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Abstract 

 In this paper, a topology of a multi-input renewable energy system, including a PV system, a wind 

turbine generator, and a battery for supplying a grid-connected load is presented. The system utilises 

a multi-winding transformer to integrate the renewable energies and transfer it to the load or battery. 

The PV, wind turbine, and battery are linked to the transformer through a full bridge dc-ac converter 

and their energy supplied to a grid-connected single-phase inverter and loads. A phase shift control 

technique is employed to control the power flow between the sources and loads and the grid. To control 

the power flow, simple PI controllers have been used. The operation details and control techniques of 

the system are presented and also validated by using numerical simulations. 
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1. Introduction 

         Multi-port converters have been an attractive research topic over the past decade due to their 

application in the integration of several renewable energy sources into a single power processing unit. 

Therefore, a large number of multi-port converter topologies have been introduced in the literature so 

far [1]-[9]. The proposed topologies can be classified as the topologies operate based on the series or 

parallel connection of small conversion cells [10], the time-sharing concept [11]-[13], and magnetic 

flux additivity [14]. Furthermore, some of them have the property of bidirectional power flow between 

the connected ports, while others are unidirectional only [15]. Among the proposed topologies, those 



 
 

are based on magnetic-coupling through a multi-winding transformer have attracted more attention 

due to their excellent features in terms of flexibility, safety, isolation and operational power range. 

This provides an isolation between the ports and facilitate connecting several sources having 

substantially different operating voltages thanks to the transformer turns ratio [16]. On the other hand, 

a simpler power flow control can be achieved by using a phase-shift control technique [17]-[19]. A 

complete study on the magnetically coupled multi-port converters have been presented in [16]-[20]. It 

should be noted that the system operation and design of multi-winding high-frequency transformer 

become very complex in the case of large number windings [21]-[24]. A magnetically coupled 

converter with two input and one output is presented in [25] where instead of combining input dc 

sources in electric form, they are combined in magnetic form by adding up the produced magnetic 

fluxes together using the magnetic core of the multi-winding transformer. The power flow in the 

proposed converter has been drawn from two different dc sources and delivered to the load individually 

and simultaneously [16]. The converter is able to accommodate voltage variations of the sources by 

using the current-fed H-bridge converters. However, the topology is not able to maintain a bidirectional 

power flow and the current stress of the switching devices is high [16]. A three-port converter was 

proposed in [26] to couple a fuel cell and a battery system and the topology was also recommended in 

[27] for application in an uninterruptible power supply (UPS). Using batteries along the renewable 

energy sources increases the energy management flexibility [27], [28]. However, many technical 

points need to be considered when using batteries as energy storage [29]. As another application, a 

three-port converter is introduced using two current-fed ports to interface several energy storage 

elements such as batteries and super capacitors [30]. As a recent application, the magnetically coupled 

multi-port converter is used in a hybrid energy system for a residential house [17], [19]. The proposed 

topology enables the system to operate based on the different control techniques and energy 

management scenarios [16].  

     The conventional technique of coupling converter ports to the multi-winding transformer is using 

H-bridge dc-ac converters to generate a high-frequency rectangular waveform from the input dc 



 
 

voltage as discussed in more detail in [16],[31],[32].  The power flow control then can be realized by 

applying leading or lagging phase shift between the generated waveforms. The topology is suitable for 

medium-power applications (a few kilowatts) and the main advantages are simultaneous bidirectional 

power transfer between any input to any output, the possibility of soft-switched operation for all 

coupled H-bridges, galvanic isolation between the input and outputs, capability of matching different 

voltage levels using transformer turns ratio and centralized control [16]. However, there are some 

disadvantages, such as a large number of switching devices, limited soft-switched region when 

operating with wide input voltage ranges and complexity of transformer design [16],[17]. The problem 

of soft-switching range in the case of using variable dc sources as the input source can be reduced by 

applying duty cycle control to the generated waveforms or using current-fed H-bridge converters 

instead of simple H-bridges [33]. In [34], the authors studied some other bridge converters with 

possibility of using in the phase shift converters. To analyse the multi-port phase shift converters, the 

multi-port topology can be decomposed into the simple dual active bridge (DAB) converter topologies 

as is discussed in [6], [16],[35].  The DAB converter was proposed by Kheraluwala and Divan in [36] 

and more detailed analysis was provided in [37]. The topology has been widely studied in the literature 

and modified considerably over the last decade. The improvement in the switching conditions of the 

bridge converter is studied in [38], [39] and the problem of circulating reactive power and possible 

solutions have been studied [40], [41].  

    In this paper, a multi-port phase shift converter topology based on a multi-winding high-frequency 

transformer for integrating a PV system, a wind turbine generator and a battery is introduced to supply 

a set of grid-connected domestic loads. The topology has several advantages compared to the other 

solutions based on the dc and ac bus topologies. It provides galvanic isolation between the ports, a 

bidirectional power flow by providing a magnetic bus and also an easier way to control the power flow 

between the ports by using the phase-shift technique. The system is designed to transfer the power 

from renewable energy sources to the battery, load and grid. However, the power can be supplied from 

the grid to the battery in the reverse direction when is required which increases the flexibility of the  
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system compared to the other proposed multi-port converter topologies. The system operation principle 

is discussed in detail and the control technique is also studied. Numerical simulation of the proposed 

topology and control technique is carried out using PSIM software and the experimental tests are 

conducted to show the validity of system operation and the proposed control techniques. 

 

2. Operation Principle of the Proposed Converter 

     The topology of the proposed Multi-port converter is presented in Fig.1. As illustrated in the figure, 

the converter topology contains four H-bridge dc-ac converters linked to a multi-winding transformer 

at one side and to a dc source at the other side. The H-bridge converter in port one is connected to a 

PV panel as a renewable energy source, port two to a wind turbine generator as the second renewable 

energy source, port three to a battery as the main energy storage device in the system, and port four to 

a high-voltage dc bus which is linked to a single phase inverter and further to the utility grid. In this 

structure, the transformer core is used as a magnetic coupling bus to transfer the power between the 

converter ports in a magnetic form [20],[21]. The main advantage of the system is that the ports having 

different operating voltages are easily matched by transformer turns ratios. They are electrically 

isolated and their relation is only in the magnetic form [16]. As presented in the figure by arrows on 

the magnetic core, the power flows mainly from the PV system and wind turbine to the battery and 

inverter ports, however, a bidirectional; power flow also can be realized between the battery and  
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inverter port. Fig.2 shows the structure of the dc-dc converter with four ports connected to the four 

winding of the high-frequency transformer. Such a structure is known as a quadruple active bridge 

(QAB) converter.  In this structure, the power flow in this system can be controlled by a phase shift 

technique as studied in detail in [16], [42]. The H-bridge converter in port four is connected to a high-

voltage dc linked as the dc voltage is going to be changed to a single-phase ac voltage by the single-

phase inverter (220 Vrms, f=50 Hz). The generated ac voltage then can be supplied to the domestic 

loads or transferred to the grid as a parallel link. The power also can be supplied by the power to the 

battery when the inverter is operating as a rectifier if the system is designed to operate as an 

uninterruptable power supply (UPS). To analyse the power flow in the system, the system can be 

simplified by using the cantilever model of the multi-winding transformer. The multi-port converter 

with N-port system can be decomposed into N (N − 1)/2 two-port converter as illustrated in Fig.3 

[15],[16].The dc sources and the H-bridge converters are combined and presented as voltage source 

with a rectangular high-frequency waveform for the sake of simplicity. The structure can be simplified 

further where all the parameters at the transformer windings in port two, three and four are referred to 

the winding in port one and the  
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Figure.3 Simplified model of the QAB converter by simplifying the multi-winding transformer using cantilever model 

 

Figure.4 The waveforms of voltage and current of port one and four in the transformer winding for three cases of (a) v1 is lagging v4, (b) 
v1 and v2 are in phase and (c) v1 is leading v2 where duty cycle of v1 (D1) and phase shift angle are presented.  
 
 

magnetizing inductance is neglected as it has no influence on the power flow. As can be seen, the 

resultant structure shows that the four-port converter topology can be decomposed in several dual 

active bridge converter. Therefore, the total power flows from each converter port can be obtained by 

summation of power flows to each individual port, referring to the simplified model in Fig.3. The 

power flow equations in the proposed converter according to the Fig.3 can be written as 

⎩
⎨

⎧ ುభశುమశುయశುరసబ
ುభసುభమశುభయశುభర
ುమసುమభశುమయశುమర

ುయసುయభశುయమశುయర
ು೔ೕసషುೕ೔ ೑೚ೝ ೔,ೕసభ,మ,య,ర

              (1) 

   To control the amount and direction of power flow, the generated rectangular waveforms are phase-

shifted from each other by controlled angles as presented in Fig.4 for the waveforms of the PV and 

inverter ports. The angles are named as δ14 to control the power flows from PV to the inverter port, δ24 

from wind turbine to the inverter port, δ13 PV to the battery, δ23 from wind turbine to the battery port 

and δ34 for the battery to the inverter port. The phase shift δij is positive when the voltage in port i lags 

the reference voltage in port j and negative when it leads the reference. The voltage of the inverter-

linked winding is presented as v4 does not have any duty cycle control and is selected as the reference 



 
 

due to its constant amplitude for convenience and the other generated waveforms have their duty cycles 

and phase shift angles defined with respect to v4. The power flows from port i to port j presented as Pij 

when the waveform in port i is one of the PV, battery and wind turbine ports are duty cycle controlled 

and j represents the port four where the waveform’s duty cycle is one can be determined as  
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where Vi is the dc voltage in port i, Vj the dc voltage in port j, ω the frequency of waveforms, Lij the 

summation of leakage inductance in windings i and j and D duty cycle in the waveform of port i as 

presented in Fig.4(a). The amount of leakage inductance in each port depends on the maxium power 

generated or is planed to be transferred from each of the PV, battery or wind turbine ports to the inverter 

port. Therefore, the range of power in each port should be taken into account. On the other hand, the 

power flow between the two ports such as PV or wind turbine to the battery port where both waveforms 

have duty cycle controlled can be presented as 
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(3) 
where Di and Dj are the duty ratio of vi and vj and vi/Di=vj/nDj and n=Nj/Ni. The waveforms frequency 
is kept constant and the leakage inductance of the transformer windings are utilised as the main energy 
transfer elements [16], [42]. A dc conversion ratio can be defined between the converter ports as  

j

i

nV

V
d           (4) 

where n = Nj/Ni is the transformer turns ratio, Ni and Nj are the numbers of turns of the transformer 

windings in ports i and j, respectively. Therefore, to analyse the four-port converter, the DAB converter 

topology should be considered as a basic step. In this topology, a full range of soft-switching operation 



 
 

is achievable when d = 1, which means an equal volt-second product of the voltage waveforms applied 

to the all transformer winding [24], [33]. In a lossless idealized circuit the maximum power flow 

between the ports can be determined from 0/  ijijP   which results in a maximum power at δij=π/2. 

However, the phase shift angles greater than π/2 results in excessive reactive power and therefore, the 

phase-shift is practically limited to less than π/2 [42]. 

3. Analysis of Control System 

   The general structure of the hybrid renewable energy system and the control unit is presented in 

Fig.5. The control unit is designed to operate in three different levels as presented in Fig.6. The first 

level is a local controller, which controls the high-frequency switching devices of the converter based 

on the pulse width modulation (PWM) technique. The power flow between the converter ports is 

controlled at this stage, and the reaction time is normally in the range of microseconds to seconds 

depending on the range of switching frequency. In the second level, the energy management in the 

system is controlled by long-term data analysis and a processing unit. The result of this stage is 

normally applied in the form of setpoint signals to the first level controllers. The reaction time at this 

stage in the range of seconds to minutes. The long-term decision on the energy distribution in the 

system is normally taken in the third level control and management unit. This stage is normally 

performed in the smart-grid control centers according to the long-term energy plans and historical data 

of the system, seasonal load profiles and other factors. The reaction time at this stage is in the range of 

hours to days. The power flow equations in (2), (3) show that the duty cycle and phase shift angle are 

the main elements that can be used as control variables. To discuss the control technique of the 

proposed converter, the simplified model of the phase shift converter facilitates the analysis. The main 

issue related to the PV and wind turbine generator as renewable energy sources is their inherent 

intermittency and uncertainty. Therefore, the generated electrical energy is variable and there is not a 

constant operation point to set the converter ports. As a result, the converter operating point in the PV 

and wind turbine ports needs to be adjusted according to the maximum available energy at any time.  
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Figure.5 General form of the proposed hybrid renewable energy system 

 

Figure.6 Block diagram of the energy management system in brief 

 

    The process is known as maximum power point tracking (MPPT) in the PV and wind turbine 

converter ports. On the other hand, the extracted electrical power from renewable energy sources 

should be continuously controlled and follows the load demand and the grid conditions and standards. 

In this paper, to realize the MPPT, the duty cycle of the switching devices in the H-bridge converters 

have been used as control variable. On the other hand, the phase shift angle between the generated ac 

voltages at the converter ports is used to control the power flow between the converter ports. Therefore, 

the duty cycle control system should be designed to operate independently of the phase shift controller. 

In theory, arbitrary power flow in the system can be realized by a unique set of phase shifts [16].  In 

the system proposed in this paper, there are multiple control objectives. The power flow control scheme  
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Figure.7 The control system for multi-port converter in the proposed system  

 
 

aims to control the power flow between the ports while regulating the dc bus voltage of the port. Fig. 

7 illustrates the designed control system containing the control variables, reference signals provided 

by the master controller and the control loops. The proportional-integral (PI) controllers have been 

used in the control loops to regulate the dc voltage and realize the MPPT operation. The PI controller 

transfer function is obtained as 

S

K
KSG i

pC )(        (5) 

where Kp and Ki are the proportional and integral control coefficients and are set as 0.01 and 0.56 

respectively. The power flow control in each converter port can be designed to regulate the voltage 

according to the provided reference signal. As voltage-type energy sources like wind turbine and PVs 

have a variable operating voltage, a power control strategy can be used as an equivalent of current 

control due to the slow change of the operating voltage of the source compared to the control 

bandwidth[16] and the dynamics of the power control loop is mainly determined by the port current.  
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Figure.8 The magnitude and phase Bode diagrams of the power control closed-loop transfer functions  

 

Therefore, the dynamics of the voltage control loop can be ignored in the control design process and 

it is regarded relatively constant value and as a gain in the control loop. Following this strategy, the 

extracted power from each of the renewable sources is controlled by using phase-shift angles (δ14 , δ24, 

and δ34) as the control variable. On the other hand, the DC bus voltage of the ports can be controlled 

by a proper selection of the duty cycles (D1, D2, and D3) of the voltages at the PV-linked windings of 

the transformer. To reduce the control conflicts between the two variables (duty cycle and the phase 

shift), the dynamic response of the power flow control loop is designed to operate faster than the 

voltage control loop by designing proper controllers and adjusting Kp and Ki. On the other hand, to 

reduce the conflict between the control loops in different converter ports, the dynamic response of the 

power control loops has been designed to operate in different speeds according to the nature and 

characteristics of the connected source as presented in Fig.8. As can be seen, the crossing frequency 

of wind turbine control loop is about 200 Hz as the slowest source and the battery as 30 kHz as the 

fastest source. The duty cycle control loops have crossing frequencies of less than 200 Hz for all three 

converter ports.  

   At the inverter side, a current control technique is used to force a unity power factor injected or 

received from the grid. Fig.9 (a) shows the current control system designed for the grid-connected 

inverter. By using this control system, the inverter output current compensates the leading or lagging 
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Figuer.9 (a) The control system for the grid-connected inverter and (b) current direction reference in the inverter output 
 
 

current of the load (reactive element of the load power) to have a unity power factor at the grid-

connected point. This is possible as referring to the current reference presented in Fig.9 (b) which 

shows that the grid current basically depends on the load and inverter currents (ig=io-iL). The energy 

management in the system uses the recorded data from previous operation times, the real-time value 

of the system parameters including voltage and current and energy cost as the main factors in 

determining the best operation scenario for the system. So the operation scenarios and power flow 

directions in each scenario are selected to satisfy the objective function in the best way. Details of the 

energy management is out of the scope of this paper and will be covered in future reports.     

4. Numerical Simulations  

      The proposed system has been simulated using PSIM and the proposed control technique is 

implemented to control the power flow between the ports. The system can operate in different 

operation modes and the power can flow between the converter ports in different ways. A proper 

selection of the operation modes during a time frame is known as energy management scenario and 

different energy management scenarios considering various effective factors have been presented in 

the literature [17], [25]. This paper is mainly focused on the operation principle and control technique 

of the proposed system and energy management discussions is out of the scope of this paper and will 

be presented in detail in future publications. To provide a better understanding of the converter 

operation, some of the simulated waveforms of voltages and currents in the converter and grid-

connected inverter have been presented and studied in this section. 

 



 
 

Table.1 System parameters for numerical simulations 
Parameters Values Parameters Values 
Leakage inductance of 
transformer windings 

L1=0.012 mH, L2=0.01 mH, 
L3=0.008 mH, L4=0.02 mH 

Switching frequency of the 
multi-port converter 

fsc=15 kHz 

Number of turns of each winding 
of the transformer 

N1=7 , N2= 6, N3=5 , N4=18 DC bus voltage V1= 110 V, V2=100 V, 
V3= 80 V, V4=300 V , 

Magnetising inductance Lm  Lm= 1.12 mH Switching frequency of Inverter fsi=10 kHz 
Rated power in each input of the 
converter  

PPV= 1200 W  , PBT=600 W 
 PWT= 800 W  

Utility grid parameters f=50 Hz, V(rms)=150 V 

PV characteristics (Totally 6 
Panels connected in two 
paralleled branches) 

Each panel: Vo=35 V, 
Imax=6 A Pmax=200 W 

Wind turbine characteristics V=100 V dc, P=800 W 
Imax=9 A  
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Figure.10 The waveforms of the voltage and current in the multi-winding transformer (a) where duty cycle in both PV and 
wind turbine ports is not controlled and, (b) the duty cycle in the wind turbine port is controlled. 
 
 
   The system parameters that have been selected in the numerical simulation are illustrated in Table.1. 

The waveforms of the voltage and current in the windings of transformer for the PV, wind turbine and 

inverter ports have been presented in Fig.10 for two different cases of the phase shift angles and duty 

cycles. The power is transferred from the PV and wind turbine ports to the inverter port as the voltage 

at the PV and wind turbine ports is leading to the inverter port in both cases.  The currents in the 

windings of the transformer have also been presented. The battery port is deactivated in the both cases 

and only three converter ports are active. As can be seen, the high-frequency voltage generated in the 

inverter port is not duty cycle controlled in both cases, however, the duty cycle of the voltage of at the 

wind turbine port is controlled in the case (b) to adjusting the dc bus voltage and compensate for slight 

increase in the wind turbine output voltage.  
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(c) 

 
Figure.11 (a) the inverter output voltage before filtering and the output current, (b) when power is transferred from the 
inverter to the grid and the load and, (c) when inverter is operating as rectifier and power is transferred in oposit direction 
from grid to the load and battery reduced back to the previous value. 
 

Fig.11 shows the inverter output waveform. The main objective for the inverter is to supply the load 

and possibly the grid from renewable energy sources or transfer the energy in reverse direction form 



 
 

the grid to the battery to charge the battery when is required. However, any energy transfer to/from the 

grid should be under the unity power factor as the main condition for the grid-connected residential 

renewable energy systems. Therefore, the inverter output is controlled to provide the required output 

current with a proper phase shift angle to satisfy the mandatory conditions. This was already discussed 

in the controller design section. Fig.11(a) shows the output voltage and current of the inverter before 

filtering for the unity power factor. Fig.11 (b) presents a case that the inverter is supplying the load 

and the grid. As the load current is slightly lagging the voltage, the inverter output is compensating the 

difference to force the grid current toward a unity power factor as ig=io-iL considering io as the inverter 

output current, iL as the load current and ig as the injected current into the utility grid. In the second 

case as presented in Fig.11 (c), the power flows in the opposite direction from the grid to the load and 

inverter (charging the battery). In this case, the inverter is operating as a rectifier in the reverse direction 

and the received current adjusted properly to compensate for the slight phase shift in the load current 

due to the inductive load effect. 

     To study the dynamic response of the power flow control, two different cases of power flow control 

have been presented in Fig.12. As can be seen, in the first case, the response of the system to a step 

changes in the load while the output power extracted from PV and the wind turbine is almost constant. 

The difference between the load demand and renewable power is compensated by the battery. 

However, it can also be supplied by the utility grid depending on the availability of the battery energy 

and the cost of the grid energy compared to the battery at the presented time. The load demand variation 

is simulated by adding/removing a resistor in parallel with the output filter capacitor. In the second 

case, the load is supplied by the battery, grid and wind turbine. When the load demand is increased, 

the demand is covered by the grid at the first stage. However, after a transient time the battery port is 

activated to undertake the demand-supply and therefore, the grid power is reduced to the previous 

value. The command for changing operation conditions is normally provided by the main control 

energy management section and the detail of energy management will be provided in future 

publications. 
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(b) 

Figure.12 Step response in the load demand and operation of the proposed system in compensation of load demand (a) 

when the load demand is compensated by the battery during the transition time, and (b) when the load demand is 

compensated by the utility grid during the transition time. 

 

5. Experimental tests 

    To validate the designed converter, a prototype of the proposed converter was developed in the lab 

as can be seen in Fig.13. Two DSP controllers (C2000/ TMS320F28335) made by Texas Instruments 

are used as local controllers to control the multi-port phase shift dc-dc converter and the single-phase 

inverter. A Laptop (Asus, FK003QM, CPU: Intel-core i7, 2.6GHz, 12GB RAM) has been used as a 

master or global controller for energy management and data record and analysis. The Hall-Effect 

voltage (LV 25-P) and current (LTSR25-NP) sensors are used to measure the voltage and currents. 

The output voltage and currents of the single-phase inverter in different active and reactive power 

conditions is presented in the following figures. 
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Figure.13 The experimentally developed multi-port converter 

 

As can be seen in Fig.14 (a), the reactive power has been changed from 1.5 kVAR to 2.25 kVAR and 

is of inductive type. However, the active power remained almost constant during the step change. The 

control system presented an acceptable performance to follow the applied step change. In Fig.14 (b), 

the reactive power injected to the utility grid by the inverter has been changed from inductive (2.55 

kVAR) to the capacitive (2.54 kVAR) with an almost constant active power (≈0.12 kW). This shows 

the ability of the proposed converter in reactive power compensation and improvement of the utility 

grid parameters such as voltage and frequency in a limited range. To show the bidirectional power 

from the to/from the utility grid, the power flow from inverter to the grid has been changed sharply 

changed to an opposite direction from the grid to the converter to charge the battery as illustrated in 

Fig.14 (c). In this case the inverter is operated in the reverse direction as a rectifier and the energy 

transferred from the grid to the battery. This shows the ability of the proposed converter to be used as 

a virtual power plant and operate as an assistant to the utility grid and also provides benefits for the 

consumer. As can be seen the inverter is supplying 1.83 kW to the load and utility grid and then the 

active power is changed to the 1.73 kW in the reverse direction to charge the battery. The experimental 

test results show that the proposed system can be used successfully not only to supply the load but also 

to improve the utility grid performance. 
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Figure.14 The experimental test results for power flow control, (a) the reactive power has been changed from 1.5 kVAR to 
2.25 kVAR and is of inductive type, (b) the reactive power injected to the utility grid by the inverter has been changed 
from inductive (2.55 kVAR) to the capacitive (2.54 kVAR) and, (c) the inverter is supplying 1.83 kW to the load and utility 
grid and then the active power is changed to the 1.73 kW in reverse direction to charge the battery. 

 



 
 

6. Conclusions 

    A multi-port converter topology for integrating a PV system, a wind turbine generator and a battery 

is presented in the paper to supply a grid-connected domestic load. The operation principle and control 

technique of the proposed system shown in detail. To validate the system topology and control 

technique, numerical simulations have been performed using PSIM software. The waveforms of the 

voltage and currents of the multi-port converter and inverter and the dynamic response of the system 

under a step-change in the load have been presented and analysed.  
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