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ABSTRACT

Micro-expressions are anticipated as the outcome of deliberate manipulation or
involuntary repression of emotions when an individual feels emotion but tries to
conceal the facial movements. The micro-expression interpretation tends to recog-

nise a person’s deceit and actual mental state. Therefore, micro-expression detection and
recognition has significant opportunities for emotion analysis in psychotherapy, forensics,
border protection, and negotiations, among others. Since such gestures are quick and hard
to spot with the naked eyes, the inclination towards automated micro-expression recog-
nition is an obvious step forward in the domain. Micro-expression research has drawn
various interests within the computer vision field notable in localisation, magnification
and recognition. Earlier studies primarily implemented single handcraft descriptors and
classifiers for recognising micro-expressions. Modern techniques emphasise on deploying
Convolutional Neural Networks (CNNs) or hybrid strategies that integrate handcraft
descriptors and CNNs. Owing to the existence of a few datasets, the recognition of micro-
expressions is still a concern. Nevertheless, efficiency is often influenced by the feature
selection and training approach.

Our work, presented in this thesis, introduces various approaches that we have
developed to detect and recognise facial micro-expressions using deep networks. In the
initial stages of this work we design a dual-stream model with attention networks for the
task of micro-expression detection from images. We implement Local- and Global-level
Attention Networks (LGAttNet) to concentrate on local facial regions as well as full face
to boost the chances of extracting relevant micro-expression features. Unlike previous
detection methods where frame difference is calculated to detect micro-expressions, our
framework uses attention network to focus on various parts of a face to identify the
presence of the micro-expression. We developed LGAttNet to be a supervised detection
framework where a traditional Artificial Neural Network (ANN) is trained as a binary
classifier. LGAttNet is a novel documented approach that utilises attention network for
micro-expression detection from image and video frame sequence.

The next stage of this thesis focuses on recognising micro-expression from an image
using CNN. We propose to implement a CNN network by performing fine-tuning on a
pre-trained CNN network. Fine-tuning is carried out to retrain the last convolutional
layer of the CNN network to be able to learn appropriate micro-expression features and
predict the micro-expression classes accurately. This fine-tuned CNN network gained
acceptable accuracy for recognising micro-expressions from image frames. Thirdly, we
extend the outcome of this stage to be implemented on video data; hence we explore the
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approach of combining handcrafted descriptors with the CNN derived features. Local
Binary Pattern-Three Orthogonal Planes (LBP-TOP) and VGGFace CNN network are
combined in late fusion technique to extract a comprehensive feature representation of
the video. Softmax and SVM are trained for classification. The employed hybrid approach
is one of the first attempts to implement handcrafted descriptors and deep features for
micro-expression recognition.

Finally, we consider the factor of gender affecting the tendency to express micro-
expressions. We have built a multi-task learning architecture with two streams extracting
different features to achieve the same task of micro-expression recognition based on
gender, GEME. We incorporated a dynamic image concept to convert a video into a
single frame, and gender features and micro-expression features are added at each
level and given to the micro-expression stream. Inclusion of the gender features with
the micro-expression features elevates the feature details respective to the individual
participant, and the network learns unique gender features while extracting micro-
expression features.

Concisely, we have introduced four novel concepts for micro-expression detection and
recognition. The work described in this thesis establishes a connection between computer
vision and psychotherapy, and aids to expedite the micro-expression analysis process for
quick assessment wherever necessary.
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