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ABSTRACT

Concept drift refers to the phenomenon of distribution changes in a data
stream. Using concept drift adaptation techniques to predict the target
variable(s) of real-time data streams has gained the ever-increasing atten-

tion of researchers in recent years.
This research aims to develop a set of concept drift adaptation methods for

predicting the target variable of real-time data streams. The literature review
reveals two issues in the area of concept drift: i) how the concept drift problem
limits the learning capability; ii) how to make adaptation in more realistic
scenarios that data streams have uncertainties other than concept drift.

To address the issue i), this research discovers three root causes of limited
learning capability when concept drift occurs. It is found that when concept drift
occurs in a data stream, the prediction accuracy is decreased because 1) the
training set contains more than one patterns so that the predictor cannot be
well-learned; 2) a newly arrived data instance may present old patterns but an
old instance presents the new pattern; and 3) few data instances are available
when a new concept is identified at its early stage. Three concept drift adaptation
methods are designed to address the three situations separately. Situation 1) is
solved by developing a fuzzy clustering-based adaptive regression (FUZZ-CARE)
approach. FUZZ-CARE can learn how many patterns exist in the training set
and the membership degree of each instance belonging to each pattern; To learn
the predictor with the most relevant data rather than the newest arrived data,
a segment-based drift adaptation (SEGA) method to sequentially pick out the
best segments in the training data to update the predictors. This addresses
the situation 2). An adaptive fuzzy network (AFN) is designed to address the
situation 3) through generating samples of the new concept with the previous
data instances.

To address the issue ii), this research discusses the concept drift phenomenon
under two scenarios that are more realistic. One is to solve the concept drift
problem when data is noisy. A noise-tolerant drift adaptation (NoA) method
is designed for handling concept drift when the data stream contains signal
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noise; the other is to solve the concept drift problem when data also contains
temporal dependency. A theoretical study is conducted for the regression of data
streams with concept drift and temporal dependency, and based on this study, a
drift-adapted regression (DAR) framework is established.

To conclude, this thesis not only provides a set of effective drift adaptation
methods for real-time prediction, but also contributes to the development of
concept drift area.

iv



DEDICATION

To my loving husband and parents.

v





ACKNOWLEDGMENTS

It is a memorial and exciting journey at University of Technology Sydney
(UTS) for pursuing my Ph.D. degree in the past four years. I am sincerely
grateful to the people who inspired and helped me in many ways.

I would like to express my foremost and deepest gratitude to my principal
supervisor, Distinguished Professor Jie Lu. Without her patience and encourage-
ment, I would not have been able to complete this Ph.D. program. She led me into
a new academic research direction, and convincingly guided and encouraged me
to think and work as a professional scientist. She placed considerable trust in my
research ability and unconditionally support me in pursuing my own research
interests. Her wisdom and immense knowledge always enlightened me to go
further and deeper in my research. Her decisiveness and sharp insights continu-
ously motivated me when I got lost or afraid about the future. Her confidence
and enthusiasm inspired me to do the right thing even when the road got tough.
I felt extremely honored to be guided by such a rigorous researcher as well as
an enthusiastic mentor. What she taught me and what I learned from her in
the past four years has benefited my Ph.D. study and will be a great treasure
throughout my life.

Meanwhile, I am greatly indebted to my co-advisor, A./Professor Guangquan
Zhang. He taught me step by step how to become a qualified researcher from
its beginning. He always led me to the right research direction with his expert
knowledge of theory and abundant research experience. Without his critical
comments, I would waste my time on trivial research ideas. Discussion with him
greatly improves the scientific aspect and quality of my research. He helped me
to build my confidence in my research outcomes and to be hopeful when faced
with any difficulty, from academic to living.

I would like to truly thank my co-advisor, A./Professor Haiyan Lu. Without
her endless trust and help, I would never have this valuable opportunity to
pursue my Ph.D. research in UTS. She encouraged me to participate in different
research activities which have significantly broaden my research horizons. She
gave me constant care over my conditions. Her kindness helped me to go through

vii



the tough period in my Ph.D. program. It is always pleasant to share all kinds of
opinions with her.

During my Ph.D. period, I am very fortunate to join the Department of
Computer Science at Southern University of Science and Technology as a visiting
scholar, working with Prof. Xin Yao and Dr. Changwu Huang for three months.
I would like to express my thankfulness to Prof. Xin Yao and Dr. Changwu
Huang that they led me to the evolutionary computation area. Discussion and
cooperation with them helped me to fill my knowledge blank of evolutionary
computation efficiently and enlightened me on my own research at the same
time.

I would like to express my thankfulness to every member of the Decision Sys-
tems & e-Service Intelligence Lab (DeSI) in the Centre for Artificial Intelligence
(CAI) for their careful participation in my presentation and valuable comments
for my research. It was a wonderful experience to spend four years with these
dedicated researchers. I especially thank Dr. Ning Lu, Dr. Anjin Liu, Dr. Fan
Dong and Dr. Feng Gu who helped me greatly to deeply understand my research
problem during my Ph.D. candidature; Dan Shang, Hang Yu, Bin Wang and Bin
Zhang who have shared their opinions and comments with me, Dr. Hua Zuo, Dr.
Qian Zhang, Dr. Shan Xue who shared my joys and sadness, Dr. Dianshuang Wu
who helped me in the living.

I genuinely thank Sue Felix and Robyn Barden for polishing the language of
my publications. They are always patient to all my emails of questioning revised
sentences. I have learned much about academic writing from them.

Meanwhile, I must thank Dr. Xin Wang and Dr. Bo Han for the valuable
suggestions at the beginning of my Ph.D. study. Although they are working in
different research areas, their persistence and passion on research impressed
and inspired me. I thank all my wonderful friends, classmates and colleagues for
every enjoyable moment.

Last, I would like to express my heartfelt appreciation and gratitude to my
husband, parents, and families for their love and support.

viii



LIST OF PUBLICATIONS

1. Y. Song, G. Zhang, H. Lu, J. Lu, “Fuzzy Clustering-based Adaptive Regres-

sion for Drifting Data Streams", IEEE Transactions on Fuzzy Systems ,

(2019). [CORE A*]

2. Y. Song, G. Zhang, H. Lu and J. Lu, “A Fuzzy Drift Correlation Matrix

for Multiple Data Stream Regression", IEEE International Conference on

Fuzzy Systems , Glasgow, Scotland (2020). [CORE A]

3. Y. Song, G. Zhang, J. Lu, H. Lu, “A Noise-tolerant Fuzzy c-Means based

Drift Adaptation Method for Data Stream Regression", IEEE International

Conference on Fuzzy Systems , New Orleans, USA (2019). [CORE A]

4. Y. Song, G. Zhang, H. Lu, J. Lu, “A Self-adaptive Fuzzy Network for Predic-

tion in Non-stationary Environments", IEEE International Conference on

Fuzzy Systems , Rio de Janeiro, Brazil (2018). [CORE A]

5. Y. Song, G. Zhang, J. Lu, H. Lu, “A fuzzy kernel c-means clustering model

for handling concept drift in regression", IEEE International Conference on

Fuzzy Systems , Naples, Italy (2017). [CORE A]

6. A. Liu, Y. Song, G. Zhang, and J. Lu, “Regional concept drift detection

and density synchronized drift adaptation", in the 26th International Joint

ix

https://ieeexplore.ieee.org/document/8688575
https://ieeexplore.ieee.org/document/8688575
https://doi.org/10.1109/FUZZ48607.2020.9177566
https://doi.org/10.1109/FUZZ48607.2020.9177566
https://ieeexplore.ieee.org/document/8859005
https://ieeexplore.ieee.org/document/8859005
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8491572
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8491572
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8015515
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8015515
https://www.ijcai.org/proceedings/2017/0317.pdf
https://www.ijcai.org/proceedings/2017/0317.pdf


Conference on Artificial Intelligence , Melbourne, Australia (2017). [CORE

A*]

7. J. Lu, A. Liu, Y. Song, G. Zhang, “Data-driven Decision Support under

Concept Driftin Streamed Big Data", Complex & Intelligent Systems ,

(2019).

8. Y. Song, J. Lu, H. Lu, G. Zhang, “A Segment-based Drift Adaptation Method

for Data Streams", IEEE Transactions on Neural Networks and Learning

Systems , (submitted). [CORE A*]

9. Y. Song, J. Lu, H. Lu, G. Zhang, “A drift-adapted regression framework for

data streams with temporal dependency", Artificial Intelligence , (submit-

ted). [CORE A*]

10. F. Dong, J. Lu, Y. Song, F. Liu, G. Zhang, “A Drift Region-Based Data Sample

Filtering Method", IEEE Transactions on Cybernetics , (submitted).

[CORE A]

x

https://link.springer.com/article/10.1007/s40747-019-00124-4
https://link.springer.com/article/10.1007/s40747-019-00124-4


TABLE OF CONTENTS

List of Publications ix

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions and Objectives . . . . . . . . . . . . . . . . . . . 4

1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Research Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature Review 17

2.1 Data Stream Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Evolving data streams . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Real-time prediction . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 A General Introduction of Concept Drift . . . . . . . . . . . . . . . . 22

2.2.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Types of concept drift . . . . . . . . . . . . . . . . . . . . . . 24

xi



TABLE OF CONTENTS

2.2.3 Concept drift applications . . . . . . . . . . . . . . . . . . . . 25

2.3 Concept Drift Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Classification of concept drift adaptation methods . . . . . 28

2.3.2 Blind concept drift adaptation . . . . . . . . . . . . . . . . . 30

2.3.3 Drift detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Informed concept drift adaptation . . . . . . . . . . . . . . . 33

2.3.5 Concept drift adaptation methods in regression cases . . . 35

2.3.6 Drift adaptation using fuzzy techniques . . . . . . . . . . . 37

2.3.7 Drift adaptation in a noisy environment . . . . . . . . . . . 38

3 Drift Adaptation by Identifying Concepts by Fuzzy Clustering

Process 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 A Fuzzy Clustering-based Drift Adaptation Method—FUZZ-CARE 49

3.3.1 Embedding clustering in objective function . . . . . . . . . 49

3.3.2 Finding an optimum predictor with the minimum loss . . 51

3.3.3 The kernel clustering-based version . . . . . . . . . . . . . . 53

3.3.4 The general procedure and pseudocode of FUZZ-CARE . . 56

3.4 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Validation on synthetic data . . . . . . . . . . . . . . . . . . 62

3.4.2 Comparison on real-world data streams . . . . . . . . . . . 70

3.4.3 Comparison on stationary datasets . . . . . . . . . . . . . . 75

3.4.4 Statistical test on data streams . . . . . . . . . . . . . . . . 78

3.4.5 Parameter analysis and computation complexity . . . . . . 81

xii



TABLE OF CONTENTS

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Drift Adaptation by Sequentially Updated Data Segments 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 A Segment-based Drift Adaptation Method—SEGA . . . . . . . . . 89

4.3.1 The segmented symmetric degree (SSD) . . . . . . . . . . . 90

4.3.2 Drift-gradient and how to sequentially update it . . . . . . 94

4.3.3 The general procedure and pseudocode of SEGA . . . . . . 99

4.4 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.1 Evaluation on synthetic data . . . . . . . . . . . . . . . . . . 105

4.4.2 Evaluation on real-world data streams . . . . . . . . . . . . 112

4.4.3 Statistical test of real-world data streams . . . . . . . . . . 120

4.4.4 Parameter analysis and computation complexity . . . . . . 122

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Drift Adaptation by Generating Samples of New Concept 127

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.1 Generative adversarial nets (GAN) . . . . . . . . . . . . . . 130

5.2.2 Adaptive neuro-fuzzy inference system . . . . . . . . . . . . 132

5.3 Drift Adaptation by an Adaptive Fuzzy Network—AFN . . . . . . 134

5.3.1 Detection by the adversarial model in GAN . . . . . . . . . 135

5.3.2 Generating data by the generative model in GAN . . . . . 136

5.3.3 The general procedure and pseudocode of AFN . . . . . . . 137

5.4 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 138

xiii



TABLE OF CONTENTS

5.4.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Drift Adaptation with Noisy Data 147

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 A Noise-tolerant Drift Adaptation Method—NoA . . . . . . . . . . 153

6.4 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4.1 Evaluation on synthetic data . . . . . . . . . . . . . . . . . . 157

6.4.2 A case study: solar radiation prediction . . . . . . . . . . . . 162

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Drift Adaptation with Temporal Dependency 165

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . 167

7.3 Drift Adaptation with Temporal Dependency . . . . . . . . . . . . . 171

7.3.1 Analysis of testing error when the real drift exists . . . . . 171

7.3.2 Drift adaptation procedure in DAR . . . . . . . . . . . . . . 179

7.4 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 186

7.4.1 Experiments on synthetic data . . . . . . . . . . . . . . . . . 189

7.4.2 Experiments on real data streams . . . . . . . . . . . . . . . 197

7.4.3 Statistical test on data Streams . . . . . . . . . . . . . . . . 200

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8 Conclusion and Future Research 203

xiv



TABLE OF CONTENTS

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.2 Future Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A Appendix 209

A.1 Derivation step from Symmetric Degree (SD) to Segmented Sym-

metric Degree(SSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.2 Estimation of model parameters for the mixed training set . . . . 211

A.3 The locally weighted regression . . . . . . . . . . . . . . . . . . . . . 211

Bibliography 213

xv





LIST OF FIGURES

FIGURE Page

1.1 Standard procedure of conventional machine learning methods. . . . 2

1.2 Learning with concept drift adaption. . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Three main challenges in evolving data streams . . . . . . . . . . . . . 19

2.2 Four types of concept drift. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Learning components and their classification in concept drift adapta-

tion methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 The training set for a data stream. . . . . . . . . . . . . . . . . . . . . . 42

3.2 Learn a predictor by the OLS methond using the training set that

contains two patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 The difference between FUZZ-CARE and other learning methods

when the same input maps to two outputs. Black dots represent a

2-dimensional dataset, where two patterns exist in the same training

set. The red line on the left is the fitted line of the linear regression

method. The red and blue lines on the right are the fitted lines of

FUZZ-CARE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xvii



LIST OF FIGURES

3.4 FUZZ-CARE flowchart showing different updating strategies. . . . . 58

3.5 Generated synthetic data with different types of drift. We generate

one no-drift data on which we base five examples of drifting data. The

red and black dots represent two different patterns. In the sub-figures

1)–4), the dots are drawn in a 2-dimensional plane with axis of Xt and

Yt axis; while in 5) and 6) subplots, they are drawn in a 3-dimensional

sphere with an additional axis of time T. . . . . . . . . . . . . . . . . . 65

3.6 Estimated parameters and errors of FUZZ-CARE1,2 for Rec-Drift-Mix. 69

3.7 Parameter analysis of FUZZ-CARE. . . . . . . . . . . . . . . . . . . . . 82

4.1 Relationship between the definitions proposed in this chapter. . . . . 89

4.2 An example to show the drawback of a one-sided measurement. . . . 92

4.3 Flowchart of SEGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Parameter analysis for real-world data streams of regression tasks. . 123

4.5 Parameter analysis for real-world data streams of classification tasks.

Usenet1 and Usenet2 are not included because they have few instances.123

5.1 Generative Adversarial Net (GAN). . . . . . . . . . . . . . . . . . . . . . 131

5.2 Adaptive neuro-fuzzy inference system (ANFIS). . . . . . . . . . . . . 132

5.3 The flowchat of AFN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1 Synthetic noisy data stream with different types of drift. . . . . . . . . 159

xviii



LIST OF FIGURES

7.1 Error decreasing process. Circles represent the scatter plots of inputs

and outputs before drift occurs, while dots show the results after drift

has occurred. Colors denote the different estimation results: blue is

for real values, red is for LWR-LDD+, and black is for DAR-linear. The

testing errors of 950th-1150th instances are given in the subplot E,

where the gray shadow represents LWR-NoAdapt, the red dotted line

represents LWR-LDD+ and the black line represents DAR-linear. . . 194

7.2 The improved percentage of MAE/MAPE of DAR-linear from LWR-

LDD+(linear). Both methods have drift adaptation process. The differ-

ence is that DAR-linear is implemented on the reconstructed space. . 197

xix





LIST OF TABLES

TABLE Page

3.1 Experimental design in this section. . . . . . . . . . . . . . . . . . . . . 60

3.2 A comprehensive comparison of different editions of FUZZ-CARE

method on different types of drift. . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Validation on real-world data streams. MAE and its corresponding

rank are used as the evaluations . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Comparison results on 13 stationary datasets. . . . . . . . . . . . . . . 77

3.5 Friedman test and its post-hoc test of all the methods over all eight

data streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6 Friedman test and its post-hoc test of all the methods over House,

Sensor20, Sensor46, SMEAR and Solar data streams. . . . . . . . . . 80

4.1 Validation of the effectiveness of drift-gradient . . . . . . . . . . . . . . 100

4.2 Type I and Type II error of drift-gradient under three distributions . 100

4.3 Experimental design in this section. . . . . . . . . . . . . . . . . . . . . 104

4.4 Validation of Regression Tasks on Synthetic Data (MAE as the Evalu-

ation Criterion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Validation on Synthetic Data of Classification Tasks (Acc as the Eval-

uation Criterion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xxi



LIST OF TABLES

4.6 Validation on Real-world Data of Regression Tasks (MAE as the Eval-

uation Criterion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Validation on Real-world Data of Classification Tasks (Acc as the

Evaluation Criterion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.8 Friedman test and its post-hoc test of all the methods over real-world

regression data streams (no CCPP), where “Friedman Test" is the

result for Friedman test and “Friedman - post-hoc test after Conover"

is for the pairwise comparison. “+", “*", “**", and “***" means this

value is significant at the level of 0.1, 0.05, 0.01 and 0.001 respectively.

“df" denotes the freedom degree. . . . . . . . . . . . . . . . . . . . . . . . 121

4.9 Friedman test and its post-hoc test of all the methods over real-world

classification data streams, where “Friedman Test" is the result for

the Friedman test and “Friedman - post-hoc test after Conover" shows

the pairwise comparison. “+", “*", “**", “***" and “df" have the same

meaning as they are in Table 4.8 . . . . . . . . . . . . . . . . . . . . . . 121

4.10 Run-time on real-world data streams (s CPU-time) . . . . . . . . . . . 126

5.1 Experimental design in this section. . . . . . . . . . . . . . . . . . . . . 139

5.2 Main results table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 Robustness test of AFN with different parameters. . . . . . . . . . . . 145

6.1 The uniqueness of NFA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Experimental design in this section. . . . . . . . . . . . . . . . . . . . . 156

6.3 Evaluation results on synthetic data. . . . . . . . . . . . . . . . . . . . 161

6.4 Evaluation on the SMEAR data . . . . . . . . . . . . . . . . . . . . . . . 163

xxii



LIST OF TABLES

7.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.2 Parameters for generating multi-dimensional non-linear data in (7.32)190

7.3 Comparisons between NoAdapt and adaptation by LDD+ approaches

on different spaces, and DAR with different predictors. . . . . . . . . . 192

7.4 Comparisons of MAE between NoAdapt and adaptation by LDD+

approaches on different spaces, and DAR with different predictors

(multi-dimensional non-linear cases). . . . . . . . . . . . . . . . . . . . 195

7.5 Comparisons of MAPE between NoAdapt and adaptation by LDD+

approaches on different spaces, and DAR with different predictors

(multi-dimensional non-linear cases). . . . . . . . . . . . . . . . . . . . 196

7.6 MAE comparisons between different methods on real-world data

streams. The DAR methods outperform the compared methods on

data streams where concept drift occurs. . . . . . . . . . . . . . . . . . 199

7.7 Friedman test and its post-hoc test of all the methods over all seven

data streams, where “Friedman Test" is the result for Friedman test

and “Friedman - post-hoc test after Conover" is for the pairwise com-

parison. “*", “**", and “***" means this value is significant at the level

of 0.05, 0.01 and 0.001 respectively. “df" denotes the freedom degree. 201

xxiii



C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Background and Motivations

In the context of the Internet of Things and Big data, the access to potentially

infinite amounts of data from a variety of sources such as economics, industrial

monitoring, ecosystems, and so on, generates the data stream, which is a huge

volume of data that arrives in a sequential way (dos Reis et al., 2016; Haque

et al., 2016b). The sequential characteristic of data streams makes the real-time

prediction for a data stream different from prediction for stationary data. Each

instance in a data stream is first to test the model, and then to train the model

(Bifet et al., 2015).

New challenges have appeared in data stream analysis, one of which relates

to unpredictable data distribution changes (Gama et al., 2013). Conventional

batch-based machine learning systems are built on a static assumption of inde-
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CHAPTER 1. INTRODUCTION
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Figure 1.1: Standard procedure of conventional machine learning methods.

pendent and identically distributed (i.i.d) data and therefore are not suitable

to make real-time prediction for data streams (Haque et al., 2016b). A stan-

dard training/learning and testing/prediction procedure of conventional machine

learning methods is shown in Figure 1.1 which is only suitable when training

data and testing data have the same distribution.

Concept drift refers to these unpredictable distribution changes over time

(Schlimmer and Granger, 1986a,b) and has gained the ever-increasing attention

of researchers in recent years (Lu et al., 2018). In a very recent technical report

from Berkeley (Stoica et al., 2017), acting in dynamic environments and continual

learning has been considered as one of nine research opportunities that can help

address current AI research challenges. Unlike noise series, concept drift is

influenced by hidden changes in the context (Widmer and Kubat, 1996; Kubat,

1992; Schlimmer and Granger, 1986a,b). The influence of hidden context changes

results in biased estimation of the target output, and the error can be depicted
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1.1. BACKGROUND AND MOTIVATIONS

by hidden context. For example, in rain forecast, the prediction of rainfall based

on atmospheric factors may change radically in different periods.

Studies on concept drift attempt, as far as possible, to learn data without

these hidden variables, because hidden variables are difficult to observe and in

many situations are unknown based on the current knowledge (Žliobaitė, 2010a).

For example, cellphone usage was limited to communication about ten years

ago, but now usage has been changed to include taking photos, searching the

Internet, conducting business, learning online, and more. Customer cellphone

usage prediction must consequently relinquish their models from the past. If a

cellphone company continues to use an old usage pattern, it can possibly fail.

In this example, one hidden context is the development of cellphone techniques.

This development certainly exists but is difficult to quantify. Many subsequent

studies have proved that the concept drift detection and adaptation technique

is an effective way to solve the problem of distribution changes (Parker and

Khan, 2015; Žliobaitė et al., 2014a). In the task of prediction for data streams,

the trained predictor will be not applicable if concept drift occurs; the trained

predictor will be updated by a concept drift adaptation method so that it can be

used for new data that has different distribution (Figure 1.2).

Recent research of concept drift poses several unsolved and challenging

problems in this area, i.e., 1) how to effectively understand concept drift to help

improve adaption (Lu et al., 2018); 2) how to effectively react to drift by adapting

related knowledge (Gomes et al., 2017b); 3) the lack of theoretical frameworks for

learning in non-stationary environment (Ditzler et al., 2015); 4) how to solve the

transient concept drift and limited data problem (Ditzler et al., 2015); and how

to solve the concept drift problem if data has other uncertainties such as 5) noise

3
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Figure 1.2: Learning with concept drift adaption.

(Liu et al., 2018a) and 6) temporal dependencies (Gomes et al., 2017a). These

problems have either impaired the drift adaptation effectiveness and limited the

usage of drift adaptation methods.

This study aims to give comprehensive analysis and solutions to all the above-

mentioned challenges. Chapter 3, Chapter 4 and Chapter 5 target challenge 1)

and 2); Chapter 5 also provides a solution for challenge 4); Chapter 6 aims to

solve challenge 5), and Chapter 7 provide solutions for challenges 3) and 6).

1.2 Research Questions and Objectives

This research aims to develop a set of concept drift adaptation methods to update

the learned predictors for real-time predictions. The predictor, if not specified, is

4



1.2. RESEARCH QUESTIONS AND OBJECTIVES

to predict a continuous target variable. The data pattern, refers to the underlying

distribution of data. After concept drift occurs, data presents a different pattern.

The following research questions will be answered:

RESEARCH QUESTION 1 (RQ1): How to learn the predictor with a train-

ing set that may contain more than one patterns when concept drift occurs?

As it is unknown when concept drift occurs (Fan, 2004), the training set used

to train the predictor probably contains several patterns, leading to the situation

that the same input value maps to different outputs. If the drift occurs suddenly,

a data instance will certainly belong to one pattern (Schlimmer and Granger,

1986a). However, if the drift occurs incrementally, some of the data instances

will simultaneously belong to two patterns to some extent (Lu et al., 2018), and

it will be inappropriate to use crisp logic to present the belonging relationship

between the data instances and patterns. The prediction tasks for data streams

will be much complicated if different types of drift occur in the data stream.

RESEARCH QUESTION 2 (RQ2): How to identify the most relevant data

from the training set to update the predictor?

When a data stream contains concept drift, a drift adaptation method needs

to update predictors so that the updated predictor can always present the newest

data pattern (Gama et al., 2014). Using “reliable" data to learn a data-driven

predictor is critical to guarantee the performance of the predictor (Liu et al.,

2017a, 2018a). Once the drift is detected, most informed drift adaptation methods

will abandon the previous predictor and learn a new predictor with the newly

arrived data instances (Lu et al., 2014). However, even a data instance is lately

obtained and recorded in the training set, this instance may present an obsolete

pattern. Similarly, old data instances may present the newest pattern.
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RESEARCH QUESTION 3 (RQ3): How to solve the data insufficiency prob-

lem when a new concept is identified at its early stage?

Using drift detection method to identify drift requires at least one full window

of new instances (Lu et al., 2014, 2016); therefore, the length of the window

determines the detection lag. Identifying a new concept in its early stages means

there are few available instances of the new concept (Ditzler et al., 2015). It is

difficult to learn a precise predictor for the new concept if there are no enough

instances. Reducing the detection lag means reducing the number of instances,

and the accuracy of drift detection may suffer. Conversely, increasing the number

of instances to a level sufficient for learning accurate predictors will result in

greater detection lag. Due to the problem that the data of the new concept is

insufficient, drift adaptation methods are faced with a choice between insufficient

learning and adaptation delay.

RESEARCH QUESTION 4 (RQ4): How to deal with concept drift problem

for noisy data streams?

Concept drift problem will be more challenging if problems found in an off-

line setting also present in a data stream (Ramírez-Gallego et al., 2017). One of

the problems is to learn in a noisy environment (Gomes et al., 2017a). Noise is

described as “irrelevant or meaningless data" (Xiong et al., 2006). Specifically,

Xiong et al. summarized noise from a task-based aspect as data that significantly

hinder the aimed data analysis. Data cleansing or noise removal techniques are

designed in an off-line setting to remove the irrelevant noise and enhance the

data analysis process (Hernández and Stolfo, 1998). However, this description

of noise does not cover the noise in signal processing or time series analysis.

Compared to the stationary data, a data stream contains time stamps. Therefore,
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each variable in the data stream is a signal or a time series (Cavalcante et al.,

2016). In signal processing and time series analysis, the noise is not presented

by several data instances. Instead, the noisy signal or series mixes with the

designed signal or time series all the time such as background music in voice

audio signals and Gaussian noise in time series analysis (Xie et al., 2018).

RESEARCH QUESTION 5 (RQ5): How to deal with concept drift problem

for data streams that have temporal dependency?

Standard machine learning approaches are built on a static assumption of

independent and identically distributed (i.i.d) data. For data stream with concept

drift, the distribution is changing over time and therefore breaks the assumption

of identical distribution. So far, many concept drift adaptation methods have

been designed to overcome the non-identical distribution problem. However, in

regression data streams, the target variable is a time series that is probably

autocorrelated (Hamilton, 1994), which leads to the temporal dependency prob-

lem. How to deal with the problems of temporal dependency and concept drift

simultaneously is a big challenge and very few studies could be found that can

solve these two problems at the same time.

This research aims to achieve the following objectives, which are expected to

answer the above research questions:

RESEARCH OBJECTIVE 1 (RO1): To develop a drift adaptation method

that can identify concepts during the learning process. (aims to answer RQ1)

For the training set containing more than one patterns, the learning tasks

consist of four sub-tasks: 1) recognizing patterns, 2) learning predictors for each

pattern, 3) classifying the current instance as a specific pattern, and 4) designing

an adaptation method to solve tasks 1)-3) quickly and repeatedly. To solve the
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above four tasks, this research introduces fuzzy logic into the learning process

and develops a drift adaptation method based on fuzzy clustering process to learn

how many patterns exist in the observed data instances, i.e., the training set,

and the membership degree of each instance belonging to each pattern during

the process of learning the parameters for the predictor.

RESEARCH OBJECTIVE 2 (RO2): To develop a drift adaptation method

that can sequentially select the most relevant data for training. (aims to answer

RQ2)

The informed drift adaptation methods propose to update the predictor only if

drift is detected to assure the predictor is updated with the data belonging to the

new concept (Lu et al., 2014, 2016). However, existing informed drift adaptation

methods need to wait for an entire batch (time window) of data to detect drift

and then update the predictor (if drift is detected), which causes adaptation

delay (Boracchi et al., 2018; Lu et al., 2018). To overcome the adaptation delay

and select the most relevant data to the new pattern, this research proposes a

sequentially updated statistic, and based on it develop a drift adaptation method

to update the predictor with the most reliable data when every new instance

arrives.

RESEARCH OBJECTIVE 3 (RO3): To develop a drift adaptation method

that can generate samples of new concept. (aims to answer RQ3)

The lack of data or imbalances in the data can be alleviated with data

resampling techniques (Wang et al., 2015; Lu et al., 2014). The core idea in

these methods is to use one sample for several times. None of these methods,

however, are able to generate instances that represent the new concept. Recent

research on the generative adversarial nets (GAN) shows great potentials to
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generate samples from the same distribution of the target data (Goodfellow et al.,

2014; Zheng et al., 2017). A big challenge for GAN is that the generated samples

may not improve the accuracy of classifiers because GAN’s inputs are essentially

noise. To overcome this drawback and generate useful samples to improve the

learning accuracy, this research develops a drift adaptation method to generate

samples of the new concept through previous data.

RESEARCH OBJECTIVE 4 (RO4): To develop a drift adaptation method

for noisy data. (aims to answer RQ4)

Drift adaptation for noisy data is a complex problem because concept drift

and noise are not always independent in a data stream, and they may have

some overlaps sometimes (Gomes et al., 2017a). Simple combination of concept

drift methods and noise removal methods is less capable to deal with this kind

of data streams (Xu and Wang, 2017; Sun et al., 2018). Several methods for

handling concept drift problem for noisy data only discuss the noisy label problem

(Schlimmer and Granger, 1986b; Bakker et al., 2009; Lu et al., 2014). However,

data streams also contain signal noise because each variable is now a time series.

This research develops a drift adaptation method for data streams with signal

noise.

RESEARCH OBJECTIVE 5 (RO5): To develop a drift adaptation frame-

work for data streams with temporal dependency. (aims to answer RQ5)

The continuous variable in data streams is a time series process that is prob-

ably autocorrelated, which leads to the temporal dependency problem. How to

deal with the problems of temporal dependency and concept drift simultaneously

is a big challenge and very few studies could be found that can solve these two

problems at the same time. This research discusses the concept drift problem in
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the data stream that have temporal dependency. A drift adaptation framework

is developed for data streams with concept drift and temporal dependency in

regression cases.

1.3 Research Contributions

This thesis aims to present a comprehensive analysis of concept drift adaptation

problems from different aspects and in two new scenarios. The main contributions

of this study are concisely summarised as follows:

1) An expansive concept drift definition.

An expansive definition of concept drift is proposed to present the charac-

teristics of drift as well as the characteristics of a concept so that the concept

drift problem is distinct from stochastic disturbances. In addition, the new defi-

nition of concept drift guarantees the validity for the drift adaptation methods in

principle.

2) A new objective function and a novel optimization strategy, and based on

them, a new concept drift adaptation method.

This research designs a new objective function to measure the difference

between the estimated output and its true value over different data patterns.

A novel optimization strategy is proposed to minimize the objective function to

obtain the solution to the problem. Based on the proposed objective function

and optimization strategy, a new concept drift adaptation method, named FUZZ-

CARE is proposed. FUZZ-CARE is able to precisely learn and update predictors

when there are several patterns in the training set.

3) A new drift measurement and a new sequentially updated statistic, and
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based on them, a new concept drift adaptation method.

This thesis proposes a new drift measurement, segmented symmetric degree

(SSD) to measure distributional discrepancy between two concepts. It removes

the limitation of a one-sided measurement when two distributions have different

variances. Based on SSD, drift-gradient is proposed to sequentially quantify the

increase of SSD when every new instance arrives without computing the value of

SSD before and after the new instance arrives. Using drift-gradient, a new drift

adaptation method, named SEGA is proposed to automatically select the most

relevant data for updating the predictor.

4) A new drift detection and sample generation network, and based on the

network, a new drift adaptation method.

A new network-structured drift adaptation method, called AFN is proposed.

AFN does not rely on the learner error nor a statistic, and thus can overcome the

problems of insufficient learning and adaptation delay. In addition, the network

structure facilitates embedding into other neural network based methods.

5) A new noise-tolerant drift adaptation method.

This adaptation method, NoA is able to deal with data streams consisting of

any continuous variable that has signal noise; There has been no previous study

of handling concept drift as well as signal noise.

6) A definition of the data stream with temporal dependency, and a new drift

adaptation framework for data streams with temporal dependency.

This research defines the data stream from the aspect of mixed time series.

A new definition formally presents the temporal dependency in a data stream.

According to the new definition, this research reconstructs the feature space by a

time delay embedding. This research also theoretically proves that estimation
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error converges faster in a linear model built on the reconstructed space when

data streams face concept drift and the temporal dependency problem. In ad-

dition, linear cases are generalized to non-linear cases by introducing locally

weighted regression. Based on the proposed definition, this research develops a

new framework, named DAR, for data streams with concept drift and temporal

dependency. The suggested framework not only provides a way of utilizing gen-

eralized drift adaptation methods, but also broadens the application of a drift

adaptation method in a more realistic scenario.

1.4 Research Significance

The theoretical and practical significance of this research is summarised as

follows:

Theoretical significance: This research investigates the natural properties

of concept drift and data streams: an expansive definition of concept drift is

proposed. The expansive definition supplements the characteristics of a concept.

Thus, it guarantees the validity for drift adaptation methods in principle; a

formal definition of a data stream with temporal dependency is proposed, which

lists key characteristics of a data stream that contains temporal dependency.

This facilities further studies on data streams. The concept drift problem is

divided and conquered by a set of drift adaptation problems. More specifically,

as the core of the concept drift adaptation is to update predictors, the proposed

ideas could enrich the approach for powerful and meaningful manipulations on

updating a predictor. This research also contributes to the theoretical analysis of

drift detection by density-based statistics by enriching statistical properties of

12
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its variance.

Meanwhile, this research explores the concept drift adaptation for more

complex scenarios, such as adaptation under noisy data, and adaptation under

temporal dependency. The extended scenarios could not improve the impact of

this area, but also motivate its continuing development.

In addition, this research contributes to the field of learning in non-stationary

environments by theoretically proving the estimation error converges faster

in a linear model built on the reconstructed space by a time delay embedding.

Meanwhile, this also extends the application scenario of time series theory.

Practical significance: The findings of this research contribute to the ben-

efit of society given the increasing demand of real-time prediction in modern

life. This study develops a set of drift adaptation methods to improve adapta-

tion efficiency and prediction accuracy. The first adaptation method can identify

different patterns and the degree that each instance belonging to each pattern,

which can also be applied for pattern recognition. The second adaptation method

is to pick out the most relevant data for learning predictors, can also be used

as a dissimilarity measurement and multivariate two-sample test. The third

adaptation generates new samples from the previous samples which can also be

used for transfer learning. Meanwhile, the network structure of the third method

makes it easy to be embedded into other adaptive neural networks. Meanwhile,

two methods are developed in more realistic scenarios of data with noise and data

with temporal dependency. The findings help resolve the real-world problems of

online decision making. There is the potential of many other online applications

that could benefit from this study.
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1.5 Thesis Structure

The structure of the thesis is shown in Figure 1.3 and the chapters are organised

as follows:

• CHAPTER 2 studies the literature of data stream mining and concept

drift adaptation methods, thereby revealing the current research gap. In

this chapter, the concept drift problem and basic procedure of concept drift

adaptation are introduced. Then, categorization of the existing algorithms

based on their implementation details are given. At last, the limitations

of the reviewed algorithms are discussed, which inspires the following

chapters and solutions.

• CHAPTER 3 proposes a fuzzy clustering based adaptation method, called

FUZZ-CARE to embed the clustering loss in a regression loss function. The

core idea is to train separate predictors for different patterns and use fuzzy

membership matrix to identify the membership degree of each instance

belonging to each pattern. This chapter addresses RQ1 to achieve RO1.

• CHAPTER 4 proposes a sequentially update statistic called drift-gradient,

and based on drift-gradient, a segment based adaptation method, called

SEGA is proposed to identify and select the most relevant data from the

training to update the predictor. This chapter addresses RQ2 to achieve

RO2.

• CHAPTER 5 proposes a network that can detect drift and generate samples

of new concept after drift is detected. Based on that, a new drift adaptation

method, called AFN, is proposed to update the predictors with the gener-
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1.5. THESIS STRUCTURE

ated data, which overcome the data insufficiency when a new concept is

identified at its early stage. This chapter addresses RQ3 to achieve RO3.

• CHAPTER 6 analyses the concept drift in a new scenario that data streams

also contain signal noise. A noise-tolerant drift adaptation (NoA) method is

proposed to deal with concept drift problem for noisy data streams. This

chapter addresses RQ4 to achieve RO4.

• CHAPTER 7 analyses the concept drift in a new scenario that data streams

also contain temporal dependency. Few theorems have been developed

to compare the estimation error converge on the original feature space

and that on a reconstructed space by a time delay embedding. Based on

the theoretical conclusions, a drift adaptation framework, called DAR is

proposed for data streams with concept drift and temporal dependency in

regression cases. This chapter addresses RQ5 to achieve RO5.

• CHAPTER 8 summarises the findings of this thesis and points to directions

for future work.
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2
LITERATURE REVIEW

This study focuses on using concept drift adaptation methods to predict labels

for real-time data streams. This chapter reviews related research in this area

that has recognized the significance of this problem or provided solutions to this

problem. Section 2.1 introduces the evolving data stream and real-time prediction

in data stream mining area. Then, the concept drift problem is introduced

including its definition, types, and applications in Section 2.2. Concept drift

adaptation techniques are comprehensively reviewed in Section 2.3.

2.1 Data Stream Mining

This section gives a general review of data stream mining, which is the basis to

profoundly understand the concept drift problem.
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2.1.1 Evolving data streams

Big data is an outcome of the current information explosion that is relevant to a

diverse range of fields in the natural, life, social, and applied science, including

physics, biology, medicine, economics and management (Maass et al., 2017). Big

data has been widely characterized by the three Vs (Janssen et al., 2017): a

hugely increased Volume of data, a Variety of data sources and quality, and

the high Velocity at which data is generated or obtained (Elgendy and Elragal,

2014). Big data technology holds incredible promise for improving people’s lives,

accelerating scientific discovery and innovation, and instigating positive societal

change (Drosou et al., 2017). Meanwhile, new challenges accompanying the

heterogeneity, incompleteness, scale, timeliness, privacy and process complexity

of big data, including aspects of data acquisition, data storage, information

extraction, and big data analysis, need to be overcome (Gama, 2012). (Labrinidis

and Jagadish, 2012). Further three Vs are now recognized as the development of

big data analysis: Veracity, which focuses on the unreliability inherent in data

sources; Variability, which refers to variations in data flow rates; and Value,

which refers to the issue of low value density (Gandomi and Haider, 2015; Fan

and Bifet, 2013; Elgendy and Elragal, 2014).

Recent developments of the Internet of Things brought serious challenges to

big data that data arrives in as continuous streams (Losing et al., 2016), namely

the data stream which consists of multiple infinite and fast evolving data series

(Jaworski et al., 2018; dos Reis et al., 2016; Haque et al., 2016b). Eight challenges

of data stream mining were discussed in (Krempl et al., 2014), covering the

cycle of knowledge discovery from data. These challenges are summarized from
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Figure 2.1: Three main challenges in evolving data streams

three aspects (Lu et al., 2019): 1) the development of new data mining skills

for data streams; 2) the development of simpler, self-adaptive machine learning

algorithms; and 3) the requirements of privacy and confidentiality for gaining

trusts of the users and society in the system.

In recent years, data stream mining has been extensively studied in growing

fields of multidisciplinary research including data bases, artificial intelligence,

machine learning, automated scientific discovery, statistics, decision making

and so on(Gurjar and Chhabria, 2015). The main challenges in learning the

evolving data stream have been categorized to three kinds (Figure 2.1) (Parker

and Khan, 2015): 1) concept drift, refers to class boundaries change over time or

the distribution of a feature changes (Zhao et al., 2018). For example, in dressing

recommender systems, the model is trained to recognize whether the dressing

in a given photo is fashion or not. The characteristics of fashion change fast,

and therefore the classification boundaries between “fashion" and “not fashion"

changes; 2) feature evolution, which denotes that new features appear or feature
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type changes (Hou et al., 2017). For example, the assessment model may have

new features when the bank credit assessment system updates to include more

details of the customers; 3) concept evolution, represents the situation that

novel classes emerge (Zhu et al., 2018). For example, new topics appear and

old topics disappear or reappear in the bibliometric field, such as the novel

topic of “block chain" in 2013 and the recurrent novel class of “neural network".

Let dτ be a multivariate random variable defined on Xτ×Yτ with respective to

pτ ∈P(Xτ×Yτ), where τ ∈Z+, Xτ ⊆Rsτ is a topological space, Yτ = {1, ...,Cτ} is a

label space and P(Xτ×Yτ) consists of all Borel probability measures on Xτ×Yτ. A

data stream is a number of observations Dτ = {(x1, y1), ..., (xτ, yτ)} from p1, ..., pτ,

and the three kinds of changes in a data stream is defined as follows:

• Concept drift: ∃τ0 : pτ0 �= pτ0+1.

• Feature evolution: ∃τ0 :Xτ0 �=Xτ0+1.

• Concept evolution: ∃τ0 :Yτ0 �=Yτ0+1.

2.1.2 Real-time prediction

As data evolves over time, the validity and reliability of the historical data

are questionable. Data stream mining has to consider these issues to perform

accurate, up-to-date, real-time analysis. For example, the detection of highway

flooding (Puthal et al., 2017). Real-time prediction is one of the most important

applications of data stream mining (Gaber et al., 2005). Real-time prediction is

to make prediction in real time (Ikonomovska et al., 2015). It is clearly different

from the prediction in a stationary setting because each instance in a data stream

is first used to test the learned predictor, and then to train/update the predictor.
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Real-time prediction for a non-stationary data stream arises in many scenar-

ios, such as online transactions in the financial market, weather forecasting, air

quality prediction and so on (Pratama et al., 2017; Li et al., 2018). For example,

20 years ago, TV was the main source of weather forecast information for most

people. Additionally, weather forecasts would simply indicate the weather for

tomorrow or the day after tomorrow at most. Today, people expect hourly weather

reports and weather forecasts for a week in advance. Historically, a numerical

weather prediction model was used to compute long-term weather variables.

However, such models are not flexible enough to make hourly weather predic-

tions. Nor can they be applied to a short-term, high-frequency online forecast

system, as it takes a significant amount of time for the models to compute the

necessary partial differential equations.

Conventional machine learning methods are not applicable to make real-time

prediction for data streams. For a data stream, future data may exhibit different

patterns from those of the previous data used to learn the predictor. Therefore,

the prediction accuracy of the learner predictor is deteriorated due to this evolv-

ing nature of data streams. Although data stream mining has become important

research topics during the last decade, a truly autonomous, self-maintaining,

adaptive data mining system is still lacking (Krempl et al., 2014). The short

lifespan of data restricts us from storing and accessing all historical data during

each processing cycle; however, processing accuracy has been strictly limited by

the fact that the data can be accessed only once (one-pass setting) (Aggarwal

et al., 2003).
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2.2 A General Introduction of Concept Drift

Concept drift is a particularly important factor in data stream mining. In this

section, the concept drift problem and corresponding state-of-the-art solutions

will be reviewed.

2.2.1 Problem description

Concept drift refers to the phenomenon of the changing data distribution (Gama

et al., 2014). The problem of concept drift is discussed in a data stream that the

newly arrived data instances may exhibit a different pattern from the previous

data (Wang et al., 2018). Standard machine learning approaches are built on

a static assumption of independent and identically distributed (i.i.d) data and

therefore are not suitable for learning data streams once the data distribution

has experienced unpredictable changes (Haque et al., 2016b; Gama et al., 2013).

A widely accepted definition of concept drift is pt+1 (X , y) �= pt (X , y) (Gama

et al., 2014). According to property of probability, concept drift can be decomposed

into two parts whereby p (X , y)= p (y|X )× p (X ). Real drift refers to the changes

in the posterior probabilities, i.e., changes in p (y|X ), and virtual drift denotes

the changes in p (X ) (Žliobaitė, 2010a). Existing research mainly focuses on the

real concept drift problem. (Wang et al., 2018) studied concept drift on three

decomposed parts from an aspect of class imbalance which included changes

in prior probability p (y), class-conditional pd f , i.e., p (X |y), and the posterior

probability.

However, limited research explains the term “concept". The only study on

this problem is by (Webb et al., 2016) that a concept is formally defined as
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a many-to-one mapping function X �→ y. Many machine learning algorithms

require a many-to-many mapping X to y, which leads to the preferred definition

of a concept as the distribution of a classification task, i.e., Concept = P(X , y).

Generally, a concept can be considered as a data pattern.

Concept drift significantly hinders off-line predictive performance (Harries

et al., 1998). Unlike noise series, concept drift is influenced by hidden changes

in the context (Kubat, 1992; Schlimmer and Granger, 1986a,b). The influence of

hidden context changes results in biased estimation of the target output (Widmer

and Kubat, 1996), and the error can be depicted by hidden context. For example,

in rain forecast, the prediction of rainfalls based on atmospheric factors may

change radically in different periods. Studies on concept drift attempt, as far as

possible, to learn data without these hidden variables, because hidden variables

are difficult to observe and in many situations are unknown based on the current

knowledge. For example, cellphone usage was limited to communication about

ten years ago, but now the usage has been changed to include taking photos,

searching the Internet, conducting business, learning online and more. Customer

cellphone usage prediction must consequently relinquish their models from

the past. If a cellphone company continues to use an old usage pattern, it will

possibly fail. In this example, one hidden context is the development of cellphone

techniques. This development certainly exists but is difficult to quantify.

Online prediction tasks become particularly difficult if real concept drift

occurs, i.e., the changes in P (y|X ) (Yeon et al., 2010). The feature variables

can be immediately observed and easily collected. They are used as the input

of the predictor to estimate the target output, which is difficult to collect. The

virtual drift (i.e., P (x) changes) can be omitted if X is independent of the model
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parameters θ (Song et al., 2019a). One example is a weather forecast of “rain/no

rain”. If today is rainy, it will probably rain tomorrow in the wet season, but will

not rain in the dry season given the same condition. Clearly, applying a rain

forecast model trained in the wet season to predict dry season weather will result

in significant errors.

2.2.2 Types of concept drift

The occurrence of concept drift can be divided into four types (Figure 2.2): sudden

drift, incremental drift, gradual drift and reoccurring drift. Lu et al. have re-

viewed the peculiarities of these four types of drift (Lu et al., 2018). Sudden drift

refers to the case that one pattern suddenly switches to another. For example,

Kate is reading the news. A sudden interest in meat prices in New Zealand when

she got an assignment to write an article, is a sudden drift (Žliobaitė, 2010b).

Incremental drift consists of many intermediate patterns between two patterns

when one is changed to another. For example, a sensor slowly wears off and

becomes less accurate (Gama et al., 2014). Gradual drift means the new pattern

goes back to the previous one sometimes, but with decreasing frequency, such as

the change in walking pattern for toddlers (Abdallah et al., 2018). Reoccurring

concept means that previously seen patterns that are seen again, e.g., most

economics, transportation and weather data present this characteristic (Lu et al.,

2018). It should be clarified that the incremental drift and gradual drift are

different. Incremental drift occurs when data instances gradually change their

values over time, and gradual drift occurs when the change in data instances

includes the class distribution of previous data (Wadewale and Desai, 2015).
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Sudden
Drift:
A new concept occurs within a short time.

Data distribution

Data distribution

Data distribution

Data distribution

Time

Time

Time

Time

Incremental
Drift:
An old concept incrementally changes to a new concept over a period of time.

Gradual
Drift:
A new concept gradually replaces an old one over a period of time.

Reoccurring
concept:
An old concept may reoccur after some time.

Figure 2.2: Four types of concept drift.

Existing concept drift-related studies handle concept drift problem in a gen-

eral way by assuming the existence of sudden non-reoccurring drift, regardless

of the type of drift. Especially, (Song et al., 2019a) summarizes four types of drift

into two categories: 1) permanent drift includes sudden or gradual drift that once

drift occurs the concept will change to another concept and never turn back (e.g.,

replacement of sensors); 2) alternate drift includes gradual drift and reoccurring

concept that the concept switches between several alternate patters.

2.2.3 Concept drift applications

Handling concept drift is particularly important in real world practice because

stream data are ubiquitous in many applications. Examples include network
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traffic, telecommunications, and financial transactions, to name just three. Data

mining tasks in these systems will inevitably encounter the concept drift problem.

In some cases, the ability to handle concept drift becomes the key factor in im-

proving system performance. A comprehensive review of concept drift industrial

applications can be found in (Žliobaitė et al., 2016; Žliobaitė, 2010b), in which the

authors list many industrial examples of different types of application, including

monitoring and control, information management, analytics and diagnostics.

Concept drift detection applications. Drift detection applications fulfill the

industrial requirement of diagnosing significant changes in the internal and

external environment of industry trends or customer preferences: for example,

using drift detection technology to diagnose changes in user preferences on news

(Harel et al., 2014). Similar tasks include fraud detection in finance, intrusion

detection in computer security, mobile masquerade detection in telecommunica-

tions, topic changes in information document organization, and clinical studies

in the biomedical area.

Concept drift adaptation applications. Concept drift adaptation applications

concern the maintenance of continuously effective evaluation and prediction

system for industry. These applications sometimes also involve drift detection

technologies for better accuracy. A real case represented in (Sousa et al., 2016)

is the design of a credit risk assessment framework for dynamic credit scoring.

Other real-world drift adaptation applications can be found in customer churn

prediction in telecommunication, traffic management in transportation, produc-

tion and service monitoring, recommendations for customers, and bankruptcy

prediction in finance.

With the rapid development of technology, data streams are becoming more
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highly dimensional with larger sizes and faster speeds. The new challenges

presented by big data streams require more advanced concept drift applications.

One concern is how to handle concept drift problems in the Internet of Things

(IoT) (De Francisci Morales et al., 2016), where the huge quantity of big data

streams require deeper insight and a better understanding of concept drift.

2.3 Concept Drift Adaptation

Concept drift adaptation aims to design an effective strategy to update the

learned predictors by time, to make sure that the predictor can be self-adaptive

to the data that may change over time Gama et al. (2014). There are three

basic requirements in drift adaptation: 1) Adaptation should be fast Bifet

et al. (2017). As the data arrives as a stream, the adapted predictor should be

updated and used to predict the label value of future instances before their true

value is available. For example, for a drift adaptation method, the adaptation

process should be done in half an hour if the frequency of data is half an hour.

2) Adaptation should be robust dos Reis et al. (2016). As the data stream

is assumed to have infinite upcoming data instances, the adaptation strategy

is required to have no accumulation of error. 3) Adaptation should also be

applicable in a non-drift data stream Song et al. (2019a). Although concept

drift is a characteristic of the data stream, it is not necessary for every data

stream to contain drift. Besides, it is uncertain whether drift would occur in a

real-world data stream. Therefore, the designed drift adaptation methods should

also be applied in a non-drifted data stream.
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2.3.1 Classification of concept drift adaptation methods

Concept drift adaptation methods have three learning components (Figure 2.3):

1) learning mode; 2) adaptation strategy; 3) predictor management (Gama et al.,

2014). These components determine the classification of adaptation methods

from the aspect of each component.

Learning mode refers to update the predictor by retraining or incremental

learning (such as, retuning) when new data points are available. Retraining

approaches need some data buffer to be stored in memory (Tsymbal, 2004). Once

the new predictor is learned, the old predictor will be immediately discarded

(Street and Kim, 2001; Zeira et al., 2004). To retrain the predictor more accurately

and efficiently, windowing techniques have been broadly studied in this area

window. The window size can be different according to the characteristics of the

data. A typical example is ADWIN Bifet et al. (2007). The window grows by

including useful data examples when no drift occurs and decreases by excluding

old data examples when drift is identified. Similar techniques can be found in

Tennant et al. (2017) where the model is only modified when the learning error

reaches the error threshold, and this happens irregularly. A series of algorithms

have been designed to choose the appropriate window (Alippi et al., 2011, 2012,

2013; Alippi and Roveri, 2008a,b). Incremental learning update the current

predictor using the most recent data (Pratama et al., 2016), such as IKS dos

Reis et al. (2016) and Learn++ algorithms Elwell and Polikar (2011); Ditzler and

Polikar (2013). Especially, an online learning mode updates the predictor by the

most recent instance (Littlestone, 1988; Frías-Blanco et al., 2016).

Existing drift adaptation is implemented by two strategies: blind adaptation
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Figure 2.3: Learning components and their classification in concept drift adapta-
tion methods.

strategy and informed adaptation strategy Gama et al. (2014). The adaptation

method with a blind strategy is also categorised as “passive" approach and the

adaptation method with an informed strategy categorised as “active" approach

Ditzler et al. (2015). Blind adaptation strategies periodically adapt the predictor

when every fixed-size sliding window of data arrives, no matter whether the

drift truly occurs, or not Minku and Yao (2012). Most ensemble learning methods

designed for data streams use a blind adaptation strategy, which has been ex-

tensively reviewed in Gomes et al. (2017a). In contrast, the informed adaptation

strategies adapt the predictor based on drift detection results Lu et al. (2016).

Predictor management refers to the techniques for maintaining active pre-

dictors. Early research in this area normally applies a single predictor Lu et al.

(2014, 2016). In recent studies, ensemble predictors have been widely used for

its good performance and wide applications on different tasks (Mendes-Moreira

et al., 2012; Gomes et al., 2017a).

In summary, the concept drift adaptation is a technique that continuously

updates (retrains or incrementally retunes) the predictor (a single predictor or

an ensemble predictor) by a blind or an informed strategy. In this research, the

drift adaptation methods are reviewed by the adaptation strategies.
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2.3.2 Blind concept drift adaptation

Concept drift has not been widely recognized in most earlier studies and there

is a shortage of drift detection techniques, but there are nevertheless a few

methods capable of solving the concept drift problem. One such attempt is the

IB3 algorithm designed in Aha et al. (1991). IB3 monitors each instance during a

time interval and employs a significance test to determine which instances should

be accepted, dropped or monitored in future training. Similar methods can be

found in Maloof and Michalski (2004). Blind adaptation strategies do not involve

drift detection techniques, such as evolving neural networks in Pratama et al.

(2017), AUE2 Brzezinski and Stefanowski (2014), DWMIL Lu et al. (2017) and

DTEL Sun et al. (2018). An online blind adaptation method is proposed which

can update predictors based on selected instances that were most relevant to the

newly-arrived data Song et al. (2017). Paper Žliobaitė et al. (2015) suggests using

a temporally augmented classifier which incorporates a higher order temporal

dependency for data stream classifications.

Many ensemble learning techniques in the concept drift area use a blind

adaptation strategy Gomes et al. (2017a); Krawczyk et al. (2017), such as OOB

and UOB Wang et al. (2015). Early ensemble algorithms such as SEA (streaming

ensemble algorithm) and AWE (accuracy updated ensemble) apply a simple

updating strategy in which a classifier trained with a newly-arrived data chunk

is added to the ensemble, and the weakest of the previous classifiers are removed

based on their performance on the new data chunk Street and Kim (2001); Wang

et al. (2003). A similar ensemble mechanism can be found in CDC, DWM and

AddExp algorithms Stanley (2003); Kolter and Maloof (2007, 2005). Brzezinski
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et al. extended AWE and proposed AUE1 and AUE2 algorithms by updating

classifiers according to learning accuracy rather than simply selecting them

into the ensemble Brzezinski and Stefanowski (2014). Ditzler et al. Elwell and

Polikar (2011); Ditzler and Polikar (2013) proposed a series of ensemble al-

gorithms: Learn++.NSE, Learn++.CDS and Learn++.NIE. The Learn++.NSE

algorithm assumes that no previous data are available when the new batch of

data arrives and that any past information must have been reflected by the

previously generated classifiers. The ensemble combines dynamically weighted

classifiers that give more weight to classifiers capable of identifying previously

unknown instances and penalizes classifiers that misclassify. The weight is based

on sigmoidal averaged time-adjusted error over all environments Elwell and

Polikar (2011). Learn++.CDS and Learn++.NIE are the versions that have been

developed for imbalanced data Ditzler and Polikar (2013).

When no drift detection techniques are involved, both instance-based adap-

tation methods (methods that update or weight the most useful instances) Oza

(2005) and classifier-based adaption methods (methods that add, delete or weight

different classifiers) (Gomes and Enembreck, 2013, 2014) assume that drift oc-

curs constantly. They do not analyze the drift but keep updating the model even

though no drift occurs. It is true that these models are suitable for the newly

arrived data; however, it cannot be confirmed that they are suitable for learning

the new patterns, because exactly when a new pattern occurs is unknown in

these methods. The predictor could be ill-trained with the “always-adapt" mech-

anism in the blind strategy. It has been validated by Song et al. (2019a) that a

blind online adaptation can lead to large errors if concepts reoccur. Despite the

drawbacks, these methods have been successfully applied in real data streams.
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2.3.3 Drift detection

Concept drift detection is to detect the appearance of drift Alippi et al. (2017).

Two commonly used detection methods are learner error-based and statistic-

based detection Baena-Garcıa et al. (2006); Sakamoto et al. (2015). The learner

error-based drift detection monitors the learning error made by the current

predictor, and retrain the model if the error is beyond a threshold Haque et al.

(2016a). Using learning-error based criteria to detect whether the existing model

is still suitable for an incoming instance. If the learning error is not convergently

decreasing as it should in a stationary case, a drift is recognized. To distinguish

actual drift from random error, a Hoeffding bound is usually introduced to re-

strict the false alarm (i.e., the ratio of falsely classified positive cases) Lughofer

et al. (2016). For example, the decision tree models use learner error and Ho-

effding bound to decide the split criterion Bifet et al. (2017). In Rutkowski et al.

(2015), the authors provide a different mathematical justification for Hoeffding

bound used in the decision tree. A P-tree is proposed in Shao et al. (2014) to

use error-driven representativeness to identify prototypes. The statistic-based

drift detection introduces or proposes a statistic and uses the statistical prop-

erty of this statistic to infer drift information Ditzler et al. (2015), such as the

Kolmogorov-Smirnov test dos Reis et al. (2016), density-difference estimation

Bu et al. (2018), the likelihood ratio Alippi et al. (2017) and regional density Liu

et al. (2018a).

Detecting drift by data distribution commonly relies on constructing statistics

to measure the distance between two batches of the data stream and uses the

distribution of these statistics to estimate the critical region by hypothesis testing
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(Lu, 2012). Concept drift is defined as a change in distribution from one time point

to another time point. It is theoretically reasonable that the instance at time

point t is a sample selected from a specific population and that the instance at

time point t’ is from another population. However, when the sample information

is used to infer whether there is a distribution difference between these two

populations, the smallest sample size is required Lu et al. (2014, 2016). Two

methods are usually used for the distribution of the statistics. One is to construct

an appropriate statistic and give its asymptotic distribution by the central limit

theorem Frías-Blanco et al. (2015); Zambon et al. (2018). The other is to generate

the distribution of the statistics by bootstrapping or the permutation test Dasu

and Krishnan (2006); Gu et al. (2016); Harel et al. (2014).

There are also drift detection methods that do not need to rely on the learner

error or statistics. For example, detecting drift by an adversarial net (Song et al.,

2018); and using parameter changes to detect drift (Su et al., 2008).

2.3.4 Informed concept drift adaptation

Informed drift adaptation evolves a drift detection process, and use the drift

information provided by the detection method to help adaptation (Boracchi et al.,

2018). The informed drift adaptation methods are reviewed and summarized in

Lu et al. (2018).

There are generally two ways to realize concept drift adaptation based on drift

detection: 1) one is to use a drift detection technique to output a binary variable

of “drift is detected" or “drift is not detected", and only update the predictor when

the drift is detected Bu et al. (2017). For example, Gama et al. (2004) proposed
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observing the learning error and detecting drift using a warning level. Once

a change is detected at a specific time point, a new decision model is induced

based on instances after this time point. SAND was proposed to adapt to a new

concept by detecting and storing outliers instead of using a drift detection method

Haque et al. (2016a,b). The principle of SAND is to use the existing ensemble

to predict normal points and temporarily store every detected outlier. Once the

length of stored outliers is sufficiently large, a novel class detection module is

invoked. If a novel class is detected, a new model is trained which replaces the

oldest one in the ensemble. Minku and Yao introduced a drift detection method

to determine the appropriate diversity of an ensemble Minku and Yao (2012)

based on a diversity analysis in the presence of different drift types, which they

presented in Minku et al. (2010). In tree models, many drift detection methods

are introduced to the handle concept drift Yang and Fong (2015); Bifet et al.

(2017); Rutkowski et al. (2015); Hulten et al. (2001).

2) The other method of adaptation requires drift detection techniques to

recognize drifted parts and make predictions based on that recognition (drift

understanding) Lu et al. (2018). For example, the ADWIN algorithm proposed in

Bifet et al. (2007) uses an adaptive windowing method in which the window size

increases for greater accuracy before the drift occurs and shrinks automatically

when drift is detected. A drift detection, localization and characterization method

was proposed in Bose et al. (2011) which can detect drift as well as its localization

by introducing the univariate two sample Kolmogorov-Smirnov test (KS test)

and Mann-Whitney U test (MW test). This method is suitable for detecting sig-

nificant differences between two overlapping or non-overlapping windows. Josep

and Rochard introduced abstract interpretation theory to learn a polyhedron
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consisting of a set of linear inequality constraints Carmona and Gavaldà (2012).

Concept drift is detected based on the polyhedron in process mining. Josep and

Rochard applied a drift detection method similar to ADWIN to generate a series

of inequalities, and a sub-set of these inequalities was used to locate drift. Ning

et al. Lu et al. (2016, 2014) proposed a drift detection method via the permutation

test, which picks out the drift instances. The classifier is only learned according

to the non-drift instances. Similar methods are proposed in (Liu et al., 2017a; Gu

et al., 2016)

Detection-based adaptation is often time delayed, because an entire batch of

new instances is needed to conduct the detection process Liu et al. (2018a). Most

of these methods also replace the current learner with a new one after a drift has

been detected, so they suffer inaccuracies in the process of both detection and

adaptation. Sometimes, the drift detection is time-consuming because it needs to

deal with the whole window of instances Lu et al. (2014).

2.3.5 Concept drift adaptation methods in regression

cases

Existing drift adaptation mostly handles the classification tasks but limited

research can be found for regression cases. As pointed out in Mendes-Moreira

et al. (2012), successful classification techniques are rarely directly applicable to

regression. For example, when the boosting algorithm was originally designed, it

could not be directly applicable to regression because it assumes that the gener-

alization error is in [0.5,1]Mendes-Moreira et al. (2012). This section specially

reviews the concept drift adaptations in regression cases.
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The issue of regression concept drift was formally emphasized by Ikonomovska

et al. (2011a) as regression in time-changing data streams. To solve this problem,

the authors proposed an algorithm called very fast incremental model trees with

drift detection (FIMT-DD) to perform explicit change detection and informed

adaptation. They introduced a deviation-based test called the Page-Hinckley

(PH) test and a threshold to continuously detect whether the current data batch

triggers an alarm to indicate a change in the distribution. They also introduced

a Q statistic to reduce the false alarm of this drift detection. Ikonomovska et

al. developed FIMT-DD to an online regression/model tree with options (ORTO)

by adding options nodes to assist the split of equally discriminative attributes

Ikonomovska et al. (2011b). A generic framework, Concept Neurons, was pro-

posed in Moreira-Matias et al. (2016) which aims to handle drift in regression

problems; the Concept stage is designed to monitor whether drift occurs, and the

Neuron stage is designed to update the model using a residual-based version of

the parameters inverse gradient. Duarte et al. fused the Page-Hinkley test in

decision rules and proposed adaptive model rules (AMRules) to detect and react

to regression concept drift by pruning the rule set Duarte et al. (2016).

A common feature of the above methods for addressing regression concept

drift is that they have an embedded drift detection mechanism. There are also

methods of handling regression concept drift that does not have a detection

technique. For example, Wang et al. proposed using a constrained penalized

regression combiner to track concept drift Wang et al. (2017). The main idea of

their method is similar to ensemble learning, where the weights of predictors

are determined by minimizing the proposed constrained penalized cost function.

Although the authors defined a measure of concept drift, this measure is simply
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used to measure the degree of drift in the data and does not assist future

predictions. Other ensemble methods for handling regression concept drift are an

online weighted ensemble (OWE) Soares and Araújo (2015) and a simple adaptive

batch local ensemble Bakirov et al. (2015). Another recent drift adaptation

algorithm that focuses on the regression problem is FP-ELM, which assumes

that earlier data are always less related to the new concept than newly-arrived

data. This method introduces dynamic forgetting parameters to gradually reduce

the weight of the training samples in the non-stationary environment. The

forgetting parameters are controlled by two user-specified parameters and the

current level of error Liu et al. (2016).

2.3.6 Drift adaptation using fuzzy techniques

Fuzzy logic is able to describe a vague definition that has intrinsic advantages

in describing the concept drift problem to some extent. For example, given two

patterns existing in one batch of data instances in which one follows y= x2 and

the other y=−x2, it is ambiguous to classify the point (0,0) to any pattern. Fuzzy

logic is a perfect solution for expressing this type of uncertainty. In Pratama et al.

(2017), an evolving recurrent fuzzy neural network is proposed to incrementally

adapt to concept drift. A generalized interval type-2 fuzzy rule is used in their

network architecture which can be automatically generated, pruned, merged and

recalled in the single pass learning model. In Song et al. (2017, 2019a), a fuzzy

c-means clustering technique is applied during learning the regression model to

identify the most relevant data instances to the latest pattern in the training set.

Fuzzy methods have advantages for designing windowing techniques for concept
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drift adaptation. For example, a fuzzy windowing technique is proposed in Liu

et al. (2017b) to detect drift more flexibly.

2.3.7 Drift adaptation in a noisy environment

In the batch-learning setting, noise is described as “irrelevant or meaningless

data" (Xiong et al., 2006). Specifically, Xiong et al., summarized noise from a

task-based aspect as data that significantly hinder the aimed data analysis, for

example, the noise caused by an imperfect data collection process and ordinary

data objects that are irrelevant or only weakly relevant to the aimed data analysis

(Xiong et al., 2006). Data cleansing or noise removal techniques are designed in a

batch-learning setting to remove the irrelevant noise and enhance data analysis

process (Hernández and Stolfo, 1998).

Concept drift methods especially drift detection techniques sometimes have

overlap with the techniques used to deal with noise such as anomaly detection

(Chandola et al., 2009). This is reasonable, as concept drift detection can be

considered as anomaly detection repeatly over time. However, it is important to

distinct these two ideas from each other especially these two problems occur in a

data stream at the same time (Gomes et al., 2017a).

There are some studies in the literature tested the proposed drift adaptation

method in a noisy environment, such as (Harries et al., 1998; Hulten et al., 2001;

Liu et al., 2016; Xu and Wang, 2017; Sun et al., 2018) but all of these methods

mainly aim to specifically solve the concept drift problem, and the noise problem

is just mentioned in the experiments where the tested data is added with the

noise at some levels. Limited methods in the literature are designed to handle
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concept drift problem in a noisy environment.

The earliest formal solution of concept drift adaptation in a noisy environment

is STAGGER Schlimmer and Granger (1986b), where the clustering result is

predicted by the description of dually weighted Boolean functions. STAGGER

continuously monitors and updates the numerical weights of characterizations of

a feature in order to chase the newest data pattern. Rather than deleting noise,

STAGGER updates weights of features to present the extent to which particular

combinations of features indicate a specific category because it assumes that

description will not be a perfect predictor of a category in noisy data. STAGGER

has shown good performance on systematic noise and fair performance on random

noise. A drawback of STAGGER is that it handles the clustering task, and this

“weights against noise" strategy is not applicable in a regression task because the

extent to which a description indicates categories no longer exists in a regression

task. In Bakker et al. (2009), the authors studied the effectiveness of three change

detection methods on identifying outliers and drift—a nonparametric change

detection, a parametric test and an ADWIN (refer to Bifet et al. (2007)) method.

Drift is dealt in the same way to outlier noise rather than being distinguished

from noise. Therefore, this method is not able to unambiguously distinguish

outliers from drift in principle. In addition, they focused on a special case of online

mass flow prediction in circulating fluidized bed (CFB) boilers, and therefore it

remains unknown that whether the proposed method is also suitable to other

practical cases. Lu et al. developed a noise-enhanced fast context switch (NEFCS)

algorithm to exclude the noise from the case base and effectively update the

case base when drift occurs Lu et al. (2016). To the best of our knowledge, this

is the only research that introduced professional denoising techniques in the
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drift adaptation process to solve the concept drift problem in a noisy data stream.

In NEFCS, an anomalous instance is identified as noise only if it is detected

as noise by a blame-based noise reduction rule and locates out of concept drift

competence areas. In this way, NEFCS is able to distinguish noise from novel

concepts.

All the above-mentioned methods discuss the discrete noisy label problem. If

the label is a continuous label or noise exists in the feature space, these methods

will be invalid. As far as we know, the only research of handling noise on the

continuous label and feature space is proposed in Song et al. (2019b), which

considers data stream as a collection of time series and discuss the concept drift

problem when those time series have signal noise.
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3
DRIFT ADAPTATION BY IDENTIFYING CONCEPTS

BY FUZZY CLUSTERING PROCESS

As it is unknown when concept drift occurs, the training set used to train the

predictor probably contains several patterns, leading to the situation that the

same input value maps to different outputs. This chapter presents a drift adapta-

tion method to deal with that situation. This chapter begins with an introduction

of the problem and tasks (Section 3.1). We list the definitions and notations in

Section 3.2. The solution is explained in Section 3.3 with its experimental evalu-

ations in Section 3.4. Last, a summary concludes this chapter with discussions

about potential future research (Section 3.5).
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The regression task: to obtain a predictor y = f(x) to estimate y.

Figure 3.1: The training set for a data stream.

3.1 Introduction

Once a concept drift occurs in a data stream, the data instances used to learn

the predictor will probably contain more than one patterns, such as the case

presented in Figure 3.1. Figure 3.1 shows the training data for a regression

task that given the value of x, a predictor—a linear or non-linear function, is

learned to estimate the corresponding value of y.

In Figure 3.1 a), each dot presents a data instance of a data stream. The

input x and the output y have linear patterns. The pattern is changed from the

blue one to the red one after drift occurred at the 1001th time step. However, the

length of the training data is set to contain 2000 instances. In addition, the time

stamp will be lost after these data instances are recorded in the training set, as

is shown in Figure 3.1 b). Therefore, there two different concepts in the training

data simultaneously, and it is unknown which concept each instance belongs to.

For the training set in Figure 3.1 b), the same value of x have two correspond-

ing y values. If we directly learn a predictor using this training set, for example

a linear predictor by the ordinary least squares(OLS) regression method, the
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the predictor

the predictor can not be well-learned

Figure 3.2: Learn a predictor by the OLS methond using the training set that
contains two patterns.

learned predictor can not well present any pattern as is shown in Figure 3.2.

If the drift occurs suddenly, a data instance will certainly belong to one

pattern. However, if the drift occurs incrementally, some of the data instances will

simultaneously belong to two patterns to some extent, and it will be inappropriate

to use crisp logic to present the belonging relationship between the data instances

and patterns. The prediction for data streams with mixed drift problem is much

more complicated than the task that considers only one type of drift. For data

streams with mixed drift, the regression tasks consist of four sub-tasks: 1)

recognizing patterns, 2) learning predictors for each pattern, 3) classifying the

current instance as a specific pattern, and 4) designing an adaptation method to

solve tasks 1)-3) quickly and repeatedly.

To solve the above four tasks, fuzzy logic is introduced into the learning pro-

cess. A fuzzy clustering-based adaptive regression approach called FUZZ-CARE

is proposed in this chapter especially for prediction tasks in data streams with

mixed drift. A fuzzy clustering process is embedded in FUZZ-CARE by adding
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the objective function of fuzzy clustering to the objective function of learning the

regression predictor. This design enables it to learn how many patterns exist in

the observed data instances, i.e., the training set, and the membership degree

of each instance belonging to each pattern during the process of learning the

parameters for the predictor. The proposed FUZZ-CARE is therefore able to make

accurate predictions for data streams with concept drift in which the training

set probably contains several patterns. This solves tasks 1) and 2). Task 3) is

tackled under the assumption that each pattern will exist for at least for two

time steps. This assumption is necessary because when concept drift occurs is

never known before the true output value is observed. If the new pattern only

shows at one time step, there is no need to apply this information about drift

to improve prediction of the upcoming data instances because the upcoming

data instances follow another new pattern. This is a reasonable assumption

in real-world applications, especially in scenarios where the concept reoccurs,

such as the financial market, weather forecasting, traffic monitoring, and so on.

Under this assumption, the current data instance automatically inherits the

membership of its previous instance before the output value is observed, and the

membership is renewed when the true output value is obtained. Clearly, the time

lag of our method is one data instance, and the longer the patterns last, the more

effectively FUZZ-CARE performs. We also introduce a kernel function to enhance

the classifier for high dimensional tasks. Task 4) is solved for adaptation for

mixed drift by introducing three updating strategies: a window-based updating

strategy (incremental strategy), an instance-based strategy (online strategy) and

a combination strategy of both. These strategies enable FUZZ-CARE to adapt to

cases of mixed drift.
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The proposed FUZZ-CARE method demonstrates the following advantages

on solving the concept drift problem.

• FUZZ-CARE can recognize different patterns in the training set, and

measure the degree to which a data instance belongs to different patterns.

• The predictors will continuously adapt to new patterns as well as tracking

back to previously learned predictor when a previous pattern reoccurs.

• FUZZ-CARE is able to handle data stream that have different types of

concept drift, especially drift that has a mix of gradual and reoccurring

concept.

• FUZZ-CARE is also suitable for regression tasks of data streams without

drift where FUZZ-CARE functions as a weighted regression predictor. This

is very important to apply this method in practice because it is unknown

whether a real-world data stream contains drift.

3.2 Definitions and Notations

To mimic the characteristic of data stream where data instances are observed in a

sequential way, the learning and evaluation process for data stream is repeatedly

activated when new data instances are observed. Specifically, a trained predictor

is applied to predict the label value of the new data instance before the true label

is obtained. After the true label is obtained, an evaluation process is activated

and the instance is included to retrain the existing predictor.
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Definition 3.1 (Data Stream). A data stream Dt = {(X t, yt) |t = 1, ...∞}, generated

from distribution Pt with pt (X , y) its probability function or probability density

function (pd f ), is received, where
{
X t ∈Rd} is the attribute variable (or the

input) consisting of d time series, for some d, and
{
yt ∈R1} is the label variable

(or the scalar output).

So far, concept drift is defined as Definition. 3.2. This widely accepted defi-

nition of concept drift has highlighted the characteristics of drift, but has not

explained the meaning of “concept". When studying the problem of concept drift,

the term “concept" is used to represent the hidden data patterns such as the prob-

ability distributions and relationships between X and y. Concept drift is caused

by the hidden context, rather than stochastic disturbances. Unlike outliers, a

concept will last for a period after it shows, rather than existing momentarily.

To present this characteristics of concept, a constraint is added to the current

definition of concept drift as is presented in Definition 3.3.

Definition 3.2 (Concept Drift (short version)). Concept drift is defined if the

underlying distribution changes, i.e., pt+1 (X , y) �= pt (X , y).

Definition 3.3 (Concept Drift (full version)). Concept drift occurs in a data

stream if ∃td(i) that

(3.1)

⎧⎪⎨⎪⎩
pt+1(X , y) �= pt(X , y), for t = td(i)

pt+1(X , y)= pt(X , y), for t ∈
(
td(i)+τi

, td(i+1)

)

where ∀i, td(i+1) − td(i) > 1, t ∈Z+ presents the time step, d(i) is an order statistics

46



3.2. DEFINITIONS AND NOTATIONS

denoting the ith drifted time point, and 1< τi < td(i+1) − td(i) is specifically for the

occurrence of incremental drift.

Remark 3.1. In the full version definition, a data stream contains concept drift

if the data pattern changes at least once, namely
{
td(i)
} �= 
 that pt+1(X , y) �=

pt(X , y), for t = td(i) ; in addition, the changed pattern is not ephemeral, but

will last for a period (at least last for two time steps), which is manifested by

∀i, td(i+1) − td(i) > 1. The pattern stays the same in this period that pt+1(X , y) =
pt(X , y), for t ∈

(
td(i)+τi

, td(i+1)

)
; here τi = 1 when the drift occurs suddenly while

τi > 1 when the drift occurs incrementally in the period of
(
td(i)+1, td(i)+τi

)
. All

drift adaptation methods are at least one-instance delayed. Without the

constraint that a new pattern will retain for a period, the adaptation is

invalid in principle.

According to Definition 3.3, a concept will exist for at least a time period of τ

once it appears, and the occurrence of concept drift at td means the end of one

concept. During the time period of one specific concept, the learning aim is to

obtain a predictor Hc for pc (X , y).

Definition 3.4 (Learning Aim at t-step). To predict the value of the label variable

for a data stream at time step t, the learning aim is to obtain a predictor Ht for

pt (X , y), which can be denoted as

(3.2) Ht = argmin
h∈H

� (h, X , y| (X , y) ∈ pt (X , y)),

where H is the hypothesis set, � :R1×R1 →R+ is the loss function used to measure

the magnitude of error.
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In the regression task, the loss function is the squared loss, i.e., � (h, X , y)=
‖h (X )− y‖2

2. This chapter only discuss the concept drift problem in a regression

task, and the squared loss will be used as the loss function.

Definition 3.5 (Learning Aim for Data Streams). The aim of the whole learning

process for a data stream is

(3.3) min
h1,h2,...,ht,...

∑
t
� (Ht, X , y| (X , y) ∈ pt (X , y)).

In this chapter, we use the following notations.

• I tk: the value of a characteristic function

• μtk: fuzzy membership of t-th instance belonging to k-th cluster

• {Ck}: the k-th cluster centroid

• J: objective function

• JR : regression term in J

• JC: clustering term in J

• {θk}: the parameters for the k-th predictor

• λ1, λ2: weights for the regression term and the regularization term

• η: the Lagrange multiplier

• K(·): the kernel function

In this chapter, it is assumed that a window of historical data containing K

different patterns is initially available. Each pattern can be well expressed by a
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set of predictors
{
Hk

t |k = 1, ..,K
}
. The predictors start to receive a data instance

X t ∈ Rd at a time step t, and the output for this instance is simultaneously

predicted as ŷt ∈ R1 based on the current predictor set
{
Hk

t
}
. The true value

of this instance, yt follows. Once yt is observed,
{
Hk

t
}

is modified based on

(X t, yt). After receiving a window of new data, these predictors will be replaced

by the newly trained predictors. Our goal is to predict the incoming instances as

accurately as possible by updating
{
Hk

t
}
.

3.3 A Fuzzy Clustering-based Drift Adaptation

Method—FUZZ-CARE

3.3.1 Embedding clustering in objective function

Given the assumption that there is a batch of data instances containing K

patterns, the appropriate prediction should be learn K predictors for K patterns.

To achieve this prediction, we propose the following objective function:

(3.4) Ht = argmin
hk0∈H

K∑
k=1

�
(
hk, X t, yt

)
I tk,

where I tk is defined as (3.5), and k0 = argmin
i

�
(
hi, X t, yt

)

(3.5) I tk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, for k = argmin
i

�
(
hi, X t, yt

)

0, otherwise.
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The core idea of objective function (3.4) is that: Given the current instance

belonging to the k-th pattern, the objective function requires Ht to obtain the

minimum error on the current data point. Simultaneously, I tk determines which

pattern the current instance belongs to. The objective function seeks to find the

optimum for both Ht and k. Here I tk is a crisp variable, denoting that an instance

exactly belongs to a certain pattern, which is not realistic in many real-world

cases because the data do not always have well-separated subgroups (Pal and

Sarkar, 2014; Zuo et al., 2016). For example, given two patterns of data instances

in which one follows y= x2 and the other y=−x2, it is ambiguous to classify the

point (0,0) to any pattern. Fuzzy logic is a perfect solution for expressing this

type of uncertainty (Zuo et al., 2018; Liu et al., 2018b). In light of this, I tk is

replaced by the fuzzy membership utk to measure membership degrees. Given{
μtk
}

the membership of t-th instance belonging to k-th cluster, {Ck} the k-th

cluster centroid, {X t} the input variables at time step t and {θk} the parameters

for the k-th predictor, we propose to minimize the following objective function:

(3.6)

J = JR +λ1JC +λ2

K∑
k=1

‖θk‖2
2

s.t.
K∑

k=1
μtk = 1, t ∈ [1, ..., N] .

where JR and JC are defined as (3.7) and (3.8) respectively. In (3.8), L2 norm is

used to measure the similarity between the data and the clustering centroids.

L2 norm can also be replaced by other distances or measurements such as fuzzy
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entropy (Xie et al., 2018).

(3.7) JR =
N∑

t=1

(
K∑

k=1
μtk X tθk − yt

)2
.

(3.8) JC =
K∑

k=1

N∑
t=1

μ2
tk ‖X t −Ck‖2

2 .

λ1 and λ2 are two pre-assigned parameters. The value of λ1 denotes the compared

importance between clustering and learning process. λ1 ≤ 1 means that the

identifying pattern is more important than the training pattern, and λ1 ≥ 1

means that the training pattern is more important than the identifying pattern.

λ2 is to control the regularization. In this chapter, λ1 = 1, λ2 = 0.5 if they are not

specified.

3.3.2 Finding an optimum predictor with the minimum

loss

To find the optimum the predictor, two approaches are used here: gradient

descent(GD) is applied to find an optimum for θk; and Lagrange multipliers for

μtk and Ck. The Lagrange function is defined as:

(3.9) L= J+
N∑

t=1
ηt

(
K∑

k=1
μtk −1

)
.

Our target is to compute the optimal θk, Ck and μtk. Given U (k)
X =

{
μ(k)

Xt j
|μtk Xt j

}
,

the partial differentiate of L with respect to these three variables is separately
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calculated as:

(3.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂θk

=(U (k)
X )T

(
K∑

k=1
U (k)

X θk − y

)
+2λ2θk

L
∂Ck

=−2λ1

N∑
t=1

μ2
tk (X t −Ck)

∂L
∂μtk

=2

(
K∑

k=1
μtk X tθk − yt

)
X tθk+

2λ1 ‖X t −Ck‖2
2μtk +ηt.

Given the partial differentiate of θk and α the learning rate, θk is updated as:

(3.11) θ′
k = θk +α

∂L
∂θk

.

We carry out the optimum of μtk and Ck through an iterative optimization method

according to (Yang et al., 2011; Huang et al., 2012). When ∇μtk,Ck,ηt

(
θk,μtk,Ck,ηt

)=
0 we have:

(3.12) Ck =
∑N

t=1
(
μ2

tk X t
)

∑N
t=1μ

2
tk

,

and

(3.13) μtk =
2yt (X tθ)−2X tθk

∑
l �=kμtk X tθk −ηt

2
[
(X tθk)2 +λ1 ‖X t −Ck‖2

2
] .
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Next, we calculate ηt by the constrain in (3.6). Put (3.13) into
∑K

k=1μtk = 1, ηt is

computed as

(3.14) ηt =
−1+∑K

k=1
2yt(X tθk−Sc)

2
[
(X tθk)2+λ1‖X t−Ck‖2

2
]∑K

k=1
1

2
[
(X tθk)2+λ1‖X t−Ck‖2

2
] ,

where Sc
k = 2X tθk

∑
l �=kμtl X tθl . By replacing ηt in (3.13) by (3.14), we obtain the

iteration of μtk.

3.3.3 The kernel clustering-based version

The current cluster may not be effective for high dimensional and non-linear

clustering tasks. To overcome this drawback, kernel functions have been intro-

duced into the clustering process to solve non-linear problems. With the kernel

function, JC is rewritten as

(3.15) JK
C = λ1

N

K∑
k=1

N∑
t=1

μ2
tk ‖Φ (X t)−Φ (Ck)‖2

2 ,

where

‖Φ (X t)−Φ (Ck)‖2
2 =K (Xk, Xk)

−2K (Xk,Ck)+K (Ck,Ck) .
(3.16)
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The kernel-based objective function is (3.17).

(3.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

JK = JR +λ1JK
C +λ2

K∑
k=1

‖θk‖2
2

s.t.
K∑

k=1
μtk = 1.

As the kernel function does not affect the updating process of θ, θk will still be

updated by (3.11). In the kernel version, μtk is iterated as

(3.18) μtk =
2ytX tθk −Sc

l −ηKt
2
[
(X tθk)2 +λ1 ‖X t −Ck‖2

2
] ,

where Sc
l = 2X tθk

∑
l �=kμtl X tθl and ηKt is (3.19).

(3.19) ηKt =
−1+∑K

k=1
2yt

(
X tθk−Sc

l

)
2
[
(X tθk)2+λ1(X t,X t)−2K(X t,Ck)+K(Ck,Ck)

]∑K
k=1

1
2(X t,X t)−2K(X t,Ck)+K(Ck,Ck)

.

For a Gaussian kernel with K (x, y)= exp
(−‖x− y‖2 /2σ2), Ck is iterated as

(3.20) Ck =
∑N

t=1
(
μ2

tkK (X t,Ck)
)
X t∑N

t=1μ
2
tkK (X t,Ck)

.

This chapter aims to validate whether the clustering helps learn the regression

predictor for the data stream with concept drift. We want to select a kernel

function that is available for all tested data streams rather than selecting the

best kernel function specifically for each data stream. Therefore, the widely
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Algorithm 3.1: The learning process in FUZZ-CARE
Input : XT , YT , λ1, λ2, α, K .
Output : Ĥ: the trained predictor with following parameters:

U : fuzzy membership Mixture
C: the cluster center
Θ: parameters of regression predictors
K0: the optimal clustering number

Initialization: U ←Rand(0,1); C,Θ,co ← 0
1 for k = 2 to K do
2 for o = 1 to MaxIteration do
3 Update Θ(k), U (k), C(k) by (3.11), (3.18) and (3.20);
4 Calculate JK in (3.17) ;
5 if JK (o)> JK (o−1) then
6 co = co+1;
7 if co ≥ 6 then
8 break;
9 end

10 else
11 co = 0;
12 end
13 end
14 ŷt

(k) = Ĥ (Xt|U ,C,Θ,k);
15 Ko = argmin

k

∑
t | ŷt

(k) − yt|;
16 end
17 return Ĥ (·|U ,C,Θ,Ko)

used Gaussian kernel is selected, and the experiment results show that the

Gaussian kernel is available in all the tested data streams. Given the training

set [XT ,YT] = {Xt, yt|t = 1, ...,T}, λ1 and λ2 in (3.6), α the learning rate, and

K the maximum number of clusters, the pseudo code of the training process

in FUZZ-CARE is listed in Algorithm 3.1. Line 3 updates the parameters in

each iteration, and the iteration ends when o reaches the MaxIteration or JK

continuously increases for six iterations.
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3.3.4 The general procedure and pseudocode of

FUZZ-CARE

So far, we have a method that can provide a linear or non-linear fuzzy boundary

to separate the mixed patterns into several groups and assign each instance the

membership degree that it belongs to these groups . Its mechanism is simply

represented in Figure 3.3. In Figure 3.3, the black dots represent a 2-dimensional

dataset, where two patterns exist in the same training set. The red line on the

left is the fitted line of the linear regression method. The red and blue lines on

the right are the fitted lines of FUZZ-CARE. A conventional machine learning

method builds a predictor directly on the training set. If multiple patterns exist

in the training set, it is likely that an input will map to several probable outputs,

as in the two outputs case in Figure 3.3. Under such circumstances, the learner

will be confused and cannot be well trained. Therefore, the red line is in the

middle of the data and does not fit any pattern. In contrast, FUZZ-CARE solves

this problem by embedding clustering in the learning procedure. It identifies two

patterns in the training set and builds two separate linear predictors. However,

a precondition for using it to predict a new instance is that this instance can

be presented by a linear combination of the existing patterns. If an instance

belongs to a totally new pattern, it is impossible to obtain an accurate prediction.

To make our approach adaptable to situations in which new patterns occur and

may reoccur, three updating strategies have been introduced. One is a fixed

window-based updating procedure to incrementally include new patterns in our

pattern base; one is an online strategy which updates the predictor parameters

fully based on the predictor of the previous instance when the true value of a new
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Directly learns a predictor Learns with clustering

One input maps to two outputs 
Predictor cannot be well learned

Well learned

Conventional learning FUZZ-CAREMethod
Mechanism

Result

Example

Figure 3.3: The difference between FUZZ-CARE and other learning methods
when the same input maps to two outputs. Black dots represent a 2-dimensional
dataset, where two patterns exist in the same training set. The red line on the
left is the fitted line of the linear regression method. The red and blue lines on
the right are the fitted lines of FUZZ-CARE.

instance is observed; and one is a combination of the previous two strategies. The

combination strategy uses an online strategy prior to the arrival of a window of

instances, and when a whole window of instances has arrived, the window-based

updating strategy is applied. Given the upcoming data instances {Xt, yt}, and

Ĥt (·|U ,C,Θ,Ko), XT , YT , K from Algorithm 3.1, the procedure of Algorithm 3.2:

FUZZ-CARE is presented. Model_U and Window_U are switches for controlling

an online or incremental updating strategy. Model_U = 1 means that an online

strategy is used, and Window_U = 1 that an incremental updating strategy is

used. The combination strategy is applied when both equal 1 . The flowchart of

FUZZ-CARE combined with different strategies is shown in Figure 3.4. During

the experiments, we assume that at least one batch of historical data is available,

and this historical data will be used as the initial training set to learn the first

prediction predictor in FUZZ-CARE. If there are not enough data instances in
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Algorithm 3.2: FUZZ-CARE
Input : Xt, Ĥt (·|U ,C,Θ,Ko), XT , YT , K
Output : ŷt

1 for t = T +1 to ∞ do
2 ŷt = Ĥt−1

(
Xt|μt−1,C,Θ,Ko

)
;

3 XT = [XT , Xt];
4 return ŷt;

Input : yt.
5 YT = [YT ; yt];
6 if Model_U= 1 then
7 Update μt, C, Θ
8 if Window_U= 1 then
9 if A new window of instances is arrived then

10 Train Ĥt by Algorithm 3.1
11 end
12 else
13 Ĥt+1 ← Ĥt
14 end
15 end

the historical data, it is necessary to wait to collect data to compose the training

set.

wait and collect data update FUZZ-CARE

retain

retain 

retrain FUZZ-CARE

learn a FUZZ-CARE predictor

Model_U=1

Window_U=0

Window_U=1

Model_U=0

new instances are less 
than a full window

a window of new 
instances arrives

not enough historical data enough data

a stream arrives

Figure 3.4: FUZZ-CARE flowchart showing different updating strategies.
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3.4 Experimental Evaluations

The experiments in this paper are designed to demonstrate that the proposed

FUZZ-CARE can be applied for regression of data streams with or without

concept drift. However, the ground truth of whether a data stream contains drift

or which types of drift exist in a real-world data stream is unknown. Therefore,

we first conduct experiments on the synthetic data streams in Section 3.4.1.

As the drift is manually added to the same original data (noted as Non-Drift),

the prediction accuracy of Non-Drift can be used as a baseline to test whether

the concept drift problem has been solved. The experiments in this section are

to verify that FUZZ-CARE improves prediction accuracy because it solves the

concept drift problem. In the experiments on synthetic data, all four types of

concept drift are involved and mixed. Section 3.4.2 presents the prediction results

for real-world data streams, where FUZZ-CARE is compared to other state-of-the-

art regression methods for data streams with concept drift. Section 3.4.3 shows

the effectiveness of FUZZ-CARE on data without concept drift. The experiments

in this section is to demonstrate that FUZZ-CARE can be used in all kinds

of datasets although FUZZ-CARE especially tackles the concept drift problem.

None of the datasets in this section have a time label, so they are considered not

to have concept drift. The consistently good performance of the above three parts

shows that FUZZ-CARE can be used for regression of data streams, especially

data streams with mixed concept drift. Table 3.1 gives a brief structure of the

experimental design.
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Table 3.1: Experimental design in this section.

Section Data Experimental aim Main Results

3.4.1 d1 to verify whether FUZZ-CARE can solve different types of concept
drift and mixed drift

Table 3.2

3.4.1 d1 compare FUZZ-CARE1 and FUZZ-CARE2 by their learned para-
meters and learning errors

Figure 3.6

3.4.2 d2 to demonstrate that FUZZ-CARE can be used for regression of
data streams

Table 3.3

3.4.3 d3 to demonstrate that FUZZ-CARE can also used for regression of
stationary data

Table 3.4

3.4.4 d2 to demonstrate that FUZZ-CARE has significant advantages when
handling real-world concept drift problems

Table 3.5, Table 3.6

3.4.5 d2 to demonstrate the robustness of FUZZ-CARE Figure 3.7

d1: synthetic regression data
d2: real-world regression data streams
d3: real-world stationary regression datasets
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As a data stream {(X t, yt)|t = 1, ...,∞} is assumed to have infinite length, a

finite period of the data is used to validate the effect of the proposed FUZZ-CARE,

and the data used in this section is considered to be an available period of an

infinite data stream, denoted by {(X t, yt)|t = 1, ...,T}. A prequential evaluation

is applied to test the effectiveness of predictors that each data instance is first

used to test the predictor, and then to train the predictor. During the experimen-

tal procedure, data instances are assumed to arrive one by one. After enough

historical data have been obtained, denoted as {(X t, yt)|t = 1, ..., t0}, FUZZ-CARE

is activated to predict the upcoming data instances, namely {(X t, yt)|t = t0, ...,T}.

There are many similar predictors with different parameters in the proposed

FUZZ-CARE approach. Each predictor is obtained at a specific time step t and

used to predict yt. The effect of each predictor is identified by the absolute error

at time step t. After the absolute error has been computed at t, the true value of

yt is obtained, and this data instance (X t, yt) is used to train the predictor at time

step t+1. The effect of FUZZ-CARE is identified by the average of the absolute

error over all available time steps, namely the mean absolute error (MAE in

(3.21)). In all experiments, the pre-assigned parameters were as follows: α= 0.05,

λ1 = 1, λ2 = 0.5, K = 5, and σ2 = 0.01 in the kernel function. Section 3.4.4 show

the statistical test result of the accuracy comparison between FUZZ-CARE and

other state-of-the-art methods.The parameter analysis and computation complex

are conducted in Section 3.4.5.

(3.21) MAE= 1
(T − t0)

T∑
t=t0

| ŷt − yt| ,

where yt and ŷt are the true and evaluated output value separately.

In this paper, the real-world data is downloaded from several popular data
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sources, which are given when the data is introduced. As these data have been

widely used to validate data stream mining methods, they are well-cleaned, and

FUZZ-CARE does not embed any pretreatment method. FUZZ-CARE can be

activated after data pretreatment techniques such as simplifying the data for

better prediction performance when it is used to predict other data streams.

3.4.1 Validation on synthetic data

Data: Similar to the generation procedure of synthetic data in (Li et al., 2018),

we generated six datasets by several parameter-changing linear functions: Non-

Drift is a data stream without any drift; Virt-Drift only contains virtual drift,

i.e., only the way of generating input differs by time; Sudd-Drift contains a real

sudden drift; Incr-Drift means a real incremental drift occurs over a period;

Rec-Drift-Grad contains two different patterns which appear alternately; Rec-

Drift-Mix, contains a pattern that incrementally changes to a new one, then

sharply changes back to the initial pattern after lasting for some time. The

datasets were generated as follows:

1) Data that contains no drift (Non-Drift). Two random samples X1

and X2 were drawn from a normal distribution N (μ,σ2|μ= 10,σ2 = 100
)

as the

first two values for the input. The rest of the input was generated by Xt =
β1Xt−1 +β2Xt−2 + ηt, and the corresponding output series was generated by

Yt = θ0+θ1Xt+εt where
{
ηt
}

and {εt} are random error series. We generated 2000

data samples in this way with β1 = 0.5,β2 =−0.2,θ0 = 10,θ1 = 1.

2) Data that contains virtual drift (Virt-Drift). The first 1000 data sam-

ples were generated in the same way as Non-Drift and with same parameters.
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The subsequent 1000 samples were generated in the same way but with the

parameters β1 = −0.5,β2 = 0.2. A sudden virtual drift clearly occurred at the

1001st sample.

3) Data that contains sudden real drift (Sudd-Drift). The first 1000

data samples were the same as Non-Drift. The subsequent 1000 samples were

generated in the same way as No-Drift but with the parameters θ0 =−10,θ1 =−1.

Real sudden drift occurred at the 1001st sample.

4) Data that contains incremental real drift (Incr-Drift). The first 1000

data samples were the same as Non-Drift. The input of the subsequent 1000

samples were the same as Non-Drift. The output of the 1001st to 1500th were

generated by {θ0 + f0 (t)}+ {θ1 + f1 (t)} Xt + εt where f i (t) = (θ′i −θi
)× t−1000

500 . The

output of the last 500 samples were generated by Yt = θ′0 +θ′1Xt + εt. The para-

meters were θ0 = 10,θ′0 =−10,θ1 = 1 and θ′1 =−1. An incremental drift occurred

from the 1001st to 1500th samples, and the new pattern proceeded after 1500th

samples.

5) Data that contains gradual real drift and reoccurring concept

(Rec-Drift-Grad). The first 2000 samples were generated in the same way

as Sudd-Drift. The first 1000 samples presented a pattern and the last 1000

samples presented a different pattern. 100 samples belonging to either of these

two patterns were drawn as the subsequent samples. This procedure was re-

peated until 12000 samples in total were obtained. Except for the first 2000

samples, these two patterns appeared every 100 samples in a totally random

way, so gradual drift appeared in some periods (as shown in the blue rectangle

in Figure 3.5, and each pattern lasted for some time (100 time steps here). This

example is reasonable to be a special case of reoccurring concept.
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6) Data that contains sudden and incremental drift, and reoccurring

concept (Rec-Drift-Mix). Consists of six Incr-Drift datasets, in the order of

one followed by the next, i.e., every 2000 samples were the Incr-Drift dataset in

4). In this dataset, an incremental drift is followed by a sudden drift, and past

patterns reoccur.

The synthetic data are presented in Figure 3.5, and the black and red dots

denote two different patterns. In the sub-figures 1)–4), the dots are drawn in

a 2-dimensional plane with axis of Xt and Yt axis; while in 5) and 6) subplots,

they are drawn in a 3-dimensional sphere with an additional axis of time T. It

can be seen in subplot 5) that a gradual drift occurs in the period highlighted

by the blue outline: the first time the red pattern changes to a black pattern, it

remains in that pattern for a relatively short period before turning back to the

red pattern. Instead of staying at the red pattern, it changes to the black pattern

again, this time for a longer period. Subplot 6) represents a reoccurring concept

with mixed sudden and incremental drift: incremental drift appears when the

black pattern changes to red, while sudden drift appears when the red pattern

changes to black.
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Figure 3.5: Generated synthetic data with different types of drift. We generate
one no-drift data on which we base five examples of drifting data. The red and
black dots represent two different patterns. In the sub-figures 1)–4), the dots are
drawn in a 2-dimensional plane with axis of Xt and Yt axis; while in 5) and 6)
subplots, they are drawn in a 3-dimensional sphere with an additional axis of
time T.
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Table 3.2: A comprehensive comparison of different editions of FUZZ-CARE method on different types of drift.

FUZZ-CARE0,1,2,3 Linear Regression
0Model_U= 0 1Model_U= 0 2Model_U= 1 3Model_U= 1
Window_U= 0 Window_U= 1 Window_U= 0 Window_U= 1

N = 500, W = 100 - N = 2000 - N = 2000 - N = 2000 - N = 2000 - N = 2000

Non-Drift 0.80 - 1.22 - 1.21 - 0.99 - 1.18 -
Virt-Drift 0.78 - 1.42 - 1.37 - 1.06 - 1.30 -
Sudd-Drift 13.54 - 11.89 - 4.96 - 1.69 - 3.34 -
Incre-Drift 10.20 - 8.64 - 5.38 - 3.66 - 4.03 -

Rec-Drift-Grad 8.80 10.00 9.07 1.90 2.29 1.89 6.39 4.19 2.34 2.19
Rec-Drift-Mix 8.17 8.19 7.68 2.56 3.05 2.70 29.07 11.42 2.13 1.91
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Results: We comprehensively compare the different editions to investigate

the applicability of our method. The results are summarized in Table 3.2. Except

for the “Linear Regression" column, all other columns show the result of FUZZ-

CARE method and demonstrate the outcome of gradually switching on different

updating strategies. The results from a linear predictor are listed here as a

baseline. The length of the training set for the synthetic data experiments, unless

otherwise specified, is N = 500 and the window size is W = 100. The editions of our

method are controlled by two parameters: Model_U and Window_U. Model_U= 1

means that we use the incremental updating strategy during the experiments,

and Window_U= 1 is for the online strategy.

1) The original FUZZ-CARE (FUZZ-CARE0) is effective when the train-

ing set contains all potential patterns. As noted in the FUZZ-CARE0 column,

when N = 500, FUZZ-CARE seems to be useless because it performs as poorly as

Linear Regression. However, the MAEs decrease to 1.90 and 2.56 for RecDrift-

Grad and Rec-Drift-mix when N = 2000, which is a big improvement. This is

because the learned predictor only contains the black pattern when N = 500, but

contains both black and red pattern when N = 2000. This improvement exists

whether drift occurs in a/an sudden, incremental or gradual way.

2) A window-based updating strategy assists FUZZ-CARE0 to make

predictions for new patterns that will appear in the future. In the FUZZ-

CARE1 column, our method performs satisfactorily even when N = 500. There-

fore, we conclude that the window-based updating strategy is able to overcome

the failure of the original FUZZ-CARE to adapt to new patterns by periodically

absorbing new patterns.

3) Updating the predictor’s parameters in every instance is not a
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good strategy when mixed drift occurs. In Table 3.2, it can be seen that

FUZZ-CARE2 obtains extremely poor accuracy on Red-Drift-Mix. This failure is

less dependent on whether the initial training set contains all potential patterns

because the prediction is still poor when N = 2000. Figure 3.61 presents the

estimated parameters θ̂ of FUZZ-CARE2, as well as those of FUZZ-CARE1 as

the control group. In subplot a), black triangles or dots are the estimated values

of θ at every instance while the blue and red dots represent FUZZ-CARE2.

There are two linear patterns in this data. θ0 and θ1 denotes two parameters of

one pattern, and θ′0 and θ′1 denotes the corresponding parameters for the other

pattern. Subplot a) shows that after training the predictor, the parameters of

FUZZ-CARE1 and FUZZ-CARE2 are at a similar level, and θ̂0 of different fuzzy

clusters are the same. As the new data instances arrive, θ̂ of FUZZ-CARE1 starts

to update every 100 instances. After updating for 5 windows, θ0 splits to around

10 and -10, and θ1 are around 1 and -1. This estimation is very closed to the

ground truth. However, θ̂ of FUZZ-CARE2 shows an increasingly unsteady trend

as the new data instances arrive.

4) FUZZ-CARE with the combination of window-based and instance-

based updating strategies is an effective solution for predicting when

drift will appear in the data stream. The column FUZZ-CARE3 column in

Table 3.2 shows that FUZZ-CARE achieves satisfactory results in each synthetic

dataset, especially Rec-Drift-Grad and RecDrift-Mix.

1To draw this figure, we estimate the predictor with a non-normalized data.
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Figure 3.6: Estimated parameters and errors of FUZZ-CARE1,2 for Rec-Drift-Mix.
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Discussion: We conclude the validation on synthetic data by making the

following three points: 1. The type of drift does affect the performance of an

algorithm. For example, FUZZ-CARE1 achieves the best result for Rec-Drift-Grad,

while FUZZ-CARE3 is preferred in the Rec-Drift-Mix case; 2. A sole updating

strategy may prove to be useless when mixed drift occurs, such as FUZZ-CARE2

in Rec-Drift-Grad; 3. Generally speaking, FUZZ-CARE performs better when

abundant historical data are available because they are more likely to contain

useful knowledge. 4. We suggest to use FUZZ-CARE with a combined updating

strategy if there is not any prior experience that which types of drift exist in the

dataset, because FUZZ-CARE3 has a good and the most stable performance in

general.

3.4.2 Comparison on real-world data streams

In this section, the effectiveness of FUZZ-CARE is validated by experiments

on real-world data streams. We presented the prediction accuracy of FUZZ-

CARE0 (does not respond to drift) and FUZZ-CARE3 (keeps updating even when

there is no drift), and compared it to 5 benchmark drift adaption methods.

The benchmarks comprise two tree predictors—FIMT-DD (Ikonomovska et al.,

2011a) and ORTO (Ikonomovska et al., 2011b), two rule predictors—AMR and

its ensemble version, metaAMR (Duarte et al., 2016), and Perceptron (Bifet

et al., 2010c). In FIMT-DD, linear regression predictors and the incremental

(stochastic) gradient descent method are used in the leaves of the tree. ORTO

is an upgraded version of FIMT-DD using on-line option trees. In AMR and

metaAMR, a linear regression predictor is contained in each rule and trained
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using an incremental gradient descent method. Perceptron is a basic online

regression benchmark predictor. All benchmarks are implemented by MOA (Bifet

et al., 2010a)(https://moa.cms.waikato.ac.nz/).

Data: Eight real-world data streams were employed in our experiments.

Their detailed descriptions are as follows:

1) CCPP contains 9568 data instances collected from a Combined Cycle

Power Plant over six years (2006-2011), when the power plant was set to work at

full load. Features consist of the hourly average ambient variables temperature

(T), ambient pressure (AP), relative humidity (RH) and exhaust vacuum (V) to

predict the net hourly electrical energy output (EP) of the plant. The dataset is

available from the UCI machine learning repository (http://archive.ics.uci.edu/ml).

Although it is a real-world data stream, it has been proved in (Wang et al., 2017)

not to have any drift. We test it assuming that it may contain drift and re-

evaluate the drift issue based on the test results.

2) House collects all the housing block groups in California from the 1990

Census. A block group on average includes 1425.5 individuals living in a geo-

graphically compact area. It contains 20,640 data instances with eight features

comprising median income, housing median age, total number of rooms, total

number of bedrooms, population, number of households, latitude and longitude,

and the target output is median house price. This data is not a data stream as

it does not have time stamp. We use this data set here because the data size is

large, and this data is used by existing drift adaptation methods for regression

cases to validate the modelling effectivenessIkonomovska et al. (2011a); Duarte

et al. (2016). It is accessible at http://lib.stat.cmu.edu/datasets/houses.zip (Pace

and Barry, 1997).
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3) Sensor contains 2,219,803 consecutive records of temperature, humidity,

light and sensor voltage collected from 54 sensors deployed in the Intel Berkeley

Research Lab over a two-month period. The dataset is available at (Zhu, 2010).

To make it a regression task, we selected the records of four sensors—sensors 3, 8,

20, and 46—located in different parts of the Lab, and used temperature, humidity,

light as input features, and sensor voltage as the target out. The light during

working hours is generally stronger than during the night, and the temperature

of specific sensors may rise regularly during meetings. The lengths of sensors 3,

8, 20, and 46 are 46,633, 15,808, 28,832, and 52,988 respectively.

4) SMEAR is a set of 30-minute interval environment observation data

collected from the SMEAR II station which contains 140,576 data instances of 43

variables from 00:15, on 15 April 2005 to 23:45 on 14 April 2013. The regression

task is to predict solar-radiation using 43 variables. Six of the 43 variables

are time stamps that are not considered prediction features in the predictor.

The remaining environmental features have been introduced in (Žliobaitė et al.,

2014b). There are many missing values in this data and we eliminate them in

the same way as (Žliobaitė et al., 2014b).

5) Solar is provided by NASA and contains 32,686 records of meteorological

data from the HI-SEAS weather station from 23:55:26 29 September 2016 to

00:00:02 1 December 2016 (Hawaii time) in the period between Mission IV

and Mission V. The data interval is roughly 5 minutes. The input features are

temperature (unit: degrees Fahrenheit), humidity (unit: percent), barometric

pressure (unit: Hg), wind direction (unit: degree), wind speed (unit: miles per

hour) and the target variable is solar radiation (unit: watts per meter2). The

dataset is available at https://www.kaggle.com/dronio/SolarEnergy/data.
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Table 3.3: Validation on real-world data streams. MAE and its corresponding rank are used as the evaluations

Data Streams ORTO FIMTDD metaAMR AMR Per K-means FUZZ-CARE0 FUZZ-CARE3

CCPP 4.53E+02 3.57E+00 3.32E+00 3.42E+00 3.65E+00 5.26E+00 1.46E+01 5.59E+00
(8) (3) (1) (2) (4) (5) (7) (6)

House 9.42E+04 5.54E+04 4.60E+04 4.83E+04 4.90E+04 6.72E+04 9.87E+04 3.94E+04
(7) (5) (2) (3) (4) (6) (8) (1)

Sensor3 6.62E-02 7.14E-03 1.58E-02 7.69E-03 6.85E-03 7.15E-02 1.78E-01 1.55E-02
(6) (2) (5) (3) (1) (7) (8) (4)

Sensor8 1.69E-01 9.68E-03 7.26E-03 6.57E-03 5.95E-03 3.23E-02 2.01E-01 1.72E-02
(7) (4) (3) (2) (1) (6) (8) (5)

Sensor20 9.60E-01 7.95E-01 1.14E-02 8.19E-03 7.92E-01 7.11E-02 6.99E-02 7.90E-03
(8) (7) (3) (2) (6) (5) (4) (1)

Sensor46 4.00E-01 1.57E-01 1.74E-01 2.02E-01 1.56E-01 4.73E-02 1.00E-01 5.25E-02
(8) (5) (6) (7) (4) (1) (3) (2)

SMEAR 3.39E+01 2.34E+01 1.98E+01 1.44E+01 3.75E+01 2.19E+10 2.43E+01 1.04E+01
(6) (4) (3) (2) (7) (8) (5) (1)

Solar 2.25E+02 1.14E+02 9.39E+01 9.52E+01 1.30E+02 2.10E+02 5.25E+02 8.66E+01
(6) (4) (2) (3) (5) (6) (7) (1)

Average Rank 7.00 4.25 3.13 3.00 4.00 5.50 6.25 2.63
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Results: If a method applies a window-based updating strategy during the

experiments, such as FIMT-DD and our methods, the training set is the first

2000 data instances and the window size is 200. The general accuracy of our

method and the compared methods is shown in Table 3.3.

1) We conclude that all eight data streams contain drift because

FUZZ-CARE3 is uniformly better than FUZZ-CARE0. Even in cases such as

CCPP, Sensor3, Sensor8, where FUZZ-CARE is not as good as some benchmarks,

the performance of FUZZ-CARE3 is still significantly improved compared to

FUZZ-CARE0. Therefore, we recommend their use to study future concept drift

problems.

2) Fuzzy c-means is better than K-means at identifying existing pat-

terns in data streams. The MAEs in the K-means column are computed by

replacing the fuzzy c-means clustering method with the K-means method in

FUZZ-CARE. Fuzz c-means clustering is better than K-means on all data streams

except Sensor 46, where it is slightly worse. However, K-means obtains a very

poor result for SMEAR. As discussed in Section 3.3, it is difficult to unequivocally

identify that an instance belongs to a certain pattern in real-world cases. A crisp

clustering method may lead to serious failure, such as K-means in the SMEAR

case.

3) In general, we conclude FUZZ-CARE3 is an effective method for

solving regression tasks for data streams under the concept drift prob-

lem. This is because of all tested methods, FUZZ-CARE3 has the smallest average

rank of 2.63 over these data streams.

4) FUZZ-CARE is especially suitable for applying in reoccurring con-

cept of mixed cases. Unlike synthetic data streams, it is difficult to confirm
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exactly which types of drift occur in real-world data streams, nor is the frequency

of their occurrence known. Therefore, we always assume that each data stream

may contain all types of drift. However, we can use prior experience on specific

topics to infer the drift information for certain data streams. In a typical eco-

nomic problem, for example, house price prediction is very like to follow certain

marketing rules; SMEAR and Solar are atmospheric tasks, which follows peri-

odically physical rules. Some of these rules have been discovered by economists

and physicists, but some have not. These rules result in the reoccurring concept

phenomenon in data streams. Therefore, we deem House, SMEAR and Solar

to contain reoccurring concept based on this prior experience. The experiment

results in Table 3.3 validate this argument. FUZZ-CARE has been designed to

handle drift by aiming at reoccurring concept, and it performs better than other

drift adaptation methods on the data streams House, SMEAR, and Solar.

5) The effectiveness of FUZZ-CARE is not affected by the initializa-

tion of a membership matrix. During the fuzzy clustering process, a member-

ship matrix is randomly generated as the initial membership matrix. To validate

whether this randomly generated membership matrix affects FUZZ-CARE‚Äôs

performance, we repeat the experiments 20 times. Although there is a slight

difference in the predicted value of some instances, the MAEs of each data stream

are the same for all 20 times as they are in Table 3.3.

3.4.3 Comparison on stationary datasets

Following the detailed analysis of our method on real-world data streams, we

consider the performance of FUZZ-CARE on real-world stationary datasets.
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Although FUZZ-CARE is especially proposed for concept drift adaptation in data

streams, it should also be effective for solving typical regression tasks, i.e., no

drifting datasets. In this section, we validate the method on stationary datasets.

Data: 13 stationary regression datasets of various topics are used. All

datasets and their detailed descriptions are available on OpenML (OpenML).

The data size is given in Table 3.4. The length of each stationary dataset is small

in relation to the data stream, so we use the first 50 instances as the training

set, and set a window size of 50.

Results: 1) FUZZ-CARE can also be applied to predict stationary re-

gression datasets. The evaluation accuracy of FUZZ-CARE is presented in

Table 3.4. The Size column is “the number of instances × the number of features";

The Ranks column and the Average rank show the ranking of each method in

ascending order. The average rank of FUZZ-CARE0 is 3.85 and that of FUZZ-

CARE3 1.92, which denotes that FUZZ-CARE is also suitable for predicting

stationary regression datasets.

2) Given the same training set, FUZZ-CARE performs better with

updating strategies. The length of “1-Pollution", “2-Mbagrade", and “3-Auto93"

datasets is less than 101, which means that only the online updating strategy is

applied. The prediction accuracy of FUZZ-CARE0 is almost the same as that of

FUZZ-CARE3. However, FUZZ-CARE3 significantly improves the performance of

the other datasets, especially the larger datasets such as “6-Lowbwt", “9-Cpu",

“12-Auto-MPG" and “13-Pbc". Therefore, we recommend using FUZZ-CARE with

updating strategies even for stationary regression tasks.
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Table 3.4: Comparison results on 13 stationary datasets.

Datasets Size ORTO FIMT-DD metaAMR AMR Per FUZZ-CARE0 FUZZ-CARE3

1-Pollution 60×16 1.38E+02 1.38E+02 5.12E+01 5.12E+01 1.09E+02 4.00E+01 4.09E+01
2-Mbagrade 61×3 4.68E-01 4.68E-01 2.67E-01 2.67E-01 5.69E-01 2.90E-01 2.92E-01
3-Auto93 93×23 1.72E+01 1.72E+01 7.71E+00 7.71E+00 2.57E+01 1.46E+01 1.59E+01
4-EchoMonths 130×10 2.23E+01 2.23E+01 1.39E+01 1.39E+01 2.30E+01 1.22E+01 1.13E+01
5-AutoPrice 159×16 9.61E+03 9.61E+03 4.77E+03 4.77E+03 7.69E+03 7.88E+03 4.75E+03
6-Lowbwt 189×10 5.33E+02 5.33E+02 4.29E+02 4.29E+02 4.29E+02 7.62E+02 3.08E+02
7-Pharynx 195×12 4.52E+02 4.52E+02 3.38E+02 3.38E+02 3.43E+02 4.21E+02 2.61E+02
8-PwLinear 200×11 8.53E+00 8.53E+00 2.86E+00 2.86E+00 3.30E+00 3.38E+00 2.48E+00
9-Cpu 209×8 2.20E+02 2.21E+02 9.90E+01 9.90E+01 1.81E+02 2.73E+02 1.35E+02
10-Bodyfat 252×15 1.26E+01 1.10E+01 5.48E+00 5.47E+00 6.57E+00 5.85E+00 5.05E+00
11-BreastTumor 286×10 1.31E+01 1.07E+01 8.27E+00 8.27E+00 8.34E+00 8.06E+00 8.32E+00
12-AutoMpg 398×8 1.30E+01 4.68E+00 6.20E+00 6.20E+00 2.25E+01 6.03E+00 4.40E+00
13-Pbc 418×19 1.45E+03 1.26E+03 9.03E+02 9.17E+02 1.98E+03 1.01E+03 5.47E+02

Average Rank 5.77 5.31 2.54 2.62 5.23 3.85 1.92
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3.4.4 Statistical test on data streams

To validate that the effectiveness of our method is significant, we introduce

Friedman test and its Post-hoc test after Conover to test whether the MAEs of

the above-mentioned methods differ significantly (Pohlert, 2014). The χ2
R statistic

for Friedman test is computed as

(3.22) χ2
R = 12

nM(M+1)

M∑
m=1

R2
m −3n(M+1),

where M is the number of dependent treatment groups which is the number

of methods in our case, n is the number of blocks, which is the number of data

streams, R2
i is the squared rank sum of the i-th group.2 If the null hypothe-

sis of the Friedman test is rejected, we use a post-hoc test after Conover for

pairwise comparisons. The absolute difference between two group rank sums is

significantly different if the following inequality is satisfied:

|Ri −R j| > t1−α
2 ;(n−1)(M−1)×

√√√√2M(1− χ2
R

n(M−1) )(
∑n

i=1
∑M

m=1 R2
i,m − nM(M+1)2

4 )

(M−1)(n−1)
.

(3.23)

The result of Friedman test and its post-hoc test are given in Table 3.5 and

Table 3.6 3 where “Friedman Test" is the result for Friedman test and “Friedman
2Please note that it has been wrongly written by Ri in (Pohlert, 2014) if you refer to this

citation.
3In Table 3.5 and Table 3.6, “+", “*", “**", and “***" means this value is significant at the

level of 0.1, 0.05, 0.01 and 0.001 respectively. “df" denotes the freedom degree.
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- post-hoc test after Conover" is for the pairwise comparison. In the Friedman

test, χ2
R is the computed Friedman statistics based on the MAE values in Table

3.3, and its significance is given by the value of the P-value of χ2
R . In the post-hoc

test part, Ri−RFUZZ-CARE3 is the difference between rank sums of other methods

and FUZZ-CARE3, and the P-value tests the significance of this difference.

Result4:

1) In general, the prediction accuracy of the various methods is dif-

ferent and FUZZ-CARE3 is better than ORTO, FIMT-DD, Per, Kmeans

and FUZZ-CARE0 over all data streams. However, there is no signifi-

cant difference between FUZZ-CARE3 and metaAMR or AMR if their

performance is evaluated over all data streams. We conclude this because

the P-value of χ2
R is significant and the pairwise comparisons between methods

are consistently significant except for metaAMR and AMR column in Table 3.5.

2) FUZZ-CARE3 is better than all methods over data streams with

reoccurring concept. The results in Table 3.6 are computed in the same way

as in Table 3.5; the sole difference is that we only use the MAEs of House,

Sensor20, Sensor46, SMEAR and Solar. It can be seen that all the statistics are

significant, which further validates that our method is especially suitable for

data streams with reoccurring concept.

4The probability of statistics are computed by chi2cdf function and tcdf function in MATLAB
R2016b.
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Table 3.5: Friedman test and its post-hoc test of all the methods over all eight data streams.

Friedman Test χ2
R P-value of χ2

R df
25.8333 0.0005*** 7

Friedman - post-hoc test after Conover ORTO FIMT-DD metaAMR AMR Per Kmeans FUZZ-CARE0

Ri −RFUZZ-CARE3 36 13 4 3 11 23 30
P-value 0.0000*** 0.0486* 0.3026 0.3490 0.0794+ 0.0022** 0.0001***

Table 3.6: Friedman test and its post-hoc test of all the methods over House, Sensor20, Sensor46, SMEAR and Solar
data streams.

Friedman Test χ2
R P-value of χ2

R df
19.6000 0.0065** 7

Friedman - post-hoc test after Conover ORTO FIMT-DD metaAMR AMR Per Kmeans FUZZ-CARE0

Ri −RFUZZ-CARE3 30 19 10 11 20 20 22
P-value 0.0001** 0.0071** 0.0898+ 0.0706+ 0.0051** 0.0051** 0.0026**
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3.4.5 Parameter analysis and computation complexity

Figure 3.7 illustrates how the accuracy will change when α,λ1,λ2 have different

values. We take three groups of experiments which validate the sensitivity of

α, λ1 and λ2, represented in three subplots. Each line in the subplot represents

the results for a data stream denoting changes in accuracy when the parameter

differs. We put the MAE results of all the data streams in the interval [0, 13],

and the legend gives the magnitude of each stream. For example, House(E+04)

means that MAEs at a specified parameter for this data stream are the values

on the y-axis×104.

We tested α from 0.005 to 0.015, λ1 from 0.5 to 1.5, and λ2 from 0.1 to 1.1.

It can be seen that when λ1 and λ2 fluctuate around our pre-assigned value

(1 for λ1 and 0.5 for λ2), the accuracy does not change significantly. Therefore,

λ1 = 1 and λ2 = 0.5 is suggested for the other applications if if no other related

prior knowledge is provided. They can also be set by choosing an appropriate

combination with less cross-validation error, which is a general way to determine

pre-assigned parameters. The accuracy is also stable in the α case, except for

the data streams SMEAR and Solar. the accuracy for Solar increases as α

increases, therefore α= 0.01 could be larger to get better performance. In the

case of SMEAR, we found that accuracy is low when α≤ 0.01, but very high and

unstable when α> 0.01 (the accuracy for SMEAR when α> 0.01 is not given here

because it is too high to be contained in the same plot). Therefore, we recommend

a small learning rate for SMEAR.

The computation complexity of FUZZ-CARE in each learning process is

determined by three factors, i.e., the length of the training data N, the cluster
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number k and the iterations I. At each iteration in Algorithm 3.1, the complexity

of iterating the membership matrix of μtk and the cluster center Ck is bounded

by O (kN); given μtk and Ck, θ′
k can be directly computed by (3.11). The max

iteration is not always used, so the complexity for each learning process is upper

bounded by O(N × I +k+k). To select the optimal clustering number from 2 to

K , the computation complexity is upper bounded by
∑K

k=2 O(NI +2k). As how

many patterns in a data stream is assumed to be unknown from the aspect

of the learning process because the length of a data stream is supposed to be

infinite which means there will always come new data instances in the future.

The predictor with a larger K is more likely to contains all potential patterns but

it takes more time to find the optimal K0. Therefore, if the optimal K0 is far less

than K , K should be adjusted to be smaller and K should be larger otherwise.

MAE
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1 20.005 0.015 0.5 1.5 0.1 1.1

CCPP(E+00) House(E+04) Sensor3(E-02) Sensor8(E-02)

Sensor20(E-02) Sensor46(E-02) SMEAR(E+01) Solar(E+02)

Figure 3.7: Parameter analysis of FUZZ-CARE.
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3.5 Summary

This chapter analyzes the concept drift problem by separating drift into perma-

nent drift and alternate drift, and proposing that they should be tackled with

different approaches. A drift adaptation method called FUZZ-CARE is presented

to solve solve the concept drift problem especially mixed drift.

FUZZ-CARE simultaneously and dynamically identifies and learns existing

patterns, and makes predictions based on these patterns for upcoming data.

Rather than training a general predictor for multi-pattern mixed data, we pro-

pose to first identify patterns and then treat each pattern individually. However,

it is unknown how many patterns exist in the data and what they are. We there-

fore embed a fuzzy clustering technique in the learning procedure to identify

and learn all patterns at the same time. The prediction is made based on the

learned patterns and the membership matrix from the fuzzy clustering results.

Kernel functions are introduced to enhance FUZZ-CARE for high dimensional

situations.

FUZZ-CARE is validated in experiments on synthetic data streams with all

types of concept drift, real data streams and stationary datasets. The results show

that FUZZ-CARE is able to effectively handle the mixed concept drift problem in

data streams, and that it achieves outstanding results in cases of reoccurring

concept. In addition, FUZZ-CARE is also suitable to predict stationary data.

The main potential drawback of FUZZ-CARE is that it is computationally

costly when a large number of data instances are included in the training set.

This disadvantage could be alleviated by deleting redundant instances from the

training set. Therefore, how to identify the redundant instance is an interesting
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direction in the future. As FUZZ-CARE is a cluster-based approach and outliers

have a high interference effect on the clustering results, it is meaningful to embed

a denoising technique to improve the accuracy and stability of the clustering

process. However, designing a suitable denoising technique for data streams

with concept drift is a very challenging problem, because when only a few data

instances of new patterns arrive, they are very likely to be wrongly identified as

outliers. Excluding useful information in these data instances from the training

set inhibits the model from swiftly responding to the new patterns. A noise

identification method is important for data streams with concept drift to avoid

identifying data following new patterns as noise. In Chapter 6, a noise-tolerant

edition of FUZZ-CARE is presented.
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4
DRIFT ADAPTATION BY SEQUENTIALLY UPDATED

DATA SEGMENTS

When a data stream contains concept drift, a drift adaptation method needs to

update predictors so that the updated predictor can always present the newest

data pattern. Using “reliable" data to learn a data-driven predictor is critical to

guarantee the performance of the predictor. To select the best data for learning

predictors, this chapter presents an adaptation method that can sequentially

pick out the best data segments from the training data to learn the predictor. In

this chapter, Section 4.1 briefly introduces the problem. Definitions and notations

are listed and explained in Section 4.2. Section 4.3 details the proposed segment-

based adaptation method, and it will be validated by comprehensive experiments

in Section 4.4. Section 4.5 concludes this chapter.
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4.1 Introduction

The informed drift adaptation methods propose to update the predictor only if

drift is detected. Existing informed drift adaptation methods need to wait for an

entire batch (time window) of data to detect drift and then update the predictor

(if drift is detected), which causes adaptation delay. The existing informed adap-

tation methods only use the result of drift detection process to assist adaptation

(Lu et al., 2016). They need a batch of data to determine whether drift exactly

occurs (Boracchi et al., 2018; Lu et al., 2018), which results in the drift reaction

delay.

This chapter demonstrates how we can overcome the adaptation delay and se-

lect the most relevant data to the new pattern. we propose a sequentially updated

statistic, called drift-gradient, and develop a segment-based drift adaptation(SEGA)

method to update our best predictor when every new instance arrives. During the

learning process, the training data is ordered by time and divided into several

equal length segments, and a predictor is learned with the data in each segment.

When a new instance arrives, we first update the drift-gradient on each segment

in the training data. Based on the updated drift-gradient, SEGA retrains our

best predictors with the segments that have the minimum drift-gradient.

Drift-gradient is to quantify the increase of segmented symmetric degree (SSD)

when only one new instance is available at each time step. SSD is a new statistic

proposed to measure the distributional discrepancy between an old segment and

the newest segment in the training set. The advantage of drift-gradient is that

it does not need to compute the value of SSD before and after the new instance

arrives, and therefore can be sequentially updated with low computational cost.
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A lower value of drift-gradient on an old segment represents that the distribution

of the new instance is closer to the distribution of this old segment. Therefore,

the predictor trained with this segment should be a better predictor for the new

instance.

SEGA has been validated by extensive experiments on both synthetic and

real-world, classification and regression data streams. To our best knowledge,

this is the first time that the drift adaptation method has been comprehensively

tested on both continuous and discrete label variables. SEGA has been compared

to 15 benchmarks (where 7 of them are adaptation methods for regression task,

and 8 are for classification task) and validated on 16 synthetic data (where 6 of

them are for the regression task and 10 are for the classification task) and 14

real-world data streams (where 7 of them are for the regression task and 7 are for

the classification task). The experimental results show that SEGA outperforms

competitive blind and informed drift adaptation methods.

Compared to other drift adaptation methods, SEGA demonstrates the follow-

ing advantages.

• A segmented symmetric degree (SSD) is proposed to measure distributional

discrepancy between old segments and the newest segment in the training

set. SSD is better than a one-sided measurement when two distributions

have different variances;

• A sequentially updated statistic, drift-gradient is proposed to quantify the

increase of SSD when every new instance arrives without computing the

value of SSD before and after the new instance arrives;

• An online drift adaptation method, SEGA is developed based on drift-
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gradient. SEGA can effectively overcome the adaptation delay issue in the

existing informed drift adaptation methods.

4.2 Definitions and Notations

The definitions of data stream, concept drift and the learning aim are the same

to the definitions in Section 3.2.

In this chapter, we use the following notations.

• P, P1, P2, Q: data samples

• NP , NP1, NP2, NQ : sample size

• p, p1, p2, q: probability distributions

• |Ki,S(k)|: the number of the k nearest neighbors of an instance i that are

from the sample S

To compute |Ki,S(k)|, we use a KNN search to determine the neighbors for

each instance. For both regression and classification task, we first normalize

each variable (including the target variable) into [0,1] by using the min-max

normalization. After that, the distance is computed by the Euclidean distance.

However, using Euclidean distance denotes that we assume (X t, yt) ∈Rd+1 which

is not true in real application, especially the classification task. The KNN could

also be determined by other distance, which can further improve the method.
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The key contribu on
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Figure 4.1: Relationship between the definitions proposed in this chapter.

4.3 A Segment-based Drift Adaptation

Method—SEGA

The core technique in SEGA is the sequentially-updated statistic, called drift-

gradient and based on it, a segment-based adaptation(SEGA) method is developed

to update the predictor when every new instance arrives. Drift-gradient is to

quantify the increase of segmented symmetric degree (SSD) when only one new

instance is available at each time point. SSD is a new statistic that can measure

the distributional discrepancy between old segments and the newest segment.

The relationship between the proposed new definitions is presented in Fig. 4.1.
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4.3.1 The segmented symmetric degree (SSD)

SSD is the decomposition of a symmetric degree (SD) on segments. SD defined in

Definition 4.1 is to measure the distributional discrepancy between two samples

of data.

Definition 4.1 (Symmetric Degree). Given two data samples P and Q with p

and q its distribution, the symmetric degree d̄P,Q(k) is defined as the average

density difference of P ’s and Q’s k-nearest neighbors.

(4.1) d̄P,Q(k)= 1
NP

∑
u∈P

( |Ku,P (k)|
Np

− |Ku,Q(k)|
NQ

)
+ 1

NQ

∑
v∈Q

( |Kv,Q(k)|
NQ

− |Kv,P (k)|
NP

)
,

where for any u,v, |Ku,P (k)|+ |Ku,Q(k)| = k and |Kv,Q(k)|+ |Kv,P (k)| = k.

If there are more than one candidates for the kth-nearest neighbor of u, the

kth-nearest neighbor is randomly chosen from the candidates in P. Similarly

for u, v’s kth-nearest neighbor is determined from the candidates in Q if there

are more than one candidate. The first term in the summation of Definition 4.1,

measures the average density difference over all of P ’s neighborhoods and the

second term measures the average density difference over Q’s neighborhoods.

Clearly, the proposed d̄P,Q(k) is symmetric on these two samples, given the same

k, namely d̄P,Q(k)= d̄Q,P (k). A larger absolute value of SD, means that P is more

likely to be different from Q. As SD is a summation-based statistic, it converges

to a normal distribution according to the central limit theorem, when NP and

NQ approaches infinity. Similar proof can be found in our previous studies (Liu

et al., 2017a, 2018a).

Next, a simple example in Figure 4.2 is introduced to show why the sym-

metric measurement is better than the one-side measurement. The one-sided
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measurement only counts the density difference on either P or Q’s neighborhoods

such as the measurement in (Liu et al., 2017a, 2018a). In Figure 4.2, the red

dots represents sample P and the blue dots represents sample Q. According to

the distribution of P and Q, they have the same expectation but P has larger

variance. If the density difference is restricted to P ’s neighborhoods, as shown in

subplot (a). When k = 2, the neighborhoods of P is framed by the black dotted

ellipse and there is no density difference in any ellipse. If the density difference is

restricted to Q’s neighborhoods in subplot (b), the neighborhoods of Q is framed

up by three ellipses. In the black ellipse, there is no density difference between

the blue and red dots. However, in the red ellipses, they all contain blue dots. The

density of the blue dots is 1 and the density of the red dots is 0, giving a density

difference of 1. Therefore, if a one-sided measurement of density difference is

applied based on the sample that has larger variance, such as is in subplot (a), it

is invalid to reflect the variance discrepancy between two samples.

Given SD able to measure the difference between two samples, let the current

training data be sample P and the newest batch of data instances be the sample

Q, where NP � NQ , SD can be used to test whether Q’s distribution is different

from P. SSD is the decomposition of SD which can consider the distributional

discrepancy on each segment of the training data. We firstly explain the de-

composition of SD in the case of two segments. Given P1 and P2 two absolute

complements in P that P1 ∪P2 = P and P1 ∩P2 =
, SD can be rewritten as (4.2).

Detailed derivation from SD to SSD can be found in Appendix A.1.
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P

Qdistribu on

a) 2-nearest neighbors of P

density in each ellipse is 1:1, and
no density di erence presents

0-1 1

b) 2-nearest neighbors of Q

density in black ellipse is 1:1 but 
density in red ellipses is 0:2, and

there is density di erence

0-1 1

two samples
from P and Q

samples from P: -1, 0, 1;

0-1 1

samples from Q: -0.1, 0, 0.05; 

*If using a one-sided measurement to measure distribu onal 
discrepancy, , , , as is presented in a) and b)

Figure 4.2: An example to show the drawback of a one-sided measurement.

d̄P,Q(k)= 1
NP

∑
u∈P1

( |Ku,P (k)|
NP

− |Ku,Q(k)|
NQ

)
+ 1

NP

∑
u∈P2

( |Ku,P |
NP

− |Ku,Q(k)|
NQ

)
+

1
NQ

∑
v∈Q

( |Kv,Q(k)|
NQ

− |Kv,P (k)|
NP

)
.

(4.2)

Given ssdP1,Q(k) and ssdP2,Q(k) in (4.3) and (4.4) separately, d̄P,Q(k)= ssdP1,Q(k)+
ssdP2,Q(k).
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ssdP1,Q(k)= 1
NP

∑
u∈P1

(k−|Ku,Q(k)|
NP

− |Ku,Q(k)|
NQ

)
−

1
NQ

∑
v∈Q

|Kv,P1(k)|
NP

+ 1
2NQ

∑
v∈Q

|Kv,Q(k)|
NQ

.

(4.3)

ssdP2,Q(k)= 1
NP

∑
u∈P2

(k−|Ku,Q(k)|
NP

− |Ku,Q(k)|
NQ

)
−

1
NQ

∑
v∈Q

|Kv,P2(k)|
NP

+ 1
2NQ

∑
v∈Q

|Kv,Q(k)|
NQ

.

(4.4)

Similar to the case of two segments, SD can be decomposed into more than two

segments.

Definition 4.2 (Segmented Symmetric Degree). The segmented symmetric de-

gree is defined as the distributional discrepancy between the ith segment of P to

Q that

ssdPi ,Q(k)= 1
NP NQ

{
∑

u∈Pi

(
−NQ

NP
−1
)
|Ku,Q(k)|−

∑
v∈Q

|Kv,Pi(k)|}+ kNPi

NP
+ 1

2NQ

∑
v∈Q

|Kv,Q(k)|
NQ

.

(4.5)
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ssdPi ,Q measures the distributional discrepancy from Q to each subset of P.

A smaller ssdPi ,Q indicates a better presentation of Q by Pi.

4.3.2 Drift-gradient and how to sequentially update it

If we wait for an entire batch of data to detect drift and then update the predictor

(if drift is detected), which causes adaptation delay. To overcome the adaptation

delay, we propose a sequentially updated statistic, called Drift-gradient.

Drift-gradient is to quantify the increase of SSD. We have discussed in the

previous subsection that a smaller ssdPi ,Q indicates a better presentation of Q by

Pi. Therefore, a lower value of drift-gradient on ith segment represents that the

distribution of Q is closer to the distribution of the ith segment. In this section,

we will explain how to update the drift-gradient with computing the values of

SSD.

We notice that SSD for different segments have common items. Therefore,

we simplified SSD from two aspects: 1. we consider P is evenly segmented that

NPi = N0; 2. The common items in ssdPi ,Q is excluded to computing drift-gradient

as it does not affect the result.

Given P and its segments with NPi = N0, the common items for all i in

ssdPi ,Q(k) is (4.6), leaving the discrepancy part of ssdPi ,Q as is in (4.7). Clearly,

ssdPi ,Q(k)= C(k)+ 1
NP NQ

δPi ,Q(k)

(4.6) C(k)= kN0

NP
+ 1

2NQ

∑
v∈Q

|Kv,Q(k)|
NQ

(4.7) δPi ,Q(k)=−∑
v∈Q

|Kv,Pi(k)|− (1+ NQ

NP
)
∑

u∈Pi

|Ku,Q(k)|
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Compared to Definition 4.2, (4.7) is more concise. The task of quantifying the

increase of SSD can be equivalently transferred to the task of quantifying the

increase of δ.

Definition 4.3 (Drift-Gradient). Given the simplified SSD at a specific time step

denoted by δ, drift-gradient is defined as

(4.8) ∇δi(k, t)= δPi ,Qt(k)−δPi ,Qt−1(k)

Given P obtained from the past, contains NP data instances and Q the

upcoming batch (batch size: NQ) of data instances arrives instance by instance,

the key to online compute ∇δ is to determine the relationship between δPi ,Qt(k)

and δPi ,Qt−1(k), where Qt represents the state of Q at time t. Clearly, Qt =Qt−1∪vt

where vt is the t-th data instance. It should be noticed that drift-gradient is not

a mathematical gradient. δ is discrete because of t ∈ Z+. Therefore, ∇δ is not

computed by the derivative of a function of a real value. It is called drift-gradient

because it denotes the rate of change of δ, which is similar to a gradient denoting

the rate of change of a function.

Next, we are going to discuss how to compute drift-gradient when every

new instance arrives. As shown in (4.8) and (4.7), drift-gradient is defined

as the change of δPi ,Qt(k), and δPi ,Qt(k) mainly consists of
∑

v∈Q |Kv,Pi(k)| and∑
u∈Pi |Ku,Q(k)|. If we know how

∑
v∈Q |Kv,Pi(k)| and

∑
u∈Pi |Ku,Q(k)| changes from

their previous values, we do not need to compute the value of δPi ,Qt(k) and

δPi ,Qt−1(k) to obtain drift-gradient. Therefore, the sequential update of ∇δ con-

tains of two parts when we substitute (4.7) into (4.8): 1) the sequential updates

of
∑

v∈Q |Kv,Pi(k)| denoted by ∇δQ ; 2) the sequential updates of
∑

u∈Pi |Ku,Q(k)|
denoted by ∇δPi . Next, these two parts will be discussed separately.
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• Sequentially update
∑

v∈Q |Kv,Pi(k)|:

Given
∑

v∈Qt−1 |Kv,Pi(k)| represents the number of k-nearest neighbors of

current data instances arrived in Q at time point t−1,
∑

v∈Qt |Kv,Pi(k)| is computed

as

(4.9)
∑

v∈Qt

|Kv,Pi(k)| = ∑
v∈Qt−1

|Kv,Pi(k)|+ |Kvt,Pi(k)|.

Therefore,

(4.10) ∇δQ = |Kvt,Pi(k)|.

• Sequentially update
∑

u∈Pi |Ku,Q(k)|:
∑

u∈Pi |Ku,Q(k)| can not be directly iterated as the case in
∑

v∈Q |Kv,Pi(k)|. In

order to implement the update, k-nearest neighbor distance matrix is defined as

Definition 4.4.

Definition 4.4 (k-nearest neighbor distance matrix). Given a m×n dimension

matrix A = (a1,a2, · · · ,an), its k-nearest neighbor distance matrix is defined as

(4.11) D(k)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1
(1) d1

(2) · · · d1
(k)

d2
(1) d2

(2) · · · d2
(k)

... . . . ...

dn
(1) dn

(2) · · · dn
(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where d j
(k), ( j = 1, · · · ,n) is the kth order of distance from a j to A. The first

column of D(k) is 0 because d j
(1) is always the distance from a j to itself. For
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example, A = (a1,a2,a3)=

⎡⎢⎣1 0 5

3 2 1

⎤⎥⎦, its distance matrix is

⎡⎢⎢⎢⎢⎢⎣
0

�
2

�
20

�
2 0

�
26

�
20

�
26 0

⎤⎥⎥⎥⎥⎥⎦,

and corresponding 3-nearest neighbor distance matrix D(3)=

⎡⎢⎢⎢⎢⎢⎣
0

�
2

�
20

0
�

2
�

26

0
�

20
�

26

⎤⎥⎥⎥⎥⎥⎦.

Similarly, D(2)=

⎡⎢⎢⎢⎢⎢⎣
0

�
2

0
�

2

0
�

20

⎤⎥⎥⎥⎥⎥⎦.

Given a j = (X j, yj)T and Pi = (a1, · · · ,aNPi
) where j ∈ (1, · · · , NPi ), its k-nearest

neighbor matrix Di(k) can be computed by (4.11), denoted by Di(k)= (d1,d2, · · · ,dNPi )T .

Given Di(k) and Q = (vt0+1,vt0+2, · · · ,vt0+NQ ) arriving by instance after t0, updat-

ing
∑

u∈Pi |Ku,Q(k)| is to compare Di(k) and the distance from vt to Pi —d(vt,Pi),

as well as d(vt,Pi) and its previous values d(vt−1,Pi),d(vt−2,Pi), · · · . Next, the

updating process for an arbitrary u ∈ Pi will be discussed.

Given Pi and its k-nearest neighbor distance matrix Di(k), for an arbitrary

u ∈ Pi, the ordered k-nearest neighbor distance of u is one row of Di(k), denoted

as du. dvt,u represents the distance between u and the newly arrived instance vt

from Q. The one-step (one-instance) updating process of |Ku,Qt(k)| is in Algorithm

4.1 where the updated variable are denoted with t. Kd counts how many items in

du are larger than dvt,u. Kd ≤ 1, which means the newly arrived vt is no nearer
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to u than u’s current nearest neighbors, and therefore |Ku,Qt(k)| = |Ku,Qt−1(k)|.
Once Kd > 1, it also needs to consider whether a previous v is excluded from u’s

k-nearest neighbors, as vt becomes u’s k nearest neighbor. To implement that,

the variable ot is introduced to record the order of dvt,u and the furthest neighbor

in du will be deleted from du (implemented in line 8). By this design, when the

length of current du is less than maxOQt , this denotes that the previous dv,u are

still less than the furthest neighbor from Pi. Therefore, |Ku,Qt(k)| = |Ku,Qt−1(k)|+1.

Otherwise, |Ku,Qt(k)| will not update, because although vt becomes one of u’s

k-nearest neighbors, a previous v is excluded from the neighbors at the same

time. An intuitive perception of this design is that δQ is only updated when the

threshold for v becoming u’s k-nearest neighbors is leveled up.

Given
∑

u∈Pi |Ku,Qt−1(k)|,∑u∈Pi |Ku,Qt(k)| can be updated by the sum of |Ku,Qt(k)|
and ∇δPi =

∑
u∈Pi |Ku,Qt(k)|− |Ku,Qt−1(k)|. When a new instance from Q arrives,

the drift-gradient on each segment in P is computed as ∇δi =∇δQ +∇δPi .

To validate the effectiveness of the proposed drift-gradient, we conduct exper-

iments of whether the drift-gradient can correct identify the most appropriate

segment in the training set. We generate 50-dimensional instances from three

different uniform distributions denoted by P1, P2 and P3. P1 is generated by

numpy.random.seed(1) in python, P2 is generated with the mean 0.4 larger than

P1, and P3 is generated with the mean 0.4 larger than P2. The training set

consists of three segments, which are shown in Table 4.1. Then we generate 200

instances from P3, and 200 instances from P2 as the testing set, and they arrive

one instance by one instance. In Experiment1, P3 arrives before P2, while in

Experiment2 P2 arrives before P3. In Table 4.2, the Type I error of P1 is how

many true P1 instances are correctly labelled by P1 on average. As there are no
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Algorithm 4.1: One-step update of |Ku,Qt(k)|
Input : du, dvt,u, OQt−1, |Ku,Qt−1(k)|.
Output : |Ku,Qt−1(k)|
Initialization: OQ0 ← [ ]

1 Compute Kd = |du > dvt,u|;
2 if Kd > 1 then
3 % the new instance is nearer to u than u’s current neighbors
4 Compute ot = |du|+1−Kd;
5 Compute OQt =

[
OQt−1; ot

]
6 if |du| ≤maxOQt then
7 Update |Ku,Qt(k)|=|Ku,Qt−1(k)|+1;
8 Delete du[end];
9 else

10 % a previous v is excluded from u’s neighbors
11 Update |Ku,Qt(k)| = |Ku,Qt−1(k)|;
12 end
13 else
14 % the new instance is no nearer to u than u’s current neighbors
15 Update |Ku,Qt(k)| = |Ku,Qt−1(k)|;
16 end
17 return |Ku,Qt(k)|, OQt

instances from P1 in the new instances, this value is 0. The Type II error of P1

is how many true P2 and P3 instances are wrongly labelled by P1 on average.

As there are 10 P2 instances wrongly labelled by P1 in Experiment1 in the new

instances, this value is 10/400. Similar computation is conducted on P2 and P3.

The Type I and Type II error shows drift-gradient is able to select the segment

that is closer to the new instances.

4.3.3 The general procedure and pseudocode of SEGA

The previous subsection solved how to sequentially update drift-gradient. Based

on this solution, an online drift adaptation method, SEGA is presented in this
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Table 4.1: Validation of the effectiveness of drift-gradient

Experiment1 segment1 segment2 segment3 new instance arrives one by one

numbers of instances 400 400 400 200 200
true distribution P1 P2 P3 P3 P2
lablled by drift-gradient - - - P1 P2 P3 P1 P2 P3
numbers of instances - - - 0 2 197 10 173 17

Experiment2
true distribution P1 P2 P3 P2 P3
lablled by drift-gradient - - - P1 P2 P3 P1 P2 P3
numbers of instances - - - 3 183 14 0 11 189

Table 4.2: Type I and Type II error of drift-gradient under three distributions

Experiment1 Experiment2 Average

Type I Type II Type I Type II Type I Type II
P1 0 10/400 0 3/400 0 0.01625
P2 1-173/200 2/200 1-183/200 11/200 0.11 0.0325
P3 1-197/200 17/200 1-189/200 14/200 0.035 0.0775

section.

For a data stream {Dt = (X t, yt), t = 1, · · · ,∞} with X its attributes and y the

corresponding label, {Dt, t ≤ T0} is assumed to be already obtained as the his-

torical data. The data instances after T0 will arrive one by one, by time and X t

is observed before yt. The online prediction is to first apply the current trained

predictor to predict yt for t > T0 given the value of X t. After the true value of yt

is obtained, this newly arrived Dt will be used to update the current predictor.

SEGA uses an update process that combines batch and online adaptation.

Before a full batch of new instances arrives, an online adaptation is activated

to tune the current predictor, and once a full batch of new instances is obtained,

the current predictor will be retrained as is in a batch adaptation. Algorithm 4.2

presents how SEGA update the predictors from Ĥt−1 to Ĥt. The parameter w

denotes the the length of the segments in the training set. s presents the number

of segments that each training set contains. During the experiments, the s is
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Algorithm 4.2: SEGA
Input : Dt, Ĥt−1 (·|Θ), P, Q, w, c, s.
Output : Ĥt, P, Q. % Ĥt is used to predict yt+1

1 Q = [Q;Dt] ;
2 if |Q| < w then
3 % sequentially update predictors and store new instance in Q
4 for Pi in P do
5 % compute drift gradient for each segment
6 Compute ∇δQ by (4.10);
7 for u in Pi do
8 Update |Ku,Qt(k)| by Algorithm 4.1;
9 ∇δPi ←∇δPi + (|Ku,Qt(k)|− |Ku,Qt−1(k)|)

10 end
11 ∇δi =−∇δQ − (1+w/|P|)∇δPi

12 end
13 ic = argsort ∇δi

i
[1 : c]; %c segments with minimal drift gradient;

14 Ĥc (·|Θ)= 1
c
∑

i∈ic Ĥi (·|Θ); % combined by average;
15 Ĥt (·|Θ)← Ĥc (·|Θ)
16 else
17 % a batch of new data has been stored, initializing the buffer Q
18 Segment P into P1, · · · ,Ps;
19 P ← [Q,P2, · · · ,Ps]; % the training set is updated;
20 Ĥt (·|Θ)← Ĥ1 (·|Θ) ;
21 Q = [ ]; % initialize Q
22 end

assigned a fixed size and a period of data instances of s×w will be picked from

the historical data as the initial training data. c is an ensemble coefficient to

control how many segments are picked. The row 7-10 updates δP by ∇δP can be

skipped for a faster computation with slightly lower accuracy.

The flowchart of SEGA is shown as Figure 4.3. The training set will be sepa-

rated into disjointed segments and the drift-gradient is computed to dynamically

select the best segments for prediction. If the whole training set is used to train

the predictor and retrain every buffer or every instance, it is a sliding window
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historical data
(the first training set)

segment with the
minimum drift-gradient 

+
Segments

Initial drift-gradient

predict 
label

No

Sequentially update drift-gradient
Store the new instance in the buffer

obtain 
true label

if the buffer is full 
of w new instances

the training set is 
updated by the buffer

Yes

Figure 4.3: Flowchart of SEGA.

adaptation. In the experiment section, the sliding window adaptation will be

compared as a baseline method, to show the necessity of segments and the

effectiveness of drift-gradient for handling the concept drift problem.

4.4 Experimental Evaluations

In this section, SEGA is compared to 15 baselines on 16 synthetic data and 15

real-world data streams. The experimental results and analysis are given in

Section 4.4.1 and 4.4.2. As the predictors used for SEGA in tested data streams

are different for regression and classification tasks, the experimental config-

uration will be introduced and specified at the beginning of each subsection.

Friedman test of comparison between SEGA and other baseline methods are

conducted in Section 4.4.3. The parameter analysis and computation com-

plexity are presented in Section 4.4.4.

Four kinds of data streams are involved: synthetic regression data, synthetic
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classification data, real-world regression data and real-world classification data.

To our best knowledge, this is the first time that the concept drift problem has

been comprehensively tested on both continuous and discrete label variables.

It is not known if a data stream contains drift. The types of drift that exists in

a real-world data stream is also unknown, Therefore, drift is manually added

into the synthetic data streams. Experiments on the synthetic data streams are

to validate that SEGA can solve concept drift problems. In the experiments on

synthetic data, all types of drift have been evolved. Details of drift types will be

introduced in each subsection of experiments.

Data streams are supposed to be infinite but to validate the algorithm and

present its effectiveness, it is essential to obtain a finite period of data streams.

A common way to evaluate the algorithm effectiveness on data streams is pre-

quential evaluation, where each data instance is first used to test the predictor,

and then to train the predictor. A fixed length of historical data instances are

available before conducting the experiments. Future data instances are available

one by one during the experimental procedure. In the experiments, we consider

prediction accuracy as the validation criterion including mean absolute error

(3.21) in regression tasks and accuracy in classification tasks (4.12).

(4.12) Acc= TP +TN
TP +TN +FP +FN

,

We have conducted comprehensive experiments to validate the effectiveness

of SEGA to handle the concept drift problem. The experimental design is as

shown in Table 4.3.
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Table 4.3: Experimental design in this section.

Section Data Experimental aim Main Results

4.4.1.1 d1 to validate SEGA can pick out best segments for learning and
handle the concept drift in regression tasks

Table 4.4

4.4.1.2 d2 the aim is the same as above but for classification cases Table 4.5

4.4.2.1 d3 to demonstrate that SEGA can also used for real-time regression Table 4.6

4.4.2.2 d4 the aim is the same as above but for classification cases Table 4.6

4.4.3 d3, d4 to demonstrate that SEGA has significant advantages when han-
dling real-world concept drift problems

Table 4.8, Table 4.9

4.4.4 d3, d4 to demonstrate the robustness of SEGA Figure 4.4, Figure 4.5

d1: synthetic regression data
d2: synthetic classification data
d3: real-world regression data streams
d4: real-world classification data streams
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4.4.1 Evaluation on synthetic data

In this section, SEGA will be evaluated on six synthetic data of regression tasks

and ten synthetic data of classification tasks. The aim of the experiments on

synthetic data is to validate that SEGA is effective to handle drift problem.

Therefore, SEGA will be compared to its corresponding non-adaptation edition on

data streams containing different types of drift, including no drift. As discussed

in Section 4.3.3, SEGA will also be compared to its sliding window edition to

validate the effectiveness of segment.

4.4.1.1 Regression Tasks

Data Description. The synthetic data of regression data is the same as the

synthetic data in Section 3.4.1, which includes one original data stream that does

not contain drift, one data stream containing virtual drift and four data streams

with real drift. Since the drifted data is generated based on the non-drifted data,

it is clear to understand the extent that SEGA solves the problem of concept drift

in a data stream.

Configuration. In the regression tasks, the predictor in SEGA is a linear

predictor with L2-norm (ridge regression) where α= 0.01, each segment is of 100

instances, the training set contains 10 segments (namely, the length of training

set is 1000), and the ensemble coefficient c = 1.

Analysis of Results on Synthetic Regression Tasks. The experimental

results are presented in Table 4.4. The column, Data Description, lists the length

of each data and the type of drift it contains. Prediction accuracy is shown in the

Tested Models column. Linear column denotes a ridge regression predictor that’s

105



CHAPTER 4. DRIFT ADAPTATION BY SEQUENTIALLY UPDATED DATA
SEGMENTS

trained on the first training set and is used for all the testing data without retrain.

The SlidWin column presents the prediction results of a sliding window edition.

In the sliding window edition, the training set will be updated by including

the newly arrived instance and discarding the oldest instance. For each newly

arrived instance, a new predictor will be trained on the current training set, to

predict the label for the next instance. SlidWin can partly solve the problem

of concept drift, as it obtain better prediction accuracy than Linear on some

data streams with real drift. Our method, displayed in the SEGA-Linear column,

uses a drift-gradient to choose the best segment for prediction to adapt to new

concept. Model Effectiveness column evaluates SEGA to determine how much

SEGA differs from an ideal edition, where the drift-gradient correctly designates

the best segment for each tested instance. The MAE in the SEGA-Ideal column

is computed as follows:

• Predict the label by the trained predictor on each segment. As the segment

number is 10, there are 10 predicted values for each test instance.

• Given the true value of the label, choose the best result from 10 predictions

with the minimum absolute error for the prediction of this instance.

• Compute MAE. This is the minimum MAE that SEGA could obtain, because

it is computed with the true label.

The Effectiveness column is computed by MAE of SEGA-Linear and SEGA-Ideal

that

(4.13) Effectiveness= MAESEGA−Linear

MAESEGA−Ideal
.
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SEGA-Linear is more applicable on the data with a larger value of the effective-

ness.

The MAE results in Table 4.4 shows that:

1) Linear, SlidWin and SEGA-Linear performs the same when data contains

no drift or virtual drift. The synthetic data in Table 4.4 are generated by a

linear function with a random error, and a linear predictor is used during the

experiments. Therefore, the experimental results are less affected by the cause

of an inappropriate predictor. If the data is generated by a very complex function,

and it has to use a powerful predictor trained on a large size of instances to

accurately present the true hypothesis, the effectiveness of solving concept drift

will highly be impaired by the poor performance of the predictor trained on

a limited size of instances. In the Non-Drift data stream, it can be seen that

the prediction accuracy of Linear, SlidWin and SEGA-Linear are all close to

0.800, which shows that for this data stream, if no drift occurs, there is no

difference between learning a predictor on the full training set and on one of its

segments. This is also one of the required applicable conditions when choosing

the appropriate predictor in SEGA. It has been discussed in (Song et al., 2019a)

that virtual drift has little influence on the prediction results if the change of

p(X ) is independent to p(y|X ). Here, the same results show —Linear, SlidWin

and SEGA obtain almost the same accuracy on the Virt-Drift stream.

2) Simple retraining is not suitable for all types of drift. By comparing the

Linear, SlidWin and SEGA-Linear columns in Table 4.4. SlidWin is to simply

retrain the current predictor when every new instance arrives, and does not

include any design on how to use drift information to help adaptation. According

to the value of MAE of SlidWin, it performs well on most data streams and can
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partly handle the concept drift problem under some conditions. For example,

the MAEs of SlidWin are much smaller than the corresponding MAEs of Linear

on Sudd-Drift, Incr-Drift and Rec-Drift-Mix. Specifically, SlidWin is as good as

SEGA on Sudd-Drift and Incr-Drift streams. However, SlidWin can not fully

solve the reoccurred concept problem. SlidWin performs worse than SEGA on

two streams containing reoccurred drift, and even worse than the Linear model

on the Rec-Drift-Grad stream.

3) Retraining by segment is an effective way to solve concept drift problem.

Our proposed SEGA method can outperform other method when any type of drift

or mixture of occurs.

4) The proposed SEGA method can accurately identify the best segment in

the training set by drift-gradient. Comparing the column of SEGA-Linear and

SEGA-Ideal, it can be seen that when real drift occurs, the prediction accuracy of

SEGA-Linear is very close to the accuracy of SEGA-Ideal. As SEGA-Ideal predicts

the label based on the true value of that label, it is considered to be the optimal

prediction if using one segment of training set to predict labels. According to

the Model Effectiveness result, our proposed SEGA can obtain 95.2% prediction

capability of a prediction where the true label is known on Sudd-Drift, and a

prediction capability of 96.1%, 79.2% and 93.9% on Incr-Drift, Rec-Drift-Grad

and Rec-Drift-Mix respectively. This demonstrates the effectiveness of the drift-

gradient in SEGA.
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Table 4.4: Validation of Regression Tasks on Synthetic Data (MAE as the Evaluation Criterion).

Data Streams
Data Description Tested Models Model Effectiveness

instances Drift Type Linear SlidWin SEGA-Linear SEGA-Ideal Effectiveness

Non-Drift 2000 no drift 0.800 0.811 0.810 - -
Virt-Drift 2000 sudden virtual drift 0.780 0.798 0.793 - -
Sudd-Drift 2000 sudden real drift 13.540 2.728 2.717 2.592 95.2%

Incr-Drift 2000
incremental real

drift
10.200 2.315 2.307 2.220 96.1%

Rec-Drift-
Grad

12000
sudden and

gradual real drift
8.800 9.118 1.265 1.047 79.2%

Rec-Drift-Mix 12000

sudden,
incremental and
reoccurring real

drift

8.170 2.486 1.680 1.584 93.9%
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4.4.1.2 Classification Tasks

Data Description. For the classification task, ten widely used synthetic data

is introduced to validate the effectiveness of SEGA on the drift problem in the

classification task. All the synthetic data are available from (Liu, 2019).

Configuration. In the classification tasks, the predictor in SEGA is a weighted

K-nearest neighbor (KNN) classifier with K = 5, the length of each segment is

200, the training set contains 10 segments, and the ensemble coefficient c = 1.

Analysis of Results on Synthetic Classification Tasks. The prediction

results of classification tasks on synthetic data streams are shown in Table 4.5.

These synthetic data contain various types of drift. Similar to the regression

case, SEGA is compared to its non-adaptation edition and the sliding window

edition. In classification tasks, KNN is applied as the basic predictor. The model

effectiveness is not tested in classification tasks, since the prediction accuracy

of SEGA-Ideal is more likely to be 1. This accuracy of 1 is largely due to the

randomness, rather than the 100% accurate predictor. Therefore, it is not able to

reflect the true capability of SEGA-Ideal.
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Table 4.5: Validation on Synthetic Data of Classification Tasks (Acc as the Evaluation Criterion).

Data Streams
Data Description Tested Predictors

instances Drift Type KNN SlidWin SEGA-KNN

SEAs 10,000 sudden real drift 80.95% 79.74% 80.79%
SEAg 10,000 gradual real drift 81.00% 79.73% 80.49%

HYPER 10,000 incremental and random reoccurring drift 77.38% 73.39% 73.73%
LEDs 10,000 sudden real drift 42.80% 40.83% 43.08%
LEDg 10,000 gradual real drift 42.80% 41.05% 42.99%
AGRs 10,000 sudden real drift 87.95% 49.23% 50.08%
AGRg 10,000 gradual real drift 87.95% 50.60% 50.71%
RTG 10,000 no drift 73.91% 62.78% 62.99%
RBF 10,000 virtual/real incremental drift 31.86% 39.99% 54.71%
RBFr 10,000 regionally virtual/real incremental drift 78.75% 76.38% 76.64%
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The prediction results of classification tasks show that:

1) Retrain by segments is better than Retrain by the whole training set. This

is concluded because according to Table 4.5, SEGA is no worse than SlidWin on

all tested synthetic classification data streams.

2) SEGA may not be suitable in cases where low-frequent and small drift exists.

In some data streams such as AGRs, although it contains drift, the accuracy of

SlidWin is much worse than that of KNN, which denotes that non-adaptation is

a better choice for this drifted data. This is because the drift in AGR data occurs

at a low frequency and the new pattern has small difference from the previous

one.

4.4.2 Evaluation on real-world data streams

In this section, SEGA will be evaluated on eight real-world data streams of

regression tasks and seven real-world data streams of classification tasks. In the

previous subsection, SEGA has been validated to solve concept drift effectively.

The aim of this subsection is to compare it to some state-of-art regression and

classification methods, which are specially designed for solving concept drift

problems.

4.4.2.1 Regression Tasks

Data Description. The eight real-world regression data streams are: CCPP

containing 9568 instances with four attributes; Sensor 3, 8, 20 and 46 containing

46,633, 15,808, 28,832 and 52,988 respectively with three attributes; SMEAR

containing 140,576 instances with 43 attributes and Solar containing 32,686
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instances with five attributes. Detailed information could be found in (Song et al.,

2019a) with the download like in (Song, 2019). Among them, CCPP has been

validated not to contain the concept drift problem (Yeon et al., 2010; Song et al.,

2019a).

Configuration. In the regression tasks, the predictor in SEGA is ridge

regression with α= 1e−04 for CCPP, Sensor3, Sensor20, and Sensor46; α= 1e−03

for Sensor8; α = 1e−02 for SMEAR; and α = 1e−01 Solar. The value of α is

determined by parameter analysis, which will be provided in the next section.

The length of each segment is 400 for SMEAR and 200 for the other data streams,

because SMEAR has more attributes and a size of 200 is not large enough for

training a predictor in this case. The K for searching nearing neighbors is half of

the length of the segment, the training set contains 10 segments, the training

set contains 10 segments, and the ensemble coefficient c = 2.

Analysis of Results on Real-world Regression Tasks. In the experi-

ments of real-world regression data streams, the effectiveness of SEGA is pre-

sented by comparing it to six benchmark drift adaptation methods aiming to

handle concept drift problems in a regression task. The benchmarks are ORTO

(Ikonomovska et al., 2011b); FIMT-DD (Ikonomovska et al., 2011a); AMR and

metaAMR (Duarte et al., 2016); Perceptron (Bifet et al., 2010c); and FUZZ-CARE

(Song et al., 2019a). ORTO and FIMT-DD are tree model based methods, which

use linear regression models and the stochastic gradient descent method in the

leaves of the tree. ORTO and FIMT-DD detect the drift by Page-Hinckley (PH)

test and use the detection result to adjust the tree structure. AMR and metaAMR

are rule models and ensemble rules. For each rule model, a linear regression

model is trained by an incremental gradient descent method. Perceptron is a
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Hoeffding perceptron tree model which replaces the naive Bayes with perceptron

predictor. FUZZ-CARE is implemented by the code in (Song, 2019) and all the

other benchmarks are implemented by MOA (Bifet et al., 2010a). SlidWin uses

ridge regression as the basic predictor.

The results of SEGA on real-world regression tasks are listed in Table 4.6

with the following concludes:

1) Using the whole training set is not the best strategy for drift adaptation.

According to the average rank results, it can be seen that SlidWin is the second

worst drift adaptation method among these benchmarks. This phenomenon

denotes that using the whole training set during the adaptation procedure is not

a wise choice for the real-world data streams, because the drift situation is very

complex in the real world.

2) SEGA is able to handle different drift cases in the real-world data. In

(Song et al., 2019a), the authors have discussed that among the data streams in

Table Table 4.6, Sensor20, Sensor46, SMEAR and Solar, are supposed to have

significant reoccurring drift according to their experiments. As FUZZ-CARE is

specially designed for reoccurring drift, it obtain better performance on these

five data streams. Our proposed SEGA does not aim at solving a special type

drift but is designed to be suitable for the occurrence of all types of drift. The

highest average rank of SEGA compared to the other benchmarks validates the

effectiveness of SEGA to solve concept drift problems in a data stream.
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Table 4.6: Validation on Real-world Data of Regression Tasks (MAE as the Evaluation Criterion).

Data Streams ORTO FIMT-DD metaAMR AMR Per FUZZ-CARE SlidWinridge SEGAridge

CCPP 4.53E+02 3.57E+00 3.32E+00 3.42E+00 3.65E+00 5.59E+00 3.67E+00 3.67E+00
(8) (3) (1) (2) (4) (7) (6) (5)

Sensor3 6.62E-02 7.14E-03 1.58E-02 7.69E-03 6.85E-03 1.55E-02 3.58E-02 6.13E-03
(8) (3) (6) (4) (2) (5) (7) (1)

Sensor8 1.69E-01 9.68E-03 7.26E-03 6.57E-03 5.95E-03 1.72E-02 7.57E-02 7.14E-03
(8) (5) (4) (2) (1) (6) (7) (3)

Sensor20 9.60E-01 7.95E-01 1.14E-02 8.19E-03 7.92E-01 7.90E-03 8.08E-01 7.35E-03
(8) (6) (4) (3) (5) (2) (7) (1)

Sensor46 4.00E-01 1.57E-01 1.74E-01 2.02E-01 1.56E-01 5.25E-02 5.10E-01 5.87E-03
(7) (4) (5) (6) (3) (2) (8) (1)

SMEAR 3.39E+01 2.34E+01 1.98E+01 1.44E+01 3.75E+01 1.04E+01 2.94E+01 1.73E+01
(7) (5) (4) (2) (8) (1) (6) (3)

Solar 2.25E+02 1.14E+02 9.39E+01 9.52E+01 1.30E+02 8.66E+01 2.17E+02 1.09E+02
(8) (5) (2) (3) (6) (1) (7) (4)

AvgRank(no CCPP) 7.67 4.67 4.17 3.33 4.17 2.83 7.00 2.17
AvgRank 7.71 4.43 3.71 3.14 4.14 3.43 6.86 2.57
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4.4.2.2 Classification Tasks

Data Description. The seven real-world classification data streams are: Elec

containing 45,312 instances with eight attributes; Weather containing 18,159

instances with eight attributes; Spam containing 9,324 instances with 39,916

attributes; Airline containing 539,383 instances with eight attributes; Cover-

type containing 45,312 instances with 9 attributes; Usenet1 containing 1,500

instances with 99 attributes; and and Usenet2 containing 1,500 instances with

99 attributes. More details of these data streams can be found in (Liu et al.,

2018a; Bifet et al., 2010a).

Configuration. In the classification tasks, the predictor in SEGA is a weighted

K-nearest neighbor classifier with K = 5. The length of each segment is 200 and

each training set contains 10 segments for the data streams, except for Usenet1

and Usenet2, because Usenet1 and Usenet2 only have 1500 instances in total. For

Usenet1 and Usenet2, the training set contains 7 segments. The K for searching

nearing neighbors is half of the length of the segment, the ensemble coefficient

c = 6.

Analysis of Results on Real-world Classification Tasks. For real-world

classification data streams, the benchmarks here are all designed to specially

solve the concept drift problem in the data stream of classification tasks, including

ADWIN-ARF which uses ADWIN to detect drift and use an adaptive random

forests for classification (Gomes et al., 2017b); NN-DVI, which detects drift via a

density based distance and adapts to a new concept via competence model (Liu

et al., 2018a); LevBag is ensemble method using an improved online bagging

method to adapt to the changing data(Bifet et al., 2010b); SAM ensembles two
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sliding window, with different window sizes on the KNN classifier (Losing et al.,

2016); OnlineAUE (Brzezinski and Stefanowski, 2014) ensembles the classifier

trained from blocks of training data which is similar to the segments in SEGA.

OnlineAUE learns the weights of each block but SEGA uses the drift-gradient to

select the best segment; IBLStream uses the instance-based model to adapt to

the new concept by autonomously optimizing the size of the case base (Shaker

and Hüllermeier, 2012); Learn++NSE is an ensemble method which use the

tie-adjusted accuracy to determine weights (Elwell and Polikar, 2011). SlidWin

uses the same basic classifier with SEGA, that is the KNN classifier for Weather,

Spam, Airline and Covertype, the Tree classifier for Elec, and the gradient

boosting classifier for Usenet1 and Usenet 2.

The experimental results of SEGA on real-world classification tasks are listed

in Table 4.7.

1) SEGA is also suitable to handle concept drift problems in classification tasks.

Compared to the benchmarks which are specially designed to solve the concept

drift problem in classification tasks, SEGA has the second highest average rank

which validates the power of SEGA to solve the drift problem. In addition, the

accuracy of SEGA can be further improved if appropriate predictors are chosen.

For example, if decision tree is applied, the accuracy of SEGA on Elec will be

88.48%. We encourage users to try different predictor and ensemble parameters

for getting better results of SEGA when they apply SEGA into a specific case.
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Table 4.7: Validation on Real-world Data of Classification Tasks (Acc as the Evaluation Criterion).

ADWIN-ARF NN-DVIkNN LevBagkNN SAMkNN OnlineAUE IBLStream Learn++NSE SlidWinkNN SEGAkNN

Elec 88.17 86.67 81.91 82.78 87.74 77.05 70.52 62.81 83.46
1 3 6 5 2 7 8 9 4

Weather 78.74 74.75 76.19 77.73 75.24 75.69 68.27 77.11 79.29
2 8 5 3 7 6 9 4 1

Spam 95.60 94.65 93.22 95.79 84.29 92.78 70.56 66.90 94.57
2 3 5 1 7 6 8 9 4

Airline 65.24 65.20 65.03 60.35 67.51 63.74 62.35 53.90 61.56
2 3 4 8 1 5 6 9 7

Covertype 92.11 94.04 94.00 91.71 90.01 92.26 64.03 71.88 94.72
5 2 3 6 7 4 9 8 1

Usenet1 68.40 61.40 58.93 65.67 63.47 56.00 48.53 67.00 80.00
2 6 7 4 5 8 9 3 1

Usenet2 71.93 71.40 67.33 71.00 68.87 67.67 66.67 70.00 71.00
1 2 8 3 6 7 9 5 3

AveRank 2.14 3.86 5.43 4.29 5.00 6.14 8.29 6.71 3.00
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2) Combining the prediction results of selective segments by drift-gradient is

an effective way to implement ensemble. Most of the compared benchmarks are

ensemble methods. Some benchmarks ensemble different classifiers while others

ensemble the results computed on different data chunks which is similar to the

SEGA method. OnlineAUE ensembles the results of data chunks. Therefore,

OnlineAUE can particularly be compared to our SEGA method. According to

the result table, SEGA obtain an average rank of 3.00, while OnlineAUE obtain

5.00. It can be seen that SEGA is much better than OnlineAUE on the average

performance of the tested data streams. In addition, there is no need to train the

ensemble weight in SEGA, which means SEGA is much quicker to implement

ensemble. Therefore, it is not always recommended to ensemble all the available

information. Selecting the most useful information from the training set is an

more important aspect for drift adaptation.

Discussion. The proposed SEGA has been validated and compared from two

aspects: experiments on synthetic data or real-world data and experiments on

regression or classification tasks. Experiments on the synthetic data denotes that

SEGA can improve the prediction accuracy because it can truly solve the concept

drift problem in the data. Although the predictors in regression and classification

are different, SEGA obtain uniformly good results, which denotes that SEGA

is suitable to predict different kinds of data streams. Besides, the advanced

performance of SEGA compared to the SlidWin method, demonstrates that it

is not always best to use the whole training set to build the model when drift

occurs, and the drift-gradient mechanism in SEGA can accurately and effectively

select the most appropriate segments in training set for prediction.
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4.4.3 Statistical test of real-world data streams

In this section, the results of the statistical test will be given to validate the

significance of SEGA. The Friedman test and its post-hoc test after Conover are

introduced as the testing method where the Friedman test is used to validate

whether these drift adaptation methods are significantly different in general.

Furthermore, the post-hoc test after Conover is used to validate the significance

of pairwise comparison between SEGA and other methods. The statistical test

includes tests on MAE of real-world regression data streams and Acc of real-world

classification data streams.

The test process has been explained in Section 3.4.4. Given M the number

of tested drift adaptation methods and n the number of data streams, the χ2
R

statistic in the Friedman test is computed in (3.22) where R is the rank computed

by MAE in regression cases and Acc in classification cases.

If the Friedman test reject the null hypothesis which means these drift

adaptation methods are different in general, the post-hoc test will further test

whether the difference between SEGA and other methods denoted by Ri−RSEGA

is statistically significant 1. Ri −RSEGA (refers to (3.23)) is significant if the

following condition satisfies, where α is a preassigned significance level.

The results of statistical test are shown in Table 4.8 and Table 4.9 2. According

to the statistical test, we can conclude:

1the post-hoc test can test whether the difference between any two of the methods is signifi-
cant. We only present the post-hoc test result between SEGA and other methods because we do
not care whether other methods have significant difference between each other. More details of
Friedman test and its post-hoc test can refer to (Pohlert, 2014).

2In these two tables, “+", “*", “**", and “***" means this value is significant at the level of 0.1,
0.05, 0.01 and 0.001 respectively. “df" denotes the freedom degree.
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Table 4.8: Friedman test and its post-hoc test of all the methods over real-world regression data streams (no CCPP),
where “Friedman Test" is the result for Friedman test and “Friedman - post-hoc test after Conover" is for the pairwise
comparison. “+", “*", “**", and “***" means this value is significant at the level of 0.1, 0.05, 0.01 and 0.001 respectively.
“df" denotes the freedom degree.

Friedman Test χ2
R P-value of χ2

R df
26.11 4.81e-2*** 7

Post-hoc test after Conover ORTO FIMT-DD metaAMR AMR Per FUZZ-CARE SlidWin
Ri −RSEGA 33 15 12 7 12 4 29
P-value 8.05e-06*** 0.015* 0.0216* 0.1481 0.039* 0.2742 4.94e-05***

Table 4.9: Friedman test and its post-hoc test of all the methods over real-world classification data streams, where
“Friedman Test" is the result for the Friedman test and “Friedman - post-hoc test after Conover" shows the pairwise
comparison. “+", “*", “**", “***" and “df" have the same meaning as they are in Table 4.8

Friedman Test χ2
R P-value of χ2

R df
17.600 0.0244* 8

Post-hoc test after Conover ADWIN-ARF NNDVIkNN LevBag SAMkNN OnlineAUE IBLStream Learn++NSE SlidWin
Ri −RSEGA -6 6 16 9 13 21 36 25
P-value 0.264 0.264 0.048* 0.173 0.088+ 0.016* 2.00e-4*** 0.0055**
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1) The Friedman test results are significant on of both regression and classifi-

cation cases. The p-value of χ2 in both cases is small which denotes a significant

difference in the prediction accuracy among the tested adaptation methods.

2) In regression case, SEGAridge is significantly better than most drift adap-

tation methods. In Table 4.8, all the p-values of the post-hoc test are significant

except for the AMR and FUZZ-CARE column. This means, although SEGA is

superior to AMR by a 7 rank difference and to FUZZ-CARE by a 4 rank differ-

ence, the difference is insignificant. Similarly, AMR and FUZZ-CARE cannot

outperform SEGA, and this insignificance does not affect the effectiveness of

SEGA handling the concept drift problem.

3) In the case of classification, SEGAkNN is significantly better than other

adaptation methods except for ADWIN-ARF. In Table 4.9, the p-values of Fried-

man test is significant except for the comparison between ADWIn-ARF, NNDVIkNN ,

SAMkNN and SEGAkNN . Similarly to the regression case, ADWIn-ARF, NNDVIkNN,

SAMkNN are not better than SEGAkNN .

4.4.4 Parameter analysis and computation complexity

Figure 4.4 and Figure 4.5 show how the accuracy will change when the size of

the segment w and the number of segments in the training set s have different

values. In Figure 4.4, different values of the segment size w and the number of

segments in the training set s are analyzed. The MAE results of all the data

streams are put in the interval [1,9], and the legend gives the magnitude of each

stream. For example, Sensor3(E-02) means the MAE at a specified parameter for

this data stream is the value on the y-axis×10−2.
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CCPP(E+00) Sensor3(E-02) Sensor8(E-02) Sensor20(E-02)
Sensor46(E-02) SMEAR(E+01) Solar(E+02)
(a) MAE under different w (b) MAE under different s
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Figure 4.4: Parameter analysis for real-world data streams of regression tasks.
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Figure 4.5: Parameter analysis for real-world data streams of classification tasks.
Usenet1 and Usenet2 are not included because they have few instances.

We tested different w and s for all the tested real-world data streams by

multiplying a scaling ratio with the current used w and s. For example, the

accuracy of CCPP listed in Table 4.6, is computed with w = 200 and s = 10. In the

subplot (a) in Figure 4.4, the first point in the CCPP line at 0.5 means the MAE

is computed with w = 0.5×200= 100 and s = 10. For SMEAR, since its accuracy

in Table 4.6 is computed with w = 400, the first point of SMEAR of subplot (a) in

Figure 4.4, means this MAE is computed with w = 0.5×400= 200 and s = 10.
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The batch size, which is the segment size w in SEGA, is a critical parameter

for drift detection algorithms. For SEGA, if w is too small, the predictor trained on

this segment may not be sufficiently trained. If w is too large, it is not necessary

to separate the training set. The value of s determines how many previous

instances is going to be stored to predict the upcoming instances. A larger s

requires more storage. Therefore, for data streams with reoccurring concept

problem, we suggest a larger s. In addition, a larger s means we need a larger

storage, so s×w is also limited by the device. If w is large, it may not be able to

choose a large s anymore. In addition, c determines how many predictors are

ensembled. Therefore, for data streams that are difficult to predict, we suggest a

larger c.

In general, SEGA is robust on these two parameters on most tested data

streams according to the results shown in Figure 4.4 and Figure 4.5. For the data

streams of Sensor3, Sensor8, Sensor20 and Sensor46, SEGA obtain better results

with smaller w, which denotes that drift occurs at a relatively high frequency in

these four data streams.

The computation complexity of SEGA is determined by the size of the seg-

ments (w) and the number of segments in each training set (s). The complexity

of computing SSD is s×O(w2) for every w instances. In each learning process,

the complexity is (s−1)×O(w) when computing the drift gradient of δQ and is

less than ((s−1)w)×O((s−1)w) when computing the drift gradient of δP . Given

the size of training data as N, in each learning process, the computation com-

plexity is upper bounded by O(N2) if SEGA updates δP and the complexity is

upper bounded by O(N) if the updates of δP are skipped. The run time of SEGA

with kNN the predictor is listed in Table 4.10, where SEGA is implemented
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in Python while others are implemented in Jave. The execution time of SEGA

could be shortened if parallel computing is involved to shorten the run time of

for-loop. Meanwhile, although SEGA uses KNN search the neighbors for updat-

ing drift-gradient, and a KNN predictor for classification tasks, we do these two

procedures separately, which has repeated computation. However, this makes

SEGA more flexible when choosing predictor and computing the distance matrix.

4.5 Summary

This chapter proposes an online adaptation method, called SEGA, to predict

labels for data streams of both regression and classification tasks. Instead of

using the whole training data to retrain predictors, which is common in most

recent research on concept drift adaptation, SEGA trains and updates predictors

on selected segments of the training data. In SEGA, we propose a sequentially

updated statistic, drift-gradient, to select the optimal segments when every new

instance arrives. In this way, SEGA can overcome the delay of the informed drift

adaptation method, as well as the instability of the blind drift adaptation method.

Our SEGA method is validated by experiments on 30 data streams including

synthetic or real-world data streams of classification or regression tasks. The

consistent performance shows that SEGA is able to solve various types of drift

under different situations.
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Table 4.10: Run-time on real-world data streams (s CPU-time)

CPU(s) ADWIN-ARF NN-DVIkNN LevBagkNN SAMkNN OnlineAUE IBLStream Learn++NSE SlidWinkNN SEGAkNN

Elec 11.20 374.13 598.71 7.06 4.08 8.98 6.20 2.97 173.50
Weather 4.01 183.64 329.23 3.00 1.00 37.09 2.02 6.39 82.58

Spam 6.01 4899.40 11331.10 23.01 7.56 1131.02 5.02 33.09 343.20
Airline 355.19 5754.27 7336.86 40.01 196.15 1314.86 852.05 213.51 2295.45

Covertype 123.04 86436.71 48499.82 196.06 112.04 2344.83 2357.61 333.53 3678.54
Usenet1 1.00 132.66 377.24 1.00 1.00 4.59 1.01 0.19 1.23
Usenet2 1.01 124.08 382.16 1.00 1.00 5.11 1.01 0.18 1.24

SlidWin, SEGAkNN are implemented in Python, while other methods are implemented in Java by MOA
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5
DRIFT ADAPTATION BY GENERATING SAMPLES OF

NEW CONCEPT

Identifying a new concept in its early stages means there are few available

instances of the new concept. It is difficult to learn a precise predictor for the

new concept if there are no enough instances. To solve this problem, this chapter

proposes to generate samples of new concept by inputting the previous data

instances. We also propose a drift adaptation method based on the generating

process. In this chapter, the problem is introduced in Section 5.1. Definitions

and notations are listed and explained in Section 5.2. Section 5.3 explains how

to generate samples of new concept and then make adaptation. The proposed

adaptation method is validated by experimental evaluations in Section 5.4.

Section 5.5 concludes this chapter.
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5.1 Introduction

For a data stream with concept drift, the new concept will be identified in the

upcoming data instances. However, identifying a new concept in its early stages

means there are few available instances of the new concept with which to build

a precise predictor. In addition, using drift detection method to identify drift

requires at least one full batch of new instances; therefore, the length of the batch

determines the detection lag. Reducing the detection lag means reducing the

number of instances, and the accuracy of drift detection may suffer. Conversely,

increasing the number of instances to a level sufficient for learning accurate

predictors will result in greater detection lag.

Due to the problem that the data of the new concept is insufficient, drift

adaptation methods are faced with a choice between insufficient learning and

adaptation delay. The lack of data or imbalances in the data can be alleviated

with data resampling techniques. For example, Wang et al. proposed an ensemble

method based on resampling for online learning with imbalanced data (Wang

et al., 2015) and Lu et al. applied a permutation test to detect concept drift (Lu

et al., 2014). None of these methods, however, are able to generate instances that

represent the new concept. If these new instances could reasonably be generated,

a new concept could be learned with less new instances.

Motivated by this idea, and given the success of fuzzy theory in handling

uncertainty problems (Zuo et al., 2016), we developed an adaptive fuzzy network

(AFN) to adapt to concept drift in data streams. AFN has two functions: a drift

detection module that identifies whether drift has occurred; and a drift adaption

module that simulates the new concept. These two modules are integrated in
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a fuzzy inference system (FIS), which provides a new solution for concept drift

problem. In terms of drift detection, AFN does not need to monitor learner errors

or generate statistics for measurement. In terms of drift adaption, AFN updates

the model by generating samples of new concepts through previous data instead

of directly discarding them.

Three sets of comparative experiments on nine data streams were conducted

to separately demonstrate the effectiveness of the drift detection module, the

drift adaption modules, and the FIS. The results consistently demonstrate the

superiority of the three components and the full model.

The advantages of implementing adaptation by the proposed adaptive fuzzy

network (AFN) are listed as follows.

• AFN can detect drift and adapt to the new concept simultaneously.

• AFN embeds generative adversarial nets (GAN) in a fuzzy network. The

generative model can generate data for learning new concept.

• AFN designs a drift detection module on the adversarial model. The detec-

tion method does not rely on the learner error or a statistic.

• AFN is a network so it can be easily combined to other neural networks.

5.2 Definitions and Notations

The definitions of data stream, concept drift and the learning aim are the same

to the definitions in Section 3.2. AFN contains a generative adversarial nets

(GAN) and an adaptive neuro-fuzzy inference system (ANFIS). In this section,

GAN and ANFIS will be introduced.
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5.2.1 Generative adversarial nets (GAN)

Goodfellow (Goodfellow et al., 2014), proposed GAN for use in an adversarial

process to estimate generative models, which is used to learn the distribution

of data. The main idea of GAN is that a good generative model can confuse a

well-trained discriminative model by labeling an arbitrary example as either

data or fake data. Given G(z;θg),the generator, which is a differentiable function

that maps a noise variable z to a distribution pg, and the discriminator D(x;θd),

which maps x to a single scalar, represents the probability that x came from the

data rather than pG , D(x;θd) is trained to maximize the probability of assigning

the correct label to true and fake samples, while G(z;θg) is trained as a minimizer.

Specifically, D and G play the following two-player min-max game with the value

function V (G,D):

G
min

D
max

(D,G)=Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z)))]

(5.1)

When V (D,G) reaches its maximum value, D(x) approaches its max of 1 and

D(G(z)) approaches its minimum of 0, which means the discriminator D classifies

the example from the data as true data and the samples generated by G as fake

data. Given a trained D, Ex∼pdata(x) [logD(x)] is a constant value, so minimizing

V (D,G) is the same as D(G(z)) approaching 1. Hence, the generator lowers

D’s accuracy. As G and D update, the optimal D for any given G is (5.2) and

the optimal G for any given D is achieved if, and only if (5.3) is satisfied. The
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Figure 5.1: Generative Adversarial Net (GAN).

computation process for GAN is shown in Figure 5.1. Given a random Gaussian

series, the generative model maps this series to G(z). Then, a discriminator is

applied to classify the generated data and real data. After all iterations are

complete, the generated data should approach the same distribution as the real

data.

(5.2) D∗
G(x)= pdata(x)

pdata(x)+ pg(x)

(5.3) G∗
D(z)= {G|pg = pdata

}
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Figure 5.2: Adaptive neuro-fuzzy inference system (ANFIS).

5.2.2 Adaptive neuro-fuzzy inference system

Fuzzy logic has been widely used to handle uncertainty problems. Typically,

an FIS maps a certain input to several fuzzy sets with corresponding degrees

of membership. Jang (Jang, 1993) restructured FISs with two contributions: a

standard method for transforming ill-defined factors into identifiable rules in the

FIS; and the use of an adaptive network to tune the membership functions. This

approach yielded ANFIS, which has been successfully used in many uncertain

systems, such as wind energy and pollution forecasting (Song et al., 2015; Zhang

et al., 2016).The ANFIS process is illustrated in Figure 5.2, given x the attribute

variables, y the label variable. There are five processes in an ANFIS architecture.

The circles represent fixed nodes without parameters, and the squares represent

adaptive nodes, whose parameters are determined by the training data and a

gradient-based learning procedure.

• Layer I: Maps a certain input x to a fuzzy set O1
i for every node i according

to the member functions μAi . This usually bell-shaped with the parameter
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set {ai,bi, ci}. The output of layer I is computed by (5.4) and (5.5).

(5.4) O1,i =μAi (x
1)= exp

{−((x1 − ci)/ai)2}

(5.5) O1,i =μBi (x
2)= exp

{−((x2 − ci)/ai)2}
• Layer II: The nodes in this layer are fixed. Each circle node performs the

connection “AND" by multiplying the inputs and passing the product to

the next node. Each node represents the “firing strength" of the instance

for each rule, i.e., the degree to which the “if" component of a fuzzy rule is

satisfied.

(5.6) O2,i = wi =μAi (x
1)×μBi (x

2), i = 1,2

• Layer III: The nodes in this layer are fixed. A normalized firing strength

is calculated for every circle node in this layer. The firing strength is the

ratio between the ith rule’s firing strength and the sum of all the rules’

firing strengths.

(5.7) O3,i =ωi = ωi∑
i ωi

• Layer IV: The nodes in this layer are adaptive to an output. Assuming

the rules of this system as presented in Rules 1 and 2, the output of the

adaptive node is computed by (5.10).

Rule 1: if x1 is A1 and x2 is B1, then

(5.8) f1 = p1x1 + q1x2 + r1
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Rule 2: if x1 is A2 and x2 is B2, then

(5.9) f2 = p1x1 + q2x2 + r1

(5.10) O4,i = ω̄i(pix1 + qix2 + ri)

• Layer V: The nodes in this layer are fixed. The overall output is the

weighted average of all incoming signals.

(5.11) O5,i =
∑

i
ω̄i f i =

∑
i ωi f i∑
ωi

Layer I in ANFIS is a fuzzification layer. We use fuzzy C-means clustering

method to construct the fuzzy set (Yang et al., 2010). The process of ANFIS is

presented in Algorithm 5.1, where k represents the number of clusters, and Xtrain

and ytrain and Xtest and ytest represent the input and output in the training set

and the test set, respectively.

5.3 Drift Adaptation by an Adaptive Fuzzy

Network—AFN

The whole adaptation process of the fuzzy generative adversarial net (AFN)

will be explained in Section 5.3.3. There are three parts in AFN: detection

(Section 5.3.1), generation (Section 5.3.2) and adaptation (Section 5.3.3). Their

corresponding techniques are the adversarial model , the generative model, and

ANFIS (Section 5.2).
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Algorithm 5.1: Adaptive Neuro-fuzzy inference system
Input : XTrain, ytrain, Xtest, k.
Output : ŷtest: The estimation of ytest.
Initialization: ∇M ← 0.

1 for i = 1 to MaxIteration do
2 Update the membership matrix U ;
3 Calculate the new cluster centers V ;
4 Calculate the clustering objective function;
5 if |Jt − Jt−1| ≤ ε then
6 break;
7 end
8 end
9 return U , V .

10 Built the fuzzy rules (5.8) and (5.9) by U , V ;
11 Update ω in (5.10);
12 return fuzzy rules and ω;
13 ŷtest = f is(Xtest|ω, rules);
14 return ŷtest.

5.3.1 Detection by the adversarial model in GAN

The principle behind using an adversarial model to detect drift is that, if the

discriminator can well separate two samples of data, a drift is identified. Here,

a sigmoid function h(x) is used to classify samples denoted by S1 and S2. If

the series h(S1) is significantly different from the series h(S2) according to a

Z-test, the discriminator is thought as a “good" classifier which can separate

two samples. The detection process using the adversarial model is shown in

Algorithm 5.2, given X p and yp, i.e., the attributes and label variables of the

previous data, and Xc and yc, which correspond to the current data. It should be

noticed that, the drift detection proceeds after we obtain the labels of the newly

arrived data.
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Algorithm 5.2: Detect drift by the adversarial model D(x)
Input : X p, yp, Xc, yc

1 . Output : H = 1: Drift is identified;
H = 0: Drift is not identified.

Initialization: H ← 0.
2 Sp ← [X p yp];
3 Sc ← [Xc yc];
4 Update the discriminator by stochastic gradient:

∇θd
1
m
∑m

i=m[logD(Sc)+ log(1−D(Sp))];
5 Zp ← Dθ(Sp);
6 Zc ← Dθ(Sc);
7 H ← Z− test(Zp, Zc);
8 return H.

5.3.2 Generating data by the generative model in GAN

Under the assumption that a mean drift is contained within the data stream, the

generative model draws on previous data by adding a mean-difference matrix.

The mean-difference matrix is computed by the average value of the previous

data and the new data. The details are listed in Algorithm 5.3.

Algorithm 5.3: Generate data by the generative model G(x)
Input : X p, yp, Xc, yc, H.
Output :GX : The generated features;

G y: The generated label.
Initialization: ∇M ← 0.

1 Sp ← [X p yp];
2 Sc ← [Xc yc];
3 if H �= 0 then
4 ∇M = mean(Sp)−mean(Sc);
5 GX = Sp +∇M .
6 end
7 return GX .
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to predict following instance

Train an ANFIS based on the train set and apply it to predict the new batch of data

Figure 5.3: The flowchat of AFN.

5.3.3 The general procedure and pseudocode of AFN

The adaptation process in AFN is as follows: the adversarial model in GAN is

used to recognize whether a sample is real or fake. A sample from the old concept

is considered to be “fake"; a sample from the new concept is considered “real".

If the samples are well separated by the discriminator, a drift is detected. Once

a drift is detected, a chunk of fake data representing a similar concept to the

new concept is generated by the generative model rather than directly updating

the model with the newly arriving data. The original GAN uses a random series

to generate data. However, we use previous observations instead of a totally

random series. For a real-world data stream, it is possible that previous instances

contain useful information for training the new concept. Given this condition,

using previous data will improve learning performance. Once the generated data

is ready, ANFIS learns a predictor based on the union of the latest data and
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the generated fake data. This predictor is trained to predict the next batch of

instances. AFN integrates all three components. The flowchart of the integration

is presented in Figure 5.3. The green bar represents the training set, namely

the historical data and the blue bar represents the test sets. Before assessing

the first window of newly arrived instances, the ANFIS model is trained on the

training set. The trained model is then used to predict subsequent instances.

ANFIS will be updated when a drift is detected by Adversarial model. First,

the adversarial model detects whether or not a drift has occurred. If a drift is

detected, the generative model is activated. The generated data combined with

the current data are used as a new training set for the next prediction.

5.4 Experimental Evaluations

We evaluated AFN through a set of experiments in three respects: 1) the effective-

ness of the adversarial model, 2) the effectiveness of the generative model, and

3) the effectiveness of the fuzzy prediction model. Accordingly, three comparisons

were conducted: 1) a comparison of the method with and without the adversarial

model to detect drift; 2) a comparison of the method with and without generating

samples for the generative model for adaption; and 3) a comparison of fuzzy

inference prediction between our method and other prediction methods. The

experimental desgined is summarized in Table 5.1.
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Table 5.1: Experimental design in this section.

Data Experimental aim Results

d1 the effectiveness of the generative model in AFN Table 5.2: Comparison3
d1 to validate the effectiveness of the adversarial model in AFN Table 5.2: Comparison2
d1 to validate the effectiveness of ANFIS in AFN Table 5.2: Comparison1
d1 To demonstrate the robustness of AFN Table 5.3

d1: real-world classification data streams
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5.4.1 Experiment setup

Data Description. We apply the arabic data to to test the three aspects of

AFN. The Arabic dataset is available in (dos Reis et al., 2016). The original data

contains 8800 example consisting of audio feature of 44 males and 44 females.

The dataset is strictly sorted into four equal sizes of alternating male and female

voices. The label variable has ten classifications labeled by 0 to 9, which is

difficult to evaluate with the Acc, Rec and F1 measurements. We separated this

dataset into several individual datasets, each representing a binary classification

problem. For example, the first separated data stream only contained samples

belonging to the class of “0" or “1". Before separation, the starting point of the

drift was known from prior experience of gender changes every 2200 instances.

After generation, the drift point was more random because the label variable

was not sorted, which is common in real-world cases.

Evaluation Metrics. We assumed, for the purposes of the experiments, that

a small batch of instances in the data stream with no concept drift were available.

This batch of instances was used as the training set. The data stream arrived

sequentially, so any drift would occur in the upcoming data. Each instance

arriving after the model had been trained on the initial set of instances was

a sample to be used for prediction. Once arrived, the instance’s label variable

was observable, it could be used to update the model for future instances. Our

evaluation criteria included accuracy, precision, recall, and F1 score. Each metric

was computed for every instance in the data stream except for the batch reserved

as the training set. A model’s performance was judged by the mean value of each

evaluation criterion. The calculations for the evaluation criteria are shown in
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5.12, 5.13, 5.14, 5.15.

(5.12) Acc = |y= ŷ|+ ∣∣ ȳ= ˆ̄y
∣∣

|y|+ | ȳ|

(5.13) Pre = |y= ȳ|
|y= ŷ|+ ∣∣ ȳ= ˆ̄y

∣∣

(5.14) Rec = |y= ȳ|
|y|

(5.15)
2

F1
= 1

Pre
+ 1

Rec

where y denotes the sample belongs to a specified class, ȳ denoting the sample

belongs to another class, ŷ and ˆ̄y are their corresponding estimations.

Preassigned Parameters. The most important parameters in AFN are the

length of the training set TN and the size of the non-overlapped sliding window

w. We tested four groups of parameters: S1 : (TN = 200,w = 50), S2 : (TN =
200,w = 100), S3 : (TN = 500,w = 50), S4 : (TN = 500,w = 100). The results of the

experiment are specified in Section 5.4.2 asS1, S2, S3, S4. A further parameter

in the ANIFS component of AFN is the number of clusters k. In this paper, k = 5.

SVM is involved as a benchmark, its parameters are preassigned as follows.

svm_type: one-class SVM, kernel_type: sigmoid: tanh(gamma*u’*v), degree in

kernel function: 3, gamma in kernel function:1/num_features, parameter nu of

one-class SVM: 0.5, cache memory size in MB: 100, tolerance of termination

criterion: 0.001, whether to use the shrinking heuristics: 1.
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5.4.2 Experimental results

All the experimental results are listed in Table 5.2. The effectiveness of ANFIS

is demonstrated by comparison between SVM-non-adaptive and ANFIS-non-

adaptive row, the adversarial model is tested through comparing with ANFIS-

non-adaptive, and AFN will be compared to ANFIS-adversarial and ANFIS-

always-adaptive. The values in the “Pre." row are average value of nine datasets,

and same as they are in the “Rec." and “F1" rows. “SVM-non-adaptive" includes

the results for the method that builds an SVM model using the training set and

applies it to predict the following instances without updates. Similarly, “ANFIS-

non-adaptive" uses ANFIS to predict without updates. “ANFIS-adversarial"

includes the results for the method that updates the ANFIS model when the

adversarial model detects a drift. “ANFIS-always-adaptive" shows the results

for the method that updates the ANFIS model according to windows. And AFN

lists the results for the method that updates the ANFIS model using generated

data when a drift is detected.

• Comparison1: whether fuzzy rules improve the adaptation performance.

Comparison between SVM-non-adaptive and ANFIS-non-adaptive. ANFIS-

non-Adaptive.This comparison demonstrates the effectiveness of the FIS.

From these results, we conclude that applying fuzzy rules improves classi-

fication performance.

• Comparison between ANFIS-non-adaptive and ANFIS-always-adaptive.

ANFIS-always-adaptive is a baseline that represents the best possible

performance for a windows-based adaption strategy. It is also used to test

whether drift exists in real data streams. Here, accuracy was significantly
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improved when the model was continuously updated. Therefore, drift exists

in these data streams.

• Comparison2: whether adversarial model effectively detects drift. Com-

parison between ANFIS-adversarial and ANFIS-always-adaptive. The

adversarial model detects drift. It is less useful if its performance is close

to ANFIS-non-adaptive’s, and more useful if its performance is close to

ANFIS-always-adaptive’s. Table 5.2 shows that the accuracy of ANFIS-

adversarial was higher than ANFIS-always-adaptive in all data streams

except column G. This result indicates that the proposed adversarial model

can detect drift in a precise manner and the always-adaptive strategy does

not lead to the best result. In other words, incorrectly updating a model at

non-drifted points leads to poorer outcomes.

• Comparison3: whether using generated data improves the adaptation

performance. Comparison between ANFIS-adversarial and AFN. This

comparison evaluates whether it is reasonable to abstract new knowledge

from old data. The higher performance of AFN over ANFIS-adversarial and

ANFIS-always-adaptive demonstrates that old data does contain useful

information for predicting new data, and the proposed generative model

can abstract this information.
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Table 5.2: Main results table.

Comparison 1 Comparison2 Comparison3

Criterion Parameter SVM-non-
adaptive

ANFIS-non-
adaptive

ANFIS-
adversarial

ANFIS-
always-

adaptive

ANFIS-
adversarial

AFN

Acc. (%) S1

43.42 80.39 97.16 96.45 97.16 98.26
52.65 96.58 98.39 97.68 98.39 98.32
62.26 92.65 98.58 98.13 98.58 98.97
53.48 75.23 85.42 85.23 85.42 86.00
44.71 51.74 66.65 66.19 66.65 67.48
49.03 84.65 96.45 95.87 96.45 97.29
46.71 94.77 97.48 97.74 97.48 97.81
49.68 64.19 72.84 72.32 72.84 74.00
49.61 95.35 96.32 95.94 96.32 96.71

Pre. (%) S1 36.15 51.90 49.59 49.62 49.59 49.53

Rec. (%) S1 36.21 84.51 89.37 88.94 89.37 89.87

F1 S1 0.36 0.64 0.64 0.63 0.64 0.64
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Table 5.3: Robustness test of AFN with different parameters.

Criterion Parameter Methods A B C D E F G H I

Acc. (%) S2

SVM-non-adaptive 43.47 52.80 61.87 53.07 44.33 49.00 46.60 49.47 49.87
ANFIS-non-adaptive 80.93 96.53 93.07 75.53 52.60 85.00 95.13 64.33 95.33
ANFIS-adversial 94.13 98.33 98.13 83.60 64.67 95.80 97.33 72.00 95.80

ANFIS-always-adaptive 94.20 97.13 96.60 83.80 63.87 92.33 96.87 72.27 94.93
AFN 97.27 98.13 98.20 86.07 67.07 96.13 97.47 73.20 96.73

Acc. (%) S3

SVM-non-adaptive 44.08 54.56 62.88 49.36 46.00 40.56 48.56 48.96 62.72
ANFIS-non-adaptive 99.04 97.04 98.64 82.00 62.32 97.52 96.08 71.28 96.00
ANFIS-adversial 98.64 98.24 97.68 83.44 64.16 96.48 97.28 72.24 96.32

ANFIS-always-adaptive 98.64 97.84 97.68 83.12 64.16 96.56 97.20 71.52 96.48
AFN 98.96 98.32 99.28 84.88 67.92 97.60 97.76 73.60 96.72

Acc. (%) S4

SVM-non-adaptive 43.67 54.67 62.58 48.92 45.67 40.75 48.67 48.75 62.75
ANFIS-non-adaptive 99.00 96.92 98.67 82.08 62.75 97.58 96.42 71.25 96.17
ANFIS-adversial 98.67 97.92 98.08 83.67 64.17 96.75 97.25 72.08 96.42

ANFIS-always-adaptive 98.58 97.92 98.08 82.83 63.00 96.75 97.25 71.08 96.42
AFN 98.92 98.25 99.33 84.92 66.58 97.33 97.67 73.00 96.75
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Table 5.3 presents the robustness tests for AFN. The length of the training set

and the window size are differently combined in the parameter column.In S2,

the length of the training set and window size are (200, 100), S3 is for their value

of (500, 50) and S4 is for (500, 100). Similar results were obtained to the result

for S1. The only difference is that there is no need to use drift adaptive models

for a large length of the training set because the training set contains enough

information for different concepts. For example, the ANFIS model achieved

its best performance for the data streams A, C, and F using the non-adaptive

strategy, as indicated by the results for S3 and S4. Even in this scenario, AFN

and ANFIS-adversarial performed better than ANFIS-always-adaptive, which

signals that our method is very robust.

5.5 Summary

This chapter presents a novel drift adaptation method, called adaptive fuzzy

network (AFN). AFN is able to adapt to the potential concept drift in data streams

and solve the difficulty of data shortage when a new concept is identified at its

early stage. AFN is a neural network which embeds GAN in a fuzzy network.

AFN detects when a drift occurs using an embedded adversarial model and

generates sample instances of the new concept when a drift is detected. AFN was

evaluated with the Arabic data stream, where it is unknown when and how the

drift occurs. The results show that the AFN improves the prediction performance.

In addition, we test AFN by validating the effectiveness of each component in

AFN. The experiments show each component in AFN is effective.
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6
DRIFT ADAPTATION WITH NOISY DATA

Chapter 3 Chapter 4, and Chapter 5 provide three concept drift adaptation

methods from three different aspects separately. In these chapters, the data

stream is assumed to only contain the concept drift problem. However, data

streams may also show other uncertain characteristics. In this chapter and the

next chapter, we will discuss the concept drift problem in two scenarios that are

more realistic. In this chapter, we will discuss the concept drift adaptation in a

noisy data stream. This chapter is organized as follows: Section 6.1 introduces the

scenario and give a general description of our solution. Definitions and notations

are listed in Section 6.2. The solution details are explained in Section 6.3 with its

experimental evaluations in Section 6.4. Last, a summary concludes this chapter

with discussions in Section 6.5.
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6.1 Introduction

Concept drift problem will be more challenging if problems found in a batch-

learning setting also present in a data stream. One of the problems is to learn

in a noisy environment (Gomes et al., 2017a). Noise is described as “irrelevant

or meaningless data" (Xiong et al., 2006), and data cleansing or noise removal

techniques are applied to remove the the irrelevant noise (Hernández and Stolfo,

1998). However, this description of noise is not suitable for noisy data streams

because it does not cover the noise in signal processing or time series analysis.

The data stream may also contain signal noise. Compared to the stationary

data, a data stream contains time stamps. Therefore, each variable in the data

stream is a signal or a time series. In signal processing and time series analysis,

the noise is not presented by several data instances. In stead, the noisy signal

or series mixes with the designed signal or time series all the time such as

background music in voice audio signals and Gaussian noise in time series

analysis. Signal filtering is a common solution for this kind of noise, where the

noise signal is normally abstracted by a decomposition and filtering technique

(Xie et al., 2018). In order to distinguish these two kinds of noise, the noise

appears with some points is categorized as outliers and the consistently existing

noise as signal noise in this chapter.

The learning becomes more complex when concept drift and signal noise

simultaneously occur in a data stream. Simple combination of concept drift

methods and noise removal methods is less capable to deal with this kind of

data streams. The main reason is that concept drift and noise are not always

independent in a data stream, and they may have some overlaps sometimes.
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For example, the fluctuation of noisy variables may be wrongly identified as

a drift. In this case, a predictor trained with clean data may be replaced by a

predictor trained with the noisy data because noisy data is considered as new

data. In contrast, when an incremental drift starts to occurs, it would probably

be identified as noise. In this case, the drift adaptation will be severely delayed

because the obsolete predictor is not updated. As pointed out in (Gomes et al.,

2017a), noise or outliers ought not be confused with drift.

In this chapter, we propose a noise-tolerant drift adaptation (NoA) method for

predicting data stream with concept drift and signal noise. The drift adaptation

process is implemented by FUZZ-CARE (Section 3) where the fuzzy clustering

process can include the most relevant data instances in the training set to the

latest pattern. Based on that, an incremental denoise technique is proposed and

embedded in the drift adaptation process to remove the signal noise. Compared

to the existing denoise techniques in the literature, the proposed denoise tech-

nique can incrementally update and therefore is able to be combined with the

incremental adapted regression predictor.

The uniqueness of our method is to make prediction for data streams with

both concept drift and signal noise problems. Details are shown in Table 6.1.

Current denoising techniques do not consider the concept drift problem, and

the denoising methods only focus on signal noise. Label-noise methods aim to

learn with data with noisy labels (outliers). Most drift adaptation methods do not

include noisy cases. Several drift adaptation methods that can solve the noise

problem only consider the outlier noise leaving signal noise unsolved. NoA fills

this gap.
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Table 6.1: The uniqueness of NFA.

Concept drift Outliers Signal Noise

Denoise methods × ×
�

Label-noise methods ×
�

×
Most drift adaptation methods

�
× ×

Limited drift adaptation methods
� �

×
Our drift adaptation method

�
×

�

6.2 Definitions and Notations

The definitions of data stream, concept drift and the learning aim are the same

to the definitions in Section 3.2. In NoA, the drift adaptation is implemented

based on FUZZ-CARE, which has been presented in Chapter 3. An incremental

denoise technique is designed based on the empirical mode decomposition (EMD)

method to deal with the signal noise. In this section, the orignal empirical mode

decomposition will be introduced.

The empirical mode decomposition (EMD) method (Huang et al., 1998) is one

of the subspace filtering (SSF) technique. SSF is a class of signal enhancement

technique based on matrix factorization, which has been proved to effectively

remove the signal noise in a time series and therefore widely studied in the

literature and applied in practice (Xie et al., 2018). The idea of EMD is using the

Hilbert-Huang transform (HHT) to decompose the original signal into a finite

and often small number of intrinsic mode functions (IMFs) and one residual

series. Then, high-frequency series are deleted as noise from the signal. The

sum of the rest IMFs with low-frequency constructs a new signal which does not

contain noise anymore (Guo et al., 2012).

Definition 6.1 (Intrinsic Mode Functions (IMF)(Huang et al., 1998)). An IMF is
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defined as a function that satisfies the following conditions:

1) in the whole data set, the number of extrema (sum of maxima and minima)

and the number of zero crossings must either equal or differ at most by

one;

2) at any point, the mean value of the envelope defined by the local maxima

and the envelope defined by the local minima is zero.

For an arbitrary signal x(t), it can be decomposed by the following sifting steps:

1) identify all the local extrema;

2) connect all the local maxima with a cubic spline line as the upper envelope;

3) connect all the local minima with a cubic spline line as the lower envelope;

4) compute the mean of the upper and lower envelope, designated as mk(t);

5) get the k-th component h1,k(t) in (6.1);

6) end this sifting process until h1,k(t) is an IMF.

(6.1)

⎧⎪⎨⎪⎩ h1(t)= x(t)−m1(t), k = 1

h1,k(t)= h1,k−1(t)−mk(t), k �= 1

This sifting process will be repeated k times until hk(t) is an IMF. Alter-

natively, Huang et al. suggested using a Cauchy type of convergence test as

the criterion for stopping the sifting process. The test requires the normalized
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squared difference between two successive sifting operations, which is defined as

(6.2).

(6.2) SDk =
T∑

t=1

|h1,k−1(t)−h1,k(t)|2
h2

1,k−1(t)

If SDk is less than 0.2 (or 0.3 sometimes), set c1(t)= h1,k(t) and c1(t) is the first

IMF. c1(t) generally contains a component that has the finest scale or the shortest

period of the signal. Separating c1(t), the residue r1(t) is obtained as (6.3).

(6.3) r1(t)= x(t)− c1(t).

r1(t) contains a component with a longer period than c1(t). When r1(t) is com-

puted, it will be treated as a new signal, and the sifting process is conducted on

r1(t) to obtain c2(t) and r2(t); i.e.,

(6.4) ri(t)= ri−1(t)− ci(t), i = 2,3, . . . ,n.

This procedure will be repeated until any of the following predetermined criteria

is satisfied:

1) either when the component cn(t) or residue rn(t) becomes less than the

predetermined value of substantial consequence;

2) or when the residue rn(t) becomes a monotonic function from which no

more IMF can be extracted.

The original signal can be reconstructed by summing up all the IMFs and the

final residue by (6.5).

(6.5) x(t)=
n∑

i=1
ci(t)+ rn(t).
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Using EMD to denoise a signal is based on the studies that high frequency

components has little contribution to model fitting but it has a great disturbance

for prediction accuracy. This is because is the most disorder and unsystematic

part of the time series and has little regularity (Guo et al., 2012). Therefore, the

signal after denoising is computed as (6.6).

(6.6) x(t)=
n∑

i=2
ci(t)+ rn(t).

6.3 A Noise-tolerant Drift Adaptation

Method—NoA

The noise-tolerant fuzzy c-means based drift adaptation method (NoA) is pro-

posed based on FUZZ-CARE. FUZZ-CARE is an incremental drift adaptation

method. To embed the denoise technique in FUZZ-CARE. We design an incre-

mental EMD.

To design the incremental EMD, we need to overcome the problem that the

training set probably contains two or more patterns when concept drift appears

in a data stream. In this situation, the denoise techniques can not be well applied

to remove noise because they may delete important information of a new pattern

as noisy information. To avoid that, we propose a set of rules to incrementally

activate the denoise process on a subset of the training set.

For a data stream {(X t, yt)}, NoA is implemented as follows:

1) manually set T as the length of the training set, and w as the window size.

2) if the length of existing instances is less than T, NoA needs to wait and

obtain more data;
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3) once there are T observed instances, EMD is activated to conduct the noise

process, and the denoised data is denoted by (X d
t , yd

t |t = 1, ...,T);

4) train the initial predictor on the training set consisting of
{
(X d

t , yd
t )|t = 1, ...,T

}
,

and this predictor is used to predict following w instances;

5) after the true values of {yt|t = T +1, ...,T +w)} are observed, EMD is acti-

vated on these instances {(Xt, yt|t = T +1, ...,T +w)} (there are w instances

in total), and the denoised data is denoted by
{
(X d

t , yd
t |t = T +1, ...,T +w)

}
;

6) combine (X d
t , yd

t |t = T +1, ...,T +w) and (X d
t , yd

t |t = 1, ...,T) as the updated

training set;

7) repeat steps 4)-6).

In this way, each data instance will enter to the EMD filter to “clean" the noisy

information and then be delivered to train the drift adaptation predictor. The

EMD is separately activated on a small subset of the training set, and therefore

is less likely affected by the concept drift problem. For example, assuming we

are at 1000th time point, and there will be a sudden real drift in the data stream

at 1500th instance, the target is to predict the 2001th instance by the observed

2000 data instances. If we directly apply EMD on the 2000 data instances where

there are two patterns, the information from one pattern is very likely identified

as noise from the aspect of the other pattern. This induces a bad denoise result

on the whole 2000 instances. In contrast, if we apply EMD every 200 instances,

the bad denoise result will only appear during denoising the 1400th to 1600th

instances. As for other 200 instances, we promise good denoise results because
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they only contain single pattern. Another advantage is that denoising a small

subset of data can save computational cost.

6.4 Experimental Evaluations

This section, the proposed noise-tolerant fuzzy c-means based drift adaptation

method (NoA) is validated on synthetic data where the drift is manually added

and the real-world data stream. The effectiveness is validated by the prequential

evaluation, where instances are first used to test, and then to train (Bifet et al.,

2015). The accuracy is evaluated by the mean absolute error (MAE) (3.21) and

root-mean-square error (RMSE) in (6.7) where yt and ŷt are the true and evalu-

ated output value separately. An overview of the experiment design is shown in

Table 6.2.

(6.7) RMSE =
√∑T

t=t0
ŷt − yt

T − t0
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Table 6.2: Experimental design in this section.

Section Data Experimental aim Main Results

6.4.1 d1 to show denoise process itself may be invalid when concept drift
occurs

Table 6.3

6.4.1 d1 to demonstrate NoA can deal with concept drift problem when the
data contains signal noise

Table 6.3

6.4.1 d1 to demonstrate that NoA is not a simple combination of the drift
adaptation method and the signal denoising method

Table 6.3

6.4.2 d2 to validate the effectiveness of NoA on real-world data streams Table 6.4

d1: Synthetic noisy data with drift
d2: a real-world regression data stream
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6.4.1 Evaluation on synthetic data

Data Description.

Original data. We test NoA on all types of drift with different levels of noise.

The original data denoted by Non-Drift contains no drift nor noise. Non-Drift is

generated in the same manner of the non-drift data generated in Section 3.4.1.

Synthetic data with drift. Based on Non-Drift, we generate data streams

with different types of drift by the same manner of the synthetic data generated

in Section 3.4.1. Here, we briefly list their notation and which types of concept

are contained in each synthetic data.

1) Virt-Drift contains a sudden virtual drift;

2) Sudd-Drift contains a sudden real drift;

3) Incr-Drift contains an incremental real drift;

4) Rec-Drift-Grad has gradual drift and reoccurring concepts;

5) Rec-Drift-Mix contains incremental drift, sudden drift, and reoccurring

concepts.

Synthetic noisy data with drift: Based on the data in Synthetic data

with drift, we generate data streams with drift and noise by adding different

levels of noise to them. The level of noise is controlled by Signal-to-noise ratio

(SNR). Four levels of noise are added with SNR= 1, 5, 10 and 20 separately.

A smaller SNR indicates stronger noise. Therefore, there are 20 data streams

with drift and noise in total. Figure 6.1 presents the original data, data with

drift and one group of data with drift and noise where the SNR is 20. In Figure

6.1 the black dots denotes one pattern, and the red dots denotes a different

pattern. As the black pattern appears before the red pattern, it is also noted as
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the old pattern and the red is noted as the new pattern. For Non-Drift, Virt-Drift,

Sudd-Drift and Incr-Drift, the dots are drawn in a 2-dimensional plane with

axis of x and y axis; while Rec-Drift-Grad and Rec-Drift-Mix are drawn in a

3-dimensional sphere with an additional axis of time t. In addition, gradual drift

occurs in the blue rectangle in 4) Rec-Drift-Grad. It can be seen that after adding

noise into data, the pattern becomes less clear than before especially in the data

with incremental drift where the noise and drift are difficult to distinguished

from each other.
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Figure 6.1: Synthetic noisy data stream with different types of drift.
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Evaluation results. To validate our proposed method NoA solves drift and

noise problem at the same time, the accuracy results of NoA is compared to four

baseline methods: the Plain method directly uses the regression predictor in NoA

to predict the data stream without involving the drift adaptation process or the

denoise process; the Adapt method only contains the drift adaptation process

but does not embed the denoise process; the Denoise method only contains

denoise process; the DA-com is a simple combination of the drift adaptation and

denoise processes where the updated training set is first denoised by the denoise

technique and then used to build the regression predictor. It does not specially

design a mechanism to enable the denoise process to suit the drift adaptation

well; NoA is our noise-tolerant drift adaptation method.

The accuracy results (Table 6.3) indicates the following conclusions:

1) Virtual drift does not affect prediction accuracy in a regression

task. For four Virt-DriftN data, Denoise and NoA have more accurate

prediction than the others. However, adaptation process does not help to

get better accuracy.

2) Adaptation process can effectively handle the drift problem in a

data stream. This is concluded because for all Sudd-DriftN , Incr-DriftN ,

Rec-Drift-GradN and Rec-Drift-MixN data, Adapt and NoA perform better

than the other methods.

3) Denoise process is probably invalid in a noisy data stream that

has concept drift problem. Can denoise technique only solve the noisy

problem in a data stream? The answer is no according to the experimental
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Table 6.3: Evaluation results on synthetic data.

MAE (SNR) Plain Adapt Denoise DA-com NoA

Virt-DriftN

20 1.47 1.43 1.65 1.82 1.42
10 2.16 2.14 2.21 2.20 1.99
5 3.15 3.12 3.37 3.35 2.87
1 4.51 4.51 7.01 6.34 4.22

Sudd-DriftN

20 11.83 5.07 12.74 4.71 5.00
10 11.92 5.36 9.11 6.11 5.22
5 11.80 6.18 12.38 5.40 5.72
1 12.17 7.52 8.95 6.64 6.48

Incre-DriftN

20 8.60 5.46 8.69 5.23 5.38
10 8.80 5.57 8.54 5.21 5.38
5 9.07 6.33 8.92 6.79 5.92
1 9.59 6.74 10.41 7.29 6.44

Rec-Drift-GradN

20 9.00 2.33 83.54 213.72 2.27
10 9.05 2.98 314.87 125.32 2.79
5 9.27 4.12 67.19 247.65 3.60
1 9.63 5.90 121.53 197.10 5.17

Rec-Drift-MixN

20 7.67 3.00 154.27 140.62 2.88
10 7.85 3.46 76.72 44.70 3.21
5 8.11 4.30 131.32 84.24 3.81
1 8.59 5.69 21.25 31.06 4.79

results. The Denoise method is not steadily better than the Plain method,

such as the instability in Rec-Drift-GradN and Rec-Drift-MixN .

4) A simple combination of drift adaptation and denoise methods is

not a solution for data stream with both concept drift and noise.

When the drift adaptation and noise processes are simply combined, the

accuracy is as low as the Plain method, which reflects the complex depen-

dency between drift adaptation and noise reduction.

5) Our NoA method can solve the concept drift and noise problem
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when they simultaneously appear. The proposed NoA gets the best

performance comparing to other baseline methods.

6.4.2 A case study: solar radiation prediction

This is a set of 30-minute interval environment observation data collected from

the SMEAR II station which contains 140, 576 data examples of 43 variables

from 00:15, on 15 April 2005 to 23:45 on 14 April 2013. The regression task is

to predict solar-radiation using 43 variables. Six of the 43 variables are time

labels that are not considered prediction features in the model. The remaining

environmental features have been introduced in (Žliobaitė et al., 2014b). There

are many missing values in this data and we eliminate them in the same way as

(Žliobaitė et al., 2014b).

Several popular drift adaptation method specially for regression tasks are

introduced as the benchmark. The benchmarks comprise two tree models—FIMT-

DD (Ikonomovska et al., 2011a) and ORTO (Ikonomovska et al., 2011b) ,two

rule models—AMR and its ensemble version, metaAMR (Duarte et al., 2016)

and the ALL method in (Žliobaitė et al., 2014b). All benchmarks except ALL

are implemented by MOA (Bifet et al., 2010a)(https://moa.cms.waikato.ac.nz/).

The result of ALL is from (Žliobaitė et al., 2014b). The prediction results are

shown in Table 6.4. It can be seen that our NoA can not only defeat the general

drift adaptation regression method but also defeat the method that is specially

designed for SMEAR data.
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Table 6.4: Evaluation on the SMEAR data

metaAMR FIMTDD ORTO AMR ALL NoA

RMSE 22.7 364.0 828.1 22.1 19.0 15.6

6.5 Summary

Most of current drift adaptation methods in literature are designed in an as-

sumption that the data stream only has changing data distributions. They omit

the fact that problems in a batch-learning setting also exist in a data stream,

such as the noisy data problem.

To fill the gap of prediction for noisy data streams with concept drift, we

propose a noise-tolerant drift adaptation method (NoA) to simultaneously solve

concept drift and noisy data problems in a data stream. We propose to filter the

noisy information of data instances before using them to train or update the

predictor. This denoise process is designed in an incremental way which enables

it to be perfectly embedded in an incremental drift adaptation method.

We test NoA on all types of drift and their mixture with different levels of

signal noise. The experimental evaluation result shows good effectiveness of our

method on the data stream with both concept drift and noise problems.
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7
DRIFT ADAPTATION WITH TEMPORAL

DEPENDENCY

In the regression case of a data stream, the target variable is a time series that

is probably autocorrelated, which leads to the temporal dependency problem.

However, how a drift adaptation method can be applied for data streams that

are neither independent nor identically distributed is rarely discussed in the

literature. In this chapter, we discuss the concept drift adaptation in the scenario

that a data stream contains both concept drift and temporal dependency. In this

chapter, the scenario is introduced in Section 7.1. Section 7.2 lists the definitions

and notations. Section 7.3 presents a drift-adapted regression framework for

data streams with drift and temporal dependency. The proposed framework is

validated by experimental evaluations in Section 7.4. Section 7.5 concludes this

chapter.
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7.1 Introduction

In the regression case of a data stream, the target variable is now a time series

process that is probably autocorrelated, which leads to the temporal dependency

problem. How to deal with the problems of temporal dependency and concept

drift simultaneously is a big challenge and very few studies could be found that

can solve these two problems at the same time.

To fill this research gap, this chapter discusses the concept drift problem in

the data stream that have temporal dependency. A novel drift-adapted framework

is proposed in regression cases, named DAR. In DAR, we propose to train the

predictor on a reconstructed feature space to solve the temporal dependency

problem, and an informed adaptation method is proposed to update the trained

predictor when each new data instance arrives. The feature space is reconstructed

based on the time series identification. In this section, it is proved that testing

error decreases faster in a linear predictor trained on the reconstructed space

when data streams with concept drift and temporal dependency problems. An

local drift degree (LDD+) statistic is proposed in DAR to select the most relevant

data instances to the latest pattern in the training set, and the predictor is

continuously updated with the data instances that are most relevant to the latest

pattern.

The novelty of the proposed DAR framework are as follows:

• It fills the research gap of handling a data stream with concept drift and

temporal dependency problem from the aspect of the time series processes;

• It proves that testing errors decreases faster in a linear predictor trained on

the reconstructed space for data streams with concept drift and temporal
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dependency. We compare the error decreasing speed of linear predictors

trained on the original and reconstructed feature spaces;

• The linear predictor case is generalized to non-linear cases by introducing

locally weighted regression;

• We develop a new statistic called LDD+ to measure the distance from an

data instance to a high-dimensional data distribution and apply it to make

drift adaptation when every new instance arrives;

• Combining the above aspects, a drift-adapted regression framework (DAR)

is proposed for data streams with concept drift and temporal dependency.

7.2 Definitions and Notations

In this chapter, the definition of concept drift is the same to that in Definition

3.3. The data stream will be redefined to present the characteristics of temporal

dependency, and learning aim is also redefined based on the new definition of

data streams. In this chapter, the data stream is considered to consist of d+1

time series processes.

Definition 7.1 (Time Series). A time series process St is a sequence taken at

successive equally spaced points in time.

Definition 7.2 (Autocovariance). Autocovariance is an important property of a

time series process St, which is

(7.1) γ(τ)= E
[
(St −μt)(St+τ−μt+τ)

]
.
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where μt and μt+τ are the expectation of St and St+τ. The autocovariance is the

covariance if St and St+τ are two random variables.

If the time series process is autoregressive, γ depends on τ rather than being a

fixed constant (Hamilton, 1994). This means that another basic assumption in

conventional machine learning, independence is also invalid.

Definition 7.3 (Covariance-stationary and Ergodic for the Mean (Hamilton,

1994)). A time series process St is covariance-stationary and ergodic for the mean

if

(7.2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
E(St)=μ for all t

E
[
(St −μ)(St−τ−μ)

]= γτ for all t and τ

(1/T)
∑T

t=1 St
p→ E(St) as T →∞.

Remark 7.1. The first two equations denote that neither the mean μt nor the

autocovariance γτ depends on the time t1. The third equation guarantees that the

time average will eventually converge to the expectation E(St).

Definition 7.4 (Time Series Decomposing). A data stream consists of time series

processes. Each time series process in the data stream is considered as weighted

sum of two time series process, Vt and St.

(7.3) Tt = (1− s)Vt + sSt, s ∈ [0,1]

where Vt is a time series process with unknown characteristics which represents

the uncertainty aspect of this variable, and St process is covariance-stationary
1This does not conflict with (2), γτ depends on τ but is independent on t
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and ergodic for the mean (see Definition 7.3) which represents the certain tempo-

ral dependency. Vt and St are assumed to be independent.

Definition 7.5 (Mixed Time Series). Given that T1
t ,T2

t , ...,Tn
t are n time series

processes (Definition 7.4), and ωt is the weighting vector satisfying
∑n

i=1ω
(i)
t = 1,

a mixed time series MTt is defined as

(7.4)

MTt =
n∑

i=1
ω(i)

t ×T(i)
t

= (1− s)
n∑

i=1
ω(i)

t V (i)
t + s

n∑
i=1

ω(i)
t S(i)

t

= (1− s)MVt + sMSt.

To describe data streams with drift and temporal-dependence, the data

stream is considered to consist of d+1 time series processes, and one variable’s

values between two consecutive drift points are considered to be a realization of

special case of MTt.

Definition 7.6 (Drift Point). Drift point is defined as the time point when a new

concept starts. Namely the td(i) in Definition 3.3.

Definition 7.7 (Data Stream with Drift and Temporal-dependence).

(7.5) DS(X ,y)
t = {MT1

t , ..., MTm
t , MTt|s,ω,V ,S

}
For example, a data stream contains two different patterns in which yt =β1Xt

before time point td and yt = β2Xt after td, where Xt is a time series. Given
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Tx,1
t = Tx,2

t = Xt, T y,1
t =β1Tx,1

t , T y,2
t =β2Tx,1

t four time series, ωx,1
t , ωy,1

t equals 1

when t < td while 0 when t ≥ td, and ω
x,2
t , ωy,2

t equals 0 when t < td while 1 when

t ≥ td. Given MTx
t =ω

x,1
t Tx,1

t +ω
x,2
t Tx,2

t and MT y
t =ω

y,1
t T y,1

t +ω
y,2
t T y,2

t , this data

stream is {MTx
t , MT y

t }.

Remark 7.2. Clearly, Xt and yt themselves are time series but here we use a linear

combination of time series to represent them because if they are considered as a

single time series, their statistical properties are totally unknown. The definition

of mixed time series helps to abstract the regular components in Xt and yt as MSt

and leave the chaos components as MVt.

So far, we have given the definition of a data stream with temporal de-

pendency and concept drift. The drift is presented in a data stream DS(X ,y)
t if

ωt �=ωt+1 for some t, and the temporal dependency is presented by the time series

T. In this study, we provide a solution for finding the unbiased estimation for

MSt. However, estimation on MVt will not be discussed, because the character-

istics of MVt are unknown in our assumption. Therefore, for an arbitrary data

stream DS(X ,y)
t (s, ·), a bigger s means a better estimation by our method. In the

following discussion, the problem will be simplified to a special case of s = 1,

namely MT(X ,y)
t = MS(X ,y)

t .

For a data stream with drift and temporal dependency, each time series

process MS(i)
t is assumed to be a pth-order autoregressive process denoted by

AR(p).

Definition 7.8 (pth-order Autoregressive Process). A pth-order autoregressive

process Xt satisfies

(7.6) Xt = c+φ1Xt−1 +φ2Xt−2 + ...+φp Xt−p +εt,
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where Xt−1,...,Xt−p are lag orders (earlier observations) of Xt and εt is the white

noise sequence (Definition 7.9).

Definition 7.9 (White Noise Sequence). A white noise sequence is a sequence

{εt}∞t=−∞ satisfying:

(7.7) E(εt)= 0,E(ε2
t )=σ2 and E(εt,ετ)= 0 for t �= τ.

Definition 7.8 can be rewritten by
∑p

i=0L(i)Xt by introducing the Lag operator

L that for any integer k, Lk Xt = Xt−k. Referring to Definition 3.5, the learning

process of the data stream DS(X ,y)
t will be as Definition 7.10.

Definition 7.10 (Learning Aim for Data Streams with Drift and Temporal-de-

pendence).

(7.8) min
h1,h2,...,ht,...

∑
t
� (ht, X , y,L| (X , y)∼ pt (X , y)).

7.3 Drift Adaptation with Temporal

Dependency

In this section, we will discuss how to find a better solution to each ht in (7.8)

step by step (Section 7.3.1). After that, a drift-adapted regression framework is

described in details (Section 7.3.2).

7.3.1 Analysis of testing error when the real drift exists

In this section, we will discuss how to find a better solution to each ht in (7.8)

step by step. When the learning aim is to obtain less error and a squared loss is
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considered in the regression task, the concept drift problem focuses on real drift.

To prove this, we introduce Theorem 7.1.

Theorem 7.1. The estimation with smallest squared loss is the expectation of y

conditional on X : ŷ= h(X )= E(y|X ) where h = argmin
h∈Hreg

� (h, X , y) .

Proof. The data stream DS(X ,y)
t consists of the attribute variable X and the

label variable y. Consider basing the estimated y (denoted by ŷ) on any predictor

in the hypothesis set is h(X ) other than the conditional expectation, the loss

would be

E [y−h(X )]2 = E [y−E(y|X )+E(y|X )−h (X )]2

= E [y−E(y|X )]2 +E [E(y|x)−h(X )]2

+2E {[y−E(y|X )][E(y|X )−h(X )]} .

Let η ≡ [y−E(y|X )][E(y|X )−h(X )]. As the terms E(y|X ) and h(X ) are known

constants under the condition of X , E([E(y|X )−h(X )]|X )= E(y|X )−h(X ). The

expectation of η conditional on X can be written into:

E(η|X )= [E(y|X )−h(X )]E([y−E(y|X ))] |X )

= [E(y|X )−h(X )]×0= 0.

According to the law of iterated expectations, E[η]= E(E[η|X ])= 0. Substituting
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E[η] back into E [y−h(X )]2 gives

E [y−h(X )]2 = E [y−E(y|X )]2 +E([E(y|x)−h(X )]2).

On the right side of the above equation, the first term does not depend on h(X ),

and the second term cannot be made smaller than 0. Therefore the predictor that

makes E [y−h(X )]2 as small as possible satisfies E([E(y|x)−h(X )]2)= 0, namely

h(X )= E(y|X ). �

Assuming the hypothesis set contains the optimal predictor E(y|X ), if p(X )

(virtual drift) changes but p(y|X ) (real drift) stays the same, the current predictor

can be the same as the previous predictor because E(y|X ) has not changed.

Therefore, the virtual drift is omitted in the following discussion. Next, we will

discuss how to effectively build and update the predictor when real drift (E(y|X )

changes) occurs.

7.3.1.1 The linear case

We first consider the simplest case there is only one attribute variable denoted

by Xt, and yt is the label variable; yt and Xt are linearly correlated, and Xt is a

first-order autoregressive process. The sudden drift occurs at time point td.

In this linear case, Xt =β0+β1Xt−1+εt, |β1| < 1, and yt = θ0+θ1Xt+εt (pattern

1) before time point td, yt = θ′0 +θ′1Xt +εt (pattern 2) after td where θ′0 �= θ0 and

θ′1 �= θ1. Clearly, {Xt, yt} is a data stream with drift and temporal dependency in

which a real drift occurring at td, and Xt is a first-order autoregressive process.

According to Definition. 7.7, this data stream can be rewritten as DS(X ,y)
t =
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{
MTX

t , MT y
t
}
, where MTx

t is:

(7.9)
MTx

t = Sx
t

Sx
t : Xt =β0 +β1Xt−1 +εt

and MT y
t is:

(7.10)

MT y
t =ω1

t Sy,1
t +ω2

t Sy,2
t +ω3

t Sy,3
t

Sy,1
t : yt = θ0 +θ1β0 −θ0β1 +β1 yt−1 +εt

Sy,2
t : yt = θ′0 +θ′1β0 −θ′0β1 −

θ′0θ
′
1β1

θ1
yt−1 +εt

Sy,3
t : yt = θ′0 +θ′1β0 −θ′0β1 +β1 yt−1 +εt

ωt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1,0,0) t < td

(0,1,0) t = td

(0,0,1) t > td

There are two ways to estimate yt: a) The traditional approach is to find the

optimal predictor in the hypothesis set H : X → Y ; b) the optimal hypothesis

can also be found in the hypothesis set H :Y →Y to estimate yt. Next, we will

discuss the difference between these two approaches when drift occurs.
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The estimations of θ or β and yt computed by a) and b) before td are unbiased,

consistent, and efficient estimations if the ordinary least squares (OLS) method

is used. Similarly, the observations after viewing enough instances of the new

pattern comprise the new training set, and the estimations of θ′′′ and yt by a) or

b) are also unbiased, consistent, and efficient. The difference between a) and b) is

represented when the training set mixes data from the old pattern (pattern 1) and

the new pattern (pattern 2). Assume that the training set contains n observations

of (Xt, yt), where n1 = n−n2 of them are from the old pattern, and n2 of them are

from the new pattern. A predictor is trained with this training set to estimate

future yt which follows the new pattern.

Theorem 7.2. Given a data stream DS(X ,y)
t = {MTX

t , MT y
t
}

where MTX
t and

MT y
t are as presented in (7.9) and (7.10) separately, the testing error linearly

decreases to 0 if using H :X →Y as the hypothesis set.

Proof. According to OLS, the estimation of θ′′′ by the n-size training set is as

follows:

(7.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ̂′1 =
(1− r)X y1 + rX y2

X2

θ̂′0 = (1− r)y1 + ry2 − θ̂′1X

where X y1 = 1
n1

∑
t<td X y, X y2 = 1

n2

∑
t≥td X y and r = n2/n (the inference of es-

timating θ′′′ is given in A.2). Based on θ̂′′′, the estimation of an unknown yu
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is:

(7.12) ŷu = θ̂′0 + θ̂′1Xu

An unbiased estimation of θ is obtained by n2 observations from the new pattern,

that is:

(7.13) θ̃′1 =
X y2

X2
, θ̃′0 = y2 − θ̃1X

Based on θ̃, the unbiased estimation of an unknown yu is:

(7.14) ỹu = θ̃′0 + θ̃′1Xu, and E( ỹu − yu)= 0

Therefore, the testing error of ŷu is:

(7.15)

eu = ŷu − ỹu

= (1− r)(y1 − y2)+ (1− r)(X y1 − X y2)

X2
(Xu − X )

= (1− r)

[
(y1 − y2)+ X y1 − X y2

X2
(Xu − X )

]

= (1− r)
[
(θ̃0 − θ̃′0)+ (θ̃1 − θ̃′1)Xu

]

(7.16) EX ,y(eu)= (1− r)E
[
(θ̃0 − θ̃′0)+ (θ̃1 − θ̃′1)Xu

]
As the coefficient of 1− r is considered to be constant, limr→1 E(eu)= 0, and E(eu)

linearly decreases to 0 as more instances from the new pattern are included in

the training set (r goes to 1). �
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Theorem 7.3. Given a data stream DS(X ,y)
t = MS(X ,y)

t , the testing error exponen-

tially decreases to 0 if using H :Y →Y as the hypothesis set.

Proof. The relationship between Yt−1 and Yt given t ∈ (td,n] can be rewritten

by the following difference equation:

(7.17) yt = c+φyt−1 +εt,

where εt is a white noise sequence defined in (7.9). As yt is covariance-stationary,

|φ| < 1, and the stable solution to (7.17) is:

(7.18) yt = c
1−φ∞

1−φ
+

t∑
τ=0

φt−τεt−τ+φ∞y−∞.

Similarly, yt−1 = c 1−φ∞
1−φ +∑t

τ=0φ
t−1−τεt−1−τ+φ∞y−∞, and yt − yt−1 =φtεt. Given

eu = yt − yt−1 =φnrεnr, it exponentially decreases to 0 as r increases. �

As the new instances arrive and are included in the training set, the r will finally

increase to 1. Clearly, the error decreases faster under the condition of Theorem

7.3 (exponentially decreases to 0) than that under the condition of Theorem 7.2

(linearly decreases to 0).

The conclusion of the unary case above is also suitable in the multiple linear

case. If no collinearity exist in the multiple case, θi for X (i) (ith dimension of X )

is similarly computed to (7.11) but X y needs to subtract X y of other dimensions.

The yt process still converges to a constant by constraint (7.2). Therefore, after

drift occurs, as the training set contains more instances of the new pattern, the

testing error of the predictor trained with the training set on the reconstructed

space (L,Y) decreases faster than that of the predictor trained on the original

space (X ,Y).
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7.3.1.2 A general case

The conclusion of the linear case can be applied in a general case by introducing

locally weighted regression that the predictor trained on the reconstructed space

is better than the predictor trained on the original space even X and y have

non-linear correlation. The locally weighted regression is an existing method,

which is not the contribution in this study. However, it helps us to widen the

conclusion in the linear case to a general case.

The learning goal of locally weighted regression at each target point Xu is

represented as follows:

(7.19) min
θ(Xu)

N∑
t=1

Kk(Xu, X t)(yt −θT Xu)2,

where

(7.20) Kk(Xu, X t)= D
( |X t − Xu|

bk(Xu)

)
.

Kk(Xu, X t) is the weight determined by the distance from Xu to the k-nearest

neighborhoods of Xu, bk(Xu), and D is defined as:

(7.21) D(d)=

⎧⎪⎨⎪⎩1 d ≤ bk(X0)

0 d < bk(X0)

To build a predictor based on the current training set (X t, yt) to estimate yu, we

first find the k-nearest neighborhoods of (Xu, yu), and learn a linear predictor

on these neighborhoods. yu is estimated by this local predictor. This transforms

the general case to a sum of linear cases which have been discussed in Section

7.3.1.1.
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Remark. For the data stream with concept drift and temporal dependency

DS(X ,y)
t , this subsection gives a theoretical conclusion that when the training set

mixes data from two patterns, the error of a predictor built on the reconstructed

space (L,Y) decreases faster than that of a predictor built on the original space

(X ,Y) as the training set contains more instances from the new pattern.

7.3.2 Drift adaptation procedure in DAR

Section 7.3.1 concludes that the predictor built on the reconstructed space is

better than the predictor built on the original space for the data stream with

concept drift and temporal dependency. Once the space is reconstructed, the next

problem is how to build and update the predictor to adapt the newest pattern.

This section will discuss this the drift adaptation procedure used in DAR.

When the training set mixes with instances of different patterns, we consider

the pattern of the upcoming future instances to be the new pattern. According to

the conclusion in Section 7.3.1, the more new pattern instances are included, the

more accurate it is to use a predictor built on this training set to estimate future

instances. Therefore, updating the training set is also an important process for

data streams with concept drift. If none of the instances in the training set follows

the new pattern, it is impossible for any method to train an effective predictor

to estimate future values. In this paper, we propose to update the training set

based on the local drift degree.

Local drift degree (LDD), proposed by Liu et al., is a statistic to quantify

regional discrepancies between two different sample sets Liu et al. (2017a). Given

Δ1 and Δ2 two m+1-dimension populations from space Rm+1, two samples of
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Δ1 and Δ2, δ1 and δ2, consist of instances from Δ1 and Δ2 respectively. As it is

impossible to acquire all instances in Δ1 and Δ2, δ1 and δ2 are used to infer by

statistical theories whether Δ1 and Δ2 have the same distribution. If Δ1 and Δ2

have the same distribution, the number of instances belonging to δ1 and δ2 in

any arbitrary subspace �⊂Rm+1 are theoretically the same, which leads to an

insignificant discrepancy between the number of instances belonging to δ1 and

δ2. If Δ1 and Δ2 have different distributions, uneven density exists in at least

one subspace. Based on the above idea, LDD is defined in (7.22):

(7.22) d� = |δ�1 |/nδ1

|δ�2 |/nδ2

−1

where |δ�1 | and |δ�2 | represents the number of instances in � belonging to δ1

and δ2, and nδ1 and nδ2 are the sample size of δ1 and δ2 respectively.

When δ1 is the current training set, and δ2 is the newly arrived data instances,

LDD can be used to measure the distribution difference of the training set and

the newly arrived batch. If LDD is larger than a statistical threshold, the newly

arrived instances are considered to have a different distribution from the training

set, which denotes a drift. The original LDD assumes that nδ2 is very large so

that |δ�2 |/nδ2 can be considered as a constant. However, this is not always true.

To overcome this drawback, we use LDD+ instead of LDD. LDD+ is computed as

follows:

(7.23) d+
� = |δ�1 |

nδ1

− |δ�2 |
nδ2

where |δ�1 |, |δ�2 |, nδ1 and nδ2 have the same meaning as in (7.22).

Theorem 7.4. Given δ1 and δ2 have the same distribution, d+
� ∼ N(0,S2

δ1
/nδ1 +

S2
δ2

/nδ2), where S2
δ1

are S2
δ2

are the sample variances, and nδ1 and nδ2 are the

sample size.
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Proof. Define δ(i)
1 as (7.24), and define δ(i)

2 , Δ(i)
1 and Δ(i)

2 in the same way.

(7.24) δ(i)
1 =

⎧⎪⎨⎪⎩1 ith point of δ1 is in �

0 otherwise

d+
� can be written as d+

� =∑i δ
(i)
1 −∑ j δ

( j)
2 = δ1−δ2. In Liu et al. (2017a), it has been

proved that E(δ1)=Δ1 and E(δ2)=Δ2. Therefore, when no drift occurs, E(d+
�)= 0.

As data points from δ1 and points from δ2 are independent, var(d+
�)= var(δ1)+

var(δ2). To compute var(δ1) and var(δ2), we introduce a random variable Ii,

(7.25) Ii =

⎧⎪⎨⎪⎩1 Δ(i)
1 ∈ δ1

0 otherwise
.

var(δ1) can be rewritten as:

(7.26)

var(δ1)= var

(
1

nδ1

∑
i

I iΔ
(i)
1

)

= 1
n2
δ1

(∑
i

(Δ(i)
1 )2var(Ii)+2

∑
i �= j

Δ(i)
1 Δ

( j)
1 cov(Ii, I j)

)

Considering select n units from N units, the probability that each unit will be

selected in n draws is C(N−1)(n−1)/Cn
N = n/N and the probability that two units
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will be selected in n draws is n(n−1)/N(N −1). Under this condition, Ii satisfies

the following equations:

(7.27)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(Ii)= n
N

= f ,

var(Ii)= n
N

N −n
N

= f (1− f ),

cov(Ii, I j)= E(Ii I j)−E(Ii)E(I j)=− f (1− f )
N −1

.

Based on this, var(δ1) is computed as:

(7.28)

var(δ1)= f (1− f )
n2
δ1

[∑
i

(Δ(i)
1 )2 − 2

∑
i �= jΔ

(i)
1 Δ

( j)
1

nΔ1 −1

]

= f (1− f )
n2
δ1

⎡⎢⎣∑
i

(Δ(i)
1 )2 +

∑
i(Δ

(i)
1 )2

nΔ1 −1
−
(∑

iΔ
(i)
1

)2
nΔ1 −1

⎤⎥⎦

= 1− f
nδ1 nΔ1

⎛⎜⎝ nΔ1

nΔ1 −1

∑
i

(Δ(i)
1 )2 −

(∑
iΔ

(i)
1

)2
nΔ1 −1

⎞⎟⎠

= 1− f
nδ1(nΔ1−1)

∑
i

(Δ(i)
1 −Δ1)2 =

S2
Δ1

nδ1

(1− f )=
S2
δ1

nδ1

.

So far, the expectation and variance of d+
� has been obtained. As � is an arbitrary
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Algorithm 7.1: Computation of LDD+

Input : DS: the current training set
DSw: the newly arrived batch of data
k: the number of nearest neighbors

Output : ldd+

1 for t = 1 to |DSw| do
2 B = [DS,DSw];
3 (knn1, ...,knnk+1)= knnsearch(DSw,B,k+1); %find k+1 nearest

neighbors of DSw, | · | computes the cardinality
4 n0 = |ni∈(1,k+1) ∈ DS|; %the number of neighbors in DS
5 n1 = |ni∈(1,k+1) ∉ DS|; %the number of neighbors in DSw
6 ldd+(t)= n0/|DS|−n1/|DSw|
7 end
8 return ldd+

subset in Rm+1, each d+
� can be seen as an element from a simple random

sample. Therefore, var(d+
�) obeys a normal distribution based on the central

limit theorem. �

The original version of LDD is applied in a classification task where |δω| is

computed based on the L2 norm of feature vectors given the same label that is

d(k) = ||Xk − X0||22 when yk = y0 and d(k) =∞ when yk �= y0. In the regression

task, KNNs are computed based on the distance of ||Zk −Z0||22 where Z = (X , y)

in this paper 2. The computation process of LDD+ is given in Algorithm 8.

The returned LDD+ values represent the relevance of instances in DS to the

distribution of DSw. A larger LDD+ denotes that this instance is less similar to

the current pattern.

• The general procedure and pseudocode of DAR

2Z can also be in other forms of combinations of X and y, which may improve the prediction
accuracy.
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Algorithm 7.2: The drift-adapted regression framework (DAR frame-
work)

Input : DS0: the historical data, the initial training set
DSw: the newly arrived batch of data
k: the number of nearest neighbors
θ: required parameters in LWR
w: w = |DSw|

Output : ŷt, t = T +1, ...T +w %the estimated value
1 Process 1 begin
2 for i = 1 : d+1 do
3 for j=1:3 % the max lag order is 3 do
4 compute AIC( j,DS0)
5 end
6 p(i)= argmin

j
AIC( j,DS0) % determine the best lag order

7 end
8 end
9 % now the input contains the lag orders Process 3 begin

10 X = []; y= []
11 for i = T : T +w do
12 learnset = trainset
13 if isempty(ldd+) �= True then
14 DeleteIndex = ldd+(ldd+(1 : w)> w)
15 learnset(DeleteIndex)= []
16 end
17 Process 2 begin
18 ŷi = LWR(learnset, X i,θ,k)
19 X = [X ; X i];y= [y; yi]
20 end
21 end
22 dri f tinsts = [X , y]
23 dri f tbase = trainset
24 ldd+ =LDD+(dri f tinsts,dri f tbase)
25 trainset = [trainset(w : end); (X , y)]
26 end
27 return ŷt, t = T +1, ...T +w
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According to the conclusion in Section 7.3.1, training a predictor on the recon-

structed space is more effective than training it on the original space. One key

problem is how to reconstruct the feature space, namely how to identify the p in

(7.8). A larger p means more lag orders are involved in the predictor. If a large p

is applied, the predictor will be complex and may induce the sparsity problem.

However, valuable information is ignored if p is too small. The principle of p

identification is to include orders that strongly affect the current state under the

condition that the predictor will not be too complex.

p could be a pre-assigned parameter, and tuning can be introduced to de-

termine the value of p. In this paper, we use the Akaike information criterion

(AIC) Sakamoto et al. (1986) to identify the lag order p. For each data stream,

the identification of p is conducted on the historical data at the beginning. After

that, the determined p will be used for this data stream without change.

The AIC of a p-th autoregressive predictor trained on a N-size data sample

is computed as:

(7.29) AIC(p)= 2k−2ln(�̂(p)),

where k is the number of free parameters to be estimated (for example, here

it is p+1), and � is the likelihood function to estimate the parameter vector

φ= (c,φ1, ...,φp) in (7.8).

(7.30) �(p)= fYp,...,Y1(yp, ...y1;φ)×
N∏

t=p+1
f (yt|yt−1, ..., yt−p;φ).

For an autoregressive process as in (7.8) where p is unknown but assumed to be

less than a pre-assigned value P, using AIC to determine p is to find p ∈ (1,P)
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with minimum AIC from a collection of predictor AR(1),...,AR(P).

(7.31) p̃ = argmin
p∈(1,P)

AIC(p)

The time series identification of each feature is conducted on the historical data.

Once the value of p is determined, it will not change. The maximum p is 3 in

this paper. We reconstruct the original space to (X ,Y ,L) using this process.

The DAR framework is summarized in Algorithm 9. Before a new batch of

instances arrives, the historical data {DS(X ,y)
t |t = 1, ...,T} is the initial training

set. During Process 1, the lag orders, Xt−p, yt−p are added to the system as

new attributes. Process 2 conducts the locally weighted regression algorithm as

given in Algorithm A.1 in A.3. The rules for adaptation are as follows: 1. The

new incoming batch of w instances represents the newest pattern, so they will

be added to the input set during updating and the oldest w instances in the

input set will be deleted; 2. The relevance of old instances to the new pattern is

measured by ldd+. 3. If the remaining (T −w) old instances in the input set have

larger ldd+ than the wth largest ldd+, they will also be deleted from the training

set. This process is realized in Process 3 in the DAR algorithm.

7.4 Experimental Evaluations

In this section, the effectiveness of the proposed DAR will be proved on both

synthetic data and real data. DAR is validated on three aspects: 1) DAR on 1-

dimensional linear case. This corresponds to the theoretical conclusion in Section

7.3.1.1; As 1-dimensional case is available for graphic presentation, the error

will be given for every tested instance to show that the error decreases faster on
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the reconstructed space and therefore improve the adaptation performance; 2)

DAR on multi-dimensional non-linear cases. This corresponds to the theoretical

conclusion in Section 7.3.1.2. It also validate our assumption that DAR perfor-

mances better if the data stream DS(X ,y)
t (Definition 7.7) has larger s; 3) DAR

is compared to other drift adaptation methods. DAR uses different parameters

for synthetic data and real-world data. They will be specified in each subsection.

The organization of the experiments are listed in Table 7.1. Two criteria are used

for evaluation, mean absolute error (MAE) and mean absolute percentage error

(MAPE).
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Table 7.1: Experimental Design

Section Data Experimental aim Main Results

Section 7.4.1 d1 Validate the error decreases faster on a restruc-
tured space on simple linear cases (correspond-
ing to Section 7.3.1.1)

Table 7.3, Figure 7.1

Section 7.4.1 d2 Validate DAR on multi-dimensional non-linear
cases (corresponding to Section 7.3.1.2)

Table 7.4,Table 7.5, Figure 7.2

Section 7.4.2 d3 Compare DAR with the-state-of-the-art drift
adaptation methods

Table 7.6

Section 7.4.3 d3 Statistical test for comparison between meth-
ods

Table 7.7

d1 contains three data generated in Section 7.4.1: 1-dimensional linear data
d2 contains six data generated in Section 7.4.1: multi-dimensional non-linear data
d3 real-world data
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7.4.1 Experiments on synthetic data

Data Description.

• Simple linear data (the feature variable is 1-dimensional)

Three data were generated by several parameter-changing linear models. The

data is generated in the same manner as is in Section 3.4.1. Non-Drift is a data

stream with no drift; Sudd-Drift contains a real sudden drift; Incr-Drift means

that real incremental drift occurs over a period.

• Multi-dimensional non-linear data (only considering sudden drift)

The multi-dimensional non-linear data is generated by referring to the python

package scikit-learn package (2007) and the paper Friedman (1991). The original

data is not used for validate concept drift problem. In this paper, we use the

similar mapping functions to the mapping functions used in scikit-learn package

(2007). The drift is added by use a negative label variable after the drift point, and

the time dependency is added by using autoregressive feature variables instead

of the temporally independent feature variables in the original version. Six data

streams are generated, and the details of generation process are explained below:

Step 1: Generate five feature variables X1,t, X2,t, . . . , X5,t, and each of the

feature variable is generated in the same way as Xt in Non-Drift. Namely, we

have five AR(2) time series.

Step 2: Normalize each feature variable generated in Step 1. This is because

the mapping function in scikit-learn package (2007) requires the feature variables

on the interval [0,1].
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Step 3: Generate the label variable using the mapping function in (7.32). Six

groups of parameters are used for generating six data. They are listed in Table

7.2.

(7.32) yt = θ1 sin(πX1,tX2,t)+θ2(X3,t −0.5)2 +θ3X4,t +θ4X5,t +θ5εt

Step 4: Drift is added by letting yt>1000 =−yt>1000. Clearly, a sudden drift occurs

at t = 1001 for all these six data.

Table 7.2: Parameters for generating multi-dimensional non-linear data in (7.32)

θ1 θ2 θ3 θ4 θ5

Para0 10 20 10 5 1
Para1 10 10 15 10 40/35
Para2 5 10 15 15 40/35
Para3 1 2 15 15 32/35
Para-1 10 20 2 1 23/35
Para-2 10 20 0 0 20/35

Remark. This mapping function presents a non-linear relationship of poly-

nomial and sine transforms where θ1 and θ2 control their weights separately. In

addition, it contains linear relationships where θ3 and θ4 control their weights

separately. Para0 is the parameters used in scikit-learn package (2007). Com-

pared to Para0, Para1, Para2 and Para3 have more weights on the linear rela-

tionship while Para-1 and Para-2 have less weights on the linear relationship.

Para-2 does not have the term of a regular temporally dependency as θ3 and θ4

are 0. We design these parameters to validate the claim that our method will

perform better with a larger s in DS(X ,y)
t in Definition 7.7. The value of θ5 is not

1 except for Para0. This is because the max absolute values of y in other data

are not the same to that in Para0, which is 35. Therefore, θ5 changes to alleviate
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the difference caused by the disturbance when the estimation results on these

six data are compared.

Analysis of Results on Synthetic Data. Preassigned parameters. In the

experiments of synthetic data. In the experiments, the first 500 instances were

set as the historical data for the first training, namely N = 500. The max lag

order P is 3, the length of the windows (w) is 100, and the number of neighbors

(K) is 50. The parameters of SVR and tree models are the default in MATLAB.

• Simple linear cases (Xt is 1-dimensional)

Table 7.3 lists the experiment results of different methods. In the conventional

learning process, the data distribution is unchanged, so once a predictor has

been trained on the training set, it is used to estimate all the upcoming data

without adaptation. In the LWR-NoAdapt column, the results are computed

in this non-adaptation way. The first column in LWR-NoAdapt presents the

MAEs of models trained on the original space (X ,Y), and the second column

presents the MAEs of the reconstructed space (X ,Y ,L). The LWR-LDD+ column

presents the results of adaptation by LDD+ in which the predictor is trained

on the learning set updated by LDD+. There are four columns for LDD+: the

linear column shows the results of training and updating a linear predictor on

the space (X ,Y), and the other three columns denote for the linear, SVR and tree

models on the space (X ,Y ,L), namely models of our DAR framework.

The accuracy results in Table 7.3 indicate that:1) LDD+-based adaptation

can solve the drift problem in the data stream; 2) Reconstructed space helps

to improve the drift adaptation process. The accuracy of LWR-NoAdapt before

reconstruction is the same bad as that after reconstruction but the MAE of DAR-
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Table 7.3: Comparisons between NoAdapt and adaptation by LDD+ approaches
on different spaces, and DAR with different predictors.

MAE LWR-NoAdapt LWR-LDD+(w=100)
(X ,Y) (X ,Y ,L) (X ,Y) (X ,Y ,L)

Predictor linear linear linear DAR-linear DAR-SVR DAR-tree

NonDrift 0.8017 0.8029 0.8055 0.8079 0.8231 1.0638
SuddDrift 13.0991 13.2057 4.7669 1.7392 1.9061 1.8015
IncrDrift 9.542 9.315 4.5388 1.4387 1.2346 1.8967

linear is 1.7392 for SuddDrift and 1.4387 for IncrDrift which is much less than

the MAE of linear. This verifies the discussion in Section 7.3.1 that reconstructed

space improves drift adaptation for time-dependent data when the training set

mixes samples from different patterns.

Next, we verify that reconstructed space improves drift adaptation because

the error decreases faster. Figure 7.1 shows the complete estimation process of

LWR-LDD+ and DAR-linear. In general, DAR-linear chases the various trends

faster than LWR-LDD+. Subplot A is drawn before drift occurs, where the esti-

mation of both methods is accurate. In contrast, when drift starts to appear in

subplot B, DAR-linear gradually chases the new trend while LWR-LDD+ remains

in the old pattern, as all the black dots are still near to the circles denoting the

old pattern. In subplot C, DAR-linear has already adapted to the new concept

after the 1101st point, but LWR-LDD+ has only just started to adapt to the new

concept. Subplot D shows that LWR-LDD+ finally chases the new concept after

the 1501st instance which has 400 points delay than DAR-linear.

The testing error of each instance from 950th to 1150th is given in subplot

E. As the 950th-1000th instances are estimated by the predictor trained by

instances before the 950th instance, there is no instance from the new pattern

in the training set, and the testing error for the 999th and 1000th instance is

192



7.4. EXPERIMENTAL EVALUATIONS

very high. After the arrival of the 1000th instance, the training set is updated

and contains two instances from the new pattern, namely the 999th and 1000th

instance. The training set is now a mixture of instances from the old and new

patterns. If LWR-LDD+ is applied, the effectiveness of the adaptation is subtle

and the testing error of the 1001st-1100th instances is still as high as in the

non-adaptation predictor. However, when DAR-linear is applied, the testing error

clearly decreases. After the 1100th instance has been obtained, the training set is

updated again. The testing error of DAR-linear is now as low as it was before the

drift occured, which means that DAR-linear already adapted to the new pattern.

In contrast, LWR-LDD has only just started to adapt.

So far, we have validate DAR on a simple linear regression for data stream

with drift and temporal dependence. We have shown the estimated value of the

label variable at each time point before and after drift occurs because the simple

linear regression is suitable for a directly graphic presentation. In the next

section, a general case of multi-dimensional non-linear data will be presented,

where the average accuracy will be used for validation.
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Figure 7.1: Error decreasing process. Circles represent the scatter plots of inputs and outputs before drift occurs,
while dots show the results after drift has occurred. Colors denote the different estimation results: blue is for real
values, red is for LWR-LDD+, and black is for DAR-linear. The testing errors of 950th-1150th instances are given in
the subplot E, where the gray shadow represents LWR-NoAdapt, the red dotted line represents LWR-LDD+ and the
black line represents DAR-linear.
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• Multi-dimensional non-linear cases

In this section, instead of listing every predicted value and corresponding testing

error, the average accuracy is used for validating DAR in six multi-dimensional

non-linear cases. The results of predicting accuracy are listed in Table 7.4 (MAE)

and Table 7.5 (MAPE). According to Table 7.4 and Table 7.5, we can obtain

similar conclusion that DAR can handle data stream with drift and temporal

dependency by the proposed LDD+-based adaptation on the reconstructed space.

In addition, we found that replacing the linear predictor by other non-linear

predictor such as SVR and tree in DAR may have better prediction results for the

data with large weights on the non-linear terms. For example, in Table 7.4, the

MAE of DAR-tree is much smaller than the MAE of DAR-linear on data Para-2

which only contains non-linear terms.

Table 7.4: Comparisons of MAE between NoAdapt and adaptation by LDD+

approaches on different spaces, and DAR with different predictors (multi-
dimensional non-linear cases).

MAE LWR-NoAdapt LWR-LDD+(w=100)
(X ,Y) (X ,Y ,L) (X ,Y) (X ,Y ,L)

Predictor linear linear linear DAR-linear DAR-SVR DAR-tree

Para0 20.1489 18.4213 8.2653 5.3583 4.7753 3.5539
Para1 24.2418 24.606 9.0504 5.66 5.2406 4.7441
Para2 25.1195 24.6822 8.7878 4.3891 4.6255 4.3482
Para3 20.8337 19.5359 6.8099 2.8586 3.9276 2.8313
Para-1 11.9175 11.8405 5.5357 4.4129 3.9263 2.5419
Para-2 10.2588 10.5276 4.8849 4.1026 3.6865 2.2622

We also found that compared to adaptation on the original feature space,

the improvement of DAR increases if the data generated with larger weights

of the linear term. This validates our claim that ‘for an arbitrary data stream

DS(X ,y)
t (s, ·) (Definition 7.7), a bigger s means a better estimation by DAR’. To
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Table 7.5: Comparisons of MAPE between NoAdapt and adaptation by LDD+

approaches on different spaces, and DAR with different predictors (multi-
dimensional non-linear cases).

MAPE LWR-NoAdapt LWR-LDD+(w=100)
(X ,Y) (X ,Y ,L) (X ,Y) (X ,Y ,L)

Predictor linear linear linear DAR-linear DAR-SVR DAR-tree

Para0 142.53% 129.45% 61.41% 42.68% 36.85% 25.98%
Para1 138.59% 140.90% 52.96% 35.55% 32.16% 29.03%
Para2 133.36% 130.66% 48.71% 25.41% 26.13% 25.30%
Para3 130.28% 119.73% 43.77% 24.73% 28.08% 19.01%
Para-1 175.37% 173.89% 88.64% 77.18% 62.29% 34.93%
Para-2 312.37% 323.73% 205.97% 215.42% 161.17% 42.14%

clearly present this, we compute the improvement percentage of DAR-linear

compared to LWR-LDD+-linear, and draw the results in Figure 7.2. The x-axis

starts from Para-2 and ends with Para3 which is arranged in an increased

order of s. Each dot in Figure 7.2 is computed by subtracting the accuracy of

DAR-linear from that of LWR-LDD+-linear and then divided by the accuracy

of LWR-LDD+-linear. For example, the value of first blue dot is computed as

(4.8849−4.1026)/4.8849, which is 16.01%.

It should be noticed both LWR-LDD+-linear and DAR-linear use linear pre-

dictors. Therefore, the difference between these two methods is not caused by

the increased linear relationship between X and y. The improvement clearly

exists because there is a larger proportion of regular temporal dependency in

the data stream. During the process of generating these six data, the temporal

dependency on X disappears when this term involves non-linear transforms.

Therefore, using larger weights on the linear terms in (7.32) corresponds to the

case of bigger s in Definition 7.7. These experimental results explain why we

define the mixed time series for data stream.

Discussion: According to the synthetic data experiments, we conclude that:
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Figure 7.2: The improved percentage of MAE/MAPE of DAR-linear from LWR-
LDD+(linear). Both methods have drift adaptation process. The difference is that
DAR-linear is implemented on the reconstructed space.

1) feature space reconstruction will not obtain a worse estimation when no drift

in the data; 2) the predictor trained on reconstructed feature space ties with the

predictor on the original space if the training set only contains a single pattern;

3) when the data has drift and time-dependence, and the training set mixes data

examples from different patterns, space reconstruction enables faster adaptation

to the new pattern; 4) adaptation by LDD+ is effective for data streams with

concept drift; 5) the effectiveness of reconstruction and adaptation by LDD+

is not affected by the type of predictors; 6) DAR performs better for the data

streams with strong temporal dependency.

7.4.2 Experiments on real data streams

In this subsection, we test DAR framework on 7 real-world data streams. Seven

techniques to tackle regression drift are introduced as benchmarks. One bench-

mark is LWR-NoAdapt which is the non adaptation version of DAR-linear, and
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the rest six are: FIMT-DD Ikonomovska et al. (2011a), ORTO Ikonomovska et al.

(2011b), AMR and its ensemble version, metaAMR Duarte et al. (2016), Percep-

tron Bifet et al. (2010c) and FUZZ-CARE Song et al. (2019a). The previous five

benchmarks are implemented by MOA Bifet et al. (2010a)

Data description. There are seven data streams which have been intro-

duced in Section 3.4.2.

Analysis of results on real-world data streams.

There are four preassigned parameters: length of training set, max lag order,

length of windows, and the number of neighbors. All the experiments use a

parameter combination as follows: the length of the training set (N) is 2000, the

max lag order (P) is 3, the length of the windows (w) is 200, and the number of

neighbors (K) is 50. The parameters of SVR and Tree models are the default in

MATLAB.

The MAE and corresponding rank of DAR framework and other methods are

listed in Table 7.6. The accuracy rank of each method shows that DAR-based

methods perform better than other methods. The variables are very likely to

exhibit the temporal dependency problem, and the overwhelming good perfor-

mance of DAR-based methods demonstrates that our proposed DAR framework

is an effective adaptation framework for data streams with drift and temporal

dependency.
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Table 7.6: MAE comparisons between different methods on real-world data streams. The DAR methods outperform
the compared methods on data streams where concept drift occurs.

MAE/Rank CCPP Sensor3 Sensor8 Sensor20 Sensor46 SMEAR Solar
Ave
Rank

LWR-NoAdapt 3.6E+00 2.9E-01 6.5E-02 1.9E-01 2.2E-01 1.8E+01 1.9E+02
7.865 10 9 7 9 6 9

FIMT-DD 3.6E+00 7.1E-03 9.7E-03 8.0E-01 1.6E-01 2.3E+01 1.1E+02 6.434 4 7 9 6 8 7
ORTO 4.5E+02 6.6E-02 1.7E-01 9.6E-01 4.0E-01 3.4E+01 2.3E+02 9.7110 9 10 10 10 9 10
AMR 3.4E+00 7.7E-03 6.6E-03 8.2E-03 2.0E-01 1.4E+01 9.5E+01 5.003 5 3 5 8 5 6
metaAMR 3.3E+00 1.6E-02 7.3E-03 1.1E-02 1.7E-01 2.0E+01 9.4E+01 5.431 8 4 6 7 7 5
Perceptron 3.7E+00 6.9E-03 6.0E-03 7.9E-01 1.6E-01 3.8E+01 1.3E+02 6.007 3 1 8 5 10 8
FUZZ-CARE 5.6E+00 1.6E-02 1.7E-02 7.9E-03 5.3E-02 1.0E+01 8.7E+01

5.579 7 8 4 4 3 4

DAR-linear 3.6E+00 5.1E-03 6.4E-03 3.9E-03 5.0E-03 9.9E+00 4.0E+01
2.146 1 2 1 1 2 2

DAR-SVR 3.3E+00 5.9E-03 7.8E-03 4.6E-03 5.8E-03 8.9E+00 3.1E+01 2.142 2 5 2 2 1 1
DAR-tree 4.7E+00 7.7E-03 9.4E-03 6.9E-03 7.7E-03 1.1E+01 4.6E+01

4.718 6 6 3 3 4 3
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7.4.3 Statistical test on data Streams

In this section, we use Friedman test and its Post-hoc test after Conover to vali-

date whether our proposed method is significantly better than those benchmarks.

These two statistical test is conducted on the average MAE of different methods

among all the data streams. The χ2
R statistic for Friedman test is computed as

(7.33) χ2
R = 12

nM(M+1)

M∑
m=1

R2
m −3n(M+1),

where M is the number of dependent treatment groups which is the number

of methods in our case, n is the number of blocks, which is the number of data

streams, R2
i is the squared rank sum of the i-th group.3 If the null hypothe-

sis of the Friedman test is rejected, we use a post-hoc test after Conover for

pairwise comparisons. The absolute difference between two group rank sums is

significantly different if the following inequality is satisfied:

(7.34) |Ri−R j| > t1−α
2 ;(n−1)(M−1)×

√√√√2M(1− χ2
R

n(M−1) )(
∑n

i=1
∑M

m=1 R2
i,m − nM(M+1)2

4 )

(M−1)(n−1)
.

When we conduct Friedman test and the post-hoc test, the methods concludes all

three versions of DAR. The test results are shown in Table 7.7. While in Table

7.7, we only present the result of DAR-linear in post-hoc test part. Ri −RDAR is

the difference between rank sums of other benchmarks and DAR-linear, and the

p-value tests the significance of this difference.

The test results shows that the prediction accuracy of the various methods is

different and DAR-linear is significantly better than other benchmarks.
3Please note that it has been wrongly written by Ri in Pohlert (2014) if you refer to this

citation.
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Table 7.7: Friedman test and its post-hoc test of all the methods over all seven data streams, where “Friedman Test"
is the result for Friedman test and “Friedman - post-hoc test after Conover" is for the pairwise comparison. “*", “**",
and “***" means this value is significant at the level of 0.05, 0.01 and 0.001 respectively. “df" denotes the freedom
degree.

Friedman Test χ2
R χ2

pvalue df
36.5376 3.18E-05*** 7

Friedman - post-hoc test after Conover
DAR-linear LWR-NoAdapt FIMTDD ORTO AMR metaAMR Perceptron FUZZ-CARE
Ri −RDAR 40 30 53 20 23 27 24
diffpvalue 0.000*** 0.0013** 0.000*** 0.020* 0.009** 0.003** 0.007**

201



CHAPTER 7. DRIFT ADAPTATION WITH TEMPORAL DEPENDENCY

7.5 Summary

In this chapter, we discuss drift adaptation for data streams that have both

concept drift and temporal dependency problems. We conduct a theoretical study

on the convergence of error when these two problems occur. Based on that, a

drift-adapted regression (DAR) framework is proposed to predict the continuous

target variable in non-stationary environments. The DAR framework is able

to deal with drift and the temporal dependency problems simultaneously as it

conducts the drift-adaptation process on a temporal reconstructed feature space.

The drift-adaptation embedded in DAR framework is able to discard outdated

samples in every batch or every instance by a developed statistic, LDD+.

The experimental evaluation on synthetic data verifies the theoretical aspect,

and the experiments on real data streams illustrate several advantages of the

proposed DAR framework: 1) effectiveness in handling abrupt and incremental

drift in regression cases, 2) a fast response to drift, which makes it accurate in

its prediction, and 3) good suitability for different predictors.
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8
CONCLUSION AND FUTURE RESEARCH

This chapter concludes the entire thesis and provides some further research

directions for this topic.

8.1 Conclusions

The development of the Internet of Things and Big data generates an increasing

demand of real-time prediction in modern life. Conventional batch-based machine

learning systems are built on a static assumption of independent and identically

distributed (i.i.d) data and therefore are not suitable to make real-time prediction

for data streams. Many subsequent studies have proved that the concept drift

detection and adaptation techniques are effective approaches to solve the problem

of distribution changes.
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Recent research of concept drift poses several unsolved and challenging prob-

lems in this area, i.e., 1) how to effectively understand concept drift to help

improve adaption; 2) how to effectively react to drift by adapting related knowl-

edge; 3) the lack of theoretical frameworks for learning in the non-stationary

environment; 4) how to solve the transient concept drift and limited data problem;

and how to solve the concept drift problem if the data has other uncertainties

such as 5) noise and 6) temporal dependencies.

To solve the above-mentioned challenges, this thesis proposes five concrete

research questions and corresponding research objectives. The findings of this

study are summarized as follows:

• The proposed FUZZ-CARE method can identify concepts during the learning

process. (to achieve objective 1)

As it is unknown when concept drift occurs, the training set used to train

the predictor probably contains several patterns, leading to the situation

that the same input value maps to different outputs. To overcome this prob-

lem, this research introduces fuzzy techniques into the learning process

and develops a drift adaptation method based on the fuzzy clustering pro-

cess, named FUZZ-CARE. FUZZ-CARE is able to learn how many patterns

exist in the observed data instances, i.e., the training set, and recognize

the membership degree of each instance belonging to each pattern during

the process of learning the parameters for the predictor.

• The proposed SEGA method can sequentially select the most relevant data

for training. (to achieve RQ2)
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Existing informed drift adaptation methods need to wait for an entire batch

(time window) of data to detect drift and then update the predictor (if drift is

detected), which causes adaptation delay. To overcome the adaptation delay

and select the most relevant data to the new pattern, this research proposes

a sequentially updated statistic (drift-gradient). Based on drift-gradient,

this research develops a drift adaptation method (SEGA) to update the

predictor with the most reliable data when every new instance arrives.

• The proposed AFN method can generate samples of new concepts. (to achieve

RQ3)

Identifying a new concept in its early stages means there are few available

instances of the new concept. It is difficult to learn a precise predictor for

the new concept if there are no enough instances. To solve this problem,

this research develops a drift adaptation method, named AFN to generate

samples of new concept through previous data.

• The proposed NoA method can be used for noisy data streams with concept

drift. (to achieve RQ4)

Drift adaptation for noisy data is a complex problem because concept drift

and noise are not always independent in a data stream, and they have

some overlaps sometimes. This research analyzes the data stream as a

collection of time series and develops a drift adaptation method, called

NoA, for data streams with signal noise.

• The proposed DAR framework is able to handle data streams with concept

drift and temporal dependency. (to achieve RQ5)
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The continuous variable in data streams is a time series process that is

probably autocorrelated, which leads to the temporal dependency prob-

lem. This research discusses the concept drift problem in the data stream

that have temporal dependency. A drift adaptation framework (DAR) is

developed for data streams with concept drift and temporal dependency in

regression cases.

8.2 Future Study

This thesis identifies the following directions as future work:

• Adaptation efficiency. This study assumes that we can store a fixed number

of instances in the system. In most of the discussed cases, we store no

more than 2000 instances in the buffer. When new instances arrive, the

old instances may be replaced by new instances. However, the maximum

storage is of 2000 instances. In some tasks, drift adaptation methods need

to learn in a one-pass manner, without frequent or even no access to the

previous data instances. Therefore, how to update predictors in a one-pass

manner could be another meaningful direction of further work.

• Concept drift adaptation for scarce data. Scare data may manifest in differ-

ent ways such as insufficient data instances, imbalanced data, data without

true labels, data streams with uneven time stamps. Oversampling is one of

the promising techniques to solve this problem.

• Concept drift adaptation in noisy data. The noisy data, especially the

feature noise is still a challenge in the research field of noise. Considering
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the intrinsic relation between drift and noise, it is promising to use drift

handling techniques to solve noise problems and vice versa.

• Concept drift adaptation for data with temporal dependency. Drift adapta-

tion with temporal dependency has been a challenging problem since the

idea of concept drift is proposed, but has rarely been solved. This problem

is one of the most difficult challenges in this area because it needs solid

theoretical guarantees other than the learning theory.

• Concept drift detection and adaptation for multiple streams. Real-world

applications such as online decision making system often require a method

for handling multiple streams at the same time. Therefore, a drift detection

and adaptation framework for multiple data streams is needed.

• A comprehensive concept drift adaptation framework. This thesis has dis-

cussed the drift adaptation from five aspects including three root causes

and two new scenarios. However, each aspect is discussed independently.

The real applications normally need to consider two or more aspects si-

multaneously. For example, a data stream contains both signal noise and

temporal dependency. Therefore, a comprehensive concept drift adaptation

framework is needed to handle more realistic problems.
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A.1 Derivation step from Symmetric Degree

(SD) to Segmented Symmetric Degree(SSD)

According to (4.2), we have

(A.1)

d̄P,Q(k)= 1
NP

∑
u∈P1

( |Ku,P (k)|
NP

− |Ku,Q(k)|
NQ

)
+ 1

NP

∑
u∈P2

( |Ku,P (k)|
NP

− |Ku,Q(k)|
NQ

)

+ 1
NQ

∑
v∈Q

( |Kv,Q(k)|
NQ

− |Kv,P (k)|
NP

)
.

As |Ku,P (k)|+ |Ku,Q(k)| = k, the first two terms in d̄P,Q(k) can be written by
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(A.2)
1

NP

∑
u∈P1

( |Ku,P (k)|
NP

− |Ku,Q(k)|
NQ

)
= 1

NP

∑
u∈P1

(k−|Ku,Q(k)|
NP

− |Ku,Q(k)|
NQ

)
,

(A.3)
1

NP

∑
u∈P2

( |Ku,P (k)|
NP

− |Ku,Q(k)|
NQ

)
= 1

NP

∑
u∈P2

(k−|Ku,Q(k)|
NP

− |Ku,Q(k)|
NQ

)
.

The third term in (A.1) is

(A.4)
1

NQ

∑
v∈Q

( |Kv,Q(k)|
NQ

− |Kv,P (k)|
NP

)
= 2× 1

2NQ

∑
v∈Q

|Kv,Q(k)|
NQ

− 1
NQ

∑
v∈Q

|Kv,P (k)|
NP

.

The term |Kv,P (k)| represents the number of v’s k nearest neighbors that are

from P. As P = P1∪P2 and P1∩P2 =
, |Kv,P (k)| = |Kv,P1(k)|+|Kv,P2(k)|, we have

(A.5)

1
NQ

∑
v∈Q

( |Kv,Q(k)|
NQ

− |Kv,P (k)|
NP

)
= 1

2NQ

∑
v∈Q

|Kv,Q(k)|
NQ

+ 1
2NQ

∑
v∈Q

|Kv,Q(k)|
NQ

− 1
NQ

∑
v∈Q

|Kv,P1 (k)|
NP

− 1
NQ

∑
v∈Q

|Kv,P2 (k)|
NP

.

Substituting (A.2), (A.3) and (A.5) into (A.1), we have d̄P,Q(k)= ssdP1,Q(k)+
ssdP2,Q(k).
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A.2. ESTIMATION OF MODEL PARAMETERS FOR THE MIXED TRAINING
SET

A.2 Estimation of model parameters for the

mixed training set

The estimation of θ1 by OLS is:

(A.6)

θ̂1 =
∑n

t=1 Xt yt∑n
t=1 X2

t
=
∑n1

t=1 Xt yt +∑n2
t=1 Xt yt∑n

t=1 X2
t

= n1X y1 +n2X y2

nX2
= (1− r)X y1 + rX y2

X2

θ̂0 =
∑n

t=1 yt

n
− θ̂1X =

∑n1
t=1 yt +∑n

t=n1+1 yt

n
− θ̂1X

= n1 y1 +n2 y2

n
− θ̂1 X̄ = (1− r)y1 + ry2 − θ̂1X

X needs not to split because the distribution of X is unchanged.

A.3 The locally weighted regression

Details of the locally weighted regression algorithm can be found in Algorithm

A.1
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Algorithm A.1: The locally weighted regression
Input : learnset: data used to train the model, it contains learninput

and learnoutput;
Xq: the value of features for the query point;
k: the number of neighbors;
model: it can be linear, SVR or Tree model;
θ: the other parameters needed in model.

Output : ŷq: the estimation of the label variable.
1 Distance = knn(Xq, learnsetinput)
2 I = sort(Distance, ‘ascend′)
3 index = I(1 : k) % find the index of Xq’s k nearest neighbors in learnset

(X , y)= learnset(index)
4 ŷq = model(X , y,θ)
5 return ŷq
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Žliobaitė, I., 2010a, ‘Learning under concept drift: an overview’, arXiv preprint

arXiv:1010.4784.
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