C02047: Doctor of Philosophy CRICOS Code: 0000 Subject Code: 33875 June 2020

Deciphering True Emotions: Micro-Expression Detection and Recognition using Deep Nets

Madhumita Abhijeet Takalkar

School of Electrical and Data Engineering Faculty of Engg. & IT University of Technology Sydney NSW - 2007, Australia

Deciphering True Emotions: Micro-Expression Detection and Recognition using Deep Nets

A dissertation submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in Computer Systems

by

Madhumita Abhijeet Takalkar

under the supervision of

A/Prof. Dr. Min Xu and Dr. Zenon Chaczko

to

School of Electrical and Data Engineering Faculty of Engineering and Information Technology University of Technology Sydney NSW - 2007, Australia

June 2020

© 2020 by Madhumita A. Takalkar All Rights Reserved

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, *Madhumita Abhijeet Takalkar* declare that this thesis is submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the *School of Electrical and Data Engineering*, *Faculty of Engineering and Information Technology* at the University of Technology Sydney, Australia.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

SIGNATURE: _____

[Madhumita Abhijeet Takalkar]

DATE: 14 th September, 2020 PLACE: Sydney, Australia

ABSTRACT

M icro-expressions are anticipated as the outcome of deliberate manipulation or involuntary repression of emotions when an individual feels emotion but tries to conceal the facial movements. The micro-expression interpretation tends to recognise a person's deceit and actual mental state. Therefore, micro-expression detection and recognition has significant opportunities for emotion analysis in psychotherapy, forensics, border protection, and negotiations, among others. Since such gestures are quick and hard to spot with the naked eyes, the inclination towards automated micro-expression recognition is an obvious step forward in the domain. Micro-expression research has drawn various interests within the computer vision field notable in localisation, magnification and recognition. Earlier studies primarily implemented single handcraft descriptors and classifiers for recognising micro-expressions. Modern techniques emphasise on deploying Convolutional Neural Networks (CNNs) or hybrid strategies that integrate handcraft descriptors and CNNs. Owing to the existence of a few datasets, the recognition of microexpressions is still a concern. Nevertheless, efficiency is often influenced by the feature selection and training approach.

Our work, presented in this thesis, introduces various approaches that we have developed to detect and recognise facial micro-expressions using deep networks. In the initial stages of this work we design a dual-stream model with attention networks for the task of micro-expression detection from images. We implement Local- and Global-level Attention Networks (LGAttNet) to concentrate on local facial regions as well as full face to boost the chances of extracting relevant micro-expression features. Unlike previous detection methods where frame difference is calculated to detect micro-expressions, our framework uses attention network to focus on various parts of a face to identify the presence of the micro-expression. We developed LGAttNet to be a supervised detection framework where a traditional Artificial Neural Network (ANN) is trained as a binary classifier. LGAttNet is a novel documented approach that utilises attention network for micro-expression detection from image and video frame sequence.

The next stage of this thesis focuses on recognising micro-expression from an image using CNN. We propose to implement a CNN network by performing fine-tuning on a pre-trained CNN network. Fine-tuning is carried out to retrain the last convolutional layer of the CNN network to be able to learn appropriate micro-expression features and predict the micro-expression classes accurately. This fine-tuned CNN network gained acceptable accuracy for recognising micro-expressions from image frames. Thirdly, we extend the outcome of this stage to be implemented on video data; hence we explore the approach of combining handcrafted descriptors with the CNN derived features. Local Binary Pattern-Three Orthogonal Planes (LBP-TOP) and VGGFace CNN network are combined in late fusion technique to extract a comprehensive feature representation of the video. Softmax and SVM are trained for classification. The employed hybrid approach is one of the first attempts to implement handcrafted descriptors and deep features for micro-expression recognition.

Finally, we consider the factor of gender affecting the tendency to express microexpressions. We have built a multi-task learning architecture with two streams extracting different features to achieve the same task of micro-expression recognition based on gender, GEME. We incorporated a dynamic image concept to convert a video into a single frame, and gender features and micro-expression features are added at each level and given to the micro-expression stream. Inclusion of the gender features with the micro-expression features elevates the feature details respective to the individual participant, and the network learns unique gender features while extracting microexpression features.

Concisely, we have introduced four novel concepts for micro-expression detection and recognition. The work described in this thesis establishes a connection between computer vision and psychotherapy, and aids to expedite the micro-expression analysis process for quick assessment wherever necessary.

DEDICATION

In memory of my father, to whom I promised to dedicate this thesis before he left this world...

ACKNOWLEDGMENTS

Pursuing this PhD has been a truly life-changing journey for me, and I am blessed with all the encouragement and help from so many people without whom I could not have achieved it.

At this moment of accomplishment, I would like to express my most profound appreciation to my two supervisors, principal supervisor **Dr. Min Xu** and co-supervisor **Dr. Zenon Chaczko**, for their constant guidance and motivation they provided me during my PhD study. This PhD would not have been attainable without their continuous input and support. Dr. Xu has, knowingly and implicitly, taught me how to evaluate my work in order to enhance it and develop it further. Dr. Chaczko was able to direct me in making my work a more realistic solution. Their experience and advice rendered me capable of working in both computational and application-oriented areas. I am thankful for their persistence, time, suggestions, inspiration and tremendous expertise that they shared with me. I am very grateful to them for allowing me the opportunity to determine my area of interest and to encourage me to focus on it.

Besides, I would like to acknowledge **Mengyang Duan** and **Selvarajah Thuseethan** for their helpful advice and collaborations. Collaborating alongside them for two projects has been an outstanding experience. It was a privilege to discuss the research with them, and I was pleased to understand various facets of critical methodology and reflective analysis from them. My sincere thanks to **Dr. Wenjing Jia, Dr. Qiang Wu** and **Dr. Guoqiang Zhang**, who acted as panel members for my candidature assessments.

It's my fortune to gratefully acknowledge by bachelor's supervisor, **Asst. Prof. Yogita Pagar**, who introduced me into the research community and encouraged and mentored me in my first research project. Her charismatics and determination to pursue goals have always inspired me.

There is no pleasure to have a ride without friends. My bumpy research ride at UTS was made easy by my fellow labmates, Haimin Zhang, Zhiyuan Shi (Zhi), Lingxiang Wu (Lynn), Ruiheng Zhang, Zhongqin Wang, Tianrong Rao (Ron), Xiaoxu Li (Sam), and everyone in the team. I will always recall the fun we had together and the kindness and support everyone showed in tough times. Thanks in particular to Haimin Zhang for sharing his profound expertise and technical cooperation. I cannot forget my crazy friends from UTS Dr. Ashish Nanda, Alina Rakhi, Manisha Pratihast, Sara Farahmandian with whom I had been enjoying my research tenure and who became a part of my life. And a huge thanks to all my friends back home who in the good and rough moments were beside me to drive me and inspire me.

I owe a great deal to the most beautiful couple I have ever met, **Mummy** and **Baba**, **Smt. Veena** and **Late Shri. Ramesh**, for all the selfless love, care, pain and sacrifice they have done to make me who I am today. They have taught me, 'he that ventures not fails not' and made me worthy of facing the world. It was my father's dream to see me with a doctorate degree before he was separated from us last year owing to a severe cardiac arrest. This thesis is a tribute to my late father under whose diligent protection I have enjoyed my life. Special gratitude to my Mummy and little brother **Neeraj** for having always trusted me and inspired me to pursue my dreams. My deepest reverence goes to my **father-in-law** for his moral encouragement and to all my in-laws for supporting in any way they can through this challenging time.

Last but definitely not the least, I owe it to an exceptional person, my better half, **Abhijeet**, who lived by my side every moment of my doctorate, and without whom I would not have had the confidence to embark on this journey in the first place. His ongoing and unfailing love, encouragement and appreciation during my pursuit of PhD degree has made it possible to complete the thesis. At times, when I felt it was hard to keep moving, you have always helped me to keep things in perspective. I immensely respect his effort and truly admire his belief in me.

This thesis is dedicated to my parents and husband for their affection and trust in me. Without them, I would be nothing.

Thank you.

LIST OF PUBLICATIONS

RELATED TO THE THESIS:

- Madhumita A. Takalkar, Min Xu, Qiang Wu, Zenon Chaczko, A survey: facial micro-expression recognition [J], Multimedia Tools and Applications (MTA) 2017. (*Published*)
- Madhumita A. Takalkar, Min Xu, Image based facial micro-expression recognition using deep learning on small datasets [C], In 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA), IEEE. (*Published*)
- Madhumita A. Takalkar, Haimin Zhang, Min Xu, Improving Micro-expression Recognition Accuracy Using Twofold Feature Extraction [C], In 2019 International Conference on Multimedia Modeling, Springer, Cham. (Published)
- 4. Madhumita A. Takalkar, Min Xu, Zenon Chaczko, Manifold Feature Integration for Micro-Expression Recognition [J], Multimedia Systems (MS) 2020. (*Published*)
- Madhumita A. Takalkar, Selvarajah Thuseethan, Sutharshan Rajasegarar, Zenon Chaczko, Min Xu, John Yearwood, LGAttNet: Automatic Micro-expression Detection using Dual-Stream Local and Global Attentions [J], Knowledge-Based Systems (KBS). (Under Review)
- Xuan Nie, Madhumita A. Takalkar, Mengyang Duan, Haimin Zhang, Min Xu, GEME: dual-stream multi-task GEnder-based Micro-Expression recognition, Neurocomputing. (Under Review)

TABLE OF CONTENTS

List of Publications ix				
\mathbf{L}_{i}	List of Figures xv			
List of Tables xv			xvii	
1	Inti	roduction		
	1.1	Background	. 1	
	1.2	Factors Influencing Recognition of Micro-Expressions	. 2	
		1.2.1 Emotional Context	. 3	
		1.2.2 Duration of Expression	. 3	
	1.3	Challenges	. 4	
		1.3.1 Environmental factor	. 4	
		1.3.2 Spontaneous and subtle motion of the facial movement	. 4	
		1.3.3 Imbalanced dataset	. 4	
	1.4	Research Questions and Hypothesis	. 4	
	1.5	Influence of Micro-Expressions on different domains	5	
		1.5.1 Social Impact	6	
		1.5.2 Scientific Impact	. 7	
	1.6	Contributions and Outline	. 8	
Ι	B	ackground	11	
2	Rel	ated Research Review	13	
	2.1	Introduction	. 14	
	2.2	Micro-Expression Databases	15	
		2.2.1 Database Comparison	. 17	
	2.3	Approaches for Facial Micro-Expressions Analysis	. 18	
		xi		

		2.3.1	Face detection	19
		2.3.2	Pre-processing	19
		2.3.3	Features	24
		2.3.4	Classification	31
	2.4	Discu	ssions	33
II		ropos cogni	sed Methods for Micro-Expression Detection and tion	35
3	LG	AttNet	: Automatic Micro-Expression Detection using Dual-Stream	
	Loc	al and	Global Attentions	37
	3.1	Introd	luction	38
	3.2	Relate	ed Research	40
	3.3	LGAt	tNet Detection Model Description	42
		3.3.1	Pre-processing	44
		3.3.2	LGAttNet Components	45
		3.3.3	Loss Function	48
	3.4	Exper	imental setup and Outcomes	49
		3.4.1	Datasets used	49
		3.4.2	Experimental setup and Parameters	50
		3.4.3	Outcomes and Analysis	51
		3.4.4	Discussion	57
	3.5	Sumn	nary and Future Direction	57
4	Effe	ective	Facial Features for Recognition	59
	4.1	Introd	luction	60
	4.2	Micro	-expression Recognition Pipeline	62
		4.2.1	Face detection and Face registration	62
		4.2.2	Data Augmentation	63
		4.2.3	CNN Fine-tuning	64
	4.3	Propo	sed Methods	66
		4.3.1	Image-based facial micro-expression recognition	66
		4.3.2	Manifold Feature Integration Model	67
	4.4	Exper	imental setup and Outcomes	71
		4.4.1	Databases	71

		4.4.2	Experimental Setup	72
		4.4.3	Evaluation Results	73
		4.4.4	Performance Metrics	77
		4.4.5	Ablative Analysis	82
	4.5	Discus	ssions	83
		4.5.1	Difficulties with certain expressions and databases	84
	4.6	Summ	ary	85
5	GEN	ME: du	al-stream multi-task GEnder-based Micro-Expression recog-	
	niti	on		87
	5.1	Introd	uction	88
	5.2	Relate	ed Research	91
	5.3	3 GEnder-based Micro-Expression (GEME) model description		
		5.3.1	Pre-processing: Dynamic Imaging	94
		5.3.2	GEME Framework	95
	5.4	.4 Experimental setup and Outcomes		
		5.4.1	Databases	102
		5.4.2	Setup and Parameters	103
		5.4.3	Performance Metrics	106
		5.4.4	GEME Multi-task outcome comparison with state-of-the-art methods	107
		5.4.5	Composite Database Evaluation (CDE)	109
		5.4.6	Ablative Analysis	112
		5.4.7	Qualitative Analysis	113
	5.5	Summ	ary	114

III Conclusion

117

6	Conclusions and Future Works		
	6.1	Synopsis	119
	6.2	Open and Unsettled Issues	120
	6.3	Future Directions	121
Bibliography 123			

LIST OF FIGURES

I	FIGURE Pa		
1.1	Seven universal facial micro-expressions	2	
1.2	Relation between proposed facial micro-expression analysis methods $\ldots \ldots$	9	
2.1	A general framework for micro-expression recognition analysis	19	
2.2	(a) An example of micro-expression being interpolated through graph em- bedding; (b) Temporal interpolation method. The video is represented onto a		
	curve along which a new video is sampled [164]	21	
2.3	The procedure of encoding difference-image based integral projection on the		
	spatial domain [75]	21	
2.4	(a) 66 feature points using DRMF; (b) 36 regions-of-interest (ROIs) [127]	24	
2.5	The calculation process of a basic LBP operator	25	
2.6	LBP-TOP example: scan all the pixels to calculate their LBP histograms on		
	the XY, XT, and YT plane respectively. The data of the pattern frequency is		
	counted in each corresponding histogram and then concatenated as one [217].	26	
3.1	Local and Global Attention Network (LGAttNet). The flow of the upper and		
	lower face images are indicated by the green color arrows, while the flow of		
	entire face is indicated by blue arrows. Both dotted lines indicate the attention		
	inputs to global and local attention modules.	43	
3.2	Pre-processing steps: Spatial domain normalisation is achieved through the		
	difference " a " between facial feature points 37 and 46 of the active appear-		
	ance model (AAM). The <i>intensity</i> and <i>scale</i> normalisations are performed		
	subsequently [196].	44	
3.3	The sparse module	45	
3.4	The feature enhancement module	46	
3.5	Local and Global Attention module	47	

3.6	LGAttNet tested on a micro-expression sequence from CASME database. The
	green line indicates the generated probability values for the existence of
~ -	micro-expression
3.7	LGAttNet attention visualisation on a Disgust sample from CASME dataset.
	(a) Original image; (b) LGAttNet without LAM and GAM; (c) LGAttNet
	without GAM; (d) LGAttNet without LAM; (e) LGAttNet with LAM and GAM 53
4.1	A general block diagram of micro-expression recognition system 62
4.2	The proposed CNN architecture for image-based micro-expression recognition 66
4.3	The comprehensive structure of Manifold Feature Integration model for micro-
	expression recognition
4.4	Accuracy comparison graph of Softmax and SVM kernels
4.5	(a)-(c) Confusion matrices based on probabilities predicted by Softmax classifier 78
4.6	(a)-(d) Confusion matrices based on probabilities predicted by Softmax and
	SVM classifier
4.6	(e)-(l) Confusion matrices based on probabilities predicted by Softmax and
	SVM classifier
4.6	(m)-(p) Confusion matrices based on probabilities predicted by Softmax and
	SVM classifier
4.7	(a) Figure of Merit for experimental datasets
4.7	(b)-(c) Figures of Merit for experimental datasets
5.1	The comprehensive structure of GEME model for micro-expression recognition 93
5.2	Dynamic images
5.3	CBR Pipeline
5.4	ResNet BasicBlock
5.5	Pie charts to illustrate the class imbalance problem for the four databases used105
5.6	Data augmentation process
5.7	Confusion matrix using LOSO validation scheme for single-task network and
	multi-task GEME network on individual databases
5.8	Confusion matrix using LOSO validation scheme for single-task network and
	multi-task GEME network on Combine 3DB and individual databases \ldots 112
5.9	Single-task Micro-expression recognition network
5.10	Examples of recognition performance. A check mark (\checkmark) represents a correct
	prediction result, while a cross mark (\times) represents an incorrect prediction
	result. The value in the parentheses is the confidence of the prediction 114

LIST OF TABLES

7	TABLE Pag		
2.1	Summary of micro-expression databases	18	
3.1	LOSOCV Micro-Expression detection outcome using various performance		
	metrics	52	
3.2	Ablative evaluation with and without (w/o) different modules of the framework	52	
3.3	Cross-database Micro-Expression detection network trained on CASME and		
	tested on other databases	55	
3.4	Cross-database Micro-Expression detection network trained on CASME II		
	and tested on other databases	55	
3.5	Cross-database Micro-Expression detection network trained on $CAS(ME)^2$		
	and tested on other databases	55	
3.6	Cross-database Micro-Expression detection network trained on SAMM and		
	tested on other databases	56	
3.7	Comparison with existing state-of-the-art micro-expression detection methods	56	
4.1	VGGFace architecture	65	
4.2	Experimental Micro-expression databases and emotion categories	72	
4.3	Micro-expression recognition accuracy with different databases $\ldots \ldots \ldots$	74	
4.4	Accuracy correlation with existing advanced approaches on public databases	74	
4.5	Evaluation results of the Manifold Feature Integration	75	
4.6	Comparison of recognition accuracy on eight databases compared with our		
	approach	76	
4.7	Recognition accuracy of original features	83	
4.8	Comparing proposed model with and without data augmentation (DA) \ldots	84	
5.1	Comparing the recognition accuracy of GEME with modern approaches on		
	CASME II database	108	

5.2	Comparing the recognition accuracy of GEME with modern methods on
	SAMM database
5.3	Comparing GEME recognition accuracy with state-of-the-art methods on
	SMIC database
5.4	Sample distribution after combining three databases CASME II, SAMM and
	SMIC into three classes for CDE
5.5	Combined 3DB LOSO CV performance compared against various baseline
	and recent methods
5.6	Performance metrics for Single-task and Multi-task learning using 5-fold
	validation approach
5.7	Performance metrics for Single-task and Multi-task learning using LOSO
	validation approach