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ABSTRACT

Concept drift refers to the phenomenon of distribution changes in a data
stream. Using concept drift adaptation techniques to predict the target
variable(s) of real-time data streams has gained the ever-increasing atten-

tion of researchers in recent years.
This research aims to develop a set of concept drift adaptation methods for

predicting the target variable of real-time data streams. The literature review
reveals two issues in the area of concept drift: i) how the concept drift problem
limits the learning capability; ii) how to make adaptation in more realistic
scenarios that data streams have uncertainties other than concept drift.

To address the issue i), this research discovers three root causes of limited
learning capability when concept drift occurs. It is found that when concept drift
occurs in a data stream, the prediction accuracy is decreased because 1) the
training set contains more than one patterns so that the predictor cannot be
well-learned; 2) a newly arrived data instance may present old patterns but an
old instance presents the new pattern; and 3) few data instances are available
when a new concept is identified at its early stage. Three concept drift adaptation
methods are designed to address the three situations separately. Situation 1) is
solved by developing a fuzzy clustering-based adaptive regression (FUZZ-CARE)
approach. FUZZ-CARE can learn how many patterns exist in the training set
and the membership degree of each instance belonging to each pattern; To learn
the predictor with the most relevant data rather than the newest arrived data,
a segment-based drift adaptation (SEGA) method to sequentially pick out the
best segments in the training data to update the predictors. This addresses
the situation 2). An adaptive fuzzy network (AFN) is designed to address the
situation 3) through generating samples of the new concept with the previous
data instances.

To address the issue ii), this research discusses the concept drift phenomenon
under two scenarios that are more realistic. One is to solve the concept drift
problem when data is noisy. A noise-tolerant drift adaptation (NoA) method
is designed for handling concept drift when the data stream contains signal
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noise; the other is to solve the concept drift problem when data also contains
temporal dependency. A theoretical study is conducted for the regression of data
streams with concept drift and temporal dependency, and based on this study, a
drift-adapted regression (DAR) framework is established.

To conclude, this thesis not only provides a set of effective drift adaptation
methods for real-time prediction, but also contributes to the development of
concept drift area.
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