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Abstract: Light field (LF) imaging introduces attractive possibilities for digital imaging, such as 

digital focusing, post-capture changing of the focal plane or view point, and scene depth estimation, 

by capturing both spatial and angular information of incident light rays. However, LF image 

compression is still a great challenge, not only due to light field imagery requiring a large amount 

of storage space and a large transmission bandwidth, but also due to the complexity requirements 

of various applications. In this paper, we propose a novel LF adaptive content frame skipping 

compression solution by following a Wyner–Ziv (WZ) coding approach. In the proposed coding 

approach, the LF image is firstly converted into a four-dimensional LF (4D-LF) data format. To 

achieve good compression performance, we select an efficient scanning mechanism to generate a 

4D-LF pseudo-sequence by analyzing the content of the LF image with different scanning methods. 

In addition, to further explore the high frame correlation of the 4D-LF pseudo-sequence, we 

introduce an adaptive frame skipping algorithm followed by decision tree techniques based on the 

LF characteristics, e.g., the depth of field and angular information. The experimental results show 

that the proposed WZ-LF coding solution achieves outstanding rate distortion (RD) performance 

while having less computational complexity. Notably, a bit rate saving of 53% is achieved compared 

to the standard high-efficiency video coding (HEVC) Intra codec. 
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1. Introduction 

1.1. Context and Motivations 

Light field (LF) rendering is known as an attractive form of image-based rendering (IBR) [1,2], 

which collects immense amounts of image data due to the intensity of light rays traveling in every 

angle at every point in 3D space being captured [3]. Thus, the LF image data include information 

such as the location or point ( 𝑥, 𝑦, 𝑧), the angle or direction (𝜃, ∅), the wavelength (𝛾), and the time (𝑡) 

for light rays captured in a scene. This process is defined as the Plenoptic function, 𝑃𝐿𝐹 , and explains 

the huge amount of data stored in each LF image, as an LF image can include 7D information 

(𝑃𝐿𝐹(𝑥, 𝑦, 𝑧, 𝜃, ∅, 𝛾, 𝑡)) [3]. A raw LF image is composed of micro-images (MIs), and a set of sub-

aperture images (SAIs) is obtained by rearranging the co-located pixels from each MI. Each SAI 

corresponds to a captured image from a scene from a particular point of view, which can vary slightly 

between two different SAIs [4]. In addition, information about the parallax and depth of an image 

scene can be provided by comparing SAIs. In practice, a set of constraints is introduced to the 

Plenoptic function to reduce the complexity of LF information, which is reduced to an extensive 4D 

function, as below: 



 

 

𝑃𝐿𝐹 = 𝐿(𝑢, 𝑣, 𝑥, 𝑦) (1) 

Here, the light intensity 𝑃𝐿𝐹  is indexed by the sub-aperture image (viewpoint) (𝑥, 𝑦) and the 

position (angle) within the sub-aperture image (𝑢, 𝑣). 

As an example of an LF imaging technology, LF cameras have become a promising tool for 

various research areas, e.g., richer photography using Lytro Illum [5], material analysis using Raytrix 

[6], medical imaging [7], and biometric recognition [8]. As a result of the enormous size of the photo-

realistic LF images (typically 1 GB [9]), data compression is, therefore, a challenge in terms of storage, 

processing, and transmission. Recently, the Joint Photographic Experts Group (JPEG) committee 

created a process for standardization called JPEG Pleno [10], which includes LF, point cloud, and 

holography [11]. The proposal provides an LF representation and coding with optimized viewing 

and resolution for a huge amount of data; thus, an efficient coding solution with high compression 

performance is of the utmost importance. 

In the literature, various techniques and methods for LF compression have been introduced, 

especially for LF lenslet coding and four-dimensional LF (4D-LF) coding. The LF lenslet format is a 

compact version of the LF data, which represents the LF data as a massive hexagonal array of lenslets 

(MIs) and requires additional camera metadata in order to render images of a scene. In [12–16], 

exploiting the LF lenslet compression, most of the conventional image and video coding methods 

were applied to exploit the existing spatial redundancy of MIs within a raw LF lenslet, such as JPEG, 

JPEG2000, or high-efficiency video coding (HEVC) intra coding. This idea is based on the concept of 

self-similarity compensated prediction [12]. A block-based matching algorithm is utilized to manage 

the most suitable predictor block for the current block, which is compared to the previously coded 

and reconstructed range of the current image. With two different candidate blocks, the predictor 

block can be generated. Additionally, [13,14] proposed adding new coding modes to the HEVC 

coding tools (i.e., locally linear embedding-based prediction) and adapting the intra prediction 

scheme in HEVC coding tools. In addition, to exploit the data geometry for dimensionality reduction 

of LF, [15,16] presented coding schemes for LF based on low rank approximation. Likewise, in [17], 

the author used the disparity compensated prediction method to take advantage of the existing 

spatial redundancy. In addition, the high-order prediction (HOP) model has also been considered as 

a method to achieve compression, such as in [18]. Based on a geometric transformation between the 

current block and the reference region, this method provides a high-order intra-block prediction 

method by adding HOP to HEVC intra prediction modes. Moreover, in recent works, an objective 

performance assessment of LF lenslet representation was investigated in [19]. The LF lenslet is used 

with YUV 4:4:4 encoding at 10 bit/sample, which performs well in terms of coding efficiency for 

different colored sub-sampling formats. In regard to the repeating patterns of lenslets in this 

representation, screen content coding (SCC) [20] is an efficient encoder for LF image compression. 

The work in [21] presented an efficient lenslet image coding model, which applies SCC to encode LF 

lenslets. Based on the plentiful repeating patterns of the LF lenslet representation, this approach is 

faster and more powerful than the SCC standard, with an even faster decoding time. 

On the other hand, 4D-LF represents the LF data as a stack of sub-aperture images (SAIs) 

generated from lenslets of an LF camera. In the 4D-LF coding approach, generating the 4D-LF 

pseudo-sequence is a well-known approach for LF compression. This approach involves shifting LF 

data from the still image coding aspect into the video coding aspect. The sub-aperture array is defined 

as a pseudo-sequence of different views of LF images and is compressed as a video sequence. Since 

the first exploration of the LF scanning order in [22,23], several approaches and a variety of scanning 

orders have been examined, seeking a higher redundancy among SAIs and increased compression 

efficiency [24–26]. For the inter-frame coding mode of a video codec, the similarity between SAIs is a 

significant parameter in the compression performance. In [24], a 4D-LF pseudo-sequence was created 

by organizing SAIs from the lenslet array structure. Nevertheless, the coding order and reference 

frame management are implemented coarsely in a way that does not adapt to specific scenarios. In 

[25], the author presented a solution to fully exploit information among different views. A 

hierarchical coding order is applied to encode the 2-D coding structure with the selected number of 

frames used. Based on different scanning orders in [26], the greater the viewpoint distance between 



 

 

SAIs, the less similarity between SAIs. Additionally, [27] recently presented an efficient coding 

strategy to convert the model parameters into a bitstream, which is well suited for 4D-LF 

compression. 

According to the literature, LF coding can achieve encouraging results with predictive video 

coding methods (i.e., H.264/AVC, H.265/HEVC). However, the conventional predictive video coding 

paradigm mostly focuses on one-to-many applications, which result in complex encoders but simple 

decoders—it is not suitable with simpler encoders for emerging applications, such as visual sensor 

networks, remote sensing, or visual-based Internet of Things (IoTs). In regard to the other alternative 

coding possibilities, three-dimensional discrete wavelet transform-based video coding (3-D DWT) 

[28] and compressive sensing (CS)-based video coding [29] may also be selected for emerging video 

applications due to their low encoding complexity requirements. However, in spite of the fast video 

coding provided by these techniques, 3-D DWT and CS-based video coding approaches still require 

a large amount of encoding memory and have inferior rate distortion performance when compared 

to the relevant intra-frame encoding codecs (e.g., H.265/HEVC). In this context, Wyner–Ziv (WZ) 

coding [30], a lossy distributed coding paradigm [31], introduces a low encoding complexity 

capability, whereby the motion estimation part on the encoder side is shifted to the decoder side. This 

coding approach has successfully been applied to many different forms of video and emerging 

applications, such as natural image analysis, hyperspectral images, sensor networks, and wireless 

video. WZ coding provides different coding techniques compared to conventional video coding, as 

well as notably providing a flexible distribution of the codec complexity, high compression, and 

inherent error robustness [32]. 

This type of coding manages to separately encode individual frames, which are in turn decoded 

conditionally to achieve similar efficiency to standard coding. The first WZ coding approach in [33,34] 

was applied to video signals in the real world, giving improved error resilience. Regarding WZ 

coding with LF images, several LF image compression approaches have been proposed [35–38]. In 

particular, the performance of distributed video coding for light field content was analyzed in [39]. 

In [40], the LF images were compressed by WZ coding for random access. Taking advantage of the 

WZ coding structure, the images are independently encoded by a WZ encoder while previously 

reconstructed images are applied as Side Information (SI) at the receiver to exploit the similarities 

among LF images. The results show significant compression performance compared to intra coding 

while maintaining the random access capabilities. Hence, this is a promising coding solution for LF 

images. 

1.2. Contributions and Paper Organization 

Regarding LF image coding requirements and WZ coding, the biggest challenge is the 

transmission of LF content to multiple end users with different display devices and applications 

while controlling and retaining the quality of an immense amount of data. In this sense, an efficient 

LF coding architecture is of utmost importance. Thus, extending and improving the work in [41], we 

propose a novel adaptive content frame skipping approach for LF image compression by following 

the distributed coding approach in order to achieve efficient compression performance for LF data 

with low encoding complexity. The contributions of this paper are summarized below. 

• An advanced WZ-based LF image compression solution: The well-known WZ coding approach 

is enhanced by improving the compression performance at the key frame encoder–decoder with 

state-of-the-art video compression using H.265/HEVC [42], while the advantage of the low 

complexity of the WZ procedure is utilized on the side of the WZ frame encoder–decoder. 

Additionally, an advanced channel codec (i.e., LDPC codec [43]) is applied in this WZ coding 

approach to achieve capacity approaching the performance requirements and flexible code 

designs using density evolution [44]; 

• An efficient content-driven LF image reordering mechanism: The different scanning methods 

may affect the results depending on the video content and characteristics. Based on the high 

correlation of SAIs and different content types of LF images, 4 scanning methods (i.e., spiral 

scan, hybrid scan, U-shape scan, and raster scan) are evaluated thoroughly in order to select the 



 

 

most efficient scanning methods for LF images, and also to further improve the performance of 

our WZ coding solution; 

• An adaptive skip mode decision algorithm: To further improve the proposed WZ-LF image 

coding paradigm, an adaptive skip mode decision is introduced using a decision tree rule-based 

method, which is based on the changes of spatial and temporal features of the LF content 

sequences. The associated side information is used as the final reconstructed frame when the 

skip mode is applied to WZ frames. 

The remainder of this paper is organized as follows. Section 2 gives an overview of the proposed 

LF coding architecture. Section 3 presents the novel adaptive content frame skipping algorithm. 

Afterward, Section 4 analyzes the experimental results, while Section 5 presents the conclusions and 

describes directions for future work. 

2. Overall Wyner–Ziv-Based Light Field Image Compression 

This section presents the WZ-LF image compression solution in detail. In order to achieve the 

best performance for the solution, an efficient scanning order based on LF content is analyzed and a 

content skipping algorithm is introduced. 

2.1. Proposed WZ-LF Architecture 

To achieve efficient compression performance for transmission and storage of LF images, Figure 

1 illustrates the proposed WZ coding-based LF image compression architecture. The proposed WZ-

LF coding method is strengthened compared to the original WZ architecture proposed by Girod [31] 

by improving the compression performance at the key frame encoder–decoder using the state-of-the-

art video compression codec H.265/HEVC Intra. As shown, the LF image can be processed in the 

following steps. 

  

Figure 1. Proposed WZ-LF image compression architecture. 

• At the encoder: 

The LF data are firstly unpacked and decoded into the 4D-LF representation. The SAIs within 

the 4D-LF are then grouped into a pseudo-sequence using an efficient scanning order, which is 

described in the next sub-section. The LF image compression problem is then cast as a common video 

coding problem. The first frame of every group of pictures (GOP), called a key frame, is encoded 

using the recent H.265/HEVC intra coding approach [42], with only the spatial correlation employed; 

thus, low complexity and error robustness can be achieved. For the remaining WZ frames, the 

following steps are performed: 

1. Skip mode decision: 
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In this module, the skipping decision is activated based on a decision tree algorithm [45]. The 

key frames and WZ frames are used to determine the skip or non-skip WZ frames by identifying 

texture information and motion activity in the 4D-LF pseudo-sequence. The several features are 

computed to detect changes of spatial and temporal characteristics in the video sequence, e.g., the 

sum absolute difference (SAD), gradient magnitude similarity (GMS), and variance of block (VAR). 

These features will be explained in the next sub-section. A rule-based method with decision tree 

calculates the values of decision nodes based on the features in order to make the skipping decision. 

When the skip mode decision is activated, the WZ frames are skipped in the normal WZ encoding 

and decoding procedure and the associated side information is used for the final reconstruction 

frames. This process is explained in detail in next sub-section. 

2. Discrete cosine transforms (DCT): 

For WZ frames, the discrete cosine transform (DCT) is used to exploit the statistical 

dependencies within a frame. The DCT is applied to each 4 × 4 block for WZ frames. By breaking 

down the image into a 4 × 4 block of pixels arranged from left to right and top to bottom, the WZ 

frames are transformed using a 4 × 4 DCT. Since the DCT operation has been started, the standard 

zig-zag scan order [46] within the 4 × 4 DCT coefficient blocks will group the DCT coefficient bands 

together. The coefficients are organized into 16 bands after being processed in zig-zag scan order. The 

direct current (DC) band and the alternating current (AC) band are defined as low-frequency 

information for the first band and as high-frequency information for the remaining bands. 

3. Uniform quantization: 

In order to encode WZ frames, a quantizer is then applied to each DCT band individually 

utilizing a predefined number of levels, which depend on the target quality for the WZ frame. By 

utilizing a uniform scalar quantizer with a greater number of levels (i.e., with lower step sizes), the 

lower spatial frequencies of the DCT coefficients are processed. Meanwhile, with a lower number of 

levels, the higher frequency coefficients are more coarsely quantized without significant degradation 

of the visual quality of the decoded image. Similar to [47], 8 different types of quantization matrices 

are adopted in the proposed LF compression scheme to target various quality levels and data rates. 

4. Low-density parity check (LDPC) encoding: 

In this work, to achieve lower complexity in contrast to turbo codes [48], we employ a known 

low-density parity check accumulator (LDPCA) channel encoder as the WZ encoder. A LDPCA 

encoder comprises an LDPC syndrome former integrated with an accumulator. By using LDPC code 

and modulo 2, syndrome bits are established, producing the accrued syndrome for every bit plane. 

The accrued syndromes are saved in a buffer of the encoder, then transmission of only a few of the 

syndromes in chunks is started. In case of failure at the decoder, a feedback channel is utilized in the 

encoder buffer in order to transmit more accrued syndromes. By transmitting an 8-bit cyclic 

redundancy check (CRC) sum of the encoded bit plane, the decoder is provided with the ability to 

detect residual errors. 

• At the decoder: 

1. SI generation: 

The SI is known as WZ frame estimation and is generated by a frame interpolation algorithm 

[49], with two consecutive decoded key frames at the decoder side. The SI is also considered a noisy 

version of the original WZ frame, with a reciprocal relationship between the number of parity bits 

(or bit rate) and the quality of noise estimation, i.e., the better the quality of estimation, the smaller 

the received bit rate. By estimating the correlation between the original WZ frame and the SI correctly, 

the decoding performance can be greatly improved. The better the quality of the SI that is 

interpolated, the better the quality of the final reconstructed WZ frame that can be achieved. 

Regarding correlations between frames, the 4D-LF pseudo-sequence is a series of frames with high 



 

 

correlation due to the characteristics of the LF image. Thus, achieving the best quality for SI gives a 

huge advantage in achieving impressive decoding performance. 

2. LDPC decoding: 

In this part, we describe the decoding of a bit plane given the soft input estimations of the SI and 

the parity bits transmitted from the encoder. From the decoder, in the case of an increase in the 

number of parity bits, the decoding procedure is then looped. Additionally, for inverse accumulation 

activity from the encoder, the syndrome bits are removed from the received parity bits before the 

beginning of the procedure. On these syndrome bits a sum product decoding operation is performed. 

These instructions are considered as a soft decision algorithm, with the probability of each received 

bit treated as an input. Additionally, when the decoded bit plane matches the value received from 

the encoder with the CRC sum registration, this is considered to be an effective decoding process. 

Then, the decoded bit plane is sent to the inverse quantization and reconstruction module. 

3. WZ frame reconstruction: 

In WZ frame reconstruction, the decoded quantized symbol streams relating to each DCT band 

are formed through all the bit planes related to these bands. When all decoded quantized symbols 

are received, all DCT coefficients are reconstructed with the support of the corresponding SI 

coefficients and the estimated correlation information between the original WZ and SI frames. It 

should be noted that in the proposed scheme, a correlation noise estimation process is performed at 

the decoder side and used as a decoder rate control mechanism. The corresponding DCT SI bands 

are chosen when the DCT coefficients bands with no parity bits are transmitted. The WZ frames and 

the reconstructed frames are then applied to the reconstruction function to bound the error. 

2.2. Efficient Sub-Aperture Image Arrangment 

Recently, a scanning order method was developed based on optimized reference picture 

selection for LF image coding using a low-delay configuration with H.265/HEVC [50]. However, this 

method is not suitable for our proposed WZ-LF codec, which encodes and decodes KEY and WZ 

frames with an intra coding approach. Therefore, in order to select an efficient SAI arrangement, 

several scan paths of sub-aperture images are examined, such as spiral, raster scan, U-shape, and 

hybrid scanning approaches [26], as shown in Figure 2. Combing the raster and U-shape scanning 

order, the hybrid scanning order takes advantage of the similarity of adjacent views, both 

horizontally and vertically. However, due to varying angles between SAIs, the temporal correlation 

along SAIs may be changed by different scanning orders and with different LF content. Moreover, 

the compression performance of the 4D-LF pseudo-sequence can be affected by specific content. 

Therefore, in this section we thoroughly evaluate the scanning order to verify the most effective order 

for LF images. 

Beginning with content-driven considerations, a set of LF data is collected from [51] containing 

different content types and categorized into two types: wide and narrow. The wide LF content type 

includes wide depth-of-field (WDOF), wide depth of field with subject layer (WDOF-L), and blurry 

content (BC), while the narrow type includes narrow depth of field (NDOF), narrow depth of field 

with a focus on one main subject (NDOF-1), and narrow depth of field with a focus on more than two 

subjects (NDOF-2). 

Regarding scanning methods, the four types of scanning orders (i.e., spiral scan, hybrid scan, U-

shape scan, and raster scan) are applied and computed to determine the most efficient scanning order 

for LF images. The three following LF images, i.e., spear fence 2 (NDOF), stairs (NDOF-1), and swan 

1 (WDOF-L), are selected for evaluation with a temporal frequency of 15 Hz, 193 frames, and encoded 

by the H.265/HEVC codec. 

From the RD performance results in Figure 3, the spiral scanning method may be considered the 

most suitable for LF images, as it achieves better results than the other scanning methods. Therefore, 

to achieve the best performance with our proposed WZ-LF coding solution, the spiral scanning 

method is chosen. Its performance is evaluated in detail in the next section. 
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(c) (d) 

Figure 2. Four scanning order types. (a) Raster. (b) Spiral. (c) U-shape. (d) Hybrid. 

   

Figure 3. Rate distortion (RD) performance for different scanning methods. 

3. Adaptive Content Frame Skipping Algorithm 

3.1. Observation 

Distributed video coding is well known for having low encoding complexity and for providing 

various advantageous coding techniques, i.e., flexible distribution of the codec complexity, high 

compression, and inherent error robustness [32]. This coding method is suitable for many different 

forms of video in emerging applications, e.g., sensor networks, wireless video, and surveillance 

video. 

The different video sequence types (i.e., low-motion and high-motion sequences) are considered 

to affect to the compression performance of the codec. The low-motion and high-motion sequences 

refer to high correlation and low correlation between each frame, respectively. Based on the sequence 

motion, the distributed video coding approach in common low-motion sequences (e.g., hall monitor, 

Akiyo) achieves better compression performance in comparison to traditional codecs, while the 

compression performance declines for high-motion sequences (e.g., Soccer, Foreman) [47]. 

According to the LF characteristic, adjacent views in the 4D-LF pseudo-sequences both 

horizontally and vertically exhibit higher similarity with each other. Therefore, the 4D-LF pseudo-

sequences are mostly considered low-motion sequences compared to natural videos according to the 

SAD values shown in Figure 4. 

It is noted that the frames of 4D-LF pseudo-sequence are extremely highly correlated, as shown 

in Figure 4, so skipping the most similar frames may achieve efficient compression performance. 

Therefore, an adaptive frame skipping mechanism based on a decision tree is introduced in our WZ-

LF coding solution and is described in detail in the following section. 



 

 

Figure 4. Motion comparison between four-dimensional light field (4D-LF) pseudo-sequences and 

natural sequences (NS). 

3.2. Decision Tree Based Adaptive Frame Skipping 

Following the analysis of LF data types in the previous sub-section, different data types and 

different scanning orders can lead to different values of these features, because each SAI represents 

a different perspective. In this work, we apply the iterative dichotomiser 3 (ID3) algorithm [45] to the 

frame skipping decision based on an offline training model with spatial and temporal features of the 

4D-LF pseudo-sequence. 

Based on the high correlation of SAIs and the WZ-LF architecture, it is important to identify the 

motion activity of the key frames. Thus, the two discriminative temporal features are utilized to detect 

changes in the motion of the key SAI frames, i.e., 𝐹𝑇𝑆𝐴𝐼_𝑆𝐴𝐷, the sum of absolute difference of SAI key 

frames; and 𝐹𝑇𝑆𝐴𝐼_𝐺𝑀𝑆, the similarity of the gradient magnitude employed with the Scharr operator 

[52]. The temporal features are computed as follows: 

𝐹𝑇𝑆𝐴𝐼_𝑆𝐴𝐷 = ∑ ∑ |𝐾𝐸𝑌𝑎(𝑥, 𝑦) − 𝐾𝐸𝑌𝑏(𝑥, 𝑦)|
𝑀−1

𝑦=0

𝑁−1

𝑥=0
 (2) 

where 𝐾𝐸𝑌𝑎 and 𝐾𝐸𝑌𝑏  are two consecutive SAI key frames, (𝑥, 𝑦) is the pixel location in the SAI key 

frames with size of N × M. 

𝐹𝑇𝑆𝐴𝐼_𝐺𝑀𝑆 =
2𝐺𝐾𝐸𝑌𝑎(𝑖)𝐺𝐾𝐸𝑌𝑏(𝑖) + 𝐶

𝐺𝐾𝐸𝑌𝑎
2(𝑖) + 𝐺𝐾𝐸𝑌𝑏

2(𝑖) + 𝐶
 (3) 

where 𝐺𝐾𝐸𝑌𝑎(𝑖) and 𝐺𝐾𝐸𝑌𝑏(𝑖) are the gradient magnitude of the two consecutive SAI key frames at 

𝑖 pixel location and 𝐶 is a positive constant for equation stability. 𝐺𝐾𝐸𝑌𝑎(𝑖) and 𝐺𝐾𝐸𝑌𝑏(𝑖) employ the 

convolution operation ⊗ in the horizontal 𝐷𝑥 and vertical 𝐷𝑦  directions following the Scharr filter, 

computed as: 

𝐺𝐾𝐸𝑌𝑎(𝑖) = √(𝐷𝑥 ⊗ 𝐾𝐸𝑌𝑎)2 + (𝐷𝑦 ⊗ 𝐾𝐸𝑌𝑎)
2
 (4) 

𝐺𝐾𝐸𝑌𝑏(𝑖) = √(𝐷𝑥 ⊗ 𝐾𝐸𝑌𝑏)2 + (𝐷𝑦 ⊗ 𝐾𝐸𝑌𝑏)
2
 (5) 

Regarding texture information, the spatial feature is also an essential element in order to identify 

flat and non-flat regions in the SAI WZ frames of the 4D-LF pseudo-sequence. By identifying the 

difference in texture information, the block variance is selected for content image assessment, i.e., 

𝐹𝑇𝑆𝐴𝐼_𝑉𝐴𝑅 , and is computed as 
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𝐹𝑇𝑆𝐴𝐼_𝑉𝐴𝑅 = 𝜎𝑊𝑍
2  (6) 

where 𝜎𝑊𝑍
2  is the variance of the SAI WZ frames in the 4D-LF pseudo-sequence. 

Figure 5 shows the discriminative spatial and temporal features of the SAI key frames and WZ 

frames. Notably, the value of the spatial feature covers most of the flat regions (i.e., blurred regions 

or regions with low texture), while the values of the temporal features cover non-flat regions (i.e., 

regions with depth, contrast, and saturation complexity). 

    

    

Original LF images 𝐹𝑇𝑆𝐴𝐼_𝑆𝐴𝐷  map 𝐹𝑇𝑆𝐴𝐼_𝐺𝑀𝑆 map 𝐹𝑇𝑆𝐴𝐼_𝑉𝐴𝑅 map 

Figure 5. The visualization of the spatial and temporal features, showing books in the top frames and 

bikes in the bottom frames. 

The frame skipping mechanism is based on a technique wherein the texture and motion activity 

of the two consecutive key frames and neighbor WZ frames of a 4D-LF pseudo-sequence are used for 

the selection of frames to be skipped through a decision tree rule [45]. In order to establish the skip 

and non-skip rules from the tree structure, an offline trained model is applied to the binary decision 

tree. The optimal weights for the offline model are determined by computing all temporal and spatial 

features for each LF content type as described in Algorithm 1. Based on this, the skip mode decision 

is considered for activation or not. It should be noted that neither the sample data nor the weights 

are updated for the offline model, thus, the offline model should be maintained continuously for the 

best accuracy. 

The proposed algorithm is constructed as below 

Algorithm 1 The decision-tree-based adaptive frame skipping 

Input: 4D-LF pseudo-sequence 

Output: Skip mode decision (i.e., skip or non-skip) 

Initialize the data partitioning with WZ frames (𝑊𝑍𝑡+1) and two consecutive KEY frames 

(𝐾𝑒𝑦𝑡  ;  𝐾𝑒𝑦𝑡+2). 

Extract the attribute feature as following 𝐹𝑇𝑆𝐴𝐼_𝑉𝐴𝑅;  𝐹𝑇𝑆𝐴𝐼_𝐺𝑀𝑆;  𝐹𝑇𝑆𝐴𝐼_𝑆𝐴𝐷  

Determine the threshold 𝑇ℎ𝐷 based on the average value of each features. 

1. 𝑇ℎ𝐷0 = 0; 

2. for t = 0,1,2, …, (total_frame-2) do: 

3. 𝐹𝑇𝑆𝐴𝐼_𝑆𝐴𝐷 = ∑ ∑ |𝐾𝐸𝑌𝑡+2(𝑥, 𝑦) − 𝐾𝐸𝑌𝑡(𝑥, 𝑦)|𝑀−1
𝑦=0

𝑁−1
𝑥=0  

4. 𝑇ℎ𝐷𝑆𝐴𝐼_𝑆𝐴𝐷 = 𝑇ℎ𝐷0 + 𝐹𝑇𝑆𝐴𝐼_𝑆𝐴𝐷  

5. 𝐴𝑣𝑒𝑇ℎ𝐷𝑆𝐴𝐼_𝑆𝐴𝐷 = 𝑇ℎ𝐷𝑆𝐴𝐼_𝑆𝐴𝐷/𝑇𝑜𝑡𝑎𝑙_𝑓𝑟𝑎𝑚𝑒 

6. if (𝑇ℎ𝐷𝑆𝐴𝐼_𝑆𝐴𝐷  < 𝐴𝑣𝑒𝑇ℎ𝐷𝑆𝐴𝐼_𝑆𝐴𝐷) 

7. 𝐹𝑇𝑆𝐴𝐼_𝑆𝐴𝐷 = 1 

8. end if 



 

 

9. 𝐹𝑇𝑆𝐴𝐼_𝐺𝑀𝑆 =
2𝐺𝐾𝐸𝑌𝑡(𝑖)𝐺𝐾𝐸𝑌𝑡+2(𝑖)+𝐶

𝐺𝐾𝐸𝑌𝑡
2(𝑖)+𝐺𝐾𝐸𝑌𝑡+2

2 (𝑖)+𝐶
 

10. 𝑇ℎ𝐷𝑆𝐴𝐼_𝐺𝑀𝑆 = 𝑇ℎ𝐷0 + 𝐹𝑇𝑆𝐴𝐼_𝐺𝑀𝑆 

11. 𝐴𝑣𝑒𝑇ℎ𝐷𝑆𝐴𝐼_𝐺𝑀𝑆 = 𝑇ℎ𝐷𝑆𝐴𝐼_𝐺𝑀𝑆/𝑇𝑜𝑡𝑎𝑙_𝑓𝑟𝑎𝑚𝑒 

12. if (𝑇ℎ𝐷𝑆𝐴𝐼𝐺𝑀𝑆 < 𝐴𝑣𝑒𝑇ℎ𝐷𝑆𝐴𝐼_𝐺𝑀𝑆) 

13. 𝐹𝑇𝑆𝐴𝐼_𝐺𝑀𝑆 = 1 

14. end if 

15. 𝐹𝑇𝑆𝐴𝐼_𝑉𝐴𝑅 = 𝜎𝑊𝑍𝑡+1
2  

16. 𝑇ℎ𝐷𝑆𝐴𝐼_𝑉𝐴𝑅 = 𝑇ℎ𝐷0 + 𝐹𝑇𝑆𝐴𝐼_𝑉𝐴𝑅 

17. 𝐴𝑣𝑒𝑇ℎ𝐷𝑆𝐴𝐼_𝑉𝐴𝑅 = 𝑇ℎ𝐷𝑆𝐴𝐼_𝑉𝐴𝑅/𝑇𝑜𝑡𝑎𝑙_𝑓𝑟𝑎𝑚𝑒 

18. if (𝑇ℎ𝐷𝑆𝐴𝐼_𝑉𝐴𝑅  < 𝐴𝑣𝑒𝑇ℎ𝐷𝑆𝐴𝐼_𝑉𝐴𝑅) 

19. 𝐹𝑇𝑆𝐴𝐼_𝑉𝐴𝑅 = 1 

20. end if 

21. end for 

Establish a selection method for the optimal weights 𝑊 

22. 𝑊 = 2 

23. if (𝐹𝑇𝑆𝐴𝐼𝑆𝐴𝐷
+  𝐹𝑇𝑆𝐴𝐼𝐺𝑀𝑆

+ 𝐹𝑇𝑆𝐴𝐼𝑉𝐴𝑅
>= 𝑊) 

24. Skip_mode_decision = 1 

25. else 

26. Skip_mode_decision = 0 

27. end if 

28. The skip mode decision is activated if the frame meets the optimal weight (𝑊) 

29. Generate the mode decision 

4. Performance Evaluation 

4.1. Test Conditions 

For emerging application scenarios such as visual sensor networks, remote sensing, or camera 

surveillance, low-resolution imagery is more common than high-resolution imagery; thus, we 

examine in this paper low-resolution versions of 12 common LF images (shown in Figure 6) by 

downsampling to Quarter Common Intermediate Format (QCIF) resolution with a temporal 

frequency of 15 Hz. 

      

(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Figure 6. Thumbnails of light field images: (a) game board, (b) books, (c) grave garden, (d) chain link 

fence 1, (e) black fence, (f) poppies, (g) Mirabelle prune tree, (h) bench in Paris, (i) caution bees, (j) 

fountain and bench, (k) ISO chart 13, (l) red and white building. 

Based on the high correlation of SAIs in the 4D-LF, the proposed WZ-LF coding solution is 

especially suitable for these emerging applications. Similarly, the datasets used for training are 

presented in Table 1 with 16 LF training samples. This dataset was collected from [48] and covers 

different categories and content types. To assess the performance of the proposed LF compression 

solution, these LF images are examined with the relevant coding benchmark H.265/HEVC [42] and 



 

 

HEVC-based DVC codecs [53]. The comparison analyzes two parts, i.e., the overall rate distortion 

(RD) performance and the specific coding tool performance. Regarding the development 

environment, the proposed WZ-LF coding solution is developed using the C language through Visual 

Studio 2015 and integrated with the state-of-the-art H.265/HEVC Intra. 

Table 1. List of datasets used for training. 

LF Training Samples Category 
Content 

Types 
Thumbnail Samples 

Houses and lake Landscapes 

WDOF 

 

Backlight 2 Light 

Rolex learning center Buildings 

WDOF-L 

 

Reeds Landscapes 

Backlight 1 Light 

ISO chart 15 
ISO and color 

charts 
BC 

 

Perforated metal 2 Grids 

Slab and lake Landscapes 

NDOF 

 

Bush Nature 

Wall decoration Urban 

Sewer drain Urban 

NDOF-1 

 

Sophie and Vincent 2 People 

Ankylosaurus and 

Diplodocus 2 
Studio 

Bikes Urban 

NDOF-2 

 

Danger de mort Grids 

Stone pillars outside Urban 

4.2. Overall WZ-LF Compression Performance Evaluation 

Regarding the compression performance, the RD performance is widely utilized to quantify 

video coding schemes through use of the Bjøntegaard delta - Peask Signal to Noise Ration (BD-PSNR) 

and Bjøntegaard delta rate [54]. Figure 7 presents the RD curve comparison for the proposed WZ-LF 

coding solution and the other relevant benchmarks, i.e., HEVC inter and intra coding [42] and HEVC-

based Distributed Video Codinglabeled as DVC-H.265/HEVC [53], while the BD rate and BD-PSNR 

are computed in Table 2. Some conclusions can be derived from the observed results, as shown below. 



 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Figure 7. Overall rate distortion (RD) performance evaluation for the proposed Wyner–Ziv (WZ)-LF 

coding solution: (a) Bench in Paris; (b) Black Fence; (c) Books; (d) Caution Bees; (e) Chain Link Fence 

1; (f) Fountain Bench; (g) Game Board; (h) Gravel Garden; (i) ISO Chart 13; (j) Mirabelle Prune Tree; 

(k) Poppies; (l) Red and White Building. 

• WZ-LF versus DVC-H.265/HEVC: The proposed codec uses a similar approach to DVC-

H.265/HEVC, however with significantly improved coding tools. The proposed WZ-LF achieves 

impressive results for compression performance compared to DVC-H.265/HEVC by reducing 

the bit rate by about 25%. Additionally, taking into account the adaptive mode decision for frame 

skipping, the WZ-LF architecture achieves a significant gain in compression performance of 

almost 2 dB with different content types. 

• WZ-LF versus H.265/HEVC Intra: The advantage of the proposed coding solution is applied to 

the intra coding solution at the encoder side and to the inter coding solution at the decoder side. 

Thus, the proposed WZ-LF can significantly improve the RD performance for all 4D-LF pseudo-

sequences with a variety of content types. As shown, the average BD rate reductions are 53.14%, 

52.53%, 53.22%, and 53.18% for the proposed WZ-LF solution with WDOF, NDOF, NDOF-1, and 



 

 

NDOF-2, respectively. Hence, the obtained performance improvement confirms the efficiency 

of the proposed skip mode decision in the WZ-LF architecture. 

Table 2. Bjøntegaard delta (BD) rate (%) and BD-PSNR (dB) compared to high-efficiency video coding 

(HEVC) [42] and DVC-H.265/HEVC [53]. 

LF Sequences 

Content 

Types 

WZ-LF vs. DVC-

H.265/HEVC 

(Anchor) [53] 

WZ-LF vs. 

H.265/HEVC Intra 

(Anchor) [42] 

WZ-LF (Anchor) 

vs. H.265/HEVC 

Inter [42] 

DVC-H.265/HEVC 

[53] (Anchor) vs. 

H.265/HEVC Inter [42] 

- 
BD 

Rate 

BD-

PSNR 

BD 

Rate 

BD-

PSNR 

BD 

Rate 

BD-

PSNR 

BD 

Rate 
BD-PSNR 

Red and white 

building 
WDOF −24.40 1.89 −54.75 5.27 −87.06 11.78 −90.24 13.31 

Black fence WDOF-L −21.41 2.04 −53.73 6.60 −81.84 11.70 −85.73 13.15 

ISO chart 13 BC −33.99 2.67 −50.95 4.60 −84.59 9.72 −89.74 11.45 

Content Type Average −26.60 2.20 −53.14 5.49 −84.49 11.06 −88.57 12.63 

Grave Garden 

NDOF 

−17.59 1.51 −53.18 6.23 −82.75 10.38 −85.82 11.48 

Chain link fence 

1 
−22.06 1.71 −50.44 5.01 −63.54 6.35 −71.59 8.10 

Game Board −48.29 3.58 −53.98 3.82 −82.60 8.19 −91.09 10.73 

Content Type Average −29.31 2.26 −52.53 5.02 −76.29 8.30 −82.83 10.10 

Bench in Paris 

NDOF-1 

−15.88 1.48 −54.69 6.95 −82.85 10.91 −85.59 11.95 

Caution Bees −24.53 1.67 −53.15 4.50 −84.37 9.03 −88.24 10.57 

Fountain and 

bench 
−20.29 1.47 −51.81 4.76 −79.10 8.52 −83.37 9.96 

Content Type Average −20.23 1.54 −53.22 5.40 −82.10 9.48 −85.73 10.82 

Poppies 

NDOF-2 

−32.92 2.45 −54.23 4.63 −80.49 8.31 −86.95 10.44 

Mirabelle Prune 

Tree 
−13.52 1.18 −53.40 6.42 −75.70 8.71 −79.05 9.60 

Books −25.03 1.79 −51.91 4.63 −80.68 8.48 −85.53 9.91 

Content Type Average −23.82 1.80 −53.18 5.22 −78.95 8.50 −83.84 9.98 

Total Average −24.99 1.95 −53.01 5.28 −80.46 9.34 −85.25 10.89 

• WZ-LF versus H.265/HEVC Inter: In the case of high correlation between SAIs of the 4D-LF 

pseudo-sequences, the compression performance of H.265/HEVC Inter is obviously better than 

the proposed WZ-LF with the asymmetric compression. The H.265/HEVC Inter codec can be 

considered as the upper bound of DVC-H.265/HEVC outperforming DVC-H.265/HEVC by 10.9 

dB in compression performance, however the proposed WZ-LF improves the compression 

performance by narrowing the gap by about 1.5 dB compared to DVC-H.265/HEVC. 

Additionally, the major problem with the H.265/HEVC Inter codec is its high complexity, 

meaning it is not compatible with the emerging applications considered in this work, whereas 

the proposed WZ-LF is a suitable solution. Regarding the H.265/HEVC Inter codec with no 

motion, i.e., without motion compensation, the compression performance of this codec is similar 

to H.265/HEVC Inter because of the high correlation between SAIs, as shown in Table 3. Thus, 

H.265/HEVC Inter is a suitable comparison. 

• Notes on performance variation with content types: Since the proposed WZ-LF solution 

outperforms the relevant benchmarks, i.e., DVC-H.265/HEVC and H.265/HEVC Intra, the WZ-

LF compression performance changes with content type differently to other codecs. By encoding 

individual frames in H.265/HEVC Intra, the comparison with the WZ-LF solution maintains an 

approximate 53% bit rate saving for all content types. Notably, in comparison to DVC-

H.265/HEVC, the WZ-LF solution achieves the best compression performance for the NDOF 

content type, with BD rate reductions of 29.3%, while NDOF-1 and NDOF-2 are improved 

respectively by approximately 20.2% and 23.8%, respectively. The WDOF and BC content types 

represent the low motion and high correlation between SAIs of the 4D-LF pseudo-sequence. 

Thus, the bit rate of the proposed coding solution is reduced by 34% and 54% compared to DVC-

H.265/HEVC and H.265/HEVC Intra for the BC and WDOF content, respectively. It is noticed 

that some specific LF sequences with high contrast and saturation contents, i.e., game board, 

poppies, chain link fence 1, and books, also vary in their bit rate savings and compression 



 

 

performance compared to DVC-H.265/HEVC and H.265/HEVC Intra. For instance, the proposed 

WZ-LF solution achieves bit rate savings of 48.2% and 53.9% in comparison to DVC-

H.265/HEVC and H.265/HEVC Intra, respectively, for the game board sequence. 

Table 3. BD rate (%) and BD-PSNR (dB) comparison between HEVC Inter and HEVC Inter with no 

motion. 

LF Sequences 
Content Types 

H.265/HEVC Inter vs H.265/HEVC Inter No 

Motion (Anchor) [42] 

- BD-Rate BD-PSNR 

Red and white 

building 
WDOF −0.03 0 

Black fence WDOF-L −0.13 0.01 

ISO chart 13 BC −6.33 0.32 

Content Type Average −2.16 0.11 

Grave Garden 

NDOF 

−1.97 0.10 

Chain link 

fence 1 
−18.51 1.16 

Game Board −0.87 0.04 

Content Type Average −7.11 0.43 

Bench in Paris 

NDOF-1 

−0.72 0.04 

Caution Bees −0.98 0.04 

Fountain and 

bench 
−5.42 0.28 

Content Type Average −2.37 0.12 

Poppies 

NDOF-2 

−0.41 0.02 

Mirabelle 

Prune Tree 
−1.55 0.08 

Books −1.49 0.07 

Content Type Average −1.15 0.07 

Total Average −3.20 0.18 

4.3. WZ-LF Codec with Various Coding Tools 

4.3.1. Scanning Method Assessment 

Four scanning order types, i.e., spiral, hybrid, U-shape scanning, and raster, are evaluated based 

on BD rate [54]. Regarding the common scanning method used for video coding, raster scanning is 

utilized as an anchor in order to compute the BD rate. Broken down into different data types, the BD 

rate results for the scanning methods are shown in Table 4. The hybrid and U-shape scanning orders 

achieve bit rate savings of approximately 3% compared to the raster scan for most content types, 

however for NDOF and NDOF-1 types, the BD rate performance changes compared to the raster scan, 

with bit rate savings of approximately 3% and 24%, respectively. Regarding the spiral scan, this 

method achieves an outstanding result, with an average bit rate saving of 10% for all data types 

compared to the raster scan. In particular, for the NDOF and NDOF-1 data types, this method still 

achieves impressive performance, with bit rate savings of approximately 11% and 9%, respectively. 

Thus, we could tentatively conclude that the spiral scan is the most efficient scanning method, 

especially for LF images. 

Table 4. Average (%) BD rate saving comparison for different content types. 

Sequences 
Content 

Type 

BD Rate (Raster Scan as Anchor) 

Spiral Hybrid U-Shape 



 

 

Red and white 

building 
WDOF −9.50 −2.81 −1.62 

Black fence WDOF-L −11.30 −3.59 −1.47 

Chain link fence 1 NDOF −11.20 13.34 24.83 

Fountain and bench NDOF-1 −9.14 3.11 8.53 

Poppies NDOF-2 −9.58 −3.03 −1.16 

ISO chart 13 BC −13.81 −2.97 1.07 

Average −10.75 0.67 5.03 

4.3.2. Skip Mode Assessment 

Compression Performance 

Considering the high correlation of SAIs in the 4D-LF pseudo-sequences, the decision tree 

method is applied to determine the skipping process at the encoder side of the WZ-LF architecture 

in order to enhance the compression efficiency of the WZ-LF coding solution. The spatial–temporal 

features of the 4D-LF pseudo-sequences are selected based on the depth of field changes in the 

content. According to the rules created by the offline trained model, the skip mode decision 

determines whether or not to skip the WZ encode procedure and instead encode images as normal 

4D-LF pseudo-sequences. 

Table 5 and Figure 8 show comparisons of the WZ-LF coding solution with and without the skip 

mode decision. Examining the RD performance results, it is clear that WZ-LF with skip mode has 

lower complexity than WZ-LF without skip mode, with a bit rate saving of 25%. Notably, the NDOF 

content type shows a significant improvement with a bit rate saving of 29.3%, while WDOF, NDOF-

1, and NDOF-2 achieve BD rate reductions of 26.6%, 20.2%, and 23.8%, respectively. Therefore, we 

can observe that the skip mode performs outstandingly with blurry content (34% bit rate saving) or 

content with a narrow depth of field (48% bit rate saving for the game board sequences). 
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Figure 8. RD performance evaluation of WZ-LF with skip and non-skip mode decisions: (a) Bench in 

Paris; (b) Black Fence; (c) Books; (d) Caution Bees; (e) Chain Link Fence 1; (f) Fountain Bench; (g) 

Game Board; (h) Gravel Garden; (i) ISO Chart 13; (j) Mirabelle Prune Tree; (k) Poppies; (l) Red and 

White Building. 

Table 5. BD rate (%) and BD-PSNR (dB) of the proposed skip mode. 

LF Sequences Content Types 
Skip Mode (Non-Skip Mode as Anchor) 

BD-Rate BD-PSNR 

Red and white 

building 
WDOF −24.40 1.89 

Black fence WDOF-L −21.41 2.04 

ISO chart 13 BC −33.99 2.67 

Content Type Average −26.60 2.20 

Grave Garden 

NDOF 

−17.59 1.51 

Chain link fence 1 −22.06 1.71 

Game Board −48.29 3.58 

Content Type Average −29.31 2.27 

Bench in Paris 

NDOF−1 

−15.88 1.48 

Caution Bees −24.53 1.67 

Fountain and bench −20.29 1.47 

Content Type Average −20.23 1.54 

Poppies 

NDOF−2 

−32.92 2.45 

Mirabelle Prune Tree −13.52 1.18 

Books −25.03 1.79 

Content Type Average −23.82 1.81 

Total Average −24.99 1.95 

 



 

 

 Compression Complexity 

Examining the compression complexity is an essential part of the performance evaluation. For 

this evaluation, the coding solutions are tested on the same PC with an Intel Core i7-7700HQ (2.8 

GHz) processor, 16 GB RAM, and Windows 10-Home OS. The results are shown in Figures 9 and 10, 

respectively, for Quantization parameter (QP) of 40 and of 25, with and without the skip mode 

decision. To avoid the effect of multi-thread processing during the test, the results of five repetitions 

of the same compression setting are averaged. Additionally, the time saving (%) is measured as: 

𝑇𝑖𝑚𝑒 − 𝑆𝑎𝑣𝑖𝑛𝑔 =
|𝑇𝑆𝑘𝑖𝑝 − 𝑇𝑁𝑜𝑛_𝑠𝑘𝑖𝑝|

𝑇𝑁𝑜𝑛_𝑠𝑘𝑖𝑝

× 100 (7) 

where 𝑇𝑆𝑘𝑖𝑝 and 𝑇𝑁𝑜𝑛_𝑠𝑘𝑖𝑝 are the processing time of the WZ-LF codec with and without the skip mode 

decision, respectively. 

 

Figure 9. Time complexity of the codec with and without skip mode at QP40. 

  

Figure 10. Time complexity of the codec with and without skip mode at QP25. 
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From these complexity results, it can be observed that the WZ-LF codec with the skip mode 

decision saves a significant amount of time in encoding compared to the WZ-LF codec without the 

skip mode decision. The WZ-LF with the skip mode can encode approximately 46% and 74% faster 

on average than the WZ-LF without skip mode at QP40 and QP25, respectively. 

5. Conclusions 

This paper introduces an LF adaptive content frame skipping compression solution following 

the WZ coding approach by analyzing the spatial and temporal correlation between sub-aperture 

pictures. The proposed WZ-LF coding paradigm combines the state-of-the-art H.265/HEVC codec 

with an adaptive frame skipping mechanism, along with an efficient scanning order. The proposed 

LF compression architecture provides an efficient scanning order that adapts to LF content. This 

provides optimized performance for almost all LF content data types. In addition, the up-to-date WZ 

coding solution based on embedded adaptive frame skipping decisions significantly outperforms the 

relevant H.265/HEVC Intra and DVC-H.265/HEVC codecs. In particular, the proposed coding 

solution improves the compression performance and has lower computational complexity than both 

of the relevant benchmarks. Hence, the proposed WZ-LF coding solution meets the requirements for 

many emerging applications, e.g., visual sensor networks, video surveillance, and remote space 

transmission. 

In future research, other LF image components, i.e., noise and depth maps, could be analyzed in 

order to provide better quality LF reconstruction. Thus, the proposed WZ-LF coding solution may be 

further improved. 
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