a finite-state automaton, re-
ferred to as a Key Moore Machine Network (KMMN), to capture the switch-
ing mechanisms exhibited by the DOB-net in dealing with multiple such
POMDPs. A2 first quantizes the controlled platform by learning continuous-
discrete interfaces. Then it extracts the KMMN by finding the key hidden
states and transitions that attract sufficient attention from the DOB-net.
Within the resultant KMMN, three patterns of cyclic switchings (between
key hidden states) are found, and saturated controls are shown synchronized
with unknown disturbances. Interestingly, the found switchings have previ-
ously appeared in the control design for often-saturated systems. They are
interpreted via an analogy to the discrete-event subsystem of hybrid control.
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rejection, multiple POMDPs, hybrid system

1. Introduction

Recent advances in deep neural networks have enabled Reinforcement
Learning (RL) to solve complex problems. Model-free RL algorithms [40,
42, 25, 49, 24, 34, 39, 50] have shown their success in finding optimal control
when it is difficult to precisely characterize all key elements of the targeted
problems. However, the usage of RL in practical robotic applications is lim-
ited by its grey-box nature. Analytical understanding and interpretation of
the learned control networks (policies) remain unsatisfactory, particularly of
those acting in continuous state, observation, and control spaces. Compared
to the classical analysis of controllers and controlled systems, the learned
control networks are missing explainable control mechanisms, analytically-
proved stabilities, or guaranteed asymptotical performance. In addition,
there is no satisfied representation of the network internal states for fault
detection and human intervention, or more importantly for knowledge distil-
lation and transfer [4].

Many efforts have been devoted to explainable neural networks [26, 48].
Recently, finite-state representations of the learned control networks for Atari
games have been studied [33], where each game can be viewed as a Partially
Observable Markovian Decision Process (POMDP). While a control strategy
should be able to adapt to various environments (described by a set of mul-
tiple POMDPs) online. This philosophy has found its roots in the existing
literature of control designs, such as robust control [51], adaptive control
[2, 35, 36], sliding mode control [16], H-infinity control [15]. Understanding
the interplay between the environments and the controlled systems is essen-
tial for theoretical analysis and a further improvement in control design.

Therefore, this paper focuses on understanding a learned recurrent control
network that is able to solve a set of multiple POMDPs, where the transition
function of each POMDP is determined by an environment. The recurrent
control network has to be aware of environments for effective control. In
particular, we are interested in partially understanding the dynamical in-
terplay among environments, environment awareness, and control strategies
(captured in the RL-learned control network).

To this end, this paper studies a previously-proposed recurrent policy, i.e.,
Disturbancec OBserver net (DOB-net) [56] for regulating the position of a
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free-floating underwater platform. The platform is further subject to limited
actuator (thruster) capacities and various excessive external disturbances.
The disturbance and its role in determining the POMDP have to be estimated
online for effective and active disturbance rejection. This kind of position
regulation problems arise from shallow water applications, e.g., inspecting
bridge pile [59], and deepwater operations, e.g., steering a cap to a spewing
well [46]. Such problems also exist in controlling quadrotors for surveillance
and inspection in windy conditions [57].

Following ”less is more“ from a poem by Robert Browning, this paper
proposes an Attention-based Abstraction (A2) approach for extracting key
memory states and state transitions that reflect the interplay between the
DOB-net and the dynamical environments (i.e., disturbances). The proposed
A2 aims to equivalently present the controlled platform as a finite-state au-
tomaton. The A2 extends the Quantized Bottle Network Insertion (QBNI)
[33] to the control problems that are better described by multiple POMDPs.
The proposed A2 has two critical improvements to the QBNI approach, as
introduced below. Note that in the remainder of this paper, the terminologies
“action” and “control” are used interchangeably.

Contributions:
(1): The proposed A2 first builds a discrete representation of the con-

trolled platform by learning optimal continuous-discrete interfaces for obser-
vation and control, respectively. Since the DOB-net operates in continuous
spaces, the interfaces between the discrete and the continuous spaces are re-
quired for generating KMMN. Instead of manually setting quantization lev-
els, the A2 learns a more compact quantization that brings about minimum
DOB-net performance loss. In this paper, these interfaces are approximated
by autoencoders and are optimized with the attention on the subspace where
the optimally-controlled platform visits.

(2): A simple recursive loss function is proposed to train an autoencoder
for quantizing hidden states, which are key in memorizing and distilling the
history of the observations and controls. We found that the autoencoder
trained by the recursive loss results in a DOB-net that performs more con-
sistently under various disturbances than the one trained by [33].

(3): The proposed A2 then creates a Moore Machine Network (MMN)
via Partial Enumerative Solution (PES) for minimizing sequential switching
functions [45]. After that, A2 selects the MMN states and the transitions that
attract sufficient attention from the DOB-net in solving multiple POMDPs,
resulting in a Key MNN (KMMN). The attention that each state attracts
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is defined as the number of POMDPs that visit this state. A state only
visited by one POMDP is not critical to other POMDPs and is ignored in
the KMMN, reducing the complexity of KMMN.

(4): Within the obtained KMMN, we found that about 70% of tested
episodes exhibit cyclic transitions between some KMMN states. Also, we
found each KMMN state corresponds to a saturated control. This finding
is coherent with the fact that often-saturated systems can be described by
switching-control-regulated models [65, 6, 62, 14]. It is found that the learned
control network activates a portion of the KMMN according to the distur-
bance pattern, which is formally defined in Section 3.

In this paper, some related work is shown in Section 2. Section 3 intro-
duces the problem of the position regulation, followed by the study scope.
Our DOB-net is summarized in Section 4. Section 5 describes the proposed
A2 approach. Then, Sections 6 and 7 present the obtained switching mech-
anisms and its analysis via an analogy to hybrid control. The last section
provides conclusions and future work.

2. RELATED WORK

2.1. Disturbance Rejection

Disturbance rejection control [51, 2, 36, 16] often assumes disturbances
bounded and relatively smaller than the control saturation [23]. One popular
improvement to these controllers is to add a feedforward compensation based
on some disturbance estimation techniques [60]. Various disturbance estima-
tion has been proposed and practiced, such as Disturbance OBserver (DOB)
[43, 10, 53], unknown input observer in disturbance and friction accommoda-
tion control and nonlinear servo regulation [30, 55, 54], and extended state
observer [27, 22]. However, these controllers fail to guarantee stability con-
sidering the actuator saturation [21] when disturbances frequently exceed
control saturation.

To this end, model predictive control (MPC) [9] is often applied due
to its capability in dealing with constraints [21]. It formulates a series of
constrained optimization problems over receding time horizons based on pre-
dictions of the disturbed platform. A prediction method (e.g., autoregressive
moving average) is required to forecast future disturbances based on the esti-
mations of current disturbances (from DOBs). However, DOBs often require
sufficient system modelling, which could be difficult for underwater robots
due to hydrodynamic effects. Current DOBs might not have the insufficient
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capability in estimating fast time-varying disturbances; their convergence
analysis often assumes disturbances time-invariant. In addition, such sepa-
rated processes of disturbance estimation, disturbance prediction, and control
optimization might not be able to produce estimations and control signals
that are mutual robust to each other, as evidenced in [7, 31].

2.2. Q-Learning

RL (also known as iterative learning, adaptive dynamic programming,
and neural computing) has drawn a lot of attention in finding optimal con-
trollers for systems that are difficult to model accurately. Q-learning is a
widely-used model-free reinforcement learning approach, its goal to train a
policy that outputs action given system state. It does not require a model of
the environment or system, it can adapt to stochastic transitions and reward-
ing mechanism. Recently, deep RL algorithms based on Q-learning [40, 1],
policy gradients [49, 24], and actor-critic methods [34, 39] have been shown
to learn very complex skills in high-dimensional state and action spaces,
including simulated robotic locomotion, driving, video game playing, and
navigation.

2.3. Hybrid System

A hybrid system describes a set of collaborative agents or subsystems.
It is often represented by multiple modes of dynamics, which are chosen by
discrete actions or events [52]. Therefore, a hybrid system is characterized by
discrete and continuous control and state, together with continuous-discrete
state interfaces. It has been used to control centralized multiple agents in [17],
and decentralized networks in pursuit-evasion games [63]. A comprehensive
introduction can be found in [8].

2.4. Understanding Recurrent Policy Networks

Recurrent Neural Network (RNN) memory (i.e, hidden states) is often in
the form of a high-dimensional vector in a continuous space and is recursively
updated through gating networks. There has been some work on visualizing
and understanding the learned RNN [32]. RNN models have been linked
to iterated function systems in [3], which further shows the relationship be-
tween the independent constraints on the state dynamics and the universal
clustering behavior of the network states. Many others use training data to
show the clustering and the correspondences between network internal states
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[12]. An additional deep neural network has been trained to better visualize
the correlation between inputs and outputs [61].

There has been a number of research on extracting finite-state machines
from trained RNNs. Crutchfield has reported that the minimal finite-state
machine could be induced from periodic sampling with a single decision
boundary [13]. An approach that forces the learning process to develop
automaton representations has been proposed in [20], which adds a regu-
larization to constrain the weight space. Omlin has used hints to learn a
finite-state automaton for second-order recurrent networks [44]. Learning
full binary networks is an orthogonal effort [29] to the previously mentioned,
where activation functions (and/or weights) are binary. A query-based ap-
proach has been proposed to extract a deterministic finite-state machine that
characterizes the internal dynamics of hidden states [58].

Koul has proposed Quantized Bottleneck Network (QBN) insertion in
[33] for extracting a finite-state machine from discrete action networks. The
QBNs are autoencoders, where the latent encoding is quantized. Given a
trained RNN policy, the QBNs are trained to encode and quantize the hidden
states and observations in a supervised manner.

3. CONTROL PROBLEM and SCOPE

The optimal control problems considered in this study involve a free-
floating platform (a rigid body) under translational motion, thanks to its
huge restoring forces and its sufficiently large torque capacity on the heading
control. The position of this platform is denoted as q ∈ R3. The platform’s
velocities and accelerations are denoted by q̇ and q̈ ∈ R3, respectively. It is
assumed that q and q̇ are observable without errors in this study, nevertheless,
RL approaches are in general robust to reasonable observation noises.

Then the platform’s dynamics (also referred to as the system) is given by

M(q)q̈ + g(q) = u+ d, (1)

where M(q) ∈ R3×3 is the inertia matrix and g(q) ∈ R3 is the vector of the
gravity and buoyancy forces. This matrix, vector, and external disturbances
d ⊂ R3 are assumed unknown to the controller (the trained DOB-net). The
platform control u ∈ A ⊂ R3 is saturated at an upper bound u− = max(A) ∈
R3 and a lower bound u− = min(A) ∈ R3, where max and min are dimension-
wise operators. Let x = [qT , q̇T ]T ∈ X ⊂ R6 and the platform dynamics in
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discrete time can be written as

x(t+ 1) = f
(
x(t), u(t), d(t)

)
. (2)

In the remainder of this paper, the time indices t in equations are in paren-
theses and the ones in figures are subscripts for compactness.

Disturbance and pattern: The external disturbances d are described
by the disturbance forces, which are time-variant and are superpositions of l
sinusoidal functions as

d(t) =
∑
1≤i≤l

di(t), (3)

where di(t) = Ai sin(wit + φi), and l denotes the number of components,
which is unknown and may vary across environments. The parameters (Ai,
wi, and φi) of each component di are assumed uniformly and randomly sam-
pled from given intervals and then fixed in each environment in this paper.
One instantiation of all parameters of all l components is referred to as one
disturbance pattern.

In the remainder of this paper, one sampled disturbance pattern is viewed
as one environment to the free-floating body. The terms “disturbances” and
“disturbance forces” are used exchangeably. Note that the external distur-
bances considered are excessive to the free-floating platform, the definition
of which is given as follows.

Definition 1 (Excessive external disturbances). Excessive external dis-
turbances are those defined in Eq. (3), where the amplitudes (Ai) exceed the
platform control saturation (u− and u−).

Problem 1 (Optimal control). Find one controller that chooses an ac-
tion u(t) for the system described in Eq. (2) at time t in response to the
current observation x(t), such that the discounted summation of collected
rewards is maximized. The summation is expected over episodes and is de-
fined as E

∑T−1
τ=t γ

τ−tr
(
x(τ), u(τ)

)
, where r(·) is a reward function (additive

inverse of the tracking error, defined later), T denotes the number of steps
in an episode, and γ ∈ [0, 1) is a discount factor that prioritizes near-term
rewards over future rewards [41].

The tracking error is defined as

η(t) = ‖x(t)‖, (4)
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where ‖·‖ denotes the L2 norm. In each episode, the environment is randomly
sampled and is characterized by excessive disturbances in Eq. (3).

Classical RL approaches often implicitly assume d(t) independently iden-
tically distributed (i.i.d.), possibly conditioned on the platform state x [47].
If not conditioned on x, d(t) is marginalized over t and x, and is then de-
scribed as d(t) ∼ N (ε, E), where E = diag (σ2

1, . . . , σ
2
D). These disturbance

models lead to a single-POMDP description of the controlled platform and
are sufficient when disturbances are small. However, the excessiveness makes
these models of d not suitable for disturbance rejection, as evidenced in [56].
The following analysis shows that the controlled systems in Problem 1 are
better described by multiple POMDPs.

For a jth pattern of disturbance superposition, each component di,j(t)
of dj(t) is a function that exhibits periodicity, which can be described as a
Markovian chain. The index j is dropped if no ambiguity is caused. The
Markovian chain is given as[

di(t+ 1)

ḋi(t+ 1)

]
= gi,j

( [di(t)
ḋi(t)

] )
, 1 ≤ i ≤ l, (5)

where the index j ∈ {1, 2, · · · ,∞} of gi,j indicates the variety of disturbance
patterns. Let D ⊂ R6 denote the space of [dTi (t + 1), ḋTi (t + 1)]T and G the
space of possible gi,j.

Let zj = [xT , dT1,j, ḋ
T
1,j, · · · , dTl,j, ḋTl,j]T ∈ Zj = X × Dl, where l might

vary across environments. Then the platform dynamics can be rewritten in
a partially observable Markovian chain as

zj(t+ 1) = fj
(
zj(t), u(t)

)
,

y(t) = hj
(
z(t)

)
= x(t), (6)

where hj(·) is the observation function, showing that x(t) is observable while
d(t) is not directly observable. Here the observability is in a statistical sense
(not in a control sense). Let F denote the space of all possible fj. Each
transition function fj defines a POMDP Pj = {Zj,A, fj, hj, π}, where π is
the trained current control network. Let P denote the set of all possible Pj.

The control network π is targeted to solve Problem 1 (i.e., all Pj ∈ P).
Key to π is the integration of a disturbance observer to existing RL frame-
works. This observer not just estimates the unobservable state dj(t) but also
infer the transition function fj. Both dj(t) and fj are critical to the con-
trol subnetwork. Our previous work has proposed a DOB-net for this pur-
pose [56]. The DOB-net outperforms existing control and RL approaches.
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However, the understanding of the learned DOB-net remains unsatisfactory.
Therefore, the scope of this paper, shown below, is regarding the under-
standing of the learned DOB-net. For simplicity, the reduced version of the
DOB-net is studied in this paper.

Scope 1 (Analysis of DOB-nets). Inductive reasoning of the mechanism
on how the learned DOB-net responds to different unobservable external ex-
cessive disturbances (i.e., to different POMDPs).

4. DOB-NET

Estimating the disturbance forces, their transition functions, and their
predictions is key in solving a Pj randomly sampled from P . In DOB-nets,
these estimations are encoded in a latent feature space. The features have
to be mutual robust between the controller and the observer. The DOB-
net developed in our previous work is composed of a disturbance-behavior
observer subnetwork and a controller subnetwork. For simplicity, this paper
investigates the reduced version consisting of a single-layer GRU, as shown
in Fig. 1. Both subnetworks are jointly optimized for mutual robustness and
unified optimization. The observer subnetwork imitates the classical DOB
mechanisms and is enhanced with the flexibility from GRUs, instead of only
providing the estimation of the lumped disturbances up to the current time.
The encoding ht (shown in Fig. 1) is supposed to represent the disturbance
behavior that is key to controller subnetwork.

The full DOB-net is constructed based on the classical actor-critic ar-
chitecture [38], the network outputs actions and critics (also referred to as
cost-to-go) associated with previous state and action. The policy is trained
using simulated sine-wave disturbances. Multiple control and RL algorithms
have been tested and compared in [56], the results have demonstrated that
the proposed DOB-net does have a significant improvement in rejecting ex-
cessive disturbances. In fact, this DOB-net closely relates to meta reinforce-
ment learning (meta-RL) [18], which often considers a distribution of tasks
and the tasks differ in transition models or reward functions. Meta-RL is
interested in a framework that leverages data from previous tasks to acquire
a learning procedure that can quickly adapt to new tasks.
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𝑦𝑡

Figure 1: Network architecture of DOB-Nets. FC: fully connected layer.

5. A2: Extracting Key Moore Machine Network

The proposed A2 approach aims to abstract the control mechanism cap-
tured in the trained DOB-net for solving continuous-control problems. It con-
sists of two procedures: quantization and abstraction. The A2 has two critical
improvements to the “Quantized Bottleneck Network Insertion” (QBNI) [33],
the latter of which is used to generate a finite-state automaton of a trained
policy network.

Definition 2 (Finite-state automaton [11]). A finite-state automaton is
an abstract machine whose state is assigned as one of a finite number of states
at any given time. It is also referred to as a finite-state machine. The tran-
sition between states is determined by discrete action and observation, which
is often given by a table.

The finite-state automata in this paper are all deterministic.

Definition 3 (Moore machine network [33]). A Moore machine network
is a standard deterministic finite-state machine whose states are labeled by
their output values (controls in this paper). An MMN is fully character-
ized by finite sets of states, observations, and actions, a transition function,
and a policy that maps states to actions, where the policy and the transition
function are represented by neural networks.

The QBNI algorithm together with the PES works well for grouping hid-
den states and observations (and thus reducing the number of states in an
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MMN). However, the effectiveness of the PES heavily depends on the number
of actions, which has to be limited. At least one state is related to a unique
action [45], therefore the number of possible actions has to be reduced for
revealing the interplay in Scope 1. In the cases of Atari games, the possi-
ble actions are often fewer than 8 (e.g., “fire”, “move left/right”, “jump”).
As pointed in the introduction, the problems studied here involve multiple
POMDPs, leading to a large number of states and transition in the obtained
MMN.

The first improvement is in the quantization, where continuous-discrete
interfaces are optimized for actions, reducing the number of quantized actions
given acceptable DOB-net performance loss. The second improvement is the
abstraction of key states and transitions in the MMN based on the evaluation
of attention.

5.1. Continuous-Discrete Interfaces

The proposed A2 approach first learns continuous-discrete interfaces for
observations and action, respectively. From the perspective of hybrid con-
trol [37], the continuous-discrete interfaces offers essential connections be-
tween continuous states and discrete modes. The switchings between discrete
modes build an automaton that provides an interpretation of the switching
mechanisms found later. From the perspective of machine learning, these
continuous-discrete interfaces become an autoencoder with a quantization
layer as the encoding layer.

The observation and action interfaces in the quantized DOB-net have
been shown in Fig. 4 (better viewed in color), which are denoted as Obser-
vation Quantization (OQ) and the Action Quantization (AQ), respectively.
Each Quantization block consists of a continuous-to-discrete interface and a
discrete-to-continuous interface.

Then, the components in the blue dashed rectangle and the ones in the
green dash-dotted rectangle correspond to the discrete-event subsystem and
the mapping from the discrete hidden state to the continuous control, respec-
tively. This will be discussed more in Section 6. In this paper, all interfaces
are built upon neural networks, the detailed structures of which are shown
in Section 6. In fact, each quantization block is an autoencoder from the
perspective of machine learning.

In general, autoencoders consist of an encoder and a decoder, where the
decoder aims to reconstruct the original inputs to the encoder. The au-
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Figure 2: Network architecture of the quantized DOB-Net.

toencoder has been used widely to reduce the data dimension using neural
networks [28], which is often trained in a supervised manner.

One straightforward approach to have the interfaces is to evenly quantize
the observation and action space, however, the quantization levels are not
clear. Also, the importance of action (observation) to the controlled platform
is not uniform across the action (observation) space. The states and actions
that attract the most attention from the optimally-controlled platform are
often subsets of the entire state and action spaces, respectively. We are
interested in the interfaces that are both optimized with respect to these
subsets.

In this paper, to produce a continuous-to-discrete interface, the output of
the encoder is quantized through a combination of a 3-level activation layer
(denoted as Tanh*) and a quantization layer. Same to [33], the Tanh* layer
restricts the outputs in the range of [−1, 1] and offers 0 gradients near a
0-valued input, which allows a quantization level at 0 during training. The
Tanh* activation function is given as [33]

φ(x) = 1.5tanh(x) + 0.5tanh(−3x). (7)

With Tanh*, the quantization layer offers 3-level quantization valued at
{+1, 0, 1}.

With the continuous-discrete interfaces inserted, the full quantized DOB-
net is illustrated in Fig. 2. In the remainder of this paper, the original
DOB-net is referred to as “continuous DOB-net” to distinguish from the
quantized DOB-net.

Training: The QBNI algorithm, suggested in [33], does not work well
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for learning OQ and AQ, since the number of quantized actions should also
be minimized for effective reduction in obtaining a key MMN. Therefore, a
three-step training approach is used to train both OQ and AQ. The number
e of neurons in the encoder layer of AQ determines the cardinality of the set
of all possible discrete actions. The cardinality is 3e since each quantization
neuron has 3 levels. On one hand, a large e leads to less optimality loss from
the quantization, compared with the continuous DOB-net. On another hand,
a small e results in fewer action choices and thus fewer MMN states after
reduction by PES. Therefore, the number of discrete actions is expected to be
minimized for the benefit of reducing the number of states in the MMN. By
choosing the number of neurons in the quantization layer, the performance
degeneration should be restricted within a reasonable number (e.g., 10%).

Step one: The continuous DOB-net is first trained by the Advantage
Actor Critic (A2C) [39], as shown in [56]. A2C uses synchronous gradient
descents for optimizing policy networks and it executes multiple instances
of the environments in parallel threads. This parallelism provides a more
training estimation of critics.

Step Two: A data set of observations and actions from a large number
of episodes is collected through using the trained continuous DOB-net. Note
that in each episode, a disturbance pattern is randomly generated, which is
i.i.d. to the pattern in another episode. Then OQ and AQ are trained re-
spectively using the observation and action data through supervised learning.
Since the data is collected from using the optimal DOB-net, the data reflects
the nonuniform distribution of attention in the action and observation space.

Step Three: The trained OQ and AQ are inserted into the trained con-
tinuous DOB-net to obtain the quantized DOB-net, as shown in Fig. 2 (HQ
is deactivated). However, the performance of the quantized DOB-net is not
close to the continuous DOB-net (worse by 31%). Then the entire quantized
DOB-net is finetuned in an RL fashion, same to Step One. The quantization
layer introduces functions that are non-differentiable. During the training, a
straight-through estimator for gradients, as suggested in [5], is adopted. The
estimator simply treats the quantize function as an identity function dur-
ing backpropagation and passes on the gradients without any change. The
results shown in Section 6 suggest that the performance of the quantized
DOB-net resulted from the three-step training is close to the performance
from the continuous DOB-net.

Once the quantized DOB-net (HQ deactivated) is obtained, a data set of
hidden states is collected and used to train HQ, as in [33]. With the trained
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HQ insertion as illustrated in Fig. 2, the full quantized DOB-net is available.

5.2. Key Moore Machine Network

The data sets of the discrete hidden states, the discrete observations,
and the discrete actions are collected during solving Problem 1 in multi-
ple randomly-generated environments. In addition, the transitions between
consecutive pairs of the quantized hidden states are also recorded.

Then unique states are found and indexed for each data set, resulting in
an MMN. Let m denote the cardinality of the state space of the MMN and
n the cardinality of the observation space of the MMN, then the transition
function of this MMN is constructed as a transition matrix of n × m that
captures the transitions evidenced in the data. In general, m and n are larger
than necessary.

A reduced but equivalent MMN can be obtained by a standard finite
state machine reduction technique (i.e., PES in this paper), which is able
to group hidden states and observations if a common transition and action
can be found. Each group of the hidden states is referred to as a state in
the reduced MMN and each group of the observations is referred to as an
observation in the reduced MMN. This reduced MMN is able to show how
states, observations, and actions are related to problems, as shown in [33].

However, Problem 1 subject to various environments are better described
by multiple randomly sampled POMDPs. The number of states and observa-
tions in the reduced MMN are still too large to induce explainable relation-
ship among states, action, and environments. In fact, the systems (controlled
by the quantized DOB-net) visit different portions of the reduced MMN in
different episodes (i.e., under various disturbance patterns), as illustrated in
Fig. 3. As shown in Section 6, the number of states in the reduced MMN
was still quite large (91) compared to Atari games investigated in [33].

In order to understand the interplay between disturbances and control
strategies, in this paper, we propose a Key Moore Machine Network (KMMN),
which ignores some states and transitions in the reduced MMN. Some of the
states and observations are unique to an episode (i.e, a POMDP), while
others attract more attention from a number of episodes.

Definition 4 (Key Moore machine network). A key Moore machine net-
work is a finite-state automaton that only consists of the key states and tran-
sitions between key states. The key states are those MMN states that attract
sufficient attention from the controlled systems in a number of environments.
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Figure 3: Key transitions; only a portion of the reduced MMN is shown.

The attention of a state is defined as the number of episodes that visit this
state. A transition between the key states is available if a concatenated tran-
sition can be found in the reduced MMN.

The relation between the KMMN and the reduced MMN is shown in
Fig. 3, where the MMN states other than key states are referred to as relay
states. Given two POMDPs, the set of the visited key states and the relay
states is only a subset of all nodes in the reduced MMN. Therefore only a
portion of the reduced MMN is shown. Note that the transitions in KMMN
are different from the MMN transitions. A KMMN transition may involve
multiple MMN transitions. One MMN transition corresponds to one step
defined in POMDPs. Since we are interested in the interplay between the
control strategies and the environments (i.e., disturbances, POMDPs), we
extract key MMN states that are commonly visited by a number of POMDPs.
These POMDPs share some similar properties, for example, periodicity and
excessiveness. The common states link to these similar properties and offer
some insights on the interplay mechanism. The KMMN greatly reduces the
number of states and transitions, providing a baseline for inductive learning
of the interplay. To find KMMN, the step of obtaining the reduced MMN is
necessary. Otherwise, the chance of having states with sufficient attention is
quite low.
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6. IMPLEMENTATION and RESULTS

This section first outlines the simulation details of the platform and dis-
turbances. Then, the implementation of learning interfaces (AQ, OQ, and
HQ) and results are presented. After that the obtained MMN and KMMN
are summarized, as well as the found switching mechanism captured in the
DOB-net.

6.1. Platform and Disturbances

As described in the problem formulation, the platforms are assumed sta-
ble in orientation. Only translational motion and control are considered,
thus, the platform has a 6-dimensional state space (positions and linear ve-
locities) and a 3-dimensional action space. In order to analyze the results
more intuitively, the characteristics (mass, control, gravity and buoyancy
forces, and disturbance forces) of the platform are scaled down such that
the mass of the simulated platform is 1 [kg]. Then, the control saturation is
given as u− = −u− = [2, 2, 2]T [N ].

Each episode contains 200 steps with 0.05 second per step. In each
episode, the platform starts at a random position with a random velocity,
and it is controlled to reach a given position (the origin), aiming to keep its
position within a range (as small as possible) to the origin against unknown
excessive disturbances. In these simulations, the external disturbances are
exerted on all three directions in the inertial frame. In each axis, the distur-
bance is sinusoidal and then the disturbance superposition is given as

d(t) =

Ax sin( π
Tx
t+ φx)

Ay sin( π
Ty
t+ φy)

Az sin( π
Tz
t+ φz)

 , (8)

where

Ax, Ay, Az ∼ U(2.6, 3)

Tx, Ty, Tz ∼ U(2, 4)

φx, φy, φz ∼ U(−π, π), (9)

and U(a, b) denotes a uniform distribution in the range [a, b]. According to
the problem setting, the amplitudes of disturbances exceed the control limits
by 30%−50%. The purpose of the DOB-net training is to enable the trained
network to deal with unknown time-varying disturbances, thus the values of
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Figure 4: Network structure of AQ and OQ. Quantities in parentheses correspond to OQ.

the amplitude, period, and phase are randomly sampled in each training or
testing episode. The component in each axis is sinusoid; this setting offers a
better illustration to understand what control mechanism the network policy
has learned.

6.2. Learning Interfaces

The interfaces for action (AQ) are illustrated in Fig. 4, which consists of
5 linear layers, 1 quantization layer, and 4 hyperbolic tangent (denoted as
Tanh) activation layers. One of the activation layers is a 3-level activation
layer (defined in Eq. (7) and denoted as Tanh*). The encoder component
of the autoencoder is a continuous-to-discrete interface, while the decoder
component is a discrete-to-continuous interface. The interfaces for action and
observation share a similar autoencoder structure with different numbers of
neurons in linear layers and the quantization layer. In Fig. 4, the numbers
and symbols in parentheses show the input, the output, and the number of
neurons regarding OQ.

The neuron numbers were manually picked such that the quantized DOB-
net performs similarly to its continuous counterpart. As pointed out earlier,
the number of neurons in the encoding layer of AQ is critical. It is expected
to minimize this number without losing much optimality in the resultant
quantized DOB-net. It was manually picked via the trial-and-error approach.
The neuron number was first set to 3, however, the resultant performance
was not satisfactory. The collected reward (negative) was nearly doubled.
Then, the neuron number was set to 4 and 5, respectively. It was found
that 4 is sufficient for retaining optimality. The continuous DOB-net and
quantized DOB-net exhibit on average 10% difference in rewards collected
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in an episode. The number of neurons in OQ is also critical, choices of 32,
48, 64, and 128 were tested and it was found that 64 is appropriate for the
DOB-net. The choice of neuron numbers has been studied in the field of
neural architecture search and can possibly be solved via RL [64], however,
it is out of the paper scope.

Since the disturbances exceed the control saturation frequently, the plat-
form inevitably oscillates and so does the error of position regulation. The
DOB-net requires some steps to collect sufficient data to infer the environ-
ment in the hidden state. Here the maximum tracking error from Step
t = 150 to Step t = 200 is used as a criterion to show the effectiveness
of the learned DOB-nets. It is referred to as the regulation error and given
as

R = max
t
η(t), 150 ≤ t ≤ 200. (10)

The 3D trajectories from both quantized and continuous DOB-nets for the
same problems (i.e., same POMDPs defined in Eq. (6)) have been illustrated
in Figures 5 and 6, respectively. The transparent red and blue spheres re-
spectively represent the regulation errors from the quantized and continuous
DOB-nets. Clearly, the quantized DOB-net was able to achieve trajectories
similar to the one from the continuous DOB-net. Furthermore, the regulation
error did not increase much.

In addition, Robust Integral of the Sign Error (RISE) control [19] and
classical RL [39] were also tested by the same problems. Both approaches
resulted in worse performance than the DOB-net, as illustrated in Figures 7
and 8.

6.3. Moore Machine Networks

Once the interfaces for action and observations were trained, another set
of simulations using the quantized DOB-net was conducted. A data set of the
GRU hidden states was collected from 1000 episodes. In each episode, the
disturbance pattern was randomly generated according to Eq. (9). Following
[33], the autoencoder for quantizing hidden states is illustrated in Fig. 9,
which consists of 6 linear layers, 1 quantization layer, and 6 Tanh activation
layers, where one of the activation layers is Tanh*.

The data collected was used to train HQ in a supervised manner. Different
from the usual loss functions [33], the importance of recursive stability was
emphasized. The loss function used has two terms; the first one is standard
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Figure 5: Comparison of example trajectories from the continuous DOB-net and the quan-
tized DOB-net.

Figure 6: Comparison of example trajectories from the continuous DOB-net and the quan-
tized DOB-net.

and the second one regulates the recursive stability. The loss function L is
defined as

L = ||ht −HQ(ht)||+ η||ht −HQ(HQ(ht))||, (11)

where η was set as 10. Using a stochastic gradient descent approach with
the learning rate 1e−4, the training error (mean square error) was 1.2e−3.
The HQ network was inserted into the quantized DOB-net, as suggested in

19



Figure 7: Example trajectories from RISE and the classical RL.

Figure 8: Example trajectories from RISE and the classical RL.

[33], resulting in the full quantized DOB-net. The rewards collected in each
episode by the quantized DOB-net has been compared with the ones collected
by the continuous DOB-net in Fig. 10, showing about 12% degeneration
averaged over all episodes. As shown in Fig. 11, the averaged regulation
error exhibited 8% increase.

Then another data was collected from simulations of 400 episodes using
the quantized DOB-net (with HQ inserted). Each episode has 200 samples
of observations, hidden states, current actions, and previous actions. Also,
the transitions between hidden states given observations and actions were
recorded. It was found that the number of the unique hidden states was
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16931 and the number of the unique observations was 15619, suggesting that
the system controlled by the quantized DOB-net in multiple environments
did visit a large number of discrete hidden states. The number of the unique
actions was 80, the maximum of which is 81.

Considering the transitions between discrete hidden states as an incom-
pletely specified sequential switching function, the number of hidden states
and observations was grouped by PES [45]. The number of unique groups
of hidden states in the reduced MMN was reduced to 114 and the number
of observation groups was 2047. We refer to each of these groups as a state
or an observation in MMN. It is nearly impossible to find insights about the
interplay between environments and control strategies, due to a large number
of transitions and states. A portion of the MMN that highlights the transi-
tions and states visited by two episodes has been illustrated in Fig. 3, where
the key states were obtained in the following subsection.

6.4. Key Moore Machine Network

The goal of the KMMN is to extract some shared control logic used by
the learned DOB-net to solve different POMDPs defined in Eq. (6), and
thus to show the interplay between the control and disturbances. Here data
from 20 episodes were studied. The sufficient attention was defined as “85%
attention”. In other words, being qualified as a key state in KMMN, the
state must attract attention from at least 17 episodes out of 20. The episode
number was picked to balance the computational complexity and chance of
finding the KMMN.

We found that 6 key states were picked by those 20 episodes. One of the
key states is the initial state since in all episodes the hidden state always
started at zero. The key states found are shown in Table 1, which summa-
rizes the key state indices, the quantized encodings, and the decoded actions.
It was found the action at the beginning of each episode was almost zero,
while the actions associated with other key states were always at the con-
trol saturation. More about this phenomenon will be discussed later in this
section.

The transitions between the key states in 14 episodes (out of 20) converged
to some cyclic patterns shown in Fig. 12. Figure 12 shows 8 examples, where
the first 2 examples did not exhibit clear converged patterns. The remaining 6
examples exhibited three cyclic transition patterns, highlighted by green solid
arrows. In all examples, the state started from State 0 and the system took a
number of transitions to enter one of the cyclic patterns. It is because at the
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Table 1: Key state description

Key state index Quantized encoding Decoded action
0 [0, 0, 0, 0]T [0.03,−0.15, 0.07]T

1 [1, 1,−1, 1]T [2, 2, 2]T

2 [1,−1, 1,−1]T [−2, 2,−2]T

3 [−1,−1, 1,−1]T [−2,−2,−2]T

4 [−1, 1,−1, 1]T [2, − 2, 2]T

5 [−1,−1,−1,−1]T [−2,−2, 2]T

beginning of each simulation (episode), the DOB-net intended to interact
with the environments to gain observations for estimating the key aspects
of the inherent POMDPs (i.e., disturbances and their transfer functions).
The following analysis partially reveals how the hidden states are related to
controls and disturbances.

Considering the associated action with each state in the KMMN, it was
found that the learned DOB-net behaved similarly to a hybrid controller
where switchings occur. These switchings exhibited cyclic patterns due to the
fact the disturbance in each direction was periodic. Each switching pattern
indicated a disturbance pattern. As shown in Fig. 13, the disturbances
in three directions are illustrated in red, green, and blue, respectively. The
additive inversion of the controls associated with the states is also illustrated.
Note that the values of the controls in x and z directions were added by
−0.2 and 0.2, respectively, for a clear illustration. It was found that the
states in the KMMN were only activated when the disturbances were close
to the control saturation, as shown in Fig. 13. By inspecting the controls
and unknown disturbances, it was shown that the obtained actions were
synchronized with the disturbance forces.

Some episodes exhibited similar converged transition patterns, as shown
in Fig. 12 (c), (d), (f), and (h). However, the way the system entered into
the cyclic patterns varied in different environments. The system is shown
in Fig. 12(c) entered the cyclic pattern (referred to as cycle) through State
2 directly, while the system shown in Fig. 12(h) entered the cycle through
State 4 after visiting State 3. In Fig. 12(d), the system visited States 3 and
5, and then entered into the cycle at State 4. As illustrated in Fig. 13, in
cases of (c), (d), (f), and (h), the disturbance forces in x and y directions
had similar frequencies and phases, while the disturbance force in z direction
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Figure 12: Transitions between key states and cyclic patterns.
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Figure 13: Disturbances and additive inverse controls at key states.

25



had different a frequency and phase. These examples show that the DOB-net
was able to estimate disturbances and their inherent governing behavior.

In Fig. 12(e) and (f), the systems exhibited another two cyclic patterns.
Interestingly, the episodes shown in Fig. 12(g) and (e) exhibited two cyclic
patterns, respectively. For example, the system in Fig. 12(g) first entered
the cycle (shown in blue solid lines) through State 3 and then entered the
second cycle at State 4 and stayed in the second cycle.

The first two examples in Fig. 12 did not exhibit clear cyclic patterns.
It is possible that the key states found in those 20 episodes did not capture
the states that were crucial to these two examples. More research about the
definition of sufficient attention should be explored in future research.

The system in Fig. 12(e) entered in a binary switching pattern. With
careful examination of the disturbances in Fig. 13(e), we found the compo-
nents in the randomly-generated disturbances had similar periods and phases.
Therefore, the two states in the KMMN were sufficient to capture the peri-
odic shifts. Overall, the key states found have a strong correlation between
disturbance patterns and the time instants when the disturbance forces were
close to control saturation. The phases between disturbances change as a
function of time, as shown in Fig. 13, which strongly ties the change of the
hidden states and the action associated. Therefore, the observer designed in
the DOB-net and learned together with the control subnetwork was able to
estimate such a shift in the phases and magnitudes of the disturbances.

7. DISCUSSION

As pointed in [65, 6, 62, 14], the controlled platform whose control often
reaches control saturation can be described by a switching-control-regulated
system. This kind of systems can be characterized by

ξ(t+ 1) = σ
(
ξ(t), y(t)

)
z(t+ 1) = ηξ(t)

(
z(t), u(t)

)
,

where ξ(k + 1) is a discrete state, σ(·) governs the switching between the
discrete states (refer to as “modes” in hybrid control), η(·) defines the tran-
sition function of the continuous state x(k). Then the controlled platform
can be depicted as the structure in Fig. 14.

The relation between the quantized DOB-net and the hybrid-system con-
trol can be found by comparing Figures 14 and 2. The components in the
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Figure 14: Hybrid structure of the controlled often-saturated system. Except for the
red dashed arrow to the controller, components within the dash-rounded rectangle are
equivalent to the DOB-net.

blue dashed rectangle in Fig. 2 correspond to the discrete-event subsys-
tem, which is represented as the blue rounded rectangle in Fig. 14. The
components in the green dash-dotted rectangle in Fig. 2 corresponds to the
mapping between the discrete hidden states and the continuous controls, i.e.,
the discrete-to-continuous interface and the controller shown in Fig. 14.

Note that in classical hybrid modelling and control, the red dashed arrow
to the controller is necessary, which is not kept in the quantized DOB-net.
Therefore, the quantized DOB-net only captures the discrete-event subsys-
tem, which partially describes the interplay between the control strategy and
the environments. The DOB-net is able to estimate the discrete-event sub-
system online and generate its sufficient representation for effective control.

Cyclic switchings were found in the learned DOB-net, showing the control
policy is able to capture σ(·) for position regulation problems in different en-
vironments (different POMDPs). In Fig. 13, the control between switching
was not depicted for clear illustration, which may reflect ηξ(·). The continu-
ous control based on feedback from continuous observation is missing in this
study and should be included for future research.

8. CONCLUSION & FUTURE WORK

This paper proposes an attention-based abstraction approach for find-
ing a key Moore machine network, which reveals the switching mechanism
that has been captured in the DOB-net and is key to excessive disturbance
rejection. This method is effective in abstracting control logic in solving

27



different POMDPs. Interestingly, the switching mechanism has been man-
ually designed for controller developments in the existing literature. This
finding may offer a bridge between DOB-nets and the hybrid systems for
better network design. For example, in future we would design a special net-
work/activation function to capture these saturation events and feed them
into the control network, in addition to some continuous state representation.

The proposed A2 approach is applicable to often-saturated systems. How-
ever, due to the current choice of sufficient attention, this approach may not
be effective to non-saturated systems. In the future, more effort will be de-
voted to a new definition of sufficient attention to better capture the control
mechanisms common in solving multiple POMDPs. For example, the choice
of attention could be designed according to principle component analysis.

A2 does not provide continuous control counterpart, therefore, the quan-
tized DOB-net can not reach the performance of the continuous DOB-net.
The continuous nature of the system control requires some complementary
continuous controllers. In future, the continuous controls should be charac-
terized to show how the system is guided between switchings, for the purpose
of fully understanding the control network in the language of hybrid control.
Another interesting future work is to investigate the possibility of using the
switching mechanism obtained through inductive learning as some distilled
knowledge for transfer learning.
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