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The screening of novel materials is an important topic in the field of materials science. Although

traditional computational modelling, especially first-principles approaches, is a very useful and ac-

curate tool to predict the properties of novel materials, it still demands extensive and expensive

state-of-the-art computational resources. Additionally, they can often be extremely time consuming.

We describe a time and resource efficient machine learning approach to create a dataset of structural

properties of 18 million van der Waals layered structures. In particular, we focus on the interlayer

energy and the elastic constant of layered materials composed of two different 2-dimensional (2D)

structures, that are important for novel solid lubricant and super-lubricant materials. We show that

machine learning models can predict results of computationally expansive approaches (i.e. density

functional theory) with high accuracy.
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I. MAIN

Solid lubricants are materials that reduce friction and damage of contacting surfaces in relative motion. A good

lubricant can be identified by two main properties: shear strength and abrasivity. The dynamics of solid lubrication

show that sliding motion is followed by significant ductile shear of the solid lubricant. Therefore, the solid lubricant

must have low shear strength, which occurs in the crystalline phase by slip along preferred crystallographic planes.1

On the other hand, abrasivity is a relative property that is a function of the hardness ratio of the lubricant and the

lubricated material. Typically, the lubricant particles should be softer than the contact material to avoid abrasions.1

Clearly, thermo-chemical stability in the environment of the application is also essential. This is particularly important

for high temperature applications but is equally important for moderate temperature applications to insure adequate

storage stability and to avoid corrosion by atmospheric components such as oxygen and salt spray. According to this

description, thermo-chemically stable materials, with a low interlayer energy and low degree of hardness, are good

candidates for solid lubricant materials.

A significant drawback for the application of conventional structural materials concerns the strong anisotropic

nature of friction in homogeneous and heterogeneous interfaces with respect to their relative orientation. Even when

the interface is formed in an incommensurate ultra-low friction configuration, the contact surfaces have a tendency

to rotate towards the aligned commensurate configuration during the sliding motion and eventually lock in a high

friction state, which corresponds to a higher interaction energy.2 Low-energy-interaction/high-shear-motion structures

can be found in novel 2-dimensional (2D) van der Waals (vdW) layered structures.3,4 Van der Waals forces differ

from covalent and ionic bonding in that they are caused by correlations in the fluctuating polarizations of nearby

particles, resulting in weak, long-range forces. The vdW strength of two contacting structures is a key requirement

for lubricity/superlubricity behaviour.5

Although the mechanism of friction can be in general complicated to describe, a few works in the literature suggests

a simplification can be done in specific cases. In the text we mention sheet silicates, whose basic structure is built up

of regular sequences of tetrahedral and of octahedral (Si, Al, Mo) layers.6,7 These structures share in common with

the vdW hetero-structures the presence of in-plane strong atomic bonds and out-of -plane weak atomic bonds. In

these particular class of materials, the friction mechanism is dominated by the intensity of the atomic bonds that hold

together the layers. Furthermore, the inter-layer interaction strengths during relative sliding of layers in a 2D material

was also found in correlation with the experimentally measured frictional forces using scanning probe techniques.8,9

On the other hand, in most materials, including ceramics and inorganic composites, the hardness is directly dependent

on elastic modulus. Elastic modulus is an intrinsic material property and fundamentally related to atomic bonding,

whereas hardness is an engineering property and for some materials it can be related to yield strength. Hardness has

strong usefulness in characterization of different types of microstructures, and in general, the trend of the indentation

hardness against the elastic modulus for a large range of materials indicates that the two do increase together.10 A

simplified model can be formulated where the elastic and plastic deformation components are assumed to act in series,

with two fundamental material parameters: an elastic modulus and a “resistance to plastic deformation”. Within

this approach, the indentation hardness is actually related to both of these parameters, a it is a function of both the

elastic and plastic parts. In most materials, including ceramics and inorganic composites the contributions to the

total deformation from elastic and plastic deformation can be similar and so the results from, for example, a series of
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nanoindentation, indicate that the hardness is directly dependent on elastic modulus, that we approximate with the

C33 (see Section III A 1).11

Currently, only a few Van der Waals structures, graphite, boron nitride and molybdenum disulfide, are used as

dry lubricants. Recently, 6,138 potential single layer 2D materials have been identified and are available from the

online database, https://2dmatpedia.org. These structures have been obtained by theoretical exfoliation and ele-

mental substitution from a large number of inorganic bulk structures included in the Materials Project database

(https://materialsproject.org/).12,13 By a direct stacking, it is possible to generate 18,834,453 (FULL SET) unique

novel bilayer heterostructures from these 2D monolayers (Nb = Nm(Nm + 1)/2).14–16 Furthermore, previous re-

search has shown that stacking processes in 2D materials are self-cleaning, resulting in near ideal hybrid 2D layered

structures.17,18 Due to the large number of structures and to the nature of the vdW forces that are responsible for the

stacking, it is likely that within the generated heterostructures there will be many with low interaction energies, and

eventually a desirable softness and temperature stability to be used in super-lubricant applications. However, due to

the extremely large number of possible layer combinations, exhaustive experimental assessment is clearly infeasible.

Traditional quantum chemical computational techniques, such density functional theory (DFT), can accurately pre-

dict the properties of such materials and can be used for the discovery of new materials, however, the computational

demands of these calculations means the materials assessment process is still very slow.19,20

Here, we propose a time and resources efficient machine learning (ML) approach that, combined with a limited

number of first-principles calculations, is able to calculate and predict the interlayer energy (IE) and the elastic

constant (C33) of a large number of layered heterostructures, expanding the capabilities of a canonical theory. We use

DFT to predict the desired properties of a relatively small number of 2D layered hybrid materials. We leverage this

smaller pool of results by using them to train supervised machine learning models. The models can then rapidly and

reliably predict these quantities for a large number of structures (i.e. FULL SET) within the domain of applicability

of the models. We use a Bayesian neural network (BNN) model, which importantly provides the confidence interval

for each prediction point.21,22 While such techniques are routine within the machine learning/artificial intelligence

community theory, they are only just starting to be used widely by the materials science community, although some

introduction started already in the late 90’s.23

We calculated the interlayer energies (IE) and the elastic constant C33 for two representative subsets of all the

possible combinations of two 2D materials, consisting of ∼200 (a detailed description is in Section III A 1, and the

complete list is reposted in SI).24,25 Members of these subsets had an interlayer energy E ≤ −1.0 eV/Å2 and a

maximum lattice constant mismatch of 2%, where a negative interlayer energy denotes the two monolayers are bound

to each other. Due to the nature of the vdW forces, the interlayer energies of 2D heterostructures depend weakly

on the twisting angle between the specific stacking configurations, typically by ∼30 meV per unit formula of one

reference layer.26 Therefore, it is important to point out that any twist angle would not affect our conclusions. This

makes the problem of finding low friction structures less difficult from a computational perspective.27 Consequently, for

simplicity, we set the twist angle between the two monolayers to be 0 degrees. Finally, the temperature stability of each

bilayer was estimated by considering the minimum value of the decomposition energy of each monolayer comprising

the heterostructure. The interlayer energies that we obtain agree well with other calculated values reported in the

literature, whereas the C33 values fall in the range of other calculations, as shown in Table I. The significant deviations

from the experimental values, that the literature reports only in a very limited number of works, can be attributed to
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the lack of sufficient information to compare the experimental approach used and and theory, and possibly to the limits

of the current vdW approximations. However, the values calculated here follow the same trend as the values calculated

using different vdW approximations, which support the qualitative reliability of our calculation.28–30 Here, we report

only a few examples that highlight discrepancies and agreements with other works, however, a wider comparison can

be found in the literature, particularly in the work of Björkman et al.28,31–37

FIG. 1. (Color online) a) Schematic representation of the workflow used to create our BNN model and to extrapolate IE and

C33 values using a set of descriptors for new structures.

The DFT results were used to train supervised machine learning (ML) models of interlayer energies and elastic

constants. A schematic diagram of our combined DFT/machine learning approach is shown in Figure 1. The Bayesian

neural networks that we employed require a target property (Y ), calculated by means of DFT, and a list of descriptors

(X) (mathematical objects that represent the molecular properties of the materials) for each bilayer. We generated

descriptors for each monolayer using the method developed by one of us previously which have been shown to be useful

in previous work.38,39 Descriptors for each bilayer were obtained by adding the values of the descriptors for the two

monolayers, as described by Tawfik et al.39 The algorithm generated 2,764 descriptors for each monolayer. To avoid

problems of overfitting due to this large number of descriptors, we selected a small subset of the most relevant features

after using a combination of Genetic Algorithm (GA) search and LASSO regression. This reduced the number of

descriptors to 42 for the interlayer energy model and 89 for the C33 model. The GA and LASSO eliminate irrelevant

or low relevance features, which makes the ML models train more quickly and easier to interpret.40 The same subset

of relevant descriptors is used for predicting the training and test sets, and for generating the properties of the FULL

SET.38,39 The domain of applicability of the model to the large dataset is ensured by the equivalent range of the

descriptor values in the large dataset and in the subset used in the training. To obtain the training and test set in

a way that each subgroup contains representative structures of the total set, we perform a K-means cluster analysis.

This will maximize the diversity of structures assigned to training and test sets while ensuring that the test sets are

still within the domain of the models.

One of the main problems in the application of DFT calculations to heterostructures is the commensurability of the

unit cells of the two monolayers. Calculations under periodic boundary conditions can only be performed if supercells

of the single monolayer supercells have the same dimensions along the xy plane (where z is the stacking direction).

This can be achieved by either increasing the size of the supercell by multiplying the single unit cell for a factor
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FIG. 2. (Color online) a) and b) represent the UMAPs of the IE and C33, respectively. The blue, orange and green dots

represent the total representative bilayers subset, the commensurate unit cells, and the DFT calculations, respectively.

until commensurability is reached, and/or applying a artificial strain to the individual supercells, which must be

small enough so that the electronic structure and the corresponding properties of the monolayer are not significantly

affected. These conditions significantly limit the number of heterostructures that can be used in DFT calculations.

Here, the subset used in the training is represented in the uniform manifold approximation and projection (UMAP)

in Figure 2, which shows how the DFT calculations are distributed over the commensurate bilayers, and over the

whole dataset. The UMAP gives also additional information on the quasi-uniform distribution of the commensurate

cells over the whole set. This was estimated to be ∼8.2% of the total number of bilayers, considering two constraints:

the lattice mismatch Lm ≤ 2%, and the number of atoms in the cell to be Na ≤ 600. The first constraint ensures

a reliable outcome of DFT calculations with respect to a realistic scenario; the second constraint ensures that the

DFT calculations can be performed within a reasonable computational time, which, in conventional DFT calculations,

scales cubically with the number of Kohn Sham orbitals in target systems.19,20,41

After BNN optimization, performed using cross-validation subsets, we test the quality of the results by calculating

R2, Root Mean Square Error and Mean Absolute Error, as shown in Table II. Here, we consider Root Mean Square

Error a better measure of model prediction power than R2 as they have been shown to be less dependent on the

number of training samples and complexity of the models.45 Our implementation uses a dropout approach that is

used during training for regularization, and during predictions, to obtain a statistical distribution of the response,

which provide information on the uncertainty of the values, as described in Section III C. To further test the quality

of our predictions we perform an additional test on a validation set, which was not used during BNN training.

Using this model we extrapolated the interlayer energy and C33 for the FULL SET and the complete list of values,

together with the associated uncertainty, is available online (http://doi.org/10.26195/5dd36650d7e1e). Figures 3 a)

and b) show the interlayer energy and C33 as a heatmap. Here, each axis contains the list of monolayers that forms

the bilayers, and the axes are ordered to cluster structures with similar values of the interlayer energy. The order of
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TABLE I. Interlayer energies (IE) (in eV/Å2) and C33 (in GPa) measured and calculated by DFT (using vdW-VV10, vdW-DF1,

vdW-DF2) as reported in the literature, and calculated in the present work using DFT (vdW-TS).

2D bilayer Calculated IE Measured Value Calculated C33 Measured Value

Graphene −0.3928 −0.020±0.00134 23.028 37−4137,42

−0.2728 −0.016±0.00132,33 46.128

−0.2931 −0.013±0.00543 1337

−0.3444

−0.34∗ 15.19∗

h-BN −0.3628 20.228

−0.2628 41.228

1137

−0.52∗ 12.10∗

MoS2 −0.4428 2428

55.228

4937

−0.37∗ 31.27∗

*This work.

TABLE II. R2, Root Mean Squared Error (MRSE) and mean absolute error (MAE) on test, train, and validations set for

interlayer energy and C33. Values of RMSE and MAE are in eV/Å2 for IE, and in GPa for C33.

Set R2 RMSE MAE

IE-BNN-Test-Set 0.80 0.055 0.035

IE-BNN-Train-Set 0.97 0.014 0.010

IE-BNN-Valid-Set 0.72 0.089 0.055

C33-BNN-Test-Set 0.80 9.98 16.04

C33-BNN-Train-Set 0.98 5.99 5.76

C33-BNN-Valid-Set 0.73 11.89 20.65

the monolayer in the axes is the same in the interlayer energy and C33 plots, therefore the sparse clustering in C33

map, suggest a weak correlation between the two properties. Figures 3 c) and d) show the relative error calculated

for the interlayer energy and C33. The map suggests that our BNN is particularly inaccurate in predicting hard

materials, indicated by the coloured areas, which represent a small fraction (≤ 1%) of the overall results. However,

the remainder of the map suggests a reliable prediction with an average accuracy of ∼4% for the interlayer energy

and ∼11% for the C33.

To estimate the correlation between the two variables, we calculate the Pearson coefficient, which evaluates the

linear relationship between two variables, and the Spearman coefficient, which evaluates the monotonic relationship

between two variables (see the Section III D for details). Considering the absolute value of the IE, we obtain a Pearson

value 0.06 in ML and 0.05 in DFT, and Spearman value of 0.09 in ML and 0.08 in DFT, indicating an extremely
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FIG. 3. (Color online) a) and b) Interlayer Energies and C33 of the FULL SET. c) and d) Relative Error of the Interlayer

Energies and C33 of the FULL SET. e) Statistical distribution of IE and C33 values in the FULL SET. f) and g) Interlayer

Energies and C33 of the SUBSET A of. h) and i) Relative Error of the Interlayer Energies and C33 of the SUBSET A. l)

Temperature stability of the SUBSET A. m) Statistical distribution of IE and C33 values in the SUBSET A. Here, Interlayer

Energies are expressed in eV/Å2, the C33 in GPa and temperature stability in energy per atom (meV/atom). Absolute errors

have been calculated as the standard deviation of the response distribution, using a dropout approach with probability 0.1.

Detailed information can be found in Section III C. (The heatmaps have been generated by interpolating the function IE

= f(x, y) and the functions C33 = f(x, y) so that the images can provide information by showing potential clustering).

weak relationship between IE and C33. However, the same coefficients are higher in the subset of homo-bilayer, where

the Pearson and Spearman values are 0.40 and 0.55. Although there is no correlation between the two quantities, we

calculated that 90% of the bilayers has an IE between −0.51 eV/Å2 and −0.28 eV/Å2 and a C33 between 19.44 GPa

and 63.44 GPa, as shown in Figures 3 e) and m) (values are reported in the SI). Due to the very large size of the

dataset considered here, we can generalize this conclusion to all the possible van der Waals heterostructures formed

by assembling any combination of two 2D material.

Although the 6,138 monolayers were theoretically predicted from the existing and thermodynamically relative bulk

counterpart, the decomposition energy suggests that most of these structures are not stable, which implies that the

stability of a large fraction of the FULL SET cannot be ensured at standard conditions.13,47 Indeed, only 3,497

monolayers have a decomposition energy larger than 100 meV/atom, the typical threshold for metastability, which

can generate 6,114,504 bilayers. However, is has been shown that structures with decomposition energies lower than

this threshold are still stable.48

We continue our analysis on a subset of the FULL SET that have decomposition energy ≥0 meV/atom and exfo-
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TABLE III. Monolayer frequency among the bilayers with small and large IE or C33 values, included in the SUBSET A. In

this analysis, we consider the first 5000 biayers with IE ≥ −0.23 eV/Å2 or C33 ≤15.00 GPa, and the first 1000 bilayers with

IE ≤ −0.56 eV/Å2 or C33 ≥100.00 GPa. The “1T” prefix denotes the 1T polymorph of transition metal chalcogenides. Here,

we use the stoichiometric notation of the individual monolayers as in the https://materialsweb.org database.46

IE ≥ −0.23 eV/Å2 OR C33 ≤15.00 GPa

In2S2: 245 ZrCd2H12O6F8: 550

As4S6: 233 CdO: 329

In2Cl2O2: 222 Cd2P2S6: 267

Ga2Se2: 208 BN-1T: 251

In2Se2: 204 BN: 243

In2Se2-1T: 203 C2: 229

Tc4P16: 194 Cd2Te2Mo2O12: 224

Sc2P2S8: 186 Cd2P2S6-1T: 217

Al2Cl6: 178 Al4Cd2Cl16: 161

IE ≤ −0.56 eV/Å2 OR C33 ≥100.00 GPa

Sr2Ti2Si4O14:179 HfFeCl6-1T: 89

Ca2La2I10-1T: 121 BN: 83

Ti2Ge2O6: 81 Sr2Ti2Si4O14: 75

TmAgP2Se6: 74 BN-1T: 44

Ti6H4O14: 73 Si4O8: 40

Hf3Te2: 70 Al2Si2H4O9: 35

Ca2La2I10: 54 Ti6H4O14: 30

Ta3TeI7: 52 Si4O8-1T: 28

V4F16: 45 Al2Si4O11: 26

liation energy ≤55 meV/atom, which is estimated to be lower than existing 2D materials, suggesting the possibility

of exfoliation from bulk phases.13,46,49–51 This new subset consists of 770 monolayers with a Gibbs free energy at

zero temperature that indicates thermodynamic stability at standard conditions.50,51 The monolayers were identified

within the lattice of a large number of 3-dimensional stable structures possessing a layered geometry, and formed

by the elements listed in the SI. The combinations of the 770 monolayers generate 296,835 (SUBSET A) of stable

and manufacturable bilayers. Using our BNN model, we extrapolated the interlayer energy and C33 for the thermo-

dynamically stable SUBSET A, together with the relative error and their temperature stability, shown in Figures

3 f)-l) (the complete list of values is reported available online (http://doi.org/10.26195/5dd36650d7e1e). Here, the

quality of the results is assured by the fact that the descriptor values of the structures in the FULL SET and the

SUBSET A lie within or close to the same range. Interestingly, although the IE and C33 values follow logarithmic

distribution with respect of the monolayers composition in the FULL SET and a linear distribution in the SUBSET

A, the calculated Pearson and Spearman coefficients for the SUBSET A are 0.07 and 0.09, respectively, confirming

the lack of correlation between the two properties.

From a screening of the SUBSET A, we extracted the most common monolayers with a low absolute value of the

interlayer energy (≥ −0.23 eV/Å2) and low C33 (≤15.00 GPa), listed in Table III. Figure 3 g) shows areas, at around
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550 on Monolayer2 axis, where a few monolayers, when coupled with a large fraction of the whole set of monolayers,

will form a bilayer with a particularly high C33. We found the most frequent monolayer to give high C33 to be

HfFeCl6-1T, which is the sixth most frequent monolayer with high C33 in the FULL SET. Interestingly, BN appear

frequently in both high and low C33 bilayers. In conclusion, our IE predictions suggest the possible application of

a significant fraction of the SUBSET A as super-lubricant, where the best one would be as a As4S6-In2Se2 together

with its polymorph form As4S6-In2Se2-1T with and interlayer energy of −0.12eV/Å2, which however is stable only

up to 69K, while its polymorph form As4S6-In2Se2-1T, while having a very similar interlayer energy, is stable up to

928K. Furthermore, the predicted C33 value of the As4S6-In2Se2 is 39.49 GPa, which is relatively low, ensuring its

wide applicability. On the other hand ZrCdH12O6F8-Hf2Br2N2-1T is the softest bilayer, with a C33 value of 4.04 GPa.

Although ZrCdH12O6F8-Hf2Br2N2-1T has interlayer energy value of −0.36eV/Å2, which lies in the middle of the our

IE range, it represents the most universal dry lubricant. Our calculations show that there are 287,245 structure with

decomposition energy ≥0 meV/atom, 60,910 of which are stable at room temperature, and 19,900 up to 1300K.

II. CONCLUSIONS

With the present work, we created a very large database of atomic properties (IE and C33, together with the

relative temperature stability) for a class of materials with growing technological and scientific interest. Furthermore,

we demonstrated the potential of machine learning in amplifying the capabilities of conventional computational

approaches used in materials discovery. The approach described, augmenting DFT calculations with machine learning

models, is fully transferable to other the scenarios where a very large number of structures can be generated from

combinations of a relatively small number of atomic structures.

III. METHODOLOGY

Machine Learning approach relies on high quality structured data, using a set of descriptors to indicate known

properties, from which the algorithm will learn hidden patterns. In general, the problem can be reduced to the

identification of a general non-linear function Y = f(X), where Y is either the interlayer energy or the elastic

constant (C33), X represents the input space of descriptors, and f is the transfer function that links the descriptors

to the response variable. The work-flow of our implementation is structured in three main parts, shown schematically

in Figure 1 a), and concatenated as follows:

A) Data Collection

A.1) Density functional theory calculations

A.2) Structural descriptors

B) Data preparation

B.1) Feature selection

B.2) Cluster analysis

C) Bayesian neural network

D) Statistical analysis.
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A. Data Collection

1. Density functional theory calculations

Each element of the FULL SET is uniquely identified by a set of descriptors, and therefore each bilayer can be

represented as a point in this hyperspace. For a defined metric, structural similarities are clustered. Here, we selected

282 and 226 structures to calculate the interlayer energy and the C33, respectively, that approximately represent each

cluster and span over the whole hyperspace of the descriptor.

To calculate the properties of the bilayers by means of DFT, we used VASP within the GGA-PBE approximation

where a Tkatchenko-Scheffler van der Waals correlation correction was applied.52–54 A k-point space of 8×8×1 for

structures with atoms less than 10, and 3×3×1 otherwise, and an energy cut-off is 520 eV. The energy minimization

tolerance is 10−6 eV, and the force tolerance is 10−2 eV/Å. We use a dipole correction that falls like 1/L3 to correct

unphysical interaction along the z direction. We calculated the interlayer energy as the difference between the total

energy of the individual monolayers and the total energy of the bilayer, where a negative energy indicates attractive

interaction, then normalize this quantity per unit area. For each bilayer we select the minimum energy structure

among the possible configurations resulting from different monolayer orientations. The supercell size along the z-axis

was chosen to be large enough to avoid interactions with replica of the layer in the periodic boundary conditions.39 We

want to point out that the characterization hetero-structures indicate how they are typically assembled in a A/B/A/B

bulk-like structure and therefore, the A/B stacking configuration in vacuum does not seem to resemble a realistic

scenario.32,55 However, we calculated the IE in vacuum because a large distance between the bilayers may significantly

minimize the fictitious interactions between replicas along the z-directions.39 Then, we use the relevant information

to build a bulk-like structure, where an elastic deformation of the cell that resemble realistic conditions allows us to

extract the C33 values.56 To validate the use two approaches for IE and C33, we repeat the calculation of IE in a

bulk-like cell, and we verify that the difference between the two values is less then 0.7%, which is relatively small and

within average error for the values calculated by ML.

To calculate the value of the elastic constant, we consider its value along the z-axis of a bilayer (i.e. C33). Due

to the different forces acting in-plane and out-of-plane, we can approximate the hardness with the C33.10,11,24,25 We

calculate the C33 by interpolating the interlayer energy change as a function of the interlayer distance, obtained by

varying the supercell size along the z-axis. Here, the supercell dimension at the equilibrium along the z-axis doubles

the equilibrium distance of the bilayers previously calculated, to resemble a two-component multi-layered structure,

as schematically shown in the Fig.S2. When varying the supercell size, we remain in the elastic domain of the solid

and a quadratic dependence of the total energy with respect to the strain is expected.56 We calculated the error of

0.7% in the IE to correspond to an error of 1.1% in the C33.

2. Structural descriptors

We obtained structural information for 6,138 monolayers from an online database (https://2dmatpedia.org/). The

6,138 monolayers were obtained from a large number of inorganic bulk structures available on the online database

Materials Project (https://materialsproject.org/) by using a “top-down” approach where the bulk crystals are screened
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for layered structures which are then theoretically exfoliated to 2D monolayers, and a “bottom-up” approach, in which

elemental substitution is systematically applied to the unitary and binary 2D materials obtained from the top-down

approach. To obtain feature vector for materials (X) we adapted a method we developed previously, which allows us

to calculate materials fragment descriptors computed from the connectivity graph inside the unit cell.38 Within this

approach, each crystal structure is represented as a graph, with vertices decorated according to the reference properties

of the atoms they represent, and each node is connected to its neighbour according to the Voronoi tessellation. The

adjacency matrix of this graph determines the global topology for a given system, including interatomic bonds and

contacts within a crystal. The final descriptor vector for the machine learning model is obtained by partitioning a

full graph into subgraphs called fragments. Descriptors for each bilayer were obtained by adding the values of the

descriptors for the two monolayers, as described by Tawfik et al.39

B. Data preparation

1. Features selection

The number of descriptors calculated for our structures is too large to be used for our calculations, as overfitting

will occur. Feature selection involves choosing a subset of d features from a set of D features based using some

optimization criterion, creating a more compact descriptor space X with as little performance loss as possible. The

features removed should therefore be largely irrelevant for the calculation of a specific target property. For this

purpose, we use a combination of Genetic Algorithm (GA) search and LASSO regression.57 The idea of GA is to

generate some random possible solutions, which represent different variables, to then combine the best solutions in

an iterative process. The GA process tries to maximise a fitness function, that in our case is the LASSO function.

We further screen the features using a LASSO regression analysis. The goal of LASSO regression is to obtain the

subset of descriptors (X) that minimizes prediction error for a quantitative response variable (Y ). The LASSO does

this by imposing a constraint on the model parameters that causes regression coefficients for some variables to drop

to zero. Variables with a regression coefficient equal to zero after the shrinkage process are excluded from the model.

Variables with non-zero regression coefficients variables are most strongly associated with the response variable. The

goal of the algorithm is to minimize:

L =

n∑
i=1

(yi −
∑

xijβj)
2 + λ

p∑
j=1

|βj | (1)

Where the tuning parameter, λ controls the strength of the penalty. Therefore, λ control the degree of elimination:

When λ = 0, no parameters are eliminated. The estimate is equal to the one found with linear regression. As λ

increases, more and more coefficients are set to zero and eliminated (theoretically, when λ = ∞, all coefficients are

eliminated). As λ increases, bias increases. As λ decreases, variance increases.
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2. Cluster Analysis

The choice of representative structures to be used to train our model is crucial for the quality of predictions. K-

means is a method of vector quantization that is popular for cluster analysis in data mining.58 K-means clustering

aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean,

acting as a representative model of the cluster. This results in a partitioning of the data space into Voronoi cells. The

best number of clusters k leading to the largest distance is not known a priori and must be computed from the data.

The objective of K-means clustering is to minimize total intra-cluster variance, or, the squared error function:

J =

k∑
j=1

n∑
i=1

||xij − cj ||2 . (2)

This procedure will maximize the diversity of structures assigned to training and test sets while ensuring that the

test sets are still within the domain of the models. Here, we use the silhouette score to express the quality of the

clustering. The silhouette score, with values between +1 and −1, is a measure to indicate how close each point in one

cluster is to points in the neighbouring clusters, where +1 indicates that the sample is far away from the neighbouring

clusters. A K-means analysis gives the best score when three sub-groups are formed for interlayer energy, with an

average silhouette score of 0.78, and five for C33 silhouette score of 0.63. The training set contains 75% of the data

and the test set 25%.

C. Bayesian neural networks

In the present work we use machine learning in a Bayesian framework in order to predict not only the transfer

function and the property of a large number of structures, but also to give the confidence interval for each value.59

In the Bayesian point of view, regressions are formulated using probability distributions rather than point estimates.

The target property or response, Y , is not estimated as a single value, but is assumed to be drawn from a probability

distribution. The aim of Bayesian regressions is not to find the single “best” value of the model parameters, but

rather to determine the posterior distribution for the model parameters.60–63 Not only is the response generated from

a probability distribution, but the model parameters are assumed to come from a distribution as well. The posterior

probability of the model parameters is conditional upon the train inputs and outputs:

P (β|y,X) =
P (y|β,X)× P (β|X)

P (y|X)
, (3)

Here, P(β | y, X) is the posterior probability distribution of the model parameters given the inputs and outputs.

This is equal to the likelihood of the data, P(y | β, X), multiplied by the prior probability of the parameters and

divided by a normalization constant.

Here, we have a posterior distribution for the model parameters that is proportional to the likelihood of the data

multiplied by the prior probability of the parameters. We can observe two primary benefits of Bayesian regressions.

Priors: parameters distributions are included in the model. If these are unknown, we can use non-informative priors for

the parameters such as a normal distribution. Posterior: the result of performing Bayesian regression is a distribution
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of possible model parameters based on the data and the prior. This allows us to quantify our uncertainty about the

model.

To implement this methodology, we use a dropout approach, which can be seen as a Bayesian approximation of a

well known probabilistic model. Dropout is used in many models in deep learning as a way to avoid over-fitting by

randomly creating deviations from the optimizaton pathway. In our implementation dropout approximately integrates

over the weights in the model.64–66 Basically, this is comparable to performing a number of stochastic passes through

the network, and then averaging the results. This result has been presented in the literature before as model averaging.

With dropout, we sample binary variables for every input point and for every network unit in each layer. Each binary

variable takes value 1 with probability pi for layer i. A unit is dropped to zero for a given input if its corresponding

binary variable takes value 0. We use the same values in the backward pass propagating the derivatives to the

parameters, obtaining a distribution over each descriptor, from which we can extrapolate the uncertainty associated

to each prediction.

Although several approaches have been proposed to fix the number of nodes and hidden neurons in neural network,

no general rule can be identified, and typically starting from basic consideration on the complexity of the problem, the

architecture of the neural network is modified adding or removing neurons or layers until the NN gives desired values

of a loss function.67,68 Here, we follow the same approach and we tested several BNN configurations that includes

from 64 to 254 nodes, including either one or two hidden layers, and the quality of the NN architecture is determined

by the root mean square error (RMSE) and the Mean Absolute Error (MAE), and R2.

We use a BNN with 2 hidden layers composed of 128 neurons each, with a ReLU transfer function in the hidden

nodes, where the dropout probability is 0.1. The dropout creates a distribution over the calculated response, which

is then averaged over 600 trial networks giving the response value and the associate standard deviation. In the SI we

report the IE and C33 values, with relative error-bar, of the train and test set after BNN optimization.

D. Statistical analysis

To investigate correlations between the properties, we calculated the Pearson product moment correlation, which

evaluates the linear relationship between two continuous variables, and Spearman rank-order correlation, which eval-

uates the monotonic relationship between two continuous or ordinal variables, as follows:

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

, (4)

where xi and yi are the two variables, and

ρ = 1− 6
∑
d2i

n(n2 − 1)
, (5)

where d = is the pairwise distances of the ranks of the variables xi and yi, and n = is the number of samples. Small

coefficients indicate lack of correlation between two variables.
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Custom Python codes for data preprocessing and Bayesian neural network training and data extrapolation are

available online (https://github.com/fronzi/projBNN).
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