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a b s t r a c t

The vibro-acoustic response of a two-dimensional cylindrical shell in low Mach number
flow is herein derived. The analytical model takes into account the structural elasticity and
coupling of the shell vibration with its interior and exterior acoustic fields in the presence
of a moving fluid. The cylindrical shell is modelled using Donnell-Mushtari theory. Taylor
transformations are employed to transfer the convected wave equation into the ordinary
wave equation which was then solved using scattering theory. Three excitation cases
corresponding to a plane wave, an external monopole source and a radial point force
applied directly to the shell are considered. Shell circumferential resonances and interior
acoustic resonances are identified. Two active control strategies are then applied to
acoustically cloak the cylindrical shell at its acoustic and structural resonances. The first
control approach employs acoustic control sources in the exterior fluid domain. In the
second approach, control forces are applied to directly excite the elastic shell, whereby the
structural response is actively modified to manipulate the scattered and radiated acoustic
fields arising from plane wave excitation of the shell. Results show that the second
approach is superior in terms of both reduced control effort and cloaking of the global
exterior domain. For both control approaches, the performance of the active cloak is shown
to deteriorate if the convected flow field is not accounted for in the control process.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Acoustic cloaking has received significant interest in recent years with potential applications for stealth, masking, and
reduction of anthropogenic noise. Passive cloaking approaches are well established, namely using a coordinate trans-
formation approach wherein acoustic metamaterials are designed to render a region acoustically invisible. Metamaterial
cloaks have been designed with functionally graded density, commonly referred to as inertial cloaks [1], or by jointly varying
the metamaterial stiffness and density to guide the acoustic field around a cloaked region [2]. Multilayered cloaks using
isotropic and metamaterial layers have also been proposed [3,4]. Popa et al. [5,6] applied the coordinate transformation
method for the design of an acoustic ground cloak. Alternative passive methods using impedance matching skins with
subwavelength inclusions, or through scattering cancellation using a specially designed isotropic elastic layer, have been
explored [7,8]. Various active cloaking techniques have been proposed that can be broadly categorised as either exterior
).

er Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.

http://creativecommons.org/licenses/by/4.0/
mailto:d.eggler@unsw.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2020.115400&domain=pdf
www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
https://doi.org/10.1016/j.jsv.2020.115400
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jsv.2020.115400


B. Kerferd et al. / Journal of Sound and Vibration 479 (2020) 1154002
cloaking or interior cloaking. Exterior cloaking, in which control sources are located outside of the cloaked region, was
achieved using multipole sources to cloak a body from an incident field [9e12]. Interior cloaking, inwhich control sources are
located within the cloaked region, has been demonstrated using piezoelectric coatings [13e16], or a discrete number of
secondary sources to cancel the scattered field [17e20].

The aforementioned studies on the design of passive cloaks ignore the Doppler effect associated with convected flow of
the surrounding acoustic medium. For stealth purposes in aeronautical and maritime applications, cloaking of a body in a
moving fluid is required. Cloaking in mean flowwas first demonstrated with a passive acoustic ground cloak in a moving fluid
medium, which was theoretically constructed using a space-time transformation method [21]. Ryoo and Jeon [22] expanded
on the work by Huang et al. [23], taking into account the effects of fluid compressibility and flow non-uniformity. Iemma and
Palma [24] presented a convective correction for metamaterial cloaks originally designed for a stationary acoustic medium,
which was found to effectively cloak a 2D cylinder from monopole excitation in both stationary and low Mach number flow.
An increasingMach number yielded diminished cloaking performance attributed to the lowMach number formulation of the
governing equations in the cloak design. Huang et al. [25] proposed an optimisation routine to cancel turbulent noise from
high Reynolds number flow over a cylinder by varying the metamaterial properties of the cloak using the method of steepest
descent. More recently, they designed an acoustic cloak for an aerofoil in turbulent flow that was insensitive to frequency
variations [26]. As an alternative to passive cloaking in mean flow, acoustic cloaking of a 2D rigid cylinder in low Mach
number flow using an active control approach was recently proposed [27]. Failure to account for potential flowwas shown to
result in adverse constructive interference that enhanced the original acoustic field.

The current paper extends the recent study by Eggler et al. [27] on acoustic cloaking of a rigid cylinder, to consider an
elastic cylindrical shell in low Mach number flow. A number of studies have investigated the vibrational responses of an
elastic structure in convected flow, although to the best of the authors’ knowledge, there is very little literature on the acoustic
responses of an elastic structure in a moving fluid. Dynamic responses have been analytically studied for a cylindrical shell in
cross flow [28] and axial flow [29]. Amabili and Garziera [30] reported a decrease in the eigenfrequencies of a cylindrical shell
in axial flow with increasing flow speed. Taylor [31] pioneered a transformation method to derive the acoustic field arising
from a vibrating surface in lowMach number potential flow. Themethod was then employed tomodel acoustic generation by
pulsating and vibrating elastic spheres in homentropic potential flow.

In this work, active acoustic cloaking of an elastic cylindrical shell in convected flow is presented. The active control
methodology depends on prediction of the vibro-acoustic responses of the elastic shell arising from excitation due to the
primary incident field and the control sources. To this end, we utilise Taylor's transformation method to derive the structural
and acoustic responses of an elastic cylindrical shell excited by acoustic sources or localised mechanical forces in a moving
fluid. The cylindrical shell is modelled using standard shell theory, in which the shell displacements are coupled with the
interior and exterior acoustic fields. Taylor transformations are then applied to the interior and exterior acoustic fields to
reduce the convected wave equation to the standard Helmholtz equation, which is subsequently solved using scattering
theory for an elastic shell. The vibro-acoustic responses of the cylindrical shell with and without the presence of flow are
compared. Two active control approaches are then employed to acoustically cloak the shell at its structural and acoustic
resonances. The first control approach called active noise cloaking employs acoustic control sources in the exterior fluid
domain uniformly distributed around the cylindrical shell. In the second approach, termed active structural acoustic cloaking,
control forces are applied to directly excite the elastic shell. The structural response is actively modified to manipulate the
scattered and radiated acoustic fields arising from plane wave excitation of the shell. The effectiveness of the two active
control approaches are compared. Further, the performance of the acoustic cloaks with andwithout accounting for convective
flow is evaluated.
2. Analytical formulation

2.1. Elastic cylindrical shell

A 2D elastic cylindrical shell is located in a flowof free streamvelocity U∞ as shown in Fig.1. Donnell-Mushtari shell theory
with a FlüggeeByrneeLur'ye modifying operator to account for the midplane displacements and the curvature of the shell is
employed. The equations of motion in the radial and tangential directions are respectively given by [32]
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vq

þ
 
1þ 1

b2

 
1þ v2

vq2

!2!
wðq; tÞ¼ � r

�
1� n2

�
a2

E
v2wðq; tÞ

vt2
; (1)

v2vðq; tÞ
vq2

þ vwðq; tÞ
vq

¼ r
�
1� n2

�
a2

E
v2vðq; tÞ

vt2
; (2)

wherew and v are the radial and tangential shell displacements, respectively, a is the mid-thickness shell radius, b ¼
ffiffiffiffiffiffi
12

p
a= h

is the non-dimensional shell thickness parameter, h is the shell thickness, and E, n, r are respectively the Young's modulus,
Poisson's ratio and density of the shell.



Fig. 1. Schematic diagram of the elastic cylindrical shell showing the geometric representation of the system, the direction of the free stream velocity, and
excitation of the shell by acoustic sources and a localised point force.
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The equation of motion for the shell radial displacement is modified to consider a localised point force as well as the
acoustic pressure loading on the interior and exterior surfaces of the shell. Assuming time-harmonic separable solutions forw
and v such that wðq; tÞ ¼ wðqÞe�iut and vðq; tÞ ¼ vðqÞe�iut , where i ¼

ffiffiffiffiffiffiffi
�1

p
and u is the angular frequency, the equations of

motion in the radial and tangential directions become [33] 
D

d4

dq4
þDb2 � rhu2 þD
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dq

vðqÞ¼ pintða; qÞ� pextða; qÞ þ fidðq� qiÞ; (3)

d2 d

G
dq2

vðqÞþG
dq

wðqÞ þ rhu2vðqÞ ¼ 0: (4)
G ¼ Eh=ða2ð1�n2ÞÞ and D ¼ G=b2are shell stiffness parameters. pintðr; qÞ is the interior acoustic pressure. The exterior acoustic
pressure pextðr; qÞ comprises both the incident acoustic pressure due to an acoustic source, pincðr; qÞ, and the combined
scattered and radiated pressure arising from acoustic excitation of the shell, psc=radðr; qÞ. That is, for acoustic excitation,
pextðr; qÞ ¼ pincðr; qÞ þ psc=radðr; qÞ. For structural excitation of the shell, the exterior acoustic pressure comprises only the
structure-borne acoustic pressure, pradðr;qÞ, such that pextðr;qÞ ¼ pradðr;qÞ. fi and qi denote the amplitude and angular location
of the ith localised point force, respectively, and dðq�qiÞ is the Dirac delta function. The shell radial and tangential dis-
placements are expressed in terms of their Fourier coefficients,wn and vn, by summing over the modal order n as follows [32]

wðqÞ¼
X∞

n¼�∞
wneinq; (5)

X∞
inq
vðqÞ¼

n¼�∞
vne : (6)
Three different excitation cases are herein considered corresponding to an incident plane wave travelling in the direction
of the flow, a monopole source located in the exterior acoustic domain and a radial point force applied directly to the shell, as
shown in Fig.1. Assuming time harmonic excitation, the incident acoustic pressure fields in the absence of flow for planewave
and monopole source excitation are respectively given by [34]
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pincðx; tÞ ¼
X∞

n¼�∞
an

JnðkarÞ
J0nðkaaÞ

einqe�iut ; (7)

pincðx; tÞ ¼ H0ðkaRÞe�iut ; (8)

where R is the distance from the monopole source to the field point x ¼ ðr;qÞ, Jn is the Bessel function of the first kind of order
n, H0 is the zeroth order Hankel function of the first kind, ðÞ0 is the derivative with respect to the argument and ka is the
acoustic wavenumber. The incident field coefficient for a plane wave is an ¼ inJ

0
nðkaaÞ [34]. Equations (7) and (8) must be

modified to account for convection effects as outlined in Sections 2.3 and 2.4, respectively.

2.2. Transformation of the exterior and interior acoustic potential

The exterior and interior acoustic fields are evaluated in terms of the acoustic potential 4aðx; tÞ using the linearised po-
tential flow formulation of the convected wave equation which is given by [35e38]�

v

vt
þ V4v,V

�2
4a � c2f V

24a ¼0; (9)
where 4vðxÞ is the velocity potential governing the mean flow of the convected field. This equation is valid for isentropic,
inviscid and irrotational flow and neglects terms of OðM2ÞwhereM ¼ U∞=cf is the Mach number and cf is the speed of sound

in the fluid. As such, our analysis is limited to low Mach number potential flow (M2≪1). Since the physical system has two
distinct acoustic fields, Eq. (9) must be solved separately for both the exterior acoustic potential 4a;extðx; tÞ and the interior
acoustic potential 4a;intðx;tÞ. The reference spatial and temporal coordinates ðx; tÞ are mapped to the transformed coordinates
ðX; TÞ according to the Taylor transformations given by [37]

X ¼ x; T ¼ t þ 4v

c2f
: (10)
Note, x ¼ ðr; qÞ and X ¼ ðbr ; bqÞ respectively denote the coordinates in the original and transformed cylindrical coordinate
systems for a given field point. Employing these transformations reduces Eq. (9) to the Helmholtz equation in the transformed
coordinates, which can then be solved using standard scattering theory. However, the acoustic-structure interaction between
the elastic structure and the convected acoustic field complicates the solution for the scattered and structurally radiated
sound field. Taylor [31] proposed that the acoustic effects of a vibrating surface in potential flow defined by Gðx; tÞ ¼ GðxÞþ
sðx; tÞ ¼ 0 could be captured using the following boundary condition�
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; (11)
where GðxÞ ¼ 0 defines the mean position of the surface and sðx; tÞ is the time-varying component of the surface position. To
simplify this boundary condition, we define G and s by restricting our analysis to an elastic cylindrical shell in plane strain,
which results in G ¼ r � a and sðq; tÞ ¼ � wðqÞe�iut . The velocity potential for a 2D cylinder in cylindrical coordinates is
defined by [39]

4vðxÞ ¼ U∞

�
r þ a2

r

�
cos q: (12)
For the case of a finite cylindrical shell in potential flow, a numerical solution to the Laplace equation for the velocity
potential would be required. Substituting the expressions for G, s and 4v into the boundary condition given by Eq. (11) and
simplifying the resulting expression yields the boundary condition for the exterior acoustic potential as�

v

vr
4a;ext

�
r¼a

¼ �
X∞

n¼�∞

�
iuþ2U∞

a
ðcos qþ in sin qÞ

�
wneinqe�iut : (13)
Recognising that the interior acoustic domain is stationary (i.e. U∞ ¼ 0Þ, the boundary condition for the interior acoustic
potential is given by
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The solution to the equations of motion given by Eqs. (3) and (4) is herein derived for the case of plane wave excitation.
4a;extðx; tÞ and 4a;intðx; tÞ are first expressed as their transformed equivalents, denoted by b4a;extðX; TÞ and b4a;intðX; TÞ,
respectively. As Eq. (9) reduces to the Helmholtz equation under the Taylor transformations, b4a;ext and b4a;int are solutions to
the exterior and interior Helmholtz equations respectively, and can be expressed in their general forms as follows

b4a;ext ¼
X∞

n¼�∞

 banJnðkabrÞJ0nðkaaÞ
þ bbnHnðkabrÞ

H0
nðkaaÞ

!
ein
bqe�iuT ; (15)

X∞ JnðkabrÞ inbq �iuT
b4a;int ¼
n¼�∞

bcnJ0nðkaaÞe e : (16)
The first term on the right hand side of Eq. (15) corresponds to the transformed incident acoustic potential b4a;incðX; TÞ and
the second term corresponds to the transformed scattered and radiated acoustic potential b4a;sc=radðX; TÞ, where Hn is the

Hankel function of the first kind of order n. ban denotes the coefficients describing the transformed incident acoustic potential,bbn represents the coefficients for the transformed scattered/radiated acoustic potential, and bcn are the coefficients for the
transformed interior acoustic potential.

The boundary conditions in the transformed domain are obtained by applying Taylor's transformations to Eqs. (13) and
(14) and substituting the expressions for the transformed acoustic potentials given by Eqs. (15) and (16), respectively. A
system of algebraic equations for the unknown coefficients can be obtained by considering orthogonality of the Fourier series

basis ein
bq . First considering the exterior acoustic potential, applying Taylor's transformations to Eq. (13), substituting Eq. (15)

for the transformed exterior acoustic potential, multiplying by e�imbq and then integrating between 0 and 2p, results in an
infinite set of integrals without a closed form solution. The infinite set of integrals can be represented by the matrix

expression bb ¼ Fw� ba, where ba is a column vector containing the elements ban, bb is a column vector containing the elementsbbn, and w is a column vector containing the shell radial Fourier coefficients wn. F is a matrix containing the elements Fmn

given by the following expression

Fmn ¼ � 1
2pka

Z2p
0

�
iuþ2U∞

a
ðcosbqþ in sinbqÞ�einbqe�imbqeiu4v

	
c2f dbq: (17)

The elements Fmn are evaluated numerically via the trapezoidal method using 2n subintervals.
Now considering the interior acoustic potential, applying Taylor's transformations to Eq. (14) and substituting Eq. (16)

yields the interior boundary condition in the transformed domain. Multiplying by e�imbq and integrating between 0 and 2p
results in bcn ¼ � icf wn, thus directly relating the transformed interior acoustic potential to the shell radial displacement.

2.3. Solution for the exterior and interior acoustic pressure

The exterior and interior acoustic responses of the cylindrical shell in potential flow can now be solved using the shell
equations of motion. The acoustic pressure is related to the acoustic potential using Bernoulli's equation as follows

p¼ � rf

�
v

vt
4a þV4v ,V4a

�
: (18)
Taylor's transformations are applied to Eq. (18), neglecting terms of OðM2Þ, to relate the transformed exterior and interior
acoustic pressures respectively denoted by bpextðX; TÞ and bpintðX; TÞ, to the corresponding transformed acoustic potentials
given by Eqs. (15) and (16). The resulting expressions are evaluated at br ¼ a to yield

bpextða; bq; TÞ¼ rf

 X∞
n¼�∞

�
iuþ2U∞

a
in sinbq � banJnðkaaÞJ 0nðkaaÞ

þ bbnHnðkaaÞ
H0
nðkaaÞ

!
ein
bq!e�iuT ; (19)
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bpintða; bq; TÞ¼ iurf
X∞

n¼�∞
bcnJnðkaaÞJ 0nðkaaÞ

ein
bqe�iuT : (20)
In the final step, Taylor's transformations are applied to Eqs. (3) and (4) to describe the shell's equations of motion in the
transformed domain. Substituting Eqs. (19) and (20) into the transformed equations of motion and solving simultaneously

with bb ¼ Fw � ba and bcn ¼ �icf wn yields the following solution for the vector w of radial displacement coefficients

w ¼ ðBþ DFÞ�1ððD� CÞba Þ : (21)
B is a diagonal matrix with elements given by
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; (22)

and C and D are the matrices with elements given by
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which are evaluated numerically via the trapezoidal method using 2n subintervals, as per Eq. (17).
The elements of ba are defined by ban ¼ an=iurf such that b4a;inc describes an unconvected incident field when V4v ¼ 0, as

per Eq. (18). The coefficients bbn are evaluated using bb ¼ Fw� ba. The coefficients bcn are evaluated using bcn ¼ � icf wn. Finally,
the exterior and interior acoustic pressures in the untransformed domain respectively denoted by pext and pint can be
expressed in terms of their resolved coefficients at a field point as follows

pextðx; tÞ ¼ rf
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e�iute�iu4v
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pintðx; tÞ ¼ iurf
X∞

n¼�∞
bcn JnðkarÞJ 0nðkaaÞ

einqe�iut : (28)

t and zn capture the effect of the radial and tangential components of potential flow on the acoustic pressure at any field point
in the exterior domain, respectively.

2.4. Monopole and force excitation

For monopole source excitation, a modification to the solution process must be implemented. The transformed exterior
acoustic potential given by Eq. (15) now becomes

b4a;ext ¼
 

1
iurf

H0ðkabRÞþ X∞
n¼�∞

 bbnHnðkabrÞ
H0
nðkaaÞ

!
ein
bq!e�iuT ; (29)
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where bR is the distance between the monopole source and the field point X ¼ ðbr; bqÞ in the transformed domain. Equation (19)
is still used at the boundary, however, the incident field due to the monopole source must first be expressed in the cylinder's
local coordinates. This is achieved with Graf's addition theorem [34], yielding

H0ðkabRÞ¼ X∞
n¼�∞

ð�1ÞnHnðkabÞJnðkabrÞeinðbq�aÞ: (30)

0

Thus, for monopole source excitation ban ¼ ð1 =iurf Þð�1ÞnHnðkabÞJnðkaaÞe�ina. The procedure to find the coefficients bbn, bcn,

and wn remains the same as described previously. However, Eqs. (25)e(28) must be modified to account for phase changes
associated with the effect of the fluid flow between the location of the monopole source and the field point [27,37]. For
monopole excitation, the exterior and interior acoustic pressures in the untransformed domain are expressed as

pextðx; tÞ ¼ rf
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n¼�∞
bcnJ0nðkaaÞe e e f ; (35)

where t now captures the effect of the radial component of potential flow on the external acoustic pressure due to monopole

source excitation and zinc, zn;sc=rad respectively capture the effect of the tangential component of potential flow on the
incident and scattered/radiated acoustic pressure. 4s is the velocity potential evaluated at the monopole source location. The
resultant acoustic pressure and shell displacement due to N monopole sources require the superposition of the individually
evaluated results from each source such that

pextðr; qÞ¼
XN
j¼1

pext;j; (36)

XN

pintðr; qÞ¼

j¼1

pint;j; (37)

XN

wðqÞ¼

j¼1

wjðqÞ: (38)
When the cylindrical shell is directly excited by a radial point force, pext ¼ prad in Eq. (3) and the solution procedure follows
that of plane wave excitation. In this case, the radial shell displacement is given by

w ¼ ðBþ DFÞ�1f; (39)

where the matrix elements for F, B, D are given by Eqs. (17), (22) and (24), respectively. f is a column vector containing the

elements fn ¼ fie�inqi=2p. When N radial point forces are employed, the elements within the column vector for f become

fn ¼
XN
i¼1

fi
e�inqi

2p
: (40)



Fig. 2. Acoustic pressure (in Pascal) at 5a downstream of the cylindrical shell for plane wave excitation (blue lines), a monopole source located upstream at ðb;
aÞ ¼ ð2a;0Þ (red lines), and a radial point force at (qi ¼ pÞ (green lines) for M ¼ 0 (dotted lines) and M ¼ 0:12 (solid lines). (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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3. Physical system results

An infinitely long elastic cylindrical shell of mean radius a ¼ 0.6 m and thickness h ¼ 4 mm was modelled, with material
properties corresponding to polyvinyl chloride of density r ¼ 1300 kg/m3, Young's modulus E ¼ 2.9 GPa and Poisson's ratio n ¼
0:3. The interior and exterior fluid media of the shell are air with density rf ¼ 1.225 kg/m3 and speed of sound cf ¼ 343m/s. A
truncatedmodal order of n ¼ 120was selected. Thismodal number ensured converged results when comparedwith numerical
results from a finite element simulation using the commercial software COMSOL Multiphysics. Fig. 2 presents the acoustic
pressure as a function of frequency at ðr; qÞ ¼ ð5a;0Þ for three excitation cases corresponding to a plane wave, a monopole
source located upstream at ðb;aÞ ¼ ð2a;0Þ, and a point force at qi ¼ p. For each excitation case, results are presented in the
absence of potential flow (M ¼ 0) and in a convected flow field of Mach number M ¼ 0:12. Fig. 2 shows that the effect of flow
decreases themagnitude of the acoustic pressure for all excitation cases. Closer comparison of the relative change inmagnitude
under the effect of flow for each excitation case reveals a similar decrease in magnitude associated with each excitation type.
For the frequency range considered in Fig. 2, the five resonances correspond to the first three acoustic spinning resonances, the
first acoustic axisymmetric resonance, and the first structural resonance corresponding to the zeroth shell circumferential
mode. Acoustic resonances were identified and categorised according to the interior field patterns described in Ref. [40].
Structural resonanceswere identified by the shell circumferential displacement pattern. The broad peak in Fig. 2 around 420Hz
corresponding to the first structural resonance is due to high radiation damping for the radially axisymmetric mode of the
cylindrical shell [33,41].

Table 1 lists the frequencies for the first three acoustic spinning, acoustic axisymmetric and circumferential resonances of
the cylindrical shell in the absence of potential flow (M ¼ 0) and in convected flow (M ¼ 0:12). The first three structural
resonances correspond to the breathing (radially axisymmetric), bending and ovalling shell circumferential modes. The
frequencies of the acoustic resonances are unaffected by the convected flow field. The presence of flowcan yield a reduction in
the resonance frequencies of the structural modes, as observed previously by Amabili and Garziera [30].

Fig. 3 presents contour plots of the acoustic pressure fields in the absence of potential flow (left column) and in the
presence of a convected flow field ofM ¼ 0:12 (right column) for the first acoustic spinning resonance of the cylindrical shell
due to excitation by an incident plane wave (Fig. 3(a)), a monopole source located at ðb;aÞ ¼ ð2a;0Þ (Fig. 3(b)), and a radial
Table 1
Resonance frequencies (in Hz) for the first three acoustic spinning resonances, acoustic axisymmetric resonances and shell circumferential
resonances of the cylindrical shell in the absence of flow (M ¼ 0) and in the presence of convected flow (M ¼ 0:12).

Flow case M ¼ 0 M ¼ 0:12

Acoustic spinning resonances (Hz) First 171.85 171.85
Second 283.42 283.42
Third 387.63 387.63

Acoustic axisymmetric resonances (Hz) First 341.52 341.52
Second 641.44 641.44
Third 927.20 927.20

Shell circumferential resonances (Hz) Breathing 420.97 420.85
Bending 589.90 589.65
Ovalling 933.36 933.36



Fig. 3. Acoustic pressure (in Pascal) in a convected flow field of M ¼ 0 (left) and M ¼ 0:12 (right) at the first acoustic spinning resonance of the cylindrical shell
due to excitation by (a) an incident plane wave, (b) a monopole source located at ðb;aÞ ¼ ð2a;0Þ, and (c) a radial point force at qi ¼ p.
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Fig. 4. Acoustic pressure (in Pascal) in a convected flow field of M ¼ 0 (left) and M ¼ 0:12 (right) at the third acoustic spinning resonance of the cylindrical shell
due to excitation by (a) an incident plane wave, (b) a monopole source located at ðb;aÞ ¼ ð2a;0Þ, and (c) a radial point force at qi ¼ p.
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Fig. 5. Acoustic pressure (in Pascal) in a convected flow field of M ¼ 0 (left) and M ¼ 0:12 (right) at the first acoustic axisymmetric resonance of the cylindrical
shell due to excitation by (a) an incident plane wave, (b) a monopole source located at ðb;aÞ ¼ ð2a;0Þ, and (c) a radial point force at qi ¼ p.
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Fig. 6. Acoustic pressure (in Pascal) in a convected flow field of M ¼ 0 (left) and M ¼ 0:12 (right) at the first structural resonance of the cylindrical shell due to
excitation by (a) an incident plane wave, (b) a monopole source located at ðb;aÞ ¼ ð2a; 0Þ, and (c) a radial point force at qi ¼ p.
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point force at qi ¼ p (Fig. 3(c)). Scattering both upstream and downstream of the shell is amplified by the presence of flow due
to the Doppler effect, whereby expansion and contraction of the acoustic wavelength distorting the response can be observed.
Fig. 4 shows similar results to that of Fig. 3, in which contour plots of the acoustic pressure for the third acoustic spinning
resonance due to each excitation case, in the absence of potential flow (left column) and at M ¼ 0:12 (right column), are
shown. Enhanced scattering of the exterior acoustic field both upstream and downstream of the cylinder can be observed
with increasing frequency. Similar contour plots of the acoustic pressure due to each excitation case are presented in Figs. 5
and 6 for the first acoustic axisymmetric resonance and first structural resonance, in the absence of potential flow (left
column) and at M ¼ 0:12 (right column). For a cylindrical shell of finite length, the presence of axial modes would result in a
significantly higher number of structural resonances. Diffraction around the finite cylinder edges would yield greater scat-
tering effects.
4. Cloaking methodology

We apply two active control strategies, namely active noise cloaking (ANCL) that utilises acoustic control sources and
active structural acoustic cloaking (ASACL) that employs structural forces to actively modify the radiated sound field [18]. For
ANCL, N monopole control sources and L microphone error sensors were equispaced in circumferential arrays around the
cylinder at radial distances of 2a and 3a, respectively. For ASACL, N point forces were applied to directly excite the shell, also
uniformly distributed around the shell.

The cloaking algorithm is set up to minimise the acoustic field given by e ¼ psc=rad þ Zq, where psc=rad corresponds to the
combined scattered and radiated exterior acoustic pressure at the error sensor locations arising from excitation of the cy-
lindrical shell by an incident plane wave, and Zq denotes the acoustic field generated by the control sources. Z is a matrix of
acoustic transfer functions at the error sensor locations arising from each of the control sources, and q is a vector of control
source amplitudes to be optimised. The optimisation process consists of minimising a quadratic cost function given by J ¼ eHe
based on a feedforward adaptive least-mean-square algorithm [42]. The resultant optimal control source amplitudes are
evaluated by solving vJ=vq ¼ 0 and are obtained as

q ¼ �
h
ZHZ

i�1
ZHpsc=rad; (41)

where H denotes the Hermitian transpose. The current active control strategy requires a priori knowledge of the incident field
as well the ability to directlymeasure the scattered and radiated acoustic pressure arising from the incident planewave. There
currently exist limited strategies to identify the scattered and radiated acoustic field separately from an incident acoustic field,
for example, see Ref. [19,20,43,44].

A procedure outlined previously was used to determine the number of control sources and error sensors such that a
percentage error function given by [18]

D ¼ jjpincj � jpcljj
jpincj

� 100% (42)

gives a predefined percentage error of D<1%. In Eq. (42), pinc is a vector of incident acoustic pressures at the error sensors and
pcl denotes the cloaked acoustic pressure at the error sensors. Table 2 summarises the control configurations employed for
ANCL and ASACL at the first and third acoustic and structural resonances of the cylindrical shell in a convected flow field of
M ¼ 0:12. For each control configuration, the number of error sensors is greater than the number of control sources, thus
ensuring that the least-mean-squares problem is overdetermined and yielding a unique solution provided by Eq. (41). The
required number of control sources and error sensors to maintain D<1% increases with increasing frequency due to the
reduction in the acoustic wavelength, as discussed previously [18].

The first and third acoustic and structural resonances of the cylindrical shell under incident plane wave excitation in a
convected flow field ofM ¼ 0:12 are herein examined for the cloaking process. Active acoustic cloaking using either ANCL (left
column) or ASACL (right column) is presented in Fig. 7 for the first acoustic spinning resonance (Fig. 7(a)), the first acoustic
Table 2
Cloaked resonance frequencies with number of control sources ðNÞ and error sensors ðLÞ for ANCL and ASACL in a convected flow field of M ¼ 0:12.

Frequency (Hz) ANCL ASACL

N L N L

Spinning resonances First 171.85 14 29 9 14
Third 387.63 20 41 14 22

Axisymmetric resonances First 341.52 17 32 13 20
Third 927.2 39 59 28 37

Structural resonances Breathing 420.85 20 38 16 26
Ovalling 933.36 40 68 28 37



Fig. 7. ANCL (left) and ASACL (right) at M ¼ 0:12 for the (a) first acoustic spinning resonance, (b) first acoustic axisymmetric resonance, (c) first structural
resonance.
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Fig. 8. ANCL (left) and ASACL (right) at M ¼ 0:12 for the (a) third acoustic spinning resonance, (b) third acoustic axisymmetric resonance, (c) third structural
resonance.
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Fig. 9. (a) Acoustic pressure fields (in Pascal) at M ¼ 0:12 due to excitation of a cylindrical shell from an incident plane wave. Cloaked field in which the effects of
flow are neglected during the cloaking process for (b) ANCL and (c) ASACL. Frequencies correspond to the first (left) and third (right) acoustic spinning
resonances.
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Fig. 10. (a) Acoustic pressure fields (in Pascal) atM ¼ 0:12 due to excitation of a cylindrical shell from an incident plane wave. Cloaked field in which the effects of
flow are neglected during the cloaking process for (b) ANCL and (c) ASACL. Frequencies correspond to the first (left) and third (right) acoustic axisymmetric
resonances.
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Fig. 11. (a) Acoustic pressure fields (in Pascal) atM ¼ 0:12 due to excitation of a cylindrical shell from an incident plane wave. Cloaked field in which the effects of
flow are neglected during the cloaking process for (b) ANCL and (c) ASACL. Frequencies correspond to the first (left) and third (right) structural resonances.
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Fig. 12. (a) Acoustic directivities at a radial distance of r ¼ 3a and (b) acoustic pressure as a function of distance from the elastic shell along q ¼ 0 corresponding
to the incident acoustic field (solid red line), actively cloaked pressure accounting for flow of M ¼ 0:12 (dashed black line) and actively cloaked pressure without
accounting for flow (solid blue line), using ANCL (left) and ASACL (right) at the third acoustic spinning resonance of the cylindrical shell under incident plane
wave excitation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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axisymmetric resonance (Fig. 7(b)) and the structural breathing resonance (Fig. 7(c)). Using ANCL, the resultant controlled
field resembles that of the convected incident field beyond the control source perimeter. Using ASACL, the cloaked field
immediately takes effect beyond the control force perimeter corresponding to the surface of the shell. Similar results to Fig. 7
are included in Fig. 8 for the third acoustic and structural resonances, whereby a cloaked acoustic field beyond the
circumferential array of control sources is achieved using ANCL, whereas the entire exterior acoustic field beyond the surface
of the shell is cloaked using ASACL.

The acoustic performance of the cloaking process when the convected flow field is not accounted for is shown in Figs. 9e11
at both the first and third acoustic and structural resonances. Figs. 9(a)-11(a) present the uncontrolled acoustic pressure for a
plane wave impinging on the elastic cylindrical shell (also known as the primary acoustic field). Figs. 9(b)-11(b) present the
resultant field when cloaking is attempted using ANCL neglecting convective effects. Figs. 9(c)-11(c) present the resultant field
when cloaking is attempted using ASACL neglecting convective effects. Comparison of Figs. 9(b)-11(b) with Figs. 9(c)-11(c)
reveals that when using ANCL, any departure in the cloaking process yields significantly greater deviation of the resultant
field from that of the desired field compared to using ASACL.

An error analysis of the active cloaking results is presented by examining the acoustic directivity, corresponding to the
absolute acoustic pressure evaluated at a specific radial distance for all field points along the circumference, as well as the real
acoustic pressure as a function of distance from the cylinder centre. Figs. 12(a)e14(a) present the acoustic directivity at r ¼ 3a
for the incident field, the actively cloaked field when accounting for flow, and the controlled field when neglecting flow, using



Fig. 13. (a) Acoustic directivities at a radial distance of r ¼ 3a and (b) acoustic pressure as a function of distance from the elastic shell along q ¼ 0 corresponding to
the incident acoustic field (solid red line), actively cloaked pressure accounting for flow of M ¼ 0:12 (dashed black line) and actively cloaked pressure without
accounting for flow (solid blue line), using ANCL (left) and ASACL (right) at the third acoustic axisymmetric resonance of the cylindrical shell under incident plane
wave excitation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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ANCL (left column) and ASACL (right column). Both control strategies exhibit identical directivities of the cloaked and incident
fields when accounting for convection, but the resultant directivity significantly deviates from that of the incident field when
neglecting convection. This effect is more pronounced using ANCL than using ASACL. This is attributed to the fact that since
ASACL employs mechanical excitation, the Doppler effect is only applied to the radiated acoustic field. However, for ANCL
which employs acoustic excitation, the Doppler effect is enhanced due to the additional contributions from the incident
component of the acoustic control sources as well as the scattered and radiated response. In Figs.12(b)-14(b), the same results
are compared as a function of distance from the cylinder centre along q ¼ 0. Effective cloaking is observed from the control
source perimeter of 2a for ANCL (left column), and from the shell surface for ASACL (right column). Significantly greater
deviation of the resultant field from that of the desired field is observed using ANCL compared with ASACL, when the effect of
flow is not taken into consideration.
5. Conclusions

Acoustic cloaking of an elastic structure in a moving fluid using active control methods has been presented. The vibro-
acoustic responses of an elastic cylindrical shell in potential flow under plane wave, monopole source and radial point
force excitationwere derived using Taylor's transformations and Donnell-Mushtari shell theory. The shell equations of motion



Fig. 14. (a) Acoustic directivities at a radial distance of r ¼ 3a and (b) acoustic pressure as a function of distance from the elastic shell along q ¼ 0 corresponding to
the incident acoustic field (solid red line), actively cloaked pressure accounting for flow of M ¼ 0:12 (dashed black line) and actively cloaked pressure without
accounting for flow (solid blue line), using ANCL (left) and ASACL (right) at the third structural resonance of the cylindrical shell under incident plane wave
excitation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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and boundary conditions on the interior and exterior shell surfaces were solved in the transformed domain. Scattering theory
was applied to resolve the exterior and interior acoustic field coefficients for the different acoustic and structural excitation
cases. Results for the first three acoustic spinning resonances, acoustic axisymmetric resonances and structural resonances
were presented in the absence and presence of convected flow. Two active control approaches were implemented to
acoustically cloak the elastic cylindrical shell in a moving fluid. In the first control approach using ANCL, acoustic control
sources in the exterior fluid domain were uniformly distributed in a circumferential array around the cylindrical shell. In the
second control approach using ASACL, point control forces were uniformly distributed to directly excite the elastic shell.
ASACL was shown to have several distinct advantages over ANCL. First, the control effort was reduced as the number of
required control inputs was lower. Second, using ASACL the cloaked exterior field took effect from the shell surface whereas
using ANCL, the acoustic domain between the shell and acoustic control sources was uncloaked. Further, using ANCL, any
departure in the cloaking process yielded significantly greater deviation of the resultant field from that of the desired field
compared to using ASACL.
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