
Adaptive Graph Convolutional Recurrent Network
for Traffic Forecasting

Lei Bai
UNSW, Sydney

baisanshi@gmail.com

Lina Yao
UNSW, Sydney

lina.yao@unsw.edu.au

Can Li
UNSW, Sydney

can.li4@student.unsw.edu.au

Xianzhi Wang
University of Technology Sydney
xianzhi.wang@uts.edu.au

Can Wang
Griffith University

can.wang@griffith.edu.au

Abstract

Modeling complex spatial and temporal correlations in the correlated time series
data is indispensable for understanding the traffic dynamics and predicting the
future status of an evolving traffic system. Recent works focus on designing com-
plicated graph neural network architectures to capture shared patterns with the help
of pre-defined graphs. In this paper, we argue that learning node-specific patterns
is essential for traffic forecasting while the pre-defined graph is avoidable. To
this end, we propose two adaptive modules for enhancing Graph Convolutional
Network (GCN) with new capabilities: 1) a Node Adaptive Parameter Learning
(NAPL) module to capture node-specific patterns; 2) a Data Adaptive Graph Gen-
eration (DAGG) module to infer the inter-dependencies among different traffic
series automatically. We further propose an Adaptive Graph Convolutional Recur-
rent Network (AGCRN) to capture fine-grained spatial and temporal correlations
in traffic series automatically based on the two modules and recurrent networks.
Our experiments 1 on two real-world traffic datasets show AGCRN outperforms
state-of-the-art by a significant margin without pre-defined graphs about spatial
connections.

1 Introduction

The fast urbanization introduces growing populations in cities and presents significant mobility and
sustainability challenges. Among those challenges, Intelligent Transportation Systems (ITS) has
become an active research area [1], given its potential to promote system efficiency and decision-
making. As an essential step towards the ITS, traffic forecasting aims at predicting the future status
(e.g., traffic flow and speed, and passenger demand) of urban traffic systems. It plays a vital role in
traffic scheduling and management and has attracted tremendous attention from the machine learning
research community in recent years [2, 3, 4, 5, 6].

Traffic forecasting is challenging due to the complex intra-dependencies (i.e., temporal correlations
within one traffic series) and inter-dependencies (i.e., spatial correlations among multitudinous corre-
lated traffic series) [3] generated from different sources, e.g., different loop detectors/intersections
for traffic flow & traffic speed prediction, and various stations/regions for passenger demand pre-
diction. Traditional methods simply deploy time series models, e.g., Auto-Regressive Integrated
Moving Average (ARIMA) and Vector Auto-Regression (VAR), for traffic forecasting. They cannot
capture the nonlinear correlations nor intricate spatial-temporal patterns among large scale traffic

1Code available at: https://github.com/LeiBAI/AGCRN
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data. Recently, researchers shift to deep-learning-based methods and focus on designing new neural
network architectures to capture prominent spatial-temporal patterns shared by all traffic series. They
typically model temporal dependencies with recurrent neural networks [7, 8, 9, 10] (e.g., Long-Short
Term Memory and Gated Recurrent Unit) or temporal convolution modules [3, 4]. Regarding spatial
correlations, they commonly use GCN-based methods [2, 4, 3, 6, 11, 5, 12] to model unstructured
traffic series and their inter-dependencies.

Figure 1: Examples of traffic flow with diverse
patterns. The traffic flow of road 3 is steady in the
day time. As a contrast, the traffic flows of road 1,
2 and 4 have obvious evening peak, morning peak,
and both peaks, respectively.

While recent deep-learning-based methods
achieve promising results, they are biased to the
prominent and shared patterns among all traffic
series—the shared parameter space makes cur-
rent methods inferior in capturing fine-grained
data-source specific patterns accurately. In
fact, traffic series exhibit diversified patterns (as
shown in Fig. 1), they may appear similar, dis-
similar, and even contradictory owning to the
distinct attributes across a variety of data sources
[7, 13]. Moreover, existing GCN-based methods
require pre-defining an inter-connection graph
by similarity or distance measures [14] to cap-
ture the spatial correlations. That further re-
quires substantial domain knowledge and is sen-
sitive to the graph quality. The graphs generated in this manner are normally intuitive, incomplete,
and not directly specific to the prediction tasks; they may contain biases and not adaptable to domains
without appropriate knowledge.

Instead of designing more complicated network architectures, we propose two concise yet effective
mechanisms by revising the basic building block of current methods (i.e., GCN) to solve the above
problems separately. Specifically, we propose to enhance GCN with two adaptive modules for traffic
forecasting tasks: 1) a Node Adaptive Parameter Learning (NAPL) module to learn node-specific
patterns for each traffic series—NAPL factorizes the parameters in traditional GCN and generates
node-specific parameters from a weights pool and bias pool shared by all nodes according to the node
embedding; 2) a Data Adaptive Graph Generation (DAGG) module to infer the node embedding
(attributes) from data and to generate the graph during training. NAPL and DAGG are independent and
can be adapted to existing GCN-based traffic forecasting models both separately and jointly. All the
parameters in the modules can be easily learned in an end-to-end manner. Furthermore, we combine
NAPL and DAGG with recurrent networks and propose a unified traffic forecasting model - Adaptive
Graph Convolutional Recurrent Network (AGCRN). AGCRN can capture fine-grained node-specific
spatial and temporal correlations in the traffic series and unify the nodes embeddings in the revised
GCNs with the embedding in DAGG. As such, training AGCRN can result in a meaningful node
representation vector for each traffic series source (e.g., roads for traffic speed/flow, stations/regions
for passenger demand). The learned node representation contains valuable information about the
road/region and can be potentially applied to other tasks [15].

We evaluate AGCRN on two real-world datasets for the multi-step traffic prediction task and com-
pare it with several representative traffic forecasting models. The experimental results show that
AGCRN outperforms state-of-the-art with a significant margin. We also conduct ablation studies and
demonstrate the effectiveness of both NAPL and DAGG.

2 Related Work

Correlated time series prediction Traffic forecasting belongs to correlated time series analysis
(or multivariate time series analysis) and has been studied for decades. In recent years, deep
learning has dominated the correlated time series prediction due to its superior ability in modeling
complex functions and learning correlations from data automatically. A majority of such studies
[16, 17, 10, 8, 18, 19, 20, 21] rely on LSTM or GRU to model the temporal dynamics in the time
series data. Some efforts employ temporal convolutional networks [22, 23, 24] to enable the model
process very long sequence with fewer time. However, these studies do not explicitly model the
inter-dependencies among different time series. A very recent work [25] uses transformers for
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correlated time series prediction. Such work normally requires massive training samples due to
tremendous trainable parameters [26].

GCN based Traffic forecasting Different with general correlated time series prediction, traffic
forecasting researches also pay more attention to spatial correlations among the traffic series from
different sources (spaces/regions/sensors) except for the temporal correlations. A part of these
studies [27, 28, 7, 9] utilize CNN to capture spatial correlations among near regions based on the
assumption that traffic series are generated from grid-partitioned cities [28], which does not always
hold. To develop more general and widely-used traffic forecasting methods, researchers are shifting
to GCN-based models in recent years. These efforts [4, 3, 29, 5, 6, 11, 14, 30, 31] formulate the
traffic forecasting problem on graph and utilize the spectral GCN developed in [32, 33] for capturing
the prominent spatial interactions among different traffic series. DCRNN [2] re-formulates the spatial
dependency of traffic as a diffusion process and extends the previous GCN [32, 33] to a directed graph.
Following DCRNN, Graph Wavenet [5] combines GCN with dilated causal convolution networks for
saving computation cost in handling long sequence and propose a self-adaptive adaptive adjacency
matrix as a complement for the pre-defined adjacent matrix to capture spatial correlations. More
recent works such as ASTGCN [6], STSGCN [11] and GMAN [12] further add more complicated
spatial and temporal attention mechanisms with GCN to capture the dynamic spatial and temporal
correlations. However, these methods can only capture shared patterns among all traffic series and
still rely on the pre-defined spatial connection graph.

Graph Convolutional Networks GCN [32, 33] is a special kind of CNN generalized for graph-
structured data, which is widely used in node classification, link prediction, and graph classification
[34]. Most of these works focus on graph representation, which learns node embedding by integrating
the features from node’s local neighbours based on the given graph structure. To manipulate
neighbours’ information more accurately, GAT [35] learns to weight the information from different
neighbours with attention scores learned by multi-head self-attention mechanism. DIFFPOOL [36]
enhances GCN with node clustering to generate hierarchical graph representations. Different from
these works dealing with static features, our work deals with dynamically evolving streams and
operates on both spatial and temporal dimensions without the given graph structure.

3 Methodology

3.1 Problem Definition

We target on the multi-step traffic forecasting problem. Consider multitudinous traffic series that
contains N correlated univariate time series represented as X = {X:,0,X:,1, ...,X:,t, ...}, where
X:,t = {x1,t, x2,t, ..., xi,t, ...xN,t}T ∈ RN×1 is the recording of N sources at time step t, our target
is to predict the future values of the correlated traffic series based on the observed historical values.
Following in the practice in the time series prediction, we formulate the problem as finding a function
F to forecast the next τ steps data based on the past T steps historical data:

{X:,t+1,X:,t+2, ...,X:,t+τ} = Fθ(X:,t,X:,t−1, ...,X:,t−T+1) (1)

where θ denotes all the learnable parameters in the model. In order to accurately manipulate the
spatial correlations between different traffic series, the problem is further formulated on graph
G = (V ,E,A), where V is a set of nodes represent the sources of traffic series and |V | = N , E is a
set of edges, andA ∈ RN×N is the adjacent matrix of the graph representing the proximity between
nodes or traffic series (e.g., a function of traffic network distance or traffic series similarity). Thus,
the problem is modified as:

{X:,t+1,X:,t+2, ...,X:,t+τ} = Fθ(X:,t,X:,t−1, ...,X:,t−T+1;G) (2)

3.2 Node Adaptive Parameter Learning

Most recent work in traffic forecasting deploys GCN to capture the spatial correlations among traffic
series and follows the calculations proposed in the spectral domain [32, 33]. According to [33], the
graph convolution operation can be well-approximated by 1st order Chebyshev polynomial expansion
and generalized to high-dimensional GCN as:

Z = (IN +D−
1
2AD−

1
2 )XΘ + b (3)
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where A ∈ RN×N is the adjacent matrix of the graph, D is the degree matrix, X ∈ RN×C and
Z ∈ RN×F are input and output of the GCN layer, Θ ∈ RC×F and b ∈ RF denote the learnable
weights and bias, separately. From the view of one node (e.g., node i), the GCN operation can be
regarded as transforming the features of node Xi ∈ R1×C to Zi ∈ R1×F with the shared Θ and
b among all nodes. While sharing parameters may be useful to learn the most prominent patterns
among all nodes in many problems and can significantly reduce the parameter numbers, we find
its sub-optimal for traffic forecasting problems. Except for the close spatial correlations between
close related traffic series, there also exist diverse patterns among different traffic series due to the
dynamic propriety of time series data and various factors of the node that could influence traffic. On
the one hand, the traffic streams from two adjacent nodes may also present dissimilar patterns at
some particular period because of their specific attributes (e.g., PoI, weather). On the other hand, the
traffic series from two disjoint nodes may even show reverse patterns. As a result, only capturing
shared patterns among all nodes is not enough for accurate traffic forecasting, and it is essential to
maintain a unique parameter space for each node to learn node-specific patterns.

However, assigning parameters for each node will result in Θ ∈ RN×C×F , which is too huge to
optimize and would lead to over-fitting problem, especially when N is big. To solve the issue,
we propose to enhance traditional GCN with a Node Adaptive Parameter Learning module, which
draws insights from the matrix factorization. Instead of directly learning Θ ∈ RN×C×F , NAPL
learns two smaller parameter matrix: 1) a node-embedding matrix EG ∈ RN×d, where d is the
embedding dimension, and d << N ; 2) a weight poolWG ∈ Rd×C×F . Then, Θ can be generated
by Θ = EG ·WG . From the view of one node (e.g., node i), this process extracts parameters Θi for i
from a large shared weight poolWG according to the node embedding EiG , which can be interpreted
as learning node specific patterns from a set of candidate patterns discovered from all traffic series.
The same operation can also be used for b. Finally, the NAPL enhanced GCN (i.e., NAPL-GCN) can
be formulaed as:

Z = (IN +D−
1
2AD−

1
2 )XEGWG +EGbG (4)

3.3 Data Adaptive Graph Generation

Another problem lies in existing GCN-based traffic forecasting models, which require a pre-defined
adjacent matrix A for the graph convolution operation. Existing work mainly utilizes distance
function or similarity metrics to calculate the graph in advance. There are mainly two approaches
for defining A: 1) distance function, which defines the graph according to the geographic distance
among different nodes[2, 4]; 2) similarity function, which defines the node proximity by measuring
the similarity of the node attributes (e.g., PoI information) [7, 14] or traffic series itself [3]. However,
these approaches are quite intuitive. The pre-defined graph cannot contain complete information about
spatial dependency and is not directly related to prediction tasks, which may result in considerable
biases. Besides, these approaches cannot be adapted to other domains without appropriate knowledge,
making existing GCN-based models ineffective.

To solve the issue, we propose a Data Adaptive Graph Generation (DAGG) module to infer the hidden
inter-dependencies from data automatically. The DAGG module first randomly initialize a learnable
node embedding dictionaries EA ∈ RN×de for all nodes, where each row of EA represents the
embedding of a node and de denotes the dimension of node embedding. Then, similar as defining
the graph by nodes similarity, we can infer the spatial dependencies between each pair of nodes by
multiplying EA and ETA:

D−
1
2AD−

1
2 = softmax(ReLU(EA ·ETA)) (5)

where softmax function is used to normalize the adaptive matrix. Here, instead of generatingA and
calculating a Laplacian matrix, we directly generateD−

1
2AD−

1
2 to avoid unnecessary and repeated

calculations in the iterative training process. During training, EA will be updated automatically to
learn the hidden dependencies among different traffic series and get the adaptive matrix for graph
convolutions. Comparing with the self-adaptive adjacent matrix in [5], DAGG module is simpler and
the learned EA has better interpret-ability. Finally, the DAGG enhanced GCN can be formulated as:

Z = (IN + softmax(ReLU(EA ·ETA)))XΘ (6)

When dealing with extremely large graphs (i.e., N is huge), DAGG may require heavy computation
cost. Graph partition and sub-graph training methods [12, 37] could be applied to address the problem.
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3.4 Adaptive Graph Convolutional Recurrent Network

Except for the spatial correlations, traffic forecasting also involves complex temporal correlations.
In this part, we introduce an Adaptive Graph Convolutional Recurrent Network (AGCRN), which
integrates NAPL-GCN, DAGG, and Gated Recurrent Units (GRU) to capture both node-specific
spatial and temporal correlations in traffic series. AGCRN replaces the MLP layers in GRU with our
NAPL-GCN to learn node-specific patterns. Besides, it discoveries spatial dependencies automatically
with the DAGG module. Formally:

Ã = softmax(ReLU(EET ))

zt = σ(Ã[X:,t,ht−1]EWz +Ebz

rt = σ(Ã[X:,t,ht−1]EWr +Ebr

ĥt = tanh(Ã[X:,t, r � ht−1]EWĥ +Ebĥ

ht = z � ht−1 + (1− z)� ĥt

(7)

whereX:,t and ht are input and output at time step t, [·] denotes the concate operation, z and r are
reset gate and update gate, respectively. E,Wz ,Wr,Wĥ, bz , br, and bĥ are learnable parameters
in AGCRN. Similar to GRU, all the parameters in AGCRN can be trained end-to-end with back-
propagation through time. As can be observed from the equation, AGCRN unifies all the embedding
matrix to be E instead of learning separate node embedding matrix in different NAPL-GCN layers
and DAGG. This gives a strong regularizer to ensure the nodes embedding consistent among all GCN
blocks and gives our model better interpretability.

3.5 Multi-step traffic prediction

To achieve multi-step traffic prediction, we stack several AGCRN layers as an encoder to capture the
node-specific spatial-temporal patterns and represents the input (i.e., historical data) as H ∈ RN×do .
Then, we can directly obtain the traffic prediction for the next τ steps of all nodes by applying a linear
transformation to project the representation from RN×do to RN×τ . Here, we do not generate the
output in the sequential manner as it would increase the time consumption significantly.

We choose L1 loss as our training objective and optimize the loss for multi-step prediction together.
Thus, the loss function of AGCRN for multi-step traffic prediction can be formulated as:

L(Wθ) =

i=t+τ∑
i=t+1

|X:,i −X′:,i| (8)

whereWθ represents all the learnable parameters in the network,X:,i is the ground truth, andX′:,i
is the prediction of all nodes at time step i. The problem can be solved via back-propagation and
Adam optimizer.

4 Experiments

4.1 Datasets

To evaluate the performance of our work, we conduct experiments on two public real-world traffic
datasets: PeMSD4 and PeMSD8 [6, 11]. PeMS means Caltrans Performance Measure System (PeMS)
[38], which measures the highway traffic of California in real-time every 30 seconds.

PeMSD4: The PeMSD4 dataset refers to the traffic flow data in the San Francisco Bay Area. There
are 307 loop detectors selected within the period from 1/Jan/2018 to 28/Feb/2018.

PeMSD8: The PeMSD8 dataset contains traffic flow information collected from 170 loop detectors
on the San Bernardino area from 1/Jul/2016 - 31/Aug/2016.

Data Preprocess: The missing values in the datasets are filled by linear interpolation. Then, both
datasets are aggregated into 5-minute windows, resulting in 288 data points per day. Besides, we
normalize the dataset by standard normalization method to make the training process more stable.
For multi-step traffic forecasting, we use one-hour historical data to predict the next hour’s data, i.e.,
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we organize 12 steps’ historical data as input and the following 12 steps data as output. We split the
datasets into training sets, validation sets, and test sets according to the chronological order. The split
ratio is 6:2:2 for both datasets. Although our method does not need a pre-defined graph, we use the
pre-defined graph for our baselines. Detailed dataset statistics are provided in the appendix.

4.2 Experimental Settings

To evaluate the overall performance of our work, we compare AGCRN with widely used baselines
and state-of-the-art models, including 1) Historical Average (HA): which models the traffic as a
seasonal process and uses the average of previous seasons (e.g., the same time slot of previous days)
as the prediction; 2) Vector Auto-Regression (VAR) [39]: a time series model that captures spatial
correlations among all traffic series; 3) GRU-ED: an GRU-based baseline and utilize the encoder-
decoder framework [40] for multi-step time series prediction; 4) DSANet [41]: a correlated time
series prediction model using CNN networks for capturing temporal correlations with one time-series
and self-attention mechanism for spatial correlations; 5) DCRNN [2]: diffusion convolution recurrent
neural network, which formulates the graph convolution with the diffusion process and combines
GCN with recurrent models in an encoder-decoder manner for multi-step prediction; 6) STGCN [4]: a
spatio-temporal graph convolutional network that deploys GCN and temporal convolution to capture
spatial and temporal correlations, respectively; 7) ASTGCN [6]: attention-based spatio-temporal
graph convolutional network, which further integrates spatial and temporal attention mechanisms to
STGCN for capturing dynamic spatial and temporal patterns. We take its recent components to ensure
the fairness of comparison; 8) STSGCN [11]: Spatial-Temporal Synchronous Graph Convolutional
Network that captures spatial-temporal correlations by stacking multiple localized GCN layers with
adjacent matrix over the time axis.

All the deep-learning-based models, including our AGCRN, are implemented in Python with Pytorch
1.3.1 and executed on a server with one NVIDIA Titan X GPU card. We optimize all the models by
Adam optimizer for a maximum of 100 epochs and use an early stop strategy with the patience of 15.
The best parameters for all deep learning models are chosen through a carefully parameter-tuning
process on the validation set.

4.3 Overall Comparison

We deploy three widely used metrics - Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Mean Absolute Percentage Error (MAPE) to measure the performance of predictive
models. Table 1 presents the overall prediction performances, which are the averaged MAE, RMSE
and MAPE over 12 prediction horizons, of our AGCRN and eight representative comparison methods.
We can observe that: 1) GCN-based methods outperform baselines and self-attention-based DSANet,
demonstrating the importance of modeling spatial correlations explicitly and the effectiveness of
GCN in traffic forecasting; 2) our method further improves GCN-based methods with a significant
margin. AGCRN brings more than 5% relative improvements to the existing best results in MAE and
MAPE for both PeMSD4 and PeMSD8 dataset. Fig. 2 further shows the prediction performance at
each horizon in the PeMSD4 dataset. AGCRN balances short-term and long-term prediction well
and achieves the best performance for almost all horizons (except for the first step). Besides, the
performance of AGCRN deteriorate much slower than other GCN-based models (see appendix for
similar results in the PeMSD8 dataset).

Overall, the results demonstrate that AGCRN can accurately capture the spatial and temporal correla-
tions in the correlated traffic series and achieve promising predictions.

4.4 Ablation Study

To better evaluate the performance of NAPL and DAGG, we conduct a comprehensive ablation
study. The baseline for our ablation study is GCGRU, which integrates traditional GCN with GRU
to capture spatial and temporal correlations. We construct NAPL-GCGRU by replacing traditional
GCN with our NAPL-GCN and DAGG-GCGRU by replacing the pre-defined graph with the DAGG
module. AGCCRN-I is the variant of our AGCRN, which does not unify the node embeddings but
employs an independent node embedding matrix among different NAPL-GCN layers and DAGG. The
experiments on the PeMSD4 dataset are illustrated in Fig. 3. We can observe that: 1) NAPL-GCGRU
generally outperforms GCGRU and AGCRN-I outperforms DAGG-GCGRU, demonstrating the
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Table 1: Overall prediction performance of different methods on the PeMSD4 dataset and PeMSD8
dataset, results with * are reported performance in the paper used the same datasets and results with
__ are the best performance achieved by baselines. (smaller value means better performance)

Model Dataset PeMSD4 PeMSD8

Metrics MAE RMSE MAPE MAE RMSE MAPE

HA 38.03 59.24 27.88% 34.86 52.04 24.07%

VAR 24.54 38.61 17.24% 19.19 29.81 13.10%

GRU-ED 23.68 39.27 16.44% 22.00 36.23 13.33%

DSANet [41] 22.79 35.77 16.03% 17.14 26.96 11.32%

DCRNN [2] 21.22 33.44 14.17% 16.82 26.36 10.92%

STGCN [4] 21.16 34.89 13.83% 17.50 27.09 11.29%

ASTGCN [6] 22.93 35.22 16.56% 18.25 28.06 11.64%

STSGCN [11] 21.19* 33.65* 13.90%* 17.13* 26.86* 10.96%*

AGCRN (ours) 19.83 32.26 12.97% 15.95 25.22 10.09%

Improvements +6.29% +3.52% +6.22% +5.17% +4.32% +7.60%

(a) MAE (b) RMSE (c) MAPE

Figure 2: Prediction performance comparison at each horizon on the PeMSD4 dataset.

necessity of capturing node-specific patterns. Moreover, NAPL mainly enhances the long-term (e.g.,
30Min and 60 Min) prediction but slightly harms the short-term (e.g., 5Min and 15 Min) prediction.
We conjecture the reason is that long-term prediction lacks enough useful information from historical
observations and thus benefits from the specific node embedding learned by the NAPL module to
deduce future patters. At the same time, short-term prediction can obtain enough information from
historical observations. 2) DAGG-GCGRU improves GCGRU, and AGCRN-I beats NAPL-GCGRU.
Both demonstrate the superiority of DAGG in inferring spatial correlations. The results also indicate
that GCN-based methods can potentially be applied to more general correlated time series forecasting
tasks with the help of our DAGG module, and pre-defining an adjacent matrix is not necessary; 3)
AGCRN achieves the best performance, demonstrating that we can share the node embedding among
all the modules and learn a unified node embedding for each node from the data.

Overall, our NAPL and DAGG modules can be deployed either separately and jointly, and they
consistently boost the prediction performance.

4.5 Model Analysis

Graph Generation To further investigate DAGG, we compare it with two variants: 1) DAGG-r,
which removes the identity matrix in Eq. 6; 2) DAGG-2 which mimics the second-order Chebyshev
polynomial expansion in GCN [4, 33] with our learned D−

1
2AD−

1
2 . The backbone network is

AGCRN-I, which does not share the embedding matrix among NAPL-GCN and DAGG to avoid the
constraints from the NAPL module. As shown in Table 2 (where DAGG-1 follows Eq. 6), removing
the identity matrix from DAGG significantly harms the prediction performance, which presents the
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(a) MAE (b) MAPE

Figure 3: Ablation study on the PeMSD4 dataset.
Figure 4: Influence of the embed-
ding dimension.

importance of highlighting the self-information manually in prediction. Besides, DAGG-2 achieves
similar performance with DAGG-1, which is consistent with the existing works [33, 4, 2] using
pre-defined graphs. The results reveal that the generated graph Laplacian matrixD−

1
2AD−

1
2 shares

similar property as the pre-defined graph in Chebyshev polynomial expansion.

Table 2: Analysis of graph generation process on the PeMSD4 dataset.

Model 15 Min 60 Min Average

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

DAGG-r 21.85 35.03 14.96% 26.54 41.07 17.91% 23.35 37.07 15.82%

DAGG-1 19.15 30.65 13.15% 21.98 34.91 14.82% 20.18 32.30 13.70%

DAGG-2 19.26 31.20 13.06% 21.58 34.73 14.49% 20.11 32.56 13.58%

Embedding Dimension One key parameter in AGCRN is the dimensions of the node embedding,
which not only influences the quality of the learned graph but also decides the parameter diversity
in NAPL-GCN layers. Fig. 4 shows the effects of different embedding dimensions to AGCRN on
the PeMSD4 dataset. AGCRN obtains relatively good performance for all the tested embedding
dimensions, which shows the robustness of our methods. Besides, AGCRN achieves the best
performance when the embedding dimension is set to 10. Both an excessively small and large
node embedding dimension will lead to weaker performance. On the one hand, node embedding
with a larger dimension can contain more information and thus help our DAGG module to deduce
more accurate spatial correlations. On the other hand, a larger node embedding dimension will
significantly increase the parameter numbers in the NAPL module, making the model harder to
optimize and causing over-fitting. Overall, it would be a good practice for AGCRN to find a suitable
node embedding dimension and balance the model’s performance and complexity.

Computation Cost To evaluate the computation cost, we compare the parameter numbers and training
time of AGCRN with DCRNN, STGCN, and ASTGCN on the PeMSD4 dataset in Table 3. When he
node embedding dimension is set to 10, AGCRN has five times more parameters than the DCRNN
model as a sacrifice for learning node-specific patterns. In terms of the training time, AGCRN runs
slightly faster than DCRNN as we generate all predictions directly instead of the iterative manner in
DCRNN. STGCN is the fastest thanks to the temporal convolution structure. However, it will require
more parameters and training time to add spatial and temporal attention mechanisms to STGCN
for learning more accurate spatial-temporal patterns (e.g., ASTGCN). Considering the significant
performance improvement (as shown in Table 1), the computation cost of AGCRN is moderate.

5 Discussion

Multivariate/correlated time series prediction is a fundamental task for many applications, such as
epidemic transmission forecasting [42], meteorology (e.g., air quality, rainfall) prediction [43], stock
forecasting [44], and sale prediction [45]. While our work is motivated by the traffic forecasting task,
the proposed two adaptive modules and our AGCRN model may also be adapted to a wide variety of
multivariate/correlated time series predictive tasks separately or jointly. It is possible to automatically
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Table 3: The computation cost on the PeMSD4 dataset, "dim" means the dimension of E.

Model # Parameters Training Time (epoch)

DCRNN 149057 36.39 s

STGCN 211596 16.36 s

ASTGCN 450031 49.47 s

AGCRN (dim=2) 150386 33.88 s

AGCRN (dim=10) 748810 35.56 s

discover the inter-dependency among different correlated series from data, which bridges the gap
between graph-based prediction models and general correlated time series forecasting problems that
cannot pre-define the graph easily. Our future work will focus on examining the scale-ability of our
work from two perspectives: 1) data perspective - validating the performance of AGCRN on more
time series prediction tasks; 2) model perspective - adapting NAPL and DAGG to more GCN-based
traffic forecasting models.

6 Conclusion

In this paper, we propose to enhance the traditional graph convolutional network with node adaptive
parameter learning and data-adaptive graph generation modules for learning node-specific patterns
and discovering spatial correlations from data, separately. Based on the two modules, we further
propose the Adaptive Graph Convolutional Recurrent Network, which can capture node-specific
spatial and temporal correlations in time-series data automatically without a pre-defined graph.
Extensive experiments on multi-step traffic forecasting tasks demonstrate the effectiveness of both
AGCRN and the proposed adaptive modules. This work sheds light on applying GCN-based models
in correlated time series forecasting by inferring the inter-dependency from data and reveals that
learning node-specific patterns is essential for understanding correlated time series data.

Broader Impact

In general, this work enables more accurate traffic forecasting, which facilities the higher-lever traffic
scheduling such as taxi dispatch and route planing. In this way, our work can help save time for
travelers, improve efficiency and income for transport operators, and save energy consumption. In a
broad sense, adaptability is desirable in correlated time series analysis for broad social and business
applications in the era of big data. The proposed adaptive modules enable elevated robustness of data
analysis and relevant applications based on dynamic, interdependent, time-series data. This research
generally supports better modeling and analysis of multiple channels of data based on graph structures
with complex explicit and implicit correlations. It has implications and potentially accelerates the
research progress in address many world-scale economic and societal issues that rely on complex
times series data, such as predictions of influenza outbreak, economic growth, and climate change. A
potential negative impact of this work is the fairness problem in the ride-sharing platforms. In the
case that cabs supply cannot guarantee demand, platforms may emphasize the predicted high-demand
areas too much, which would increase the waiting time of travelers in the low-demand areas.
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A Appendix

To support reproducibility of the results in this paper, we have submitted our code and datasets as
the supplementary information. Here, we will present the datasets statistics, evaluation metrics,
implementation details, and more results.

A.1 Datasets Statistics

The dataset used in our experiments (namely PeMSD4 dataset and PeMSD8 dataset) contain the
traffic flow data measured by road traffic sensors. As introduced in Section 3.1, we formulate the
traffic forecasting problem on a graph where each node corresponds to a traffic sensor. Our ASTGCN
can infer spatial proximity from data by DAGG module automatically. Thus is does not require
pre-defining the adjacent matrix. For graph-based baselines, we reuse the pre-defined graph given in
[11] to capture spatial correlations. The connectivity between different nodes is determined by the
actual road network. If two monitors are on the same road, then they are considered connected. The
statistics about the two datasets are shown in Table 4.

Table 4: Summary statistics of the PeMSD4 and PeMSD8 dataset

Dataset Time Span #Nodes #Edges #Samples Data Range Median

PeMSD4 1/Jan/2018 - 28/Feb/2018 307 340 16992 0 ∼919 180

PeMSD8 1/Jul/2016 - 31/Aug/2016 170 277 17856 0 ∼1147 215

A.2 Evaluation Metrics

We use three evaluation metrics to measure the performance of predictive models. LetX:,i ∈ RN×1

be the ground truth traffic of all nodes at time step i,X′:,i ∈ RN×1 be the predicted values, and Ω be
indices of observed samples. The metrics are defined as follows.

Mean Absolute Error (MAE)

MAE =
1

|Ω|
∑
i∈Ω

|X:,i −X′:,i|

Root Mean Square Error (RMSE)

RMSE =

√
1

|Ω|
∑
i∈Ω

(X:,i −X′:,i)2

Mean Absolute Percentage Error (MAPE)

MAPE =
1

|Ω|
∑
i∈Ω

∣∣∣∣X:,i −X′:,i
X:,i

∣∣∣∣
A.3 Implementation Details

The details of the baselines are as follows:

• HA: the historical average model operates on each traffic series separately, and it averages
all the historical traffic at the same time slot to predict current traffic. Historical Average
does not depend on recent data and thus the performance is invariant for 12 forecasting
horizons.

• VAR: we implement the VAR model based on statsmodel python package and search the
number of lags among {1, 3, 6, 9, 12}. The number of lags is set to 12 for both PeMSD4
and PeMSD8 datasets.
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• GRU-ED: we implement an encoder-decoder model based on GRU with Pytorch. GRU-ED
contains two layers of GUR for both encoder and decoder; each layer has 128 hidden units.
A fully-connected layer projects the output of the decoder at each time step to a prediction.
We set the batch size to 64, learning rate to 0.001, and the loss function to L1 when training
the model.

• DSANet: we reuse the code released in the original paper and tune the parameters carefully
for our dataset according to the validation error. We set the CNN filter size to 3, number
of CNN kernels to 64, number of attention blocks to 3, dropout probability to 0.1, and the
learning rate to 0.001.

• DCRNN: similar to GRU-ED, the DCRNN model also deploys the ecoder-decoder frame-
work for multi-step traffic forecasting. It contains two-layers DCGRU for both encoder and
decoder. We set the number of GRU hidden units to 64, the maximum step of randoms
walks to 3, the initial learning rate to 0.01. We decrease the learning rate tby 1

10 every 20
epochs starting from 10th epochs.

• STGCN: STGCN contains two spatial-temporal convlutional blocks, one temporal convo-
lutional layer and one output layer. Different from the original STGCN, we implement
the output layer to generate prediction for all horizons at one time (instead of one step per
time). Following the practice of STGCN, we set the size of temporal kernel to 2, the order of
Chebyshev polynomials to 1, and the filter number to 64 for both CNN and GCN. Besides,
We set the learning rate to 0.003 for the PeMSD4 dataset and 0.001 for the PeMDS8 dataset.

• ASTGCN: The orginal ASTGCN model ensembles three bolocks to process the recent, daily-
periodic, and weekly-periodic segments for capturing multi-scale temporal correlations. We
take its recent component that only uses recent input segments for a fair comparison. For
implementation, we reuse the code and parameters released in the original paper and train
the model with a L1 loss function.

• STSGCN: We reuse the results reported in the original paper directly for our overall com-
parison as it conducts experiments on the PeMSD4 and PeMSD8 datasets with the same
evaluation metrics.

AGCRN: Our model stacks two layers AGCRN to capture the node-specific spatial and temporal
dynamics. The output at the last step is used as the representation of the historical traffic series,
which is directly mapped to the predictions for all horizons by linear transformation . For the
hype-parameters, we set the hidden unit to 64 for all the AGCRN cells and the batch size also to 64.
We search the learning rate among {0.0007, 0.001, 0.003, 0.005, 0.009}, the embedding dimension
among {1, 3, 5, 10, 15, 20, 30} for the PeMSD4 dataset and among {1, 2, 3, 5, 8, 10, 15} for the
PeMSD8 dataset. Finally, the learning rate is set to 0.003 for both datasets, and the embedding
dimension is to 10 for the PeMSD4 dataset and 2 for the PeMSD8 dataset. Besides, we choose L1
Loss as the loss function and do not use any non-mentioned optimization tricks such as learning rate
decay, weights decay, or gradient normalization when training our model.

For all the deep learning models, we optimize them with the Adam optimizer for 100 epochs and use
an early stop strategy with the patience of 15 by monitoring the loss in the validation set.

A.4 Multi-step Prediction on PeMSD8

(a) MAE (b) RMSE (c) MAPE

Figure 5: Prediction performance comparison at each horizon on the PeMSD8 dataset.
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Fig. 5 presents the prediction performance of our AGCRN and baselines at each horizon on the
PeMSD8 dataset. STSGCN is not included because the step-wise results of it are not reported in
[11]. Besides, we omit HA as it’s performance is consistent for all 12 horizons. Our AGCRN
model outperforms existing baselines with a significant margin, especially for long-term predictions.
Besides, the performance of AGCRN deteriorates much slower than the other GCN-based models.
The observations are similar on the PeMSD4 dataset.

A.5 Prediction Visualization

(a)

(b)

(c)

Figure 6: Traffic forecasting visualization.
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(a)

(b)

(c)

Figure 7: Traffic forecasting visualization.
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