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ABSTRACT

Micro-expressions are anticipated as the outcome of deliberate manipulation or
involuntary repression of emotions when an individual feels emotion but tries to
conceal the facial movements. The micro-expression interpretation tends to recog-

nise a person’s deceit and actual mental state. Therefore, micro-expression detection and
recognition has significant opportunities for emotion analysis in psychotherapy, forensics,
border protection, and negotiations, among others. Since such gestures are quick and hard
to spot with the naked eyes, the inclination towards automated micro-expression recog-
nition is an obvious step forward in the domain. Micro-expression research has drawn
various interests within the computer vision field notable in localisation, magnification
and recognition. Earlier studies primarily implemented single handcraft descriptors and
classifiers for recognising micro-expressions. Modern techniques emphasise on deploying
Convolutional Neural Networks (CNNs) or hybrid strategies that integrate handcraft
descriptors and CNNs. Owing to the existence of a few datasets, the recognition of micro-
expressions is still a concern. Nevertheless, efficiency is often influenced by the feature
selection and training approach.

Our work, presented in this thesis, introduces various approaches that we have
developed to detect and recognise facial micro-expressions using deep networks. In the
initial stages of this work we design a dual-stream model with attention networks for the
task of micro-expression detection from images. We implement Local- and Global-level
Attention Networks (LGAttNet) to concentrate on local facial regions as well as full face
to boost the chances of extracting relevant micro-expression features. Unlike previous
detection methods where frame difference is calculated to detect micro-expressions, our
framework uses attention network to focus on various parts of a face to identify the
presence of the micro-expression. We developed LGAttNet to be a supervised detection
framework where a traditional Artificial Neural Network (ANN) is trained as a binary
classifier. LGAttNet is a novel documented approach that utilises attention network for
micro-expression detection from image and video frame sequence.

The next stage of this thesis focuses on recognising micro-expression from an image
using CNN. We propose to implement a CNN network by performing fine-tuning on a
pre-trained CNN network. Fine-tuning is carried out to retrain the last convolutional
layer of the CNN network to be able to learn appropriate micro-expression features and
predict the micro-expression classes accurately. This fine-tuned CNN network gained
acceptable accuracy for recognising micro-expressions from image frames. Thirdly, we
extend the outcome of this stage to be implemented on video data; hence we explore the
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approach of combining handcrafted descriptors with the CNN derived features. Local
Binary Pattern-Three Orthogonal Planes (LBP-TOP) and VGGFace CNN network are
combined in late fusion technique to extract a comprehensive feature representation of
the video. Softmax and SVM are trained for classification. The employed hybrid approach
is one of the first attempts to implement handcrafted descriptors and deep features for
micro-expression recognition.

Finally, we consider the factor of gender affecting the tendency to express micro-
expressions. We have built a multi-task learning architecture with two streams extracting
different features to achieve the same task of micro-expression recognition based on
gender, GEME. We incorporated a dynamic image concept to convert a video into a
single frame, and gender features and micro-expression features are added at each
level and given to the micro-expression stream. Inclusion of the gender features with
the micro-expression features elevates the feature details respective to the individual
participant, and the network learns unique gender features while extracting micro-
expression features.

Concisely, we have introduced four novel concepts for micro-expression detection and
recognition. The work described in this thesis establishes a connection between computer
vision and psychotherapy, and aids to expedite the micro-expression analysis process for
quick assessment wherever necessary.
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1
INTRODUCTION

1.1 Background

Facial gestures perform a crucial part in interacting with others throughout

our everyday lives. By means of facial expressions, people communicate their

emotions as well as interpret the sentiments of others.

Typically, facial expressions are loosely classified as macro- expressions and micro-

expressions. Unlike the long-lasting and highly perceptible macro-expressions, micro-

expressions may be characterised by quick transitions of less than half a second with low

intensity on the facial regions.

Ekman and Frisen [43] introduced the theory of "micro-expressions", and researchers

universally endorsed it. Figure 1.1 illustrates seven universal micro-expressions and

action units (AU) corresponding to each face muscle movement. Micro-expressions (MEs)

can be, commonly, seen in cases when individuals try to regulate or suppress their

feelings. There are three fundamental approaches to deceive facial expressions [45]:(1)

Stimulated expressions: an expression is induced to convey a feeling with expression

while experiencing nothing; (2) Neutralised expressions: showing to be a neutral face,

though having a particular feeling; (3) Masked expressions: masked in such a way

that the perceived emotion is hidden with another expression. Micro-expression is the

outcome of the disturbance of the facial muscles that appears when a perceived facial

emotion understating reactions, neutralises or hides [45].

For certain people, the primary aim of lying to improve social relations and obtain
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CHAPTER 1. INTRODUCTION

Figure 1.1: Seven universal facial micro-expressions

other people’s; respect and affection. Nevertheless, detecting lies with aggressive intent

can be critical. Liars cannot conceal facial movements entirely showing a disclosure or de-

ceit as depicted by the presence of micro-expressions. Such characteristics encourage the

prospective usage of micro-expressions in (1) high-risk scenarios such as crime investiga-

tions, airport and group transit control points, counter-terrorist activities; (2) industries

like marketing, teaching, consulting, administration, leadership, trade negotiations;

(3) medical services, such as physician-patient consultation. A few professionals have

developed the technique to catch micro-expressions with bare eyes given the attempts

made by Ekman [41] educating people using the micro-expression training tool. In recent

years, the necessity for automated micro-expression recognition has risen immensely,

owing to the challenges faced due to manual micro-expression detection. While computer

vision technology has evolved extensively, the study of micro-expressions remains a

challenge due to its brief and low-intensity properties.

Micro-expression research aims to identify and recognise micro-expressions. Over the

past decade, a broad spectrum of methods to identify and recognise micro-expressions

have been used.

1.2 Factors Influencing Recognition of
Micro-Expressions

Micro-expression is contained in the flow of expressions when individuals are trying to

repress their emotions. According to studies in [180, 239], it is observed that certain

factors affect recognition of micro-expressions.

2



1.2. FACTORS INFLUENCING RECOGNITION OF MICRO-EXPRESSIONS

1.2.1 Emotional Context

Existing studies have employed neutral expressions before and after the emotion. The

study suggests that micro-expressions may be encapsulated either in neutral expressions

or in certain facial expressions accompanying emotions such as sadness and happiness.

According to the theory of emotional regulation, in the priming task, primes presented

for longer duration may lead to greater priming effect. Moreover, it is observed that

emotional information influences attention [239]. The aims of this research are:

∗ to examine the effect of emotional context on micro-expressions;

∗ to explore if the effect of the context was limited to a particular material, and

∗ to investigate the reason of the effect.

The findings will lead researchers to predict that the emotional context would indeed

influence micro-expression recognition.

1.2.2 Duration of Expression

The significant difference between a micro- and a macro- expression is the length for

which the expression lasts. Many specific assessments of a micro-expression’s length

have been developed. Therefore, there is also a difference of agreement as to the time

span of the micro-expression duration. Although the difference in duration might not be

significantly noticeable, for micro-expressions it needs to be taken into account.

To verify the effect of duration on micro-expressions recognition, researchers con-

ducted two experiments [180] asking the participants to recognise the micro-expressions

in the images shown to them. In Experiment 1 expression images were shown to par-

ticipants for 40,120,200 or 300 ms. The researchers employed Brief Affect Recognition

Test (BART) for Experiment 1. In Experiment 2 the participants were given the micro-

expression recognition training using the Micro Expression Training Tool (METT) [41]

paradigm which played a significant role in recognition of the micro-expressions. The

outcome of the experiments indicated that the participants could recognise the micro-

expression in the images in 200 ms without training and 160 ms after training. The

results suggest that the critical time point that differentiates micro-expressions was

about 200 ms or less. Thus, in conclusion, the accuracy of the micro-expression recognition

is a function of the duration of the expressions.
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1.3 Challenges

1.3.1 Environmental factor

Environmental variability in the study of micro-expressions is the most intractable

problem which entails variability in the light as well as head position. The majority of

the features of illumination variability highly rely on the pixel intensity shifts. Dynamic

lighting conditions could be triggering inaccurate feature assessment, head motion or

adjustments in the head location, which may be mistaken as micro-expression. A slight

head motion greatly influences the shifts of perceived expressions, thereby reducing

detection precision.

1.3.2 Spontaneous and subtle motion of the facial movement

A significant obstacle for micro-expression recognition is a low intensity subtle and

involuntary facial movements that makes detection of emotions not identifiable via the

naked eyes. For certain instances, the classifier might even confuse motions wrongly

as a neutral face. Techniques for magnifying and intensifying subtle emotions are thus

essential at the pre-processing level.

1.3.3 Imbalanced dataset

SMIC, CASME, CASME II, and CAS(ME)2 are some of the limited publicly accessible

datasets concentrating on micro-expression recognition. Despite being recommended for

assessing micro-expression recognition framework, the uneven distribution of samples

through expressions can contribute to the biases on performance. Besides, the captured

samples for the available datasets are typically obtained in regulated settings with even

lighting and fixed locations. Therefore, current state-of-the-art algorithms validated

on these datasets might not be ideal in real-world and raises a requirement for more

real-world based datasets.

1.4 Research Questions and Hypothesis

We aim to propose the best possible solutions through our research to the problems we

identified as necessary to be addressed. Our research questions addressed in this study

are as follows:

4



1.5. INFLUENCE OF MICRO-EXPRESSIONS ON DIFFERENT DOMAINS

Q1: What information about micro-expressions does an image provides?

H1: An image can provide the information related to the presence of micro-expression
in the image.

Q2: As in facial macro-expressions, can we recognise facial micro-expressions from an

image?

H1: If we can extract accurate facial movement details, then we will be able to use
an image for recognising micro-expressions.

Q3: How can we improve micro-expression recognition accuracy in videos?

H1: If we can identify different feature descriptors and combine them, then it can
lead to better recognition accuracy.

Q4: Which human characteristic affects the way micro-expressions are expressed,

contributing to improving micro-expression recognition accuracy?

H1: If we can extract the additional facial properties unique to each individual,
then we will be able to improvise micro-expression recognition accuracy.

1.5 Influence of Micro-Expressions on different
domains

We frequently encounter a query as to how the people interpret “micro-expressions” and

their importance in our general perception of body language, and most specifically, their

applicability in deceit detection. Decades of studies indicate that training in emotion

recognition will boost and reinforce the capacity to discern whether someone is dishonest,

understand how other people feel and enable you to consider the effect of your actions on

others. Nowadays, micro-expressions are adopted as subjects and are granted separate

courses in various institutes and schools. Numerous professions where human intercom-

munication is routinely required, the student must study micro-expressions in order

to train themselves for varied career directions. Micro-expressions being ubiquitous

and hard to deceive, they play a vital position in the analysis of deception and criminal

investigations [219]. Recognition of micro-expressions may be used to identify harmful

atrocities [219]. Micro-expressions can also aid in interacting and recognising the pur-

pose of others in several areas, such as business, medicine, law and national security
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[78]. Identification of micro-expressions provides a wide variety of possible uses spanning

from understanding consumer responses to diverse circumstances and advertisement

strategies [220] to the intercession of terrorist attacks [219]. It can also be adopted to

determine the probability of an individual harming their children [6].

1.5.1 Social Impact

For those engaged in law enforcement, sales and marketing, recruitment, business and

negotiations, leadership, coaching and teaching, micro-expressions provide a crucial

edge.

The FBI and CIA in the U.S.A. and other law enforcement agencies around the

globe have adopted methods to train and enable law enforcement officers to detect micro-

expressions. The identification of terrorists in line at the airport is only one serious

application of the potential to detect micro-expressions [51, 219]. Individuals who are

skilled liars seek to intimidate us with false news but relinquishing their dishonest act

with their micro-expressions. Professional psychologists and prosecutors globally adopt

the technique of rapid-fire questions to apprehend liars [42, 52].

Business executives and delegates will foster mutually valuable alliances if they

are capable of interpreting others thoughts and feelings [220]. Learning what a micro-

expressions is, as a salesperson, acts as the first move towards a more nuanced approach

to better "interpret" your consumers and prospective clients. In order to be efficient,

the vendor must follow a personalised approach and be vigilant and attentive to the

consumer by observing their facial expressions to realise the way a consumer perceives

the conversation. Product analysts may enhance the qualitative feedback collected

from the customers by interpreting customer feelings while testing products, providing

clues of what they believe about what they claim.

Employers usually discover soon after recruiting those with outstanding credentials

that they are toxic to the workplace and that they are annoying, egotistic, seeking

personal prestige over team goals. It would be immensely beneficial when recruiting

individuals, not just for work but elected positions, jury duties, or several other situations

where it is required to dig deep into someone being assessed [138].

Teachers should interpret their students’ thoughts to gain insight into how their

lesson plans are progressing and that they can adapt better and execute them efficiently.

Researchers also attempted to analyse the pre-schoolers’ micro-expression recognition

ability that could enable them to grasp adult interactions and properly respond to

emerging situations and experiences [168]. School managers who could understand
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1.5. INFLUENCE OF MICRO-EXPRESSIONS ON DIFFERENT DOMAINS

their teachers’ feelings will be able to scale down the burden consequently sustaining

and enhancing teacher performance.

Parents, partners, friends and anyone willing to maintain positive and construc-

tive relationships will profit from enhancing their capacity to read emotions [6, 42].

1.5.2 Scientific Impact

The identification of micro-expressions facilitates an exposure into a very intimate

domain of life: the emotions that they do not want others to realise they are having.

Despite being an intrusion in privacy, it may serve the interest of the public. This allows

the doctors, nurse or health care professionals to adapt for improved treatment.

In a recorded interview in 1969, Ekman and Friesen [43] discovered that a psy-

chologically unstable patient was attempting to conceal a deep depressive sentiment

from her therapist to reassure that she was not suicidal anymore. As the interview

footage was viewed in slow motion, only two frames were seen revealing the patient’s

depressed face accompanied by a fake grin for a longer time. Such facial expressions are

termed as micro-expressions and Haggard and Isaacs [62] first identified them three

years before the incident. Haggard and Isaacs clarified how, throughout their research,

such "micromomentary" gestures were witnessed when analysing hours of videos of

psychotherapy sessions, aiming for signs of non-verbal conversation between the patient

and psychiatrist.

Medical practitioners can strengthen interactions with patients, compassionately

communicate with empathy and concern, and gathering undeniable evidence to guaran-

tee the right diagnosis. The studies involving patients with Schizophrenia [175, 241]

illustrates that those qualified to interpret micro-expressions are more likely to identify

others’ feelings. A pilot study [47], emphasising on facial micro-expressions as non-verbal

indications, was carried out. This research analysed first-year medical students’ ability

to perceive emotional micro-expressions as strong or weak communicators before and

after the METT [39] training. The research demonstrated that the learning component

of METT supported certain students who exhibited reliable professional contact while

under-performing students did not benefit.

Ekman initiated one of the very first attempts to enhance the human capacity to

micro-expressions, where he established the METT to teach people to identify seven

micro-expression classes [41]. Frank et al. [51], however, noticed that the efficiency of

micro-expression identification by undergraduate students only exceeded a high of 40%

with the aid of METT, whereas unassisted U.S. coastguards achieved no more than
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50%. There is, therefore, a strong demand for an automated ME recognition method,

particularly with recent developments in computing capacity and multi-core parallel

functionalities, to assist in catching micro-expressions involved in lies and alarming

behaviours. Researchers, today, have extended past psychology to use of computer vision

and video processing to simplify the identification of micro-expressions.

1.6 Contributions and Outline

This thesis introduces four approaches for micro-expression detection and recognition.

The traditional pipeline of processes followed for micro-expression analysis comprises

of micro-expression detection, feature extraction and recognition. A similar sequence

of operations using proposed techniques are depicted in the following chapters of this

thesis. Any video to be annotated as one of the emotion categories, it is essential to detect

that the video contains some facial movements that resemble the micro-expressions.

Chapter 3 introduces a technique to detect such facial signs from video frames. Upon

detection, the relevant facial features are extracted to classify the micro-expression

into its correct emotion category. In Chapter 4, micro-expression related spatial and

spatio-temporal facial features are extracted from images and sequence of images,

respectively to recognise the emotion class. Apart from the micro-expression specific

features, and the additional human-specific element is extracted that is likely to impact

the way micro-expressions are expressed. Chapter 5 demonstrates the impact of gender

on micro-expression recognition. Chapters 4 and 5 illustrate different techniques of

feature extraction and introduce a new feature for micro-expression recognition. Each of

the following chapters is a part of the micro-expression analysis pipeline, and each block

in this analysis pipeline plays a vital role. The workflow depicted in Figure 1.2 explains

relation between the proposed methods and that without any one of these blocks, the

micro-expression analysis is incomplete.

The main contributions of the thesis are outlined in chapters as follows:

∗ Chapter 2 introduces the background: an extensive study of the databases, the

state-of-the-art features for micro-expression detection and recognition. This chap-

ter introduces several fundamental feature descriptors both handcrafted and

deep learning as well as hybrid approaches and classifiers used in the micro-

expression analysis. We have also listed and explained widely used benchmark

micro-expression databases. Some content of this chapter is published in MTA
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Figure 1.2: Relation between proposed facial micro-expression analysis methods

20171.

∗ Chapter 3 explores a novel idea of detecting micro-expressions from images.

The existing methods used feature differencing or frame differencing to detect

the presence of micro-expressions in the videos. In this chapter, we propose a

supervised framework of deep network using attention network, called LGAttNet,

to detect if the frame contains micro-expression or not. Three attention networks

are fed with the feature maps from different parts of the face as well as the whole

facial region to extract local and global attention feature maps, respectively. The

output from these attention networks is added and passed to a standard ANN. This

ANN is used to perform binary classification to output if the class of the frame is a

ME class or non-ME. The content presented in this chapter is based on the work

submitted to Knowledge-Based Systems2.

∗ Chapter 4 presents our two new approaches for micro-expression recognition

1Madhumita A. Takalkar, Min Xu, Qiang Wu, Zenon Chaczko, A survey: facial micro-expression
recognition, Multimedia Tools and Applications (MTA) 2017.

2Madhumita A. Takalkar, Selvarajah Thuseethan, Sutharshan Rajasegarar, Zenon Chaczko, Min Xu,
John Yearwood, LGAtteNet: Automatic Micro-expression Detection using Dual-Stream Local and Global
Attentions, Knowledge-Based Systems (KBS).
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CHAPTER 1. INTRODUCTION

based on deep learning. The first method deals with developing a system to work

with static images for recognition of micro-expression using convolutional neural

networks (CNN). An extension to this work is the second method that uses a

video frame sequence for micro-expression recognition. The principal idea of this

approach is to identify additional features contributing to the improvement of the

accuracy results. Hence in this chapter, the second approach is the combination

of handcrafted LBP-TOP features with deep CNN features. The classification is

carried out using Softmax and SVM with different kernels to identify the best

suitable classifier for the model. The content of this chapter is published in DICTA

20173, MMM 20194 and some sections are based on the work published in MS

20205.

∗ Chapter 5 originates the adoption of a distinctly human characteristic: gender. We

claim that gender influences the way every individual shows the micro-expressions.

The experiments presented in this chapter confirm our hypothesis. We have built

a dual-stream CNN framework called GEME with one stream classifying gender

and the other classifying micro-expression. This framework uses a concept of a

dynamic image which is a single image depicting a micro-expression video. The

gender features extracted from one stream are added with the micro-expression

features at each level, and the new feature map is given to the next block of the

micro-expression stream. This way, we are utilising the gender characteristics to

train the network for unique features distinct to each gender. Incorporating the

gender features also aided to improve micro-expression recognition accuracy. The

content of this chapter is based on the work submitted to Neurocomputing 6.

∗ Chapter 6 summarises the key novel contributions of this thesis. The chapter also

highlights some unsettled and open issues generally faced in micro-expression

analysis and gives the future perspective work based on our thesis.

3Madhumita A. Takalkar, Min Xu, Image based facial micro-expression recognition using deep learn-
ing on small datasets, In 2017 International Conference on Digital Image Computing: Techniques and
Applications (DICTA), IEEE.

4Madhumita A. Takalkar, Haimin Zhang, Min Xu, Improving Micro-expression Recognition Accuracy
Using Twofold Feature Extraction, In 2019 International Conference on Multimedia Modeling, Springer,
Cham.

5Madhumita A. Takalkar, Min Xu, Zenon Chaczko, Manifold Feature Integration for Micro-Expression
Recognition, Multimedia Systems (MS) 2020.

6Xuan Nie, Madhumita A. Takalkar, Mengyang Duan, Haimin Zhang, Min Xu, GEME: dual-stream
multi-task GEnder-based Micro-Expression recognition, Neurocomputing.
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2
RELATED RESEARCH REVIEW

Facial expression recognition plays a pivotal role in a wide range of applications of

psychotherapy, security systems, marketing, commerce and much more. Detecting a

macro-expression, which is a direct representation of an ‘emotion’, is a relatively straight-

forward task. Playing a pivotal role as macro-expressions, micro-expressions are more

accurate indicators of a train of thoughts or even subtle, passive or involuntary thoughts.

Compared to macro-expressions, identifying micro-expressions is a much more chal-

lenging research question because their time spans are narrowed down to a fraction of

a second, and can only be defined using a broader classification scale. This chapter is

all-inclusive survey-cum-analysis of the various micro-expression processing techniques.

We analyse the general framework for micro-expression analysis system by decomposing

the pipeline into fundamental components, namely face detection, pre-processing, facial

feature detection and extraction, datasets and classification. We discuss the role of these

elements and highlight the models and new trends that are followed in their design.

We also discuss the new deep learning networks applied for facial micro-expression

analysis systems. This survey focuses on the methodologies applied, existing databases,

performance and comparing these to distil the gaps in the efficiencies, and research

potentials. Through this survey, we intend to look into micro-expression analysis problem

and develop a comprehensive and efficient recognition scheme.
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CHAPTER 2. RELATED RESEARCH REVIEW

2.1 Introduction

Emotions play a very prominent and purposeful role in day-to-day life. There is a high

possibility of ambiguity, in guessing the hidden emotion, within an expression that elicits

during situations of low or normal stakes. High stake situations provide more probability

in predicting the emotion correctly as compared to low and normal stakes. Occurring in

high stake situations, micro-expressions are the basis for expressing involuntary feelings.

Micro-expressions happen in a fraction of a second and are hard to be recognised in real

time especially lacking related expertise. Macro-expressions are usually displayed for

3/4th of a second to 2 seconds. Although there are many different categories of emotion,

there can be six universal expressions: anger, disgust, fear, happiness, sadness and

surprise [36]. Macro-expressions occur over a single or multiple regions of the face

depending on the category of expression.

Micro-expressions are described as a habitual pattern of the human face that is

observable but too brief to convey an emotion. Micro-expressions are extremely fast facial

expressions that usually last for 1/25 second to 1/5 second [69, 239]. They can easily be

neglected during the casual conversations.

Since micro-expressions are barely perceptible to humans, a Micro-Expression Train-

ing Tool (METT) has been developed by Ekman [39] to teach a human how to spot and

respond to micro-expressions. However, micro-expressions can seldom be falsified, and

the essential difference between macro- and micro-expressions is the duration instead of

the intensity of the expressions [180]. Currently, although experts can identify the exis-

tence and recognise micro-expressions, the accuracy is only about 47% [69]. Thus, having

a system to improve the micro-expression analyses and help identify and categorise a

person’s feelings automatically and correctly is desirable.

Automated macro facial expression recognition has an enormous amount of existing

research. Researchers have developed many algorithms, which have achieved a recog-

nition accuracy of over 90% [2, 36, 85], for above mentioned six standard posed macro

facial expressions. A recent study in [85] proposes a novel technique which when com-

pared with existing state-of-the-art technique indicates a better result. On the contrary,

micro-expressions have not yet been explored extensively due to several challenges.

One of the challenges, most of the researchers face, is the lack of a standard micro-

expression database, which makes it difficult to obtain dynamic facial features to train

an accurate micro-expression recognition system. There is no significant research on

the dynamics of the micro-expressions. Since the appearance of the micro-expression

14



2.2. MICRO-EXPRESSION DATABASES

completely resembles the six primary macro-expressions, it is possible for researchers

to train a system based on the existing macro facial expression databases by utilising

the appearance information and ignoring the dynamic information. Other challenges

include the development of robust methods to tackle the short span and low-intensity of

micro-expressions.

There is a vast range of applications that can benefit from the study of micro-

expressions. A primary purpose for the active involvement in micro-expressions is that it

proves to be an important sign for detecting lies. For example, in situations when the

suspects are being questioned, a micro-expression fleeting across the face can tell the Po-

lice that the criminal is pretending to be innocent. It can also benefit the border security

officers for identifying suspicious behaviour of the individuals during usual interviews of

checking for potential dangers. In the study of psychotherapy, micro-expressions have

been proved very helpful in understanding genuine emotions of the patients. Micro-

expression recognition systems are sometimes also used as an additional module for

user authentication [169]. In other fields, such as marketing, distance learning, and

many more, micro-expressions can be used as recognition to reflect human reactions and

feedback to advertisements, products, services and learning materials.

This chapter provides a comprehensive survey of the existing micro-expression recog-

nition methods along with their outcomes, to offer a convenient introduction to the recent

developments in this domain.

2.2 Micro-Expression Databases

The success in macro- facial expression recognition primarily relies on sufficient facial

expression databases, such as the popularly used Extended Cohen-Kanade (CK+) [133],

Multimedia Understanding Group (MUG) [4], MMI [199], JApanese Female Facial

Expression (JAFFE) [135], Multi- Pose, Illumination and Expression (Multi-PIE) [57]

and also several 3-D facial expression databases. In contrast, there are very few well-

developed micro-expression databases, which have hindered the development of micro-

expression recognition research.

The foundation of the micro-expression detection and recognition system is a well

established database. It is a complex and difficult task to build a database that meets

various criteria and will be used broadly to test new algorithms. For recognition of

micro-expressions, the creation of normalised database presents various challenges,

including how to evoke expression and to choose micro-expression from raw videos. First,
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the method of evocation requires the correct emotional catalyst option that with high

ecological legitimacy. After capturing, there is a need for psychologists or trained experts

to verify the labelling of these micro-expression samples. The first non-spontaneous micro-

expression recognition databases used in earlier research are Polikovsky dataset [166],

USF-HD [181], and YorkDDT [218]. Because of their inadequacies such datasets are

uncommon. A significant issue is the ability to present expressions spontaneously. Non-

spontaneous or posed expressions are the formulated gestures given by a person when he

or she is asked to do so which is normally in the laboratory environment. Spontaneous

expressions, on the other hand, are those voluntarily displayed when people engage in

natural talks, watch movies, and so on. Micro-expressions that are posed are quickly

recognisable, whereas it is hard to create and locate spontaneous ones. In terms of nature

and temporal dynamics, spontaneous micro-expressions are distinct. Implementation

of an empirical micro-expression system ensures recognising spontaneous instead of

posed micro-expressions. As a result, researchers today have begun to work towards

the development of the databases with spontaneous micro-expressions and improving

spontaneous analysis of micro-expression. According to [11] “a standardised training
and testing database contains images and video sequences (at different resolutions) of
people displaying spontaneous expressions under different conditions (lighting conditions,
occlusions, head rotations, etc)”. In recent years, nine micro-expression repositories have

been developed. Three of them are extensively used to evaluate micro-expressions: 1) the

Chinese Academy of Sciences Micro-Expressions (CASME) [231]; 2) the improved CASME

(CASME II) [229] and 3) the Spontaneous Micro-expression Corpus (SMIC) [112]. The

other spontaneous micro-expression databases are the Database of Spontaneous Macro-

expressions and Micro-expressions (CAS(ME)2 [167]) and the Spontaneous Actions and

Micro-Movements (SAMM) [29].

The CASME database includes 195 samples of 1500 facial expressions categorised

in 8 groups emotion classes of 19 valid subjects at 60 frames per second. These micro-

expressions are action unit (AU) labelled with a facial region of interest cropped to size

of 150×190 pixels. The participants are paid to hide all their facial expressions, if failing

to do so, the amount of token given will be subtracted. They are shown videos of around

1−4 min duration to induce micro-expressions. The AU identification is analysed from

collected video data.

CASME II is a revised version of CASME database in which the number of samples

are increased to 247 with 26 substantial subjects. In order to select the best examples

out of 2500 facial expressions, a thorough selection was made. The videos are recorded at
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200 frames per second in order to capture facial expression under restricted environment.

The emotions are classified into seven emotion classes with facial region cropped to

280×340 pixels.

The CAS(ME)2 database contains lengthy video of both macro- and micro- expressions.

The database is divided into two sections; section A consists of 87 of both expression kinds

and section B is split into two parts, with 300 of cropped spontaneous macro-expression

and 57 of spontaneous micro-expression provided by the 22 participants. Samples are

recorded at 30 frames per second in a rather low frame rate in a comparatively few

samples of prior databases.

To overcome the issue of lack of ethnic diversity, SAMM is introduced. In this database,

subjects from 13 diverse ethnicities have participated. Facial motion is recorded in

a composed lab setup at 200 frames per second. Unlike earlier database collection,

participants are initially requested to complete a set of questions before they advance

to experiments. Depending on the participants’ response, the conductor of the research

showed videos that are consistent to the answers. FACS is coded with less attention to

affect labelling in all recorded videos.

The SMIC (HS), the expanded version of the initial 77 samples SMIC dataset, includes

16 substantial individuals with 164 instances recorded in a confined setup at 100 frames

per second . This dataset is split into three main negative, positive and surprise categories.

The positive class contains happy emotion whereas negative class combines four feelings,

i.e. sadness, anger, fear, and disgust. The remaining category is a surprise with surprise

emotions. The micro-emotions in this dataset are captured in the same way as CASME

dataset. The dataset is, however, not annotated with action unit, and the apex frame

index remains unknown.

Alternatively, SMIC contains samples collected with 25 frames per second using

standard speed camera (VIS) and infrared cameras (NIR) from 8 participants. Total

of 71 samples consisting of micro-expressions are collected for both types of cameras,

respectively.

2.2.1 Database Comparison

A comparison summary of non-spontaneous and spontaneous micro-expression databases

is shown in Table 2.1. Considering the unavailability of non-spontaneous databases, a

comprehensive analysis of those databases could not be done. CASME II collects a high

number of CASME-like micro-expression samples that are 195 samples of 35 participants.

CASME and CASME II, where all subjects are Chinese, have no variation throughout
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Table 2.1: Summary of micro-expression databases

Dataset Participants FPS Resolution Samples Emotion Class FACS Coded Ethnicities
Polikovsky 10 200 640\times480 13 7 Yes 3
USF-HD \ 29.7 720\times1280 100 6 No \
YorkDDT 9 25 320\times240 18 \ No \

CASME 35 60
640\times480,

1280\times720
195 7 Yes 1

CASME II 35 200 640\times480 247 7 Yes 1

CAS(ME)2 22 30 640\times480
250 macro,
53 micro 8 Yes 1

SAMM 32 200 2040\times1088 159 8 Yes 13

SMIC
HS 16 100

640\times480
164

3 No 3NIR 8 25 71
VIS 8 25 71

ethnic groups. The disadvantage of lack of diversity in ethnic backgrounds observed in

CASME, CASME II and SMIC is mitigated by the introduction of SAMM database with

participants from 13 different nationalities. In terms of age distribution with a median

age of 33.24 years (SD: ±11.32), SAMM also has the edge over the other. Samples for

CASME II and SAMM are captured with a high frame rate of 200 fps. SAMM is currently

the first and only database with high-resolution of 2040×1088 pixels with a facial region

measuring 400×400. The CAS(ME)2 has only 53 reported micro-expression samples.

FACS coding is used for labelling CASME, CASME II and SAMM databases.

The emphasis of the researchers is on CASME II and SAMM, which have all neces-

sary criteria to recognise micro-expressions: emotion groups, large frame rates, a rich

spectrum of micro-expressions and the severity for facial movements are special.

2.3 Approaches for Facial Micro-Expressions
Analysis

Micro-expression recognition systems are developed by considering many factors and

parameters. Many studies have been undertaken and still undergoing in delivering

better detection, spotting and recognition accuracy. Apparently, the identification process

entails the extraction and categorisation of features. Nonetheless, before the actual

feature extraction, the quality of descriptive data to be extracted by descriptors could be

enhanced in the pre-processing stage. All the above phases, as shown in Figure 2.1, are

addressed in this segment of chapter.
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Figure 2.1: A general framework for micro-expression recognition analysis

2.3.1 Face detection

Face detection is the primary stage of the recognition process. Human face(s) is located

in the digital images or image sequences. This step is useful for selecting the region(s) of

interest (ROI) in the images or selects ROI in the first frame and track the face in the

remaining frames in case of image sequences.

There are several face detection methods enforced till date [89, 97, 104, 170, 189,

203, 207]. Some of the latest face detection techniques are summarised here. Viola et al.

[203] introduced the first framework to provide competitive detection rates in real-time

since 2001. This framework is capable of processing images rapidly while achieving high

detection rates. Wang et al. [207] suggested a coupled network of encoder-decoder to

identify faces and locate facial landmarks together. The encoder and decoder produce

response maps to locate the facial key points. They designed a coherent architecture

for cascading multi-scale face detection through the combination of feature maps. With

the help of deep learning, Sun et al. [189] introduced a new facial detection scheme

and achieved the cutting-edge detection performance on the renowned FDDB face detec-

tion evaluation. A variety of techniques incorporating the feature concatenation, hard

negative mining, multi-scale training, model pre-training and careful tuning of crucial

parameters reinforced the faster RCNN framework.

2.3.2 Pre-processing

Pre-processing is the common name for operations performed on images at the lowest

level. The aim is to achieve improvement of the image data that suppresses unwanted

distortions or enhances some features for further processing. The sequences for micro-

expressions are of very short duration wherein the intensity of the facial movements

is low. There are several methods implemented to normalise the input data so that

sufficient details about the micro-expression are extracted for further processing. Some

of the commonly used pre-processing methods are discussed below.
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2.3.2.1 Facial Action Coding System (FACS)

The Facial Action Coding System (FACS) is described as an anatomy based system for

comprehensively describing all facial movements. FACS devised by Ekman and Friesen

[53], provides an objective means for measuring the facial muscle contractions involved

in a facial expression. FACS was developed to allow researchers to measure the activity of

facial muscles from video images of faces. Each noticeable component of facial movement

is called an Action Unit (AU). Ekman and Friesen [53] defined 46 distinct action units,

each of which corresponds to displacement in a specific muscle or muscle group, and

produces facial feature deformations which can be identified in the images. Recently,

considering the significance of action units in the detection and recognition of micro-

expressions, Li et al. [114] introduced a new Spatio-Temporal Adaptive Pooling (STAP)

network for localising action units in micro-expressions.

2.3.2.2 Temporal normalisation (TIM)

Micro-expression video clips are unevenly small (or long). This can lead to two conflicting

situations: (a) for short-duration videos that restrict the use of feature extraction strate-

gies requiring variable time window duration (e.g. LBP dependent modes which can

render binary patterns from different radius), (b) for long-duration videos which could

degrade the recognition efficiency through recurrent or duplicate frames (captured with

high speed camera). For answering this issue, the TIM (Temporal Interpolation method)

is used to render clips of identical frame lengths either by up-sampling (too short clips)

or down-sampling (too long clips).

Pfister et al. [164] suggested to standardise the video frames in a certain time period,

using a TIM. TIM uses graph embedding to interpolate images at arbitrary positions

within micro-expressions. This interpolation allows inputting a sufficient number of

frames to the feature descriptor. TIM is a manifold-based interpolation method that

inserts a curve in a low-dimensional space after embedding of an image sequence. In

Figure 2.2, a micro-expression video is represented as a set of images sampled along the

curve creating a low-dimensional manifold by delineating the micro-expression video as

a path of the graph with vertices. The interpolated frames are mapped back to a high

dimensional space to form the temporally normalised image sequence [111].
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(a) (b)

Figure 2.2: (a) An example of micro-expression being interpolated through graph
embedding; (b) Temporal interpolation method. The video is represented onto a curve

along which a new video is sampled [164]

2.3.2.3 Integral projection

Huang et al. [75] proposed a new framework to obtain the horizontal and vertical

projections using the integral projection method based on calculating the difference of

images, which helps to retain the shape aspect of facial images. The integral projection

generates a one-dimensional pattern by summing the given set of pixels along a given

direction. The integral projections can extract common structure for the same person. In

a micro-expression video clip, supposing that a frame is neutral, the difference between

neutral face image and the expression image derive new images. The new derived

facial images help reduce the influence of face identity on recognition methods. The

integral projection itself does not define the presence and movement of facial images.

It is, therefore combined with feature extraction method, e.g. LBP-TOP (as discussed

in Section 2.4.3), to get the appearance and motion features. To preserve sufficient

information in the process of projection, a new spatiotemporal method based on integral

projection is introduced in [75]. Hence, the method is called as Spatiotemporal Local

Binary Pattern with Integral Projection (STLBP-IP). Figure 2.3 shows the procedure to

encode integral projection by using LBP. STLBP-IP achieves state-of-the- art performance

compared to TIM.

Figure 2.3: The procedure of encoding difference-image based integral projection on the
spatial domain [75]
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2.3.2.4 Color space model

Color is a fundamental aspect of human perception, and its effects on cognition and

behaviour have attracted interests of many generations of researchers. Recent research

revealed that colour might supply useful data for face recognition.

Wang et al. [213] demonstrated a Tensor Discriminant Color Space (TDCS) model

that uses a 3rd-order tensor to represent a color facial image. To make the model robust

to noise, they [212] also used an elastic net to propose a Sparse Tensor Discriminant

Color Space (STDCS). Lajevardi and Wu [99] also addressed a color facial expression

image as a 3rd-order tensor and presented that the perceptual color spaces (CIELab and

CIELuv) are better overall for recognition of facial expression than most color spaces .

A new color space model called tensor independent color space model (TICS) [210,

211] reveals that a micro-expression color video sequence is conceived as a fourth-

order tensor, i.e., a four-dimension array. The initial two dimensions cater the spatial

details; the third delivers the temporal data, and the fourth gives the color specifications.

Wang et al. [211] transformed the fourth dimension from RGB into TICS, wherein the

color elements become as separate as possible. In a color micro-expression video clip,

the correlated R, G and B components in RGB space are transformed into a series of

uncorrelated components T1, T2 and T3, and extract the dynamic texture features from

each uncorrelated component to obtain better results. These research measured the

impact of various colour spaces on detection based on facial motion rather than skin

colour change.

Recently, Shahar et al. [178] attempted to explore a feature of human face which is

much more complicated to conceal, which is the facial colour alteration induced by the

flow of blood while expressing emotions. They recommended a method that measures shift

of colour during micro-emotion, which overlooks movement-related facets of expression

and solely focusing on face colour and distinguish emotional types successfully.

2.3.2.5 Motion magnification

The complexity and subtlety of the micro-expressions is one of the contributing factors

making it difficult to recognise them automatically. Given the very weak intensity of

facial micro-expression movement, the distinction between micro-expression types is

extremely difficult. One approach to this issue is the distortion or amplification of these

facial micro-movements.

Recent works [111, 156, 215, 238] have used the Eulerian Motion Magnification
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(EMM) [225] technique for magnifying the subtle movements of micro-expression videos.

With the use of band-pass filters, the EMM technique derives the frequency bands of

interests from the numerous spatial frequency bands generated from the disintegration

of the input video, which are augmented with a magnification factor in order to intensify

the motions at a different spatial level. Li et al. [111] proved that the EMM approach

leads to increase in the disparity between the various micro-expression groups (i.e.

inter-class variation) and thereby improve the recognition rate.

Nevertheless, greater amplification factors may trigger unwanted distorted noises

(movements that are non-ME induced) may impede the recognition efficiency. Le et al.

[101] technically calculated the upper limits of impact to avoid over-amplification of micro-

expression samples. In addition, the authors also analysed the efficiency of the amplitude-

based EMM (A-EMM) and phase-based EMM (P-EMM). Park et al. [156] suggested a

magnification regime that modified the most selective frequency band required for EMM

to enhance the subtle facial movements, in order to mask the unique temporal features

of various micro-expression groups. A study by Le et al. [100] demonstrated the Global

Lagrangian Motion Magnification (GLMM), in particular, with higher magnification,

may lead to greater recognisability than local Eulerian approaches.

2.3.2.6 Other techniques

Active Appearance Models (AAM) is a statistically based template matching method,

where a representative training set takes the variability of shape and texture. A group

of images with landmark coordinates that appear in all of the images is given to the

training supervisor. Edwards, Cootes, and Taylor [39] were the first to introduce the

model in the context of face analysis. The method is widely used for matching and

tracking faces and for medical image interpretation [23]. The algorithm applies the

difference between the current estimate of appearance and the target image to derive

an optimisation process. To match an image, the current residuals are measured and

use the framework to anticipate changes to the present parameters, leading to a better

match. A good overall match is obtained in a few iterations, even from poor starting

estimates. AAMs, learn what are the valid shapes and intensity variations from their

training set.

Active Shape Model (ASM) algorithm is a fast and robust method of matching a set of

points controlled by a shape model to a new image. Cootes et al. [24] proposed the active

shape model where shape variability is learned through observation. ASM is again a

statistical model of the shape of objects which iteratively deform to fit an example of
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(a) (b)

Figure 2.4: (a) 66 feature points using DRMF; (b) 36 regions-of-interest (ROIs) [127]

the object in a new image. The technique relies on each object or image structure being

represented by a set of points. The points can represent a boundary, internal features, or

even external ones, such as the centre of a concave section of the border. Points are placed

in the same way on each of a training set of examples of the object. The sets of points are

aligned automatically to minimise the variance in the distance between similar points.

By analysing the statistics of the positions of the labelled points a “Point Distribution

Model (PDM)” is derived. The model gives the average positions of the points and has

some parameters which control the main modes of variation found in the training set

[24].

Registering and tracking a non-rigid object has significant variations in shape and

appearance. Discriminative Response Map Fitting (DRMF) [7] is one of holistic tex-

ture based methods, which relies on shape initialisation. Moreover, as a discriminative

regression-based approach, DRMF performs impressively well in the generic face fitting

scenario. DRMF is used to identify a series of facial landmarks in the facial area of the

first frame in every micro- expression video sequence. DRMF located 68 feature points

in a facial region. With the help of Facial Action Coding System (FACS), 36 Regions of

Interest (ROI) are marked, and the face region is partitioned as shown in Figure 2.4

[127, 160].

2.3.3 Features

The extraction of features ensures that the volume of the data needed to reflect a broad

range of dataset is minimised. Perhaps the most crucial phase in micro-expression

recognition is the facial feature extraction. Various viable features are adopted by
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several researchers to reveal facial characteristics. Micro-expression feature extraction

mechanisms are categorised as geometric-based and appearance-based. Geometrical

features represent face morphology, such as curves and facial landmarks, and they involve

accurate landmark localisation and alignment techniques. Conversely, appearance-based

features define colour and textural details namely wrinkles and hue shifts and are

therefore more resilient for alterations in lighting and orientation. There was, therefore,

a rise in prevalence of appearance-based micro-expression recognition approaches [106],

including LBP-TOP [243], HOG 3D [166], HOOF [20] and deep learning.

2.3.3.1 Traditional Approaches

Local Binary Pattern- Three Orthogonal Planes (LBP-TOP) and its variants
The basic idea behind Local Binary Pattern (LBP) is to compare the centre pixel value

with the neighbourhood pixel values. A binary code is generated by assigning the value

one to the greater neighbour pixel value and assigning zero to the rest. The obtained

binary code is converted to decimal to get the local binary pattern value of the centre

pixel. The calculation process of a basic LBP operator can be understood from Figure 2.5.

Local Binary Pattern-Three Orthogonal Planes (LBP-TOP) combines the temporal

features along with the spatial features from LBP of the image sequence. A video is a

chronological succession of frames with three dimensions, i.e. two dimensions (X and Y)

are the spatial information and the third dimension (T) is time. The three orthogonal

plane corresponds to the combination of spatial and temporal planes: XY, YT, and XT.

LBP is firstly computed on these three planes. After that, histograms corresponding to

each plane are obtained, which are concatenated to describe the dynamic texture of the

micro-expression video [217, 243].

A feature vector is generated by calculating a histogram of LBPs over a whole image.

The LBP method is effective for describing 2D textures of static images, but to analyse

time-dependent textures (i.e. changing expressions in the video), LBP method needs to

be broadened. To extend the LBP method, computation of LBP histograms is done in

Figure 2.5: The calculation process of a basic LBP operator
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Figure 2.6: LBP-TOP example: scan all the pixels to calculate their LBP histograms on
the XY, XT, and YT plane respectively. The data of the pattern frequency is counted in

each corresponding histogram and then concatenated as one [217].

three orthogonal planes. For a video with time duration T, LBP is calculated for the XY-,

XT-, and YT- planes. The XY- plane describes the spatial changes, while the XT- and YT-

planes describe the spatial-temporal change in each respective dimension. The calculated

histograms are then merged to generate the final LBP-TOP feature vector. The frequency

of patterns at each of the three planes is counted to prevail the corresponding histograms,

which are then integrated to describe the dynamic texture of the video (Figure 2.6).

LBP-TOP has been by far the most common method combined with various learning

techniques for database evaluation and classification [112, 229]. LBP-TOP has evolved

as a reliable way for spontaneous ME research following the Pfister et al. [164] ground-

breaking contribution to the field and several variations were suggested. Also suggested

by Pfister et al. [163] is a system for discriminating between spontaneous and posed

facial expressions (SVP). The Complete Local Binary Patterns (CLBP), which Guo et al.

[61] proposed, was enhanced and is referred to as CLBP from Three Orthogonal Planes

(CLBP-TOP) to deal with complex texture descriptor. The three intersecting lines that

pass over the centre point is the cornerstone of LBP Six Intercepting Points (LBPSIP)

[216]. Another variant LBP Mean Orthogonal Planes (LBPMOP) [209] initially deter-

mines the mean plane for three orthogonal planes and further calculates the LBP on the

three mean orthogonal planes. LBPSIP and LBPMOP obtained improved performance

by reducing duplicate details. The additional parameters of magnitude and directions

are also considered in Spatio-Temporal Completed Local Quantized Patterns (STCLQP)

[77]. The Radon Transform is employed in Spatio-Temporal Local Radon Binary Pattern
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(STRBP) [76] for collecting reliable structural features whereas Spatiotemporal Local

Binary Pattern with Integral Projection (STLBPIP) [75] implements integrated projec-

tions to retain shape properties. Guo et al. [58], in 2019, suggested an easy, effective yet

robust feature descriptor for micro-expression recognition named Extended Local Binary

Patterns on Three Orthogonal Planes (ELBPTOP). Along with LBPTOP, ELBPTOP com-

prises of two additional new binary descriptors referred to as Radial Difference LBPTOP

(RDLBPTOP) and Angular Difference LBPTOP (ADLBPTOP) that analyses details of

local secondary order in the radial and angular directions of the micro-expression video

sequences. ELBPTOP effective in computing and raises LBPTOP computing costs just

fractionally, while it still allows micro-expression recognition extremely successful.

Histogram of Oriented Gradients (HOG) HOG is another popular feature descrip-

tor used in computer vision and image processing for the use of object detection. The

procedure counts occurrences of gradient orientation in localised portions of an image.

According to the study by Dalal et al. [26], the local object appearance and shape within

am image can be depicted by the distribution of intensity gradients or edge directions.

The image is divided into small spatial regions called cells, and for the pixels within each

cell, a histogram of gradient direction is compiled. The descriptor is a concatenation of

these histograms. For better precision, the local histograms can be contrast-normalised

by measuring an intensity factor over a wider spatial region of the image, termed as

block, and then normalise all the cells within the block using this magnitude. These

normalised blocks are referred to as Histogram of Oriented Gradient (HOG) descriptors

[26].

Li et al. [39] claim that on the XY image plane, a 2D HOG can be constructed.

In the first step, the horizontal and vertical representations are derived by sampling

image using kernels. The next step is to develop the histogram, determined by the

gradient directions and its magnitudes. The pixel vote is divided equally into two bins

when the gradient path is between the two bins of the histogram. In brief, a quantised

orientation channel is built according to each pixel’s weight within a block dependent on

the corresponding gradient calculation. The Histogram of Image Gradient Orientation

(HIGO) is also a variant of gradients implemented and introduced in [39]. HIGO is a less

complex and a simpler variant of HOG. HIGO avoids the weighting of magnitude and

thus subdue the lighting effect. HIGO is, therefore, one of the most precise descriptors

today. Nonetheless, it should be mentioned that the HOG gradient is an edge-based

gradient descriptor. When not filtered, it is responsive to noise and application of low-
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pass filtering in micro-expression recognition may result in the loss of details about the

subtle motion shifts. Moreover, the estimation process is long and tedious, contributing

to a slow speed.

The related HOG and HIGO were advanced to 3D with three orthogonal planes

instead of the XY planes used in 2D solutions in the case of spatio-temporal feature

extraction. Initially, HOG 3D [166] is utilised for identification of posed micro-expressions,

followed by a baseline approach for spontaneous micro-expressions. Polikovsky et al.

[166] segmented the facial area into 12 regions, utilising manually annotated points

centring a rectangle on these points. Implementation of 3D HOG was done to detect the

movements in every region. The fact that different facial segments contribute differently

to micro-expressions, as shown by Chen et al. [21] have been commonly disregarded in

previous studies. They recommended implementing 3D HOG weighted approach along

with fuzzy classifier for micro-expression recognition.

Optical Flow-based methods Optical flow infers target movement by evaluating

the shift in pixel amplitude between two image frames over time. Lucas-Kanade [132]

assumes the displacement of the pixels between two nearby frames is small and nearly

constant. Horn-Schunck introduces a global constraint of smoothness to solve the aper-

ture problem. The method assumes precision in the movement over the whole image,

trying to minimise distortions in the flow [68]. Usually, optical flow method is extracted

and analysed for cropped and pre-processed images to identify pose and face variations

[181].

Unlike the LBP variants, optical flow aims at tracking and capturing non-rigid facial

part movement [64]. The Optical Strain Map (OSM), proposed by Liong et al. [120], is

determined from the severity of Optical Strain Feature (OSF), Optical Strain Weight

(OSW) and the blended variant of the two features. For every pixel of a video, OSM

often includes graphical representations of motion intensity. OSM locates the highest

or lowest motion projected area of the image frame when the spatial displacement is

considered. Liong et al. [120] coupled optical strain weight and optical strain features to

provide high efficiency relative to LBP-TOP and its versions. In order to achieve improved

performance in recognition, histogram bins which lead to noise are disregarded.

Amongst all optical flow variants, Histogram of Oriented Optical Flow (HOOF)

[20] is one of the foundation approaches used in micro-expression recognition. Facial

Dynamics Map (FDM) [228] outlined the spatial facial dynamics with the extraction

of each cuboids’ primary optical flow vector. Likewise, [127] has developed the Main
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Directional Mean Optical flow (MDMO) characteristics where the action unit details are

used through the facial region segmented into 36 regions of interest. Contrary to these

approaches, Consistent Optical Flow Maps [5] calculates the optical flow to describe

facial motions from 25 ROIs and that the optical flow of each segment can be measured

in several directions. Lately, only the peak frame and the onset frame are being used by

Bi-Weighted Oriented Optical Flow (Bi-WOOF) [122]. Most of the optical flow-dependent

approaches have to segment the facial region accurately in order to use AU details. It

boosts efficiency, but raises pre-processing complexities. In [244], the LBP-TOP and

HOOF hybrid features are determined for automated Necessary Morphological Patches

(NMPs) extraction, which incorporates the AU-based and feature selection approaches.

2.3.3.2 Deep Approach

Deep learning success has sparked the community to seek unique and innovative ways

of improving feature extraction. Patel et al. [159] initiated to use the deep features,

in their approach, transferred from pre-trained ImageNet models. They realised it

is not feasible to optimise the network with an inadequate amount of data available

from micro-expression datasets instead preferred a feature selection strategy. Kim et

al. [88] applied CNN and LSTM for interpreting spatial and temporal characteristics,

respectively. This approach has taken advantage of the derived features to distinguish

micro-expressions while transferring the model to long-short term memory (LSTM)

recurrent neural network for evaluating the temporal features of the data.

Reddy et al. [173] suggested MicroExpSTCNN approach focused on 3D-CNN design

implemented over the entire face. Wang et al. [205] suggested the addition of a remaining

block-based attention unit to the proposed CNN approach to aid network to focus on vital

regions. Motivated by visual-attention and commonly used CNN systems, Yang et al.

[232] built an attention-based CNN network called MERTA, a deep learning model for

reliable extraction of particular features for precise classification of micro-expressions.

The design consists of three VGGNets and one Long Short-Term Memory (LSTM). Three

VGGNets aim to collect static and dynamic details where three kinds of attention

processes are combined to render visual representations more careful distinctions. The

spatial characteristics of the micro-expression sequence are provided in a sequential order

to LSTM in order to derive spatio-temporal properties and estimate micro-expression

category. Verma et al. [202] lately introduced a workaround for CNN named as Lateral

Accretive Hybrid Network (LEARNet). The input can be resumed by introducing an

accretion layer for optimising the salient expression features. Quang et al. [200] modified
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the CapsuleNet framework for micro-expression recognition by choosing the apex frame,

the most significant frame from the micro-expression sequence. Transfer learning from

ImageNet and data augmentation is implemented due to the lack of data. Wang et al.

[209] addressed the issue of small sample size by implementing transfer learning in

order to pre-train a deep neural network and suggested a micro-expression recognition

system referred to as Transferring Long-Term Convolutional Neural Network (TLCNN).

TLCNN involves two transfer learning phases: (1) transfers from expression data and (2)

transfer from a single frame from micro-expression video, which can be considered as “big

data”. TLCNN also incorporates LSTM to capture temporal features in micro-expression

clips from mid-level range image representation for every frame.

Learning micro-expressions’ distinctive features from three vital video frames for

recognising micro-expressions was achievable using a recently introduced Three-Stream

Convolutional Neural Network (TSCNN) by Song et al. [185]. TSCNN is constructed

using a dynamic-temporal stream, static-spatial stream, and local-spatial stream module

in order to learn and incorporate, in micro-expression videos, respectively, temporal,

whole facial and local facial area references for recognising micro-expressions. TSCNN

also developed a robust apex frame detection method for micro-expression recognition

instead of using the index value of the apex frames.

2.3.3.3 Hybrid Approach

The fundamental principle behind hybrid frameworks is about using handcrafted tech-

niques together with deep learning methodologies. A novel mechanism for recognising

micro-expressions was introduced by Hu et al. [71] that integrates handcrafted features

with deep features. Local Gabor Binary Pattern from Three Orthogonal Planes (LGBP-

TOP) is the handcrafted feature descriptor used in the implemented hybrid system.

In order to encrypt local facial motions, LGBP-TOP incorporates spatial and temporal

processing. Convolutional Neural Network (CNN), a class of deep neural network, model

trained on micro-expression dataset is the other descriptor adopted. Then, with the adap-

tive repressive parameters, the sparse multi-task learning system is used to eliminate

the less important details from the integrated LGBP-TOP and CNN features. Hybrid

solutions like such, nevertheless, render it as a computationally challenging approach.

Thanks to the prominent hardware and software advances, these approaches can be

accomplished.

Khor et al. [87] suggested an Enriched Long-term Recurrent Convolutional Network

(ELRCN). Initially, a variety of Optical flow forms (Horizontal, Longitudinal, Magnitude
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and Strain) are computed. They then provided two separate CNN structures, one for

obtaining spatial characteristics (the input was the image combined with the results

from different optical flow) while the other extracts temporal features where every optical

flow outcome was given to a specific convolutional block of a 3 block CNN module. The

CNN structures conclude classification task through a fully connected layer. A new

technique referred to as Dual Temporal Scale Convolutional Neural Network (DTSCNN)

was introduced by Peng et al. [161] in 2017. The insufficiency of the data in existing

datasets resulted in the design of a shallow neural network comprising of only four layers

for convolutional and pooling to recognise micro-expressions. DSTCNN is a two-stream

network as the name suggests.

Gan et al. [55] suggested Off-ApexNet model that functions in three stages of offset

and peak frames detection, horizontal and vertical flow computation and eventually

providing all this to a CNN. A fully connected layer performs the classification process.

STSTNet [118] is an enhanced alternative to Off-ApexNet where optical strain is incor-

porated along with the horizontal and vertical optical flow in order to achieve better

performance. The Spatiotemporal Recurrent Convolutional Network (STRCN) has been

suggested by Xia et al. [226]. In this study, two variants of the network are formulated:

STRCN with Appearance-based Connectivity (STRCN-A) utilising a different image

representation as a vector thus passing entire sequence as a matrix to STRCN which is

essentially a recurrent CNN block. The second variant is Geometric-based Connectivity

(STRCN-G) which involves the application of optical flow before feeding the STRCN

block. Several other suggested studies [86, 148] summarises the methods in two phases:

evaluating optical flow or LBP, which is supplied to a CNN or RNN architecture for

extracting the corresponding spatio-temporal features.

2.3.4 Classification

Image classification analyses the statistical attributes of different image features and

regulates data into categories. Classification is typically a two-step process: training and

testing. Most of the research on micro-expression recognition applies existing classifica-

tion methods as discussed below.

2.3.4.1 Support Vector Machine (SVM)

SVMs [69, 75, 81, 164, 229] are based on the concept of decision planes that define

decision boundaries, which primarily perform classification tasks by constructing hy-
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perplanes and a multidimensional space that separate samples of different class labels.

SVMs correlate to the general category of kernel methods, which can operate in a high-

dimensional, implicit feature space, through applying kernel functions. SVM has two

advantages: Firstly, SVM can generate non-linear decision boundaries using methods

intended for linear classifiers. Secondly, the use of kernel functions grants the user to

implement a classifier to data that have no demonstrable fixed dimensional vector space

representation [9]. Some kernels can be used in SVMs, e.g., linear, polynomial, Radial

Basis Function (RBF) and sigmoid. The RBF is one of the most widely used kernel types

in SVMs mainly because of their localized and limited responses across the entire range

of the real X-axis.

2.3.4.2 Extreme Learning Machine (ELM)

ELM is a single hidden layer feed-forward neural network which has extremely fast

learning speed [208]. ELM has better generalisation performance. ELM classifier pro-

vides a unified learning platform with popular features mappings and can be directly

applied in the regression and multiclass classification [60]. According to the research,

ELM is proved to have better generalisation performance, much faster training and

learning speed than the traditional SVM. This characteristic of ELM proves vital in the

micro-expression recognition.

2.3.4.3 Nearest Neighbor Algorithm (NNA)

NNA depends on limited adjacent samples, so as compared to other methods, NNA is

more efficient for the sample set with class fields cross [134]. In this study [134], the

system integrated the gradient magnitude weighted into Nearest Neighbour Algorithm

for classification. The idea of the nearest neighbor method is to compare the distances

between unknown samples with the entire known sample set and to judge the distances

between samples. Euclidean distance is one of the measurements of similarity among

samples [59]. If the distance of two samples in the feature space is close, then the

samples may have the same label. The fine calculation ability of NNA can help the

micro-expression recognition system to classify accurately.

2.3.4.4 Multiple Kernel Learning (MKL)

MKL is developed for supervised, semi-supervised and unsupervised learning. The

fundamental idea behind MKL is to add an extra parameter to the minimisation problem
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of the learning algorithm. MKL determines weights for linear/non-linear combinations

of kernels through various domains by optimising a cost function [164]. Compared to

SVM, MKL can provide better micro-expression recognition in some cases.

2.3.4.5 Random Forest (RF)

Random Forest, also known as Random Decision Forest, is an ensemble learning method

that is used for classification and can be thought of as a form of the nearest neighbor

predictor. Ensemble learning is a divide-and-conquer method used to improve perfor-

mance. The basic principle of ensemble methods is that a set of “weak learners” can come

together to form a “strong learner” [12]. Several researchers [30, 131, 163, 164] opted to

use RF classifier for facial micro-expression recognition.

2.3.4.6 Other classifiers

Some researchers attempted to work with relaxed K-SVD, Sparse Representation Classi-

fier (SRC) and Group Sparse Learning (GSL) strategies to tackle the sparseness for MEs.

Nonetheless, each solution deals differently with micro-expression’s sparseness. A sparse

dictionary is used by relaxed K-SVD [245] to differentiate various micro-expressions by

reducing the variance of sparse coefficients. The SRC [234] employed in [240] is a sparse

linear combination of all the training samples representing a given test sample; the

sparse non-zero coefficients will, therefore, probably focus on training and test samples of

the same class. The aim of kernelised GSL [248] is to encourage the technique of learning

a series of essential weights from hierarchical spatio-temporal descriptors, which can

assist in selecting important block from multiple facial blocks.

2.4 Discussions

This chapter gives a far-reaching overview of cutting edge facial micro-expression analy-

sis approaches including handcrafted, deep learning-based methods that structure the

key components of the micro-expression recognition system. The handcrafted micro-

expression recognition approaches have been there for a significantly long time and

accomplished surprising outcomes on available benchmark datasets. However, most

successful handcrafted recognition methods are based on the local densely-sampled de-

scriptors. In these methodologies, the necessary features are extracted from a sequence

of video frames to generate the feature vector using human engineered feature detectors
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and descriptors. Later, the classification is performed by training a generic classifier.

These approaches include space-time, appearance, geometry, and local binary patterns

based methods.

On the other hand, learning-based micro-expression recognition method uses train-

able feature extractors followed by the trainable classifier, which prompts the idea of

end-to-end learning or learning from pixel level to micro-expression class identification.

This rules out the need for handcrafted feature detectors and descriptors utilised for

micro-expression recognition. These approaches include deep learning-based approaches.

These approaches give high performance as compared to their handcrafted counterparts

on micro-expression datasets. A few of the deep learning methods are still taking help

from the handcrafted features. Such methods are the hybrid methods where either the

feature detection or selection is done using handcrafted methods and given to the deep

methods or the features extracted using handcrafted methods are combined with the

features extracted by deep methods.
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LGATTNET: AUTOMATIC MICRO-EXPRESSION

DETECTION USING DUAL-STREAM LOCAL AND GLOBAL

ATTENTIONS

Research in the field of micro-expressions has gained significance in recent years. Many

researchers have concentrated on classifying micro-expressions in different emotion

classes, while detecting the presence of micro-expression in the video frames is considered

as a pre-requisite step in the recognition process. Hence, there is a need to introduce

more advanced detection models for micro-expressions. In order to address this, we

propose a dual attention network based micro-expression detection architecture called

LGAttNet. LGAttNet is one of the first to utilise a dual attention network grouped

with 2D-CNN to perform frame-wise automatic micro-expression detection. This method

divides the feature extraction and enhancement task into two different CNN network

modules; Sparse Module (SM) and Feature Enhancement Module (FEM). One of the key

modules in our approach is the attention network which extracts local and global facial

features, namely Local Attention Module (LAM) and Global Attention Module (GAM).

The attention mechanism adopts the human characteristic of focusing on the specific

regions of micro-movements, which enables the LGAttNet to concentrate on particular

facial regions along with the full facial features to identify the micro-expressions in the

frames. Experiments performed on widely used publicly available databases demonstrate

the robustness and superiority of our LGAttNet when compared to state-of-the-art

approaches.
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3.1 Introduction

One of the most natural ways for individuals to communicate their feelings and thoughts

is through facial expressions. Perhaps the correct perception of feelings from facial

expressions is the most significant social activity that people, as social beings, perform

[151]. Not all feelings, though, will be reflected on the face. Given the attempts to conceal,

studies have discovered that real feelings are always leaked. Such leaked feelings

typically manifest as micro-expressions (MEs) [42]. Micro-expression is a brief facial

expression, lasts for the overall duration of less than 500 milliseconds and the onset

duration of less than 260 milliseconds [230].

Typically, it happens in circumstances of high stakes, particularly for people who win

or risks something valuable [42]. The precise identification of such micro-expressions

provides a tremendous ability for those with face-to-face communications expertise,

including health care professionals, psychotherapists, educators and law enforcement

officers because of their involuntary nature [47, 137]. Moreover, recognising micro-

expressions is regarded as one of the most accurate tools for identifying deceit, owing to

the near association between micro-expressions and deception [52].

Similar to macro-expressions, the micro-expression research has gained popularity in

recent years. Automatic macro-expression detection and recognition can be accomplished

with the advent of technology in real-time and is effectively implemented in industry

since macro-expressions are clear to recognise and last for 500 milliseconds to 4 seconds

[31]. In contrast to macro-expression, a micro-expression is harder to recognise due to

its subtle presence in the facial regions, which makes the detection and recognition

using naked eye challenging to accomplish. According to Ekman1, sometimes the micro-

expressions can be quicker than usual, and even occur for less than 40 milliseconds.

Ekman further indicated that the detection and recognition of micro-expression is much

more challenging in comparison to spotting. Detecting micro-expressions has to be

performed using the images while neglecting the temporal information connected to

micro-expressions. Moreover, much of the literature related to micro-expression focuses

on spotting [205, 232], and a little research has been dedicated to the detection, which is

the foundation of this study.

The continuing technological innovation in computer vision and machine learning

helps in boosting the recognition efficiency, and alleviate the issues related to micro-

expression detection. As spontaneous micro-expressions can often be seen in real life

1https://www.paulekman.com/resources/micro-expressions/
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and reveal better affective knowledge about humans, this work concentrates on the

issue of detecting spontaneous micro-expressions from video frames. Thus far, many

micro-expression detection approaches analyse the disparity in the features between the

first frame and the other frames in a time span [13, 15, 112]. In contrast, this work aims

to detect the micro-expressions from the spatial features that can be extracted from a

single video frame.

In the case of micro-expressions, it is interesting to note that most of the clues

originate from a few facial regions such as the mouth and eyes. Ideally, this suggests

that the machine learning models must concentrate only on the relevant facial areas

and be less responsive to the other facial regions. The predictions made by CNNs are

based on the posterior probability functions, whereas, the professionals, typically render

judgements that can be clarified more clearly depending on the selective local facial

regions of interests (RoIs). Similar to this human behaviour, the attention mechanism can

also concentrate on specific regions of images. Much research lately aims to incorporate

attention mechanisms with deep networks [136, 143, 188]. Through deep learning, the

attention model directly simulates the human brain’s attention mechanism. In earlier

research, the importance of incorporating the attention system has been thoroughly

discussed [83, 117, 201, 205, 206, 214, 224, 232].

In this chapter, a deep learning framework for micro-expression detection is proposed,

which applies an attention mechanism to concentrate on the salient parts of the face.

The following are the novel and key contributions of this chapter: 5:

∗ We propose an attention driven detection mechanism, called LGAttNet, to identify

the frame-wise micro-expression. According to the best of our knowledge, this is

the first approach to use a dual attention network for building a micro-expression

detection framework. LGAttNet is designed to be an automatic micro-expression

detection model which focuses on facial regions with specific information related to

micro-expressions on top of the full face information.

∗ The attention networks in LGAttNet are structured as dual-stream local and

global attention blocks. The local attention stream of the architecture focuses on

the Regions of Interest (RoIs) that exist only within local facial areas for associated

micro-muscle movements, whereas the global attention stream considers the full

face, establishing a relation between the local facial RoIs. Further, to extract the
5Madhumita A. Takalkar, Selvarajah Thuseethan, Sutharshan Rajasegarar, Zenon Chaczko, Min Xu,

John Yearwood, LGAttNet: Automatic Micro-expression Detection using Dual-Stream Local and Global
Attentions, Multimedia Tools and Applications. (Submitted)
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global and local attention maps, a combination of deep and shallow networks is

used instead of using a single very deep CNN, wherein the deep network provides

a sparse representation of the features, that are subsequently passed on to a

traditional shallow CNN with sigmoid function.

∗ We have evaluated the accuracy of our architecture, LGAttNet, on publicly available

and widely used CASME, CASME II, CAS(ME)2 and SAMM databases using

a leave-one-subject-out (LOSO) cross-validation. An ablative study to manifest

that the idea of building a dual-stream network using local and global attention

networks achieves improvement in the micro-expression detection accuracy is

conducted. A cross-database analysis is also performed to verify the efficiency of

the proposed architecture. Furthermore, a comparison of the LGAttNet with state-

of-the-art approaches is performed to demonstrate that the LGAttNet performs

remarkably well in detecting the micro-expressions in video frames.

The remaining parts of this chapter are structured in the following order. Section

3.2 summarises the related studies performing binary classification between ME and

non-ME video frames. Section 3.3 introduces our framework, called LGAttNet, and

its supporting components. Experimentation performed on the model along with the

outcomes are presented in Section 3.4. Finally, the chapter concludes in Section 3.5 with

future research directions.

3.2 Related Research

In spite of the fact that automatic micro-expression detection and recognition is not

broadly analysed in contrast to macro-expression study, a number of works have ad-

dressed this problem with the recent advances in computer vision. For micro-expression

analysis, micro-expression detection is a crucial and essential pre-processing phase in

defining a corresponding series of frames from a given long video containing micro-

expressions. Given that micro-expression is an uncontrolled facial expression, the micro-

expression detection study has been conducted on the publicly available spontaneous

micro-expression repositories. It is difficult to distinguish concise facial gestures from

neutral faces, especially in real life videos and to prevent false alarms triggered by global

facial actions, speaking and occlusions.

Many approaches proposed for micro-expression detection primarily focus on assess-

ing the discrepancy between their own features, which indicates the disparity in the
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time window from the first and the other frames. Since the span of the spontaneous

micro-expression is relatively short, only a few frames are available in a video that

reveal the micro-expressions rendering the detection of spontaneous micro-expression

extremely hard. The techniques used in the literature to detect these micro-expressions

are broad, including optical flow [121], Local Binary Patterns (LBP) [105], Histogram of

Oriented Gradients (HOG) [27] and integral projection [130].

Davison et al. [28, 29] implemented ‚Äúindividualised baselines‚Äù determined by

taking the participant‚Äôs neutral video sequence and using the Chisquare distance

to achieve the initial features for baseline sequence. Lu et al. [130] introduced a low-

computing cost approach focusing on differences in the integral projection (IP) of sequen-

tial ME frames for detection. Li et al. [112] published a Spontaneous Micro-Expression

Database (SMIC) offering the benchmark observations for micro-expression detection

and recognition. The authors observed that not every subject exhibited micro-expressions

while capturing samples for SMIC. Micro-expression detection was carried out in a two-

class classification process by differentiating the micro-expression clip from a randomly

selected non-micro-expression clips. Throughout this analysis, the researchers applied an

Active Shape Model (ASM), which normalises and monitors all faces to focus on spatial

feature variations and Local Binary Pattern-Three Orthogonal Planes (LBP-TOP) for

extraction of features. In order to facilitate feature extraction, Temporal Interpolation

Model (TIM) was implemented to adjust frame numbers, and the classification was

performed using Support Vector Machine (SVM).

Huang et al. [77] implemented Spatio-temporal completed local quantization patterns

(STCLQP) to perform the detection by extracting sign, magnitude and orientation as

features. The movement magnitude across frames has been used by Borza et al. [121]

with simple absolute frame variations, along with an Adaboost algorithm to identify

micro-expression frames. Deep learning based techniques have been used for micro-

expression detection in the past. Li et al. [113] introduces a deep multi-task approach

with HOOF analysis for ME detection, using CNN for preprocessing ME data to recognise

the location of the facial landmarks and split the facial area into regions of interest.

The sliding window based technique proposed by Borza et al. [15] preserves the present

frame, past and future frame at equivalent intervals, with the discrepancy between

these being given to the CNN that categorises the period as ME or non-ME. In addition,

Zhang et al. [242] have implemented deep learning to identify MEs from longer videos

for the first time. A novel convolutional neural network called SMEConvNet (Spotting

Micro-Expression Convolutional Network) was developed for extraction of features from
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video clips. For a long video apex frame spotting, the feature matrix processing method

using sliding window was also proposed to consider micro-expression characteristics in

order to search for the apex frame.

Besides the existing deep learning systems, the network can also focus on certain

facial regions by incorporating the attention mechanism to the micro-expression recog-

nition architecture. Attention enhances the representation of interests besides simply

showing where to concentrate. Fernandez et al. [136] introduced a CNN-based end-to-

end approach utilising attention methodology to address facial expression recognition

problems for representation and classification jointly. Likewise, in 2D+3D FER, Jiao et al.

[83] suggested enhanced facial attention-based convolutional neural network (FA-CNN).

The facial attention mechanism allows the network to automatically identify the discrimi-

native regions without dense landmark annotations from multi-modal expressions. Wang

et al. [205] designed a novel attention model named micro-attention to help emphasise

on the facial region of interest. For precise micro-expression recognition, Yang et al. [232]

applied visual attention to developing an attention-based CNN network called MERTA.

Although attention has been actively applied for face recognition [117], facial expression

recognition [83, 136] and recently also for micro-expression recognition [205, 232], it has

not yet been considered for facial micro-expression detection.

Nonetheless, the aforementioned studies are correlated with micro-expression recog-

nition while the actual work for detecting micro-expression using attention network has

never been studied. The occurrence of micro-expression in small sections of the face and

the insufficient size of available repositories hinder the precision of recognition. In this

work, we propose a mechanism to incorporate attention network for micro-expression

detection with the available amount of data samples.

3.3 LGAttNet Detection Model Description

LGAttNet model is the first to utilise the sparse representation and attention mechanism

for micro-expression detection. The first phase of our architecture is the pre-processing

phase. Subsequently, the pre-processed image is utilised in three different ways. The

image is initially divided into two parts, where the first part focuses on the eye regions

and the second part focuses on the mouth region. Further, the full facial image is used

for processing. The output of the final module represents the results in different metrics,

predicting the existence of micro-expressions.

Our proposed model, dual-stream LGAttNet, comprises five modules: Sparse module
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Figure 3.1: Local and Global Attention Network (LGAttNet). The flow of the upper and
lower face images are indicated by the green color arrows, while the flow of entire face is
indicated by blue arrows. Both dotted lines indicate the attention inputs to global and

local attention modules.

(SM), Feature Enhancement module (FEM), Local Attention module (LAM), Global

Attention module (GAM) and Detection module (DM) as presented in Figure 3.1.

The input to the LGAttNet is a pre-processed video frame. The input pre-processed

face image is divided into two sub parts: upper face, focusing mainly on the eyes and

eye-brows muscles of the face, and lower face, which concentrates on the mouth section of

the face. Each of these face sections, as well as, the whole face region are given as input to

the SM, which is a deep CNN network without fully connected and classifier layers. Deep

features from SM along with the respective input image are fed into the FEM, a shallow

network with a Concatenation and Sigmoid functions. Each LAM shown in the diagram

is a dedicated attention module for upper and lower face parts respectively. There are

two input values given to both LAMs. The first feature vector is the output vector of FEM

Sigmoid layer for upper and lower face regions, respectively, after concatenating with

the corresponding input facial RoI-based features. The second input feature vector is the

feature vector before the input image concatenation, which is the output from the last

Convolutional layer for each face image part. Apart from focusing on local face parts, SM

and FEM also processes full face image and feeds the feature vectors from SM and FEM

as input to the GAM, the third attention module. The inclusion of GAM helps to preserve

the relationship between the upper and lower face. At the end, the output vectors from

upper and lower face LAM and GAM are concatenated and given to the DM, which is

a traditional deep neural network with a classifier layer to predict the existence of the

micro-expression in the input video frame.

Following subsections explain these modules in detail.
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Figure 3.2: Pre-processing steps: Spatial domain normalisation is achieved through the
difference "a" between facial feature points 37 and 46 of the active appearance model

(AAM). The intensity and scale normalisations are performed subsequently [196].

3.3.1 Pre-processing

The input video frames are translated to grayscale during the pre-processing stage so that

the cross-database variations between the video frames can be minimised. The descriptor

involves two essential pre-processing steps: (a) data augmentation or producing synthetic

samples and (b) normalisation. A series of synthesised frames are created in large

numbers in the data augmentation phase, to enhance the amount of video frames,

particularly for training with a deep learning model that usually requires larger dataset.

Random noise is applied to the centre of the eyes and nose regions of the face using a 2D

Gaussian distribution to generate synthetic frames, following the method stated in [183].

A micro-expression detection module is trained using individual frames.

Inspired by the work in [196], a set of normalisation operations are then carried

out in a sequence. Initially, a region of interest (ROI) is chosen in the process of spatial

normalisation for feature extraction, which excludes the insignificant areas of the video

frames. This process discards the background details as well as some facial areas like

ears, chin and forehead, since these regions represent no particular information regard-

ing micro-expressions. The distance denoted as "a" in Figure 3.2, between the active

appearance model (AAM) points 37 and 46 is used to crop the facial region. Secondly,

using Contrast Limited Adaptive Equalization (CLAHE) [249] approach, an intensity

normalisation step is implemented on every video frame to minimise the feature vector

variance. One benefit of CLAHE is that the histogram segment that goes beyond the

clip boundary between all histogram bins is redistributed instead of merely deleting it.

A Rayleigh distribution with a cap of 0.01 and α value of 1 is chosen for this function.

Thirdly, the video frames, in the scale normalisation phase, are downsized by linear

interpolation to 128×128 pixels. Scale normalisation makes it possible for the same

facial feature points to co-exist roughly at the same position in different video frames.
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Figure 3.3: The sparse module

3.3.2 LGAttNet Components

The SM and FEM are two deep 2D-CNN components of the proposed architecture.

Further, a carefully crafted attention network consisting of 2D-convolutional and sigmoid

layers is placed alongside SE and FEM composed of deep CNN, while eliminating the

final Softmax layer to give room for the Detection module.

3.3.2.1 Sparse Module (SM)

The image processing applications expect the input data to be represented in as few

components as possible for faster processing. Sparse coding technique is useful for

solving the classification problems where specific dictionaries for respective classes

are built and the input is processed to classify the dictionary corresponding to the

sparsest representation. In recent years, sparse coding is applied to a variety of image

processing and computer vision applications, such as image classification [235, 236],

image de-noising [162], compression [129], inpainting [129], object tracking [227] and

other applications.

In general, SM is implemented using a deep convolutional neural network without

fully connected and classification layer. In a similar way, our SM architecture is imple-

mented using a deep convolutional neural network consisting of seven convolutional

layers with one additional last layer, i.e. eight, convolutional layer to extract the attention

map of the input image as depicted in Figure 3.3. The input to the SM is an image I and

the output is the feature map Msm processed from the input image.

(3.1) Msm = fsm(I)

where, fsm is the function of SM. The SM outputs three feature maps for three different

images namely; upper face RoIs, lower face RoIs and the whole face image. The feature

maps of the whole face image generated by SM are fed to FEM, and as an attention input

to GAM.

45



CHAPTER 3. LGATTNET: AUTOMATIC MICRO-EXPRESSION DETECTION USING
DUAL-STREAM LOCAL AND GLOBAL ATTENTIONS

3.3.2.2 Feature Enhancement Module (FEM)

The FEM is a shallow 2D convolutional neural network with two traditional convolu-

tional blocks (Figure 3.4). The input to this FEM is the output feature vector of the

sparse representation module. Similar to the SM, FEM also consists of an additional con-

volutional layer to process the attention mapping using the extracted features from SM

and FEM together. The respective sparse representation of upper and lower face regions

is again convolved to obtain a feature vector, and extracted from the third convolutional

layer. The output of the last convolutional layer preserves the sparsity of the image by

not losing much high end representation. This extracted feature vector is passed on to

the next relevant LAM.

The FEM, further, extends its performance by incorporating concatenation and

Sigmoidal functions. As the name suggests, this module enhances the collected features

by using the concatenation function to integrate the feature vector extracted after the

third (or last) convolutional layer of FEM and the feature mapping of the input image

(which includes upper, lower and entire face image) to generate a new enhanced feature

vector. The next step is to pass the enhanced feature vector to the sigmoid function.

Basically, sigmoid function is used because it ranges between 0 to 1. Therefore, it is used

for the models where the output is the probability value for prediction. As the probability

range is only within 0 and 1, thus sigmoid is the choice for the model.

(3.2)
I f em = f f em(Msm)

Mf em = S(Concat(I f em, I))

where, the f f em, Concat and S are the FEM, concatenation and sigmoid functions,

respectively and feature map Mf em.
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Batch Normalization
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Figure 3.4: The feature enhancement module
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Figure 3.5: Local and Global Attention module

The prediction probability for upper and lower facial region images forms the input

to the LAMs and that of the full face image is given as input to GAM.

3.3.2.3 Local Attention Module (LAM) and Global Attention Module (GAM)

The LGAttNet is built using three attention blocks: two LAMs and one GAM. The

implementation of both LAM and GAM is transformed as follows.

(3.3)
Agam = Mf em ×C(Msm)

Alam = I f em ×C(Mf em)

where C is the convolution layer function in both attention modules, and Agam, Alam are

the attention feature maps for GAM and LAM respectively. The two LAM processes the

feature maps for upper face and lower face input images respectively, whereas the GAM

processes the feature vector for the full face. LAM focuses on the local facial regions

while GAM considers the complete face and preserves the relationship between the upper

and the lower part of the face while displaying a micro-expression. After constructing

the attention feature maps, two feature level fusions are utilised, in order to get the

resultant input to the detection module. The resultant feature map Ares is given by:

(3.4) Ares = Agam +
(
Aupper

lam + Alower
lam

)

where, Aupper
lam and Alower

lam are the attention feature maps produced for upper and lower

parts of the face, respectively.

The LAM and GAM are composed of two components, as can be seen from Figure

3.5; (1) 2D-CNN with one convolutional block and (2) a multiplication function. The
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architecture for LAM and GAM is the same but the input given is different, and this is

what makes each of the block function and process the input differently. All the three

attention blocks accept two input feature vectors. The first input to both the LAM is the

sigmoid function probability output of the FEM for the upper and lower facial region

image respectively (solid green arrows towards LAMs in Figure 3.1). This input feature

vector given to respective attention blocks is then made to pass through a 2D-CNN with

one convolutional block within the attention module. The second input is the feature

representation extracted from the last convolutional layer of FEM (purple dashed arrows

towards LAMs in Figure 3.1). The convolved feature vector and the second input are then

forwarded to the multiplication function to get a final representation of the respective

upper and lower face regions.

Similarly, the sigmoid function output of FEM for full face image is passed to the

Global Attention module (GAM) as a first input (solid blue arrow towards GAM in Figure

3.1). The first input is convolved when given to GAM. The second input is the features

collected from the last convolutional layer of SM (dashed red arrow towards GAM in

Figure 3.1). The output of CNN within GAM is then forwarded to the multiplication

function along with the second input. Upon multiplication, a new feature representation

is generated.

It should be noted that the second input for all the attention blocks is directly provided

to the multiplication function, whereas the first input is convolved. The output vectors

from all the attention blocks are added to form one vector and given to the Detection

Module for the final detection of micro-expression.

3.3.2.4 Detection Module (DM)

The DM in LGAttNet consists of three fully connected (FC) layers in the size of 1024,

1024 and 512. In addition, a softmax classification layer is attached at last to perform

the classification task. The estimation of micro-expression using DM is explained in Eq.

3.5.

(3.5) ŷ= fdm(Ares)

where, ŷ is the prediction of an image sample.

3.3.3 Loss Function

In order to train the proposed model, the degradation function is incorporated. Generally,

the binary cross entropy (BCE) performs better in closed set classification tasks. Hence,
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the BEC is used in the proposed approach to estimate the classification loss, as given

below.

(3.6) Lcls =
1
N

N∑
i=0

(y× log ŷi)+ (1− y)× log(1− ŷi)

where, y and ŷ are the micro-expression label and the predicted value, respectively.

3.4 Experimental setup and Outcomes

The validation and efficiency of LGAttNet is verified by testing the model on some of the

publicly available benchmark micro-expression databases. Apart from the model testing,

the effectiveness of implementing local and global attention networks in a dual-stream

pattern is demonstrated using an ablation study.

3.4.1 Datasets used

The experiments are performed on popular micro-expression databases including the

Chinese Academy of Sciences Micro-Expression databases: CASME [231] and CASME II

[229], Chinese Academy of Sciences Macro- and Micro-Expressions (CAS(ME)2) [167] and

Spontaneous Actions and Micro-Movements (SAMM) [29]. Details of these spontaneous

micro-expression databases used in the experiments are given below.

3.4.1.1 Chinese Academy of Sciences Micro-Expression (CASME)

Introduced by the Chinese Academy of Sciences, CASME database [231], is one of the

spontaneous micro-expression database widely used. CASME comprises of two subsets A

and B totalling up to 195 micro-expression samples collected from 19 participants. These

samples were recorded at 60 fps. These participants experience a great emotional stimu-

lation and conceal their facial expressions. The video clips in dataset A were captured in

natural light with a resolution of 1280×720 pixels. In dataset B, the video samples were

recorded at 640×480 pixel resolution under LED lighting. Each sample was tagged with

onset, apex and offset frames, action units (AUs) labelled and emotions correctly identi-

fied by psychologists. The database has a collection of eight micro-expression categories:

contempt, disgust, fear, happiness, repression, sadness, surprise and tense.
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3.4.1.2 Chinese Academy of Sciences Micro-Expression (CASME II)

As an extension to the original CASME [231] dataset, CASME II [229] was introduced.

There are 247 micro-expressions newly coded with FACS captured from 26 participants

under a high temporal resolution of 200 fps and a 280×340 pixels spatial resolution on

the facial region to examine muscles movements in greater detail. Every video session

is a short clip for several seconds which has onset, apex and offset frames marked for

micro-expressions and FACS and emotion type is annotated.

3.4.1.3 Chinese Academy of Sciences Macro- and Micro-Expressions
(CAS(ME)2)

There are 87 long video samples with an average duration of 148 secs collected from

22 participants in Part A of CAS(ME)2 database [167]. Macro and micro are the two

expression types where the collected video samples can involve various macro or micro

facial expressions. The authors have published an excel spreadsheet file pointing out the

onset, apex and offset frame index for these expressions. Furthermore, onset and offset

time for the eye blinks are also marked.

3.4.1.4 Spontaneous Actions and Micro-Movements (SAMM) in Long Videos

There are altogether 32 participants, in the SAMM database [29], recording seven video

samples, each with an average duration of 35.5 secs. The first SAMM update features

micro-movement sequences tagged with Action Units (AUs). The study in [28] has newly

adopted objective and emotion classes for the database. The spotting task emphasises on

79 videos where every video includes one or several facial micro-movements summing up

to 159 micro-movements. As the ground truth, the onset, apex, and offset frame indices

of micro-movements are given wherein the micro-movement duration lasts between

the onset and the offset frame. All micro-movements in this database are annotated.

The identified frames can, therefore, signify micro-expressions along with other facial

movements, including blinks of the eyes.

3.4.2 Experimental setup and Parameters

Model implementation is done using an open-source platform, Tensorflow. The model is

trained and tested on a GPU Server with NVIDIA GeForce GTX 1080 Titan processor.

LGAttNet uses SGD optimisation technique with initial learning rate of 0.001 and L2

normalisation is implemented to prevent overfitting. The input dimensions for LGAttNet
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model is 128×128. The other parameter values are weight decay of 0.0005 and momentum

of 0.9. The model training is executed for 100 epochs.

The results for the conducted experiments are reported using Accuracy, Area Under

Curve (AUC), F1 score, Recall and Precision.

3.4.3 Outcomes and Analysis

The observations are drawn by performing analysis on four publicly available databases

namely, CASME, CASME II, CAS(ME)2 and SAMM. The inputs to the network are

images or video frames from micro-expression databases. In order to confirm the effec-

tiveness of the LGAttNet model, five metrics i.e. Accuracy, Precision, Recall, F1-score,

and Area Under Curve (AUC) are chosen as evaluation metrics for binary classification.

3.4.3.1 Outcomes

The input to the network are the images or the video frames from the micro-expression

databases. The evaluation of the network is conducted using the Leave-One-Subject-Out

Cross-Validation (LOSOCV) technique, i.e. one subject is selected that is not used for

the training process, and the network is evaluated on this unseen subject. The training

and testing set consists of two classes, wherein one class has micro-expression video

frames, and the other class has neutral face video frames (non-ME frames). The macro-

expression samples are eliminated from our experiments. As this is a subject independent

evaluation, one subject is wholly left out of the training process.

Table 3.1 demonstrates the experiment outcomes for all the performance metrics. The

table depicts that the sparsely represented multi-attention micro-expression detection

architecture is capable of achieving significantly high, which is in the range of 87%

to 94%, detection accuracy for different databases. As can be seen, the recognition

accuracies obtained on CAS(ME)2 and SAMM datasets are lower compared to other

micro-expression datasets. It is clear that the samples in SAMM datasets contain wide

variations, such as included subjects from different nationalities.

Additional experiment is performed to demonstrate that the LGAttNet works equally

well on a sequence of video frames for detecting micro-expression frames. In this exper-

iment, during the testing phase, the input given to the trained LGAttNet is a series

of images from a video. LGAttNet then processes the video frame-wise and classify

individual frame as ME or non-ME frame, as shown Figure 3.6. The graph illustrates

that the LGAttNet detects the micro-expression frames (green line in the graph) from
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Table 3.1: LOSOCV Micro-Expression detection outcome using various performance
metrics

������������Metrics
Database

CASME CASME II CAS(ME)2 SAMM

Precision 0.948 0.944 0.850 0.851
Recall 0.915 0.940 0.885 0.890
F1-score 0.931 0.942 0.867 0.870
Accuracy 0.932 0.942 0.865 0.867
TPR 0.915 0.94 0.885 0.89
FPR 0.05 0.055 0.155 0.155
AUC 0.931 0.912 0.923 0.846

Figure 3.6: LGAttNet tested on a micro-expression sequence from CASME database. The
green line indicates the generated probability values for the existence of

micro-expression.

the sequence of video frames in alignment with the ground-truth (red line in the graph).

Therefore, it can be seen that the LGAttNet model trained on images is capable of

accurately predicting the micro-expression frames from videos.

3.4.3.2 Ablative Analysis

Table 3.2 shows the performance of ablative analysis on all the databases. For under-

taking these analyses, the model is modified and evaluated by including or removing

Table 3.2: Ablative evaluation with and without (w/o) different modules of the framework

CASME CASME II CAS(ME)2 SAMM
LGAttNet 0.933 0.943 0.865 0.868
LGAttNet w/o GAM 0.892 0.915 0.812 0.822
LGAttNet w/o LAM 0.835 0.878 0.785 0.788
LGAttNet w/o GAM and LAM 0.735 0.782 0.692 0.728
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each of the LAM and/or GAM component in the architecture. From the table, it can be

observed that the LGAttNet performs well when it includes LAM and GAM on all the

databases. The next evaluation is performed by removing the GAM module, where the

results reveal a drop by 3%−5%. The probable reason is that the network is unable to

find the relation between the two individual local feature maps extracted from upper

and lower face regions when the global attention module (GAM) is not present in the

architecture, resulting in performance degradation.

However, it is noticeable that removing LAM from the model has a significant effect

on the results. The performance is seen to deteriorate more when the LAM is removed,

while the GAM is included in the system. This shows that acquiring the local level

features from the facial regions assists in interpreting micro-expression in the input

image. Finally, removing both GAM and LAM decreases the results by more than 20%.

These results demonstrate the importance of our proposed LAM and GAM modules for

correctly detecting micro-expressions.

In addition to the ablative analysis, as seen in Table 2, Figure 3.7 visualises the

influence of utilising attention mechanism in LGAttNet for Disgust micro-expression.

The purpose of incorporating attention mechanism in LGAttNet is to focus the attention

towards specific facial regions to identify the presence of micro-movements and classify

the input image as ME or non-ME frame. Similar to ablative analysis, Figure 3.7 displays

the attention mapping for LGAttNet with and without LAM or GAM or both. It can be

seen from Figure 3.7 (b), which is the activation map for LGAttNet without both LAM

and GAM, that the activation map is scattered all over the facial region. The model

was unable to highlight the specific facial regions of movements without the attention

mechanisms. However, Figure 3.7 (c) is an implementation of LGAttNet with LAMs

(a) (b) (c) (d) (e)

Figure 3.7: LGAttNet attention visualisation on a Disgust sample from CASME dataset.
(a) Original image; (b) LGAttNet without LAM and GAM; (c) LGAttNet without GAM;

(d) LGAttNet without LAM; (e) LGAttNet with LAM and GAM
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and without GAM. We can observe that the LAM serves its purpose of concentrating on

the specific regions of the face, which is eyes and mouth in this case. Figure 3.7 (d) is

the activation map for LGAttNet with GAM and without LAMs, which highlights the

central region of the face, including eyes, nose and upper lip. This indicates that unlike

LAM, which processes upper and lower face individually, GAM has to process the full

face. Hence, it is forced to process the facial regions which do not carry any movement

and highlighting regions of non-interest. Finally, Figure 3.7 (e) is our complete model

of LGAttNet with LAM and GAM. The activation map illustrates that the LAM that

processes upper and lower face separately can predict the region of interest which carry

a micro-expression and GAM which processes the full face correlates to the LAM features

to precisely mark the facial regions with motion, eliminating any unnecessary details,

classifying the input frame correctly as ME frame.

3.4.3.3 Cross-Database Analysis

The model effectiveness is also shown by conducting experiments on cross databases. The

purpose of performing the cross-database evaluation is to justify that even though this

architecture is a supervised learning model, it is capable of detecting micro-expressions

from the images of altogether different databases. Cross-database micro-expression

detection is where the training and testing samples come from two different micro-

expression databases collected by different cameras or under different environments.

The databases used in these experiments also has diversity in ethnic backgrounds of the

participants, for instance, SAMM database has subjects from 13 different nationalities.

This type of validation offers a good way to mimic the scenarios the micro-expression

detection system would encounter in reality. Therefore, it is worthy to investigate this

more carefully.

In the experiments, four micro-expression databases are employed. In here, training

of the network is performed on one database, and randomly selected samples from the

other databases are used for testing. This is repeated four times, and the respective

results are presented in Tables 3.3-3.6. These results demonstrates that our proposed

architecture is generic, and capable of handling cross-database. The observations of the

cross-database evaluations are elaborated in Section 3.4.4.

3.4.3.4 Comparison with state-of-the-art

Table 3.7 compares the proposed technique with the existing approaches. It should

be noted that the experimental configurations for the methods compared may differ.
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Table 3.3: Cross-database Micro-Expression detection network trained on CASME and
tested on other databases

������������Metrics
Database

CASME II CAS(ME)2 SAMM

Precision 0.866 0.829 0.768
Recall 0.845 0.850 0.745
F1-score 0.855 0.839 0.756
Accuracy 0.857 0.837 0.760
TPR 0.845 0.850 0.745
FPR 0.130 0.175 0.225
AUC 0.861 0.802 0.715

Table 3.4: Cross-database Micro-Expression detection network trained on CASME II and
tested on other databases

������������Metrics
Database

CASME CAS(ME)2 SAMM

Precision 0.891 0.810 0.733
Recall 0.825 0.835 0.730
F1-score 0.857 0.822 0.731
Accuracy 0.862 0.820 0.732
TPR 0.825 0.835 0.730
FPR 0.100 0.195 0.73
AUC 0.891 0.781 0.705

Table 3.5: Cross-database Micro-Expression detection network trained on CAS(ME)2 and
tested on other databases

������������Metrics
Database

CASME CASME II SAMM

Precision 0.848 0.834 0.742
Recall 0.810 0.855 0.720
F1-score 0.828 0.844 0.730
Accuracy 0.832 0.842 0.735
TPR 0.810 0.855 0.720
FPR 0.145 0.170 0.250
AUC 0.849 0.842 0.710

The results for the existing approaches are taken directly from the respective research

studies. Many studies have been tested only using CASME II and SMIC repositories

to detect micro-expressions. LGAttNet is also trained and tested on CAS(ME)2 and

SAMM databases in addition to the commonly used databases for micro-expression

detection. It can be found from the comparison table Table 3.7 that the LGAttNet

achieves considerably higher detection accuracy.
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Table 3.6: Cross-database Micro-Expression detection network trained on SAMM and
tested on other databases

������������Metrics
Database

CASME CASME II CAS(ME)2

Precision 0.668 0.678 0.715
Recall 0.685 0.645 0.680
F1-score 0.676 0.661 0.697
Accuracy 0.672 0.670 0.703
TPR 0.685 0.645 0.680
FPR 0.340 0.305 0.272
AUC 0.631 0.665 0.697

Table 3.7: Comparison with existing state-of-the-art micro-expression detection methods

Database Method Performance Accuracy

CASME

Feature difference [15] TPR=77.27% -
(CASME-A) LBP-χ2 [105] - 78.75%
(CASME-A) LTP-ML [105] - 77.90%
(CASME-B) LBP-χ2 [105] - 82.92%
(CASME-B) LTP-ML [105] - 82.61%
LGAttNet TPR=91.5% 93.2%

CASME II

Frame difference [121] - 81.75%
Frame difference [14] - 86.95%
LBP-χ2 [105] - 64.08%
LTP-ML [105] - 65.07%

LBP [111]
TPR=70.0%
FPR=13.5% -

PLK+LSTM [34] - 89.87%

LGAttNet TPR=94.0%
FPR=5.5% 94.2%

CAS(ME)2
LTP-ML [107] F1-score=0.0055 -
LBP [167] AUC=0.5971 -

LGAttNet F1-score=0.867
AUC=0.923 86.5%

SAMM

3D HOG-XY plane [27] - 70.87%
LBP-TOP -XY plane [27] - 74.65%
HOOF [27] - 70.98%
LTP-ML [107] F1-score=0.0316 -
PLK+LSTM (SAMM+CASME II) [34] - 87.30%
LGAttNet F1-score=0.870 86.7%

TPR = True Positive Rate; FPR = False Positive Rate
[34] implements cross-database experiment (SAMM+CASME II)
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3.4.4 Discussion

LGAttNet is built using attention networks which are made to focus on three different

sections of an input facial image, making this as the first attempt to use attention

network for local as well as global attention mapping for a facial image. Unlike some other

related studies, LGAttNet also stands out for achieving profoundly high micro-expression

detection accuracy from video frames. There have been some studies [121, 123] performed

to recognise facial micro-expressions from single apex frames. Taking motivation from

these works, a detection model is constructed to identify micro-expression images from

non-micro-expression images. The observations in Table 3.1 demonstrates that the

LGAttNet is capable of detecting the existence of the micro-expression in the video

frames. Usually, detection of micro-expressions is performed by taking feature differences

between consecutive frames or comparing the first reference frame with the rest of the

frames in a video using handcraft feature descriptors. In contrast, the LGAttNet uses a

deep attention network that can concentrate on the local as well as global facial regions

to track the feature difference to detect micro-expressions.

It can be contemplated from the results in Tables 3.3-3.6 that the databases having

participants from similar ethnic background, as in CASME, CASME II and CAS(ME)2,

display higher prediction accuracy when trained on one of these databases as compared

to the other database (SAMM), which has participants from 13 different nationalities.

Moreover, when trained on SAMM, the detection accuracies for CASME, CASME II and

CAS(ME)2 declines as the training database includes only three Chinese participants

which are in contrary to the other databases. From this cross-database analysis, it can

also be understood that the people from different ethnic backgrounds have their unique

ways of hiding real emotions. Hence, it is not only the way of capturing these micro-

expressions that affects the accuracies, but also the ethnicities of the participants’ plays

an important role.

3.5 Summary and Future Direction

In this work, a deep learning model is designed to focus on specific facial regions and

establish a correlation between these regions and the whole facial area. The proposed

model, LGAttNet, is a micro-expression detection model which incorporates the attention

network to converge the network processing towards selected regions of the face. The

LGAttNet comprises a deep and a shallow CNN supported by local and global attention

networks and an Artificial Neural Network (ANN) for binary classification. The local at-
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tention network processes partial facial parts, and the global attention network operates

on the complete facial image. This model is an image-based supervised detection model

with non-ME and ME classes.

Our model is the first to implement attention network for micro-expression detection.

As compared to the available number of related state-of-the-art micro-expression detec-

tion works, LGAttNet model delivers exceedingly higher detection accuracy around more

than 9%. This is because of the inclusion of the attention nets, since the micro-expression

is more of a spatial feature and with the partitioning of the face, the attention nets

insist the network to focus on selected facial regions. This behavior of LGAttNet can be

observed from the ablative analysis, where on the removal of the local attention module

(LAM), the detection accuracy is negatively affected and also on entirely removing the

attention modules (LAM and GAM) the network accuracy drops significantly.

Cross-database evaluations are conducted to explain the robustness of the proposed

network and to demonstrate that this model can be useful for real-time processing. We

are currently working on making this model capable to implement on the video sequences

considering the temporal dimension that will benefit the real-time processing industry

in the near future. In the future, the model would be extended to spot micro-expressions

from live-stream videos.
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EFFECTIVE FACIAL FEATURES FOR RECOGNITION

Existing research on micro-expression recognition has mainly used hand-crafted features,

for example, Local Binary Pattern-Three Orthogonal Planes (LBP-TOP), Gabor filter

and optical flow. Recently, Deep Convolutional neural systems have demonstrated a

high degree effectiveness for difficult face recognition tasks. This chapter explores the

potential usage of deep learning for recognition of micro-expressions. In this chapter, we

intend to develop deep learning models which can recognise the micro-expressions from

static images as well as videos. For micro-expression recognition from the static images

we used a pre-trained network and perform fine-tuning using the micro-expression

databases. The fine-tuned model is then used for recognition. However, to recognise

micro-expressions from the video or video frames another model is developed. The

technique incorporates handcrafted features and deep features. Local Binary Pattern-

Three Orthogonal Planes (LBP-TOP) is the handcraft feature which combines spatial and

time analysis to encapsulate regional facet movements. Two classifiers i.e. Softmax and

SVM are trained with combined feature vectors generated by LBP-TOP and CNN feature

descriptors. However, to develop a reliable deep neural network extensive training sets

are required with a huge number of labelled image samples. Micro-expression recognition

is a challenging task owing to the repressed facial presentation and limited span, which

results in the lack of training data. We also propose to generate extensive training

datasets of synthetic images using data augmentation on widely used micro-expression

databases. Then, these datasets are combined to tune the developed CNN-based micro-

expression recogniser. The findings of the experiments show that the proposed methods,
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although simple and straightforward, achieves a substantial increase in precision relative

to other commonly recognised micro-expression techniques, which are trained and tested

with just a few datasets.

4.1 Introduction

In recent years, identification or classification of facial micro-expression was at the fore-

front of computer vision. The main focus of existing research on micro-facial expression is

on recognising seven universal human feelings (anger, contempt, disgust, fear, happy, sad

and surprise) [40]. This recognition is often complicated because there is only a minor

variation between different micro-expressions, which requires the training of a strong

and profound feature extractor. Moreover, [150, 192, 193] studies have pointed out that

the uneven distribution within emotional classes in the classes with lesser samples can

lead to low precision.

By using transfer learning, the restriction of the information scarcity can be elim-

inated [159]. Patel et al. trained the CNN macro-facial expression CK+ network in

this strategy. Campos et al. [18] investigates how CNN may be fine-tuned and used for

prediction of visual feelings. In the light of the challenge of gathering big datasets with

accurate micro-expression annotations, the majority of today’s scientists concentrate on

domain comprehension by analyzing the efficiency of state-of-the-art architecture that is

tailored to this challenge.

The overall micro-expression recognition systems involve three principal steps: first,

the facial regions of interest are selected, second, classification characteristics are set

out and extracted and, third, the real micro-expression recognition is carried out using

selected features and advanced algorithm for machine training. Face representations

can traditionally be divided into spatial / spatio-temporal classes [191]. Local Binary

Pattern-Three Orthogonal Planes (LBP-TOP) [164], Oriented Optical Flow Histogram

[186], SpatioTemporal Completed Local Quantization Pattern (STCLQP) [77] are a few

existing handcrafted methods. Despite of many existing robust handcrafted feature

descriptors, the advanced high-level deep learning approaches attracted huge attention

from recent researches [95, 102, 190]. Recognition baselines using the handcrafted

feature descriptors on various micro-expression databases were established with the

original works [29, 112, 155, 167, 229]. The deep learning algorithms uses convolutional

neural networks (CNN) for extracting advanced deep feature for micro-expressions

[88, 159, 161].
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In this chapter, we have discussed the contributions of two different experiments

conducted on micro-expression images and videos respectively as given below:

1. Experiment I: Image-based facial micro-expression recognition using deep learning

on small databases [192]

∗ We develop a CNN architecture that achieves satisfactory recognition accuracy

on micro-expression images.

∗ We also present a novel way of increasing the number of samples for training

CNN model by combining the two widely used databases CASME and CASME

II.

2. Experiment II: Manifold Feature Integration for micro-expression recognition

[193]4

∗ Model which accomplishes concatenation of handcrafted feature with deep

CNN feature and conducts experiments to include publicly available CASME,

CASME II, CAS(ME)2, SAMM and SMIC (HS, NIR, VIS), and CASME+2

micro-expression datasets to confirm model efficiency and resulting unifor-

mity on wide range of datasets. In addition, we have trained SVM classifier

with its four kernels: Linear, Polynomial, Radial Basis and Sigmoid together

with Softmax and observed that SVM has improved the precision of micro-

expression recognition for some databases than Softmax.

∗ This is the first work to include and test the framework on all the publicly

available micro-expression datasets. The framework performs equally well

with all the micro-expression datasets, regardless of the data collection reso-

lution and frame rate or the ethnicity, age or gender of the individuals.

∗ Implementing data augmentation is a means of resolving the data imbalance

issue through the generation of synthetic data for all categories to enhance

the amount of training specimens in general. The method employs horizontal

flipping, doubling the training set. A slightly higher dataset is used to fine-

tune the pre-trained VGGFace model achieving analogous results.

The remainder of the chapter is organised into four sections. Section 4.2 discusses

the fundamental pipeline of micro-expression recognition process. The section also

4Madhumita A. Takalkar, Min Xu, Zenon Chaczko, Manifold Feature Integration for Micro-Expression
Recognition, Multimedia Systems (Under Review)

61



CHAPTER 4. EFFECTIVE FACIAL FEATURES FOR RECOGNITION
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Figure 4.1: A general block diagram of micro-expression recognition system.

explains the three standard components of both the discussed models: Face detection

and face registration; Data augmentation and CNN fine-tuning. Data augmentation

and CNN fine-tuning are a part of the Training process, whereas face detection and

registration are mandatory for Training and Testing phases. Following these steps

are the main processing models for image-based recognition and video sequence based

recognition which are discussed and explained in detail in Section 4.3. Section 4.4

illustrates the experimental setup, parameters and outcomes for both the experiments I

and II. The proposed models are compared with state-of-the-art approaches to justify

the contributions and explained with the help of performance metrics primarily using

accuracy and confusion matrix along with ablative analysis for experiment II. Based

on the observations, Section 4.5 discusses the proposed models and difficulties during

processing. Lastly, Section 4.6 summarises the chapter.

4.2 Micro-expression Recognition Pipeline

The conventional pipeline consists of four stages: 1) face detection; 2) pre-processing; 3)

feature extraction; and 4) classification. Figure 4.1 shows the basic block diagram of the

micro-expression recognition.

The process of recognition can be divided into two phases as training and testing and

subdivided into different phases. The first step in the training phase is the pre-processing

of data. Data augmentation of training samples and fine-tuning of CNN are the two extra

steps taken. The augmented data is then provided to fine-tune the pre-trained CNN

model. The obtained features are given to classifiers for training. In the testing phase,

the input is pre-processed and forwarded to the feature extraction block. These extracted

features are given to the trained classifiers for classification of micro-expression classes

in the test dataset. The detailed explanation of each block is discussed below.

4.2.1 Face detection and Face registration

The preliminary steps in the pre-processing data for micro-expression recognition are

face detection and registration. The face detection stage, for our experiments, focuses
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on frontal human face detection as all the databases includes videos on front faces. A

sliding window detection system uses the DLib toolkit, which is based on Histogram of

Oriented Gradients (HOG) and Linear SVM. It also offers pre-trained models for the

detection of facial points.

After the face is detected and cropped, face alignment algorithm is applied. The

process includes 1) analysis of the geometric facial structure in video frames, and 2)

the approval of a translation, scaling and rotational alignment of the facial region. A

technique for the face alignment is used to achieve a normalised rotation, translation,

and scale representation of the face based on facial landmarks (especially the eye areas).

Alignment of the face is a form of “data norming”. The dataset is usually normalised

before a facial recogniser is trained.

The input is a collection of facial points (input co-ordinates) with the objective of

warping and translating the image into a output coordinate space. Every face in an

entire dataset should be centrally aligned in a way that allows the eyes to be placed

on a horizontal line (i.e. the face is rotated to straighten the eyes along the same y-

coordinates). All the images should be scaled to roughly the same facial proportion (RoI)

to maintain consistency in the training and testing samples.

Affine transformation accomplishes all the above mentioned tasks for registering the

facial region. It determines the components of the transformation matrix. Locating the (x-

y)- coordinates of the eyes are the key components used in the facial alignment algorithm.

Facial points of interest tend to work better than Haar cascades as we evaluate the eye

location precisely (instead of just a bounding box).

The input frames are pre-processed using the above mentioned steps of centering

and aligning the facial region. Then the aligned frames are cropped to a size of 224×224

size. These cropped images are grayscaled before performing feature extraction.

4.2.2 Data Augmentation

The absence of large training datasets is a crucial bottleneck that keeps the utilisation of

profound (deep) learning techniques in such cases, as the models will overfit drastically

when utilising small training datasets. To address this issue, a large number of strategies

have been proposed: fine-tuning models trained from other large public datasets (e.g.

ImageNet [32]), using the big synthetic training datasets explored by some authors

[73, 88, 110].

The results are substantially affected by the extent of datasets in the field of deep

learning and thus data augmentation is frequently used to extend the training set. There
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are two key groups of current data augmentation techniques: (a) a relatively universal

and computationally inexpensive geometric transformation and (b) task-specific or guided

techniques that can produce synthetic samples from particular labels [35].

The first set of data augmentation is invariably used in image classification to

create more image information via label-preserving linear transformations (translations,

rotation, scaling, flipping, horizontal shearing) such as Affine [22], elastic deformations

[182], patch extraction and modification of the intensities of the RGB channels [95]. The

second group proposes more complicated manually-specified augmentation strategies.

There are two critical points of interest of utilising synthetic data: (a) one can produce

the same number of training samples as required, and (b) it permits explicit control

over the unwanted factors. Data augmentation is a technique that is commonly used

to reduce the scarcity problem. It is a set of label-preserving transforms that introduce

some new instances without collecting the new data. In this, the existing training

images are transformed without affecting the semantic class label. Examples of such

transformations are horizontal/vertical mirroring [113], cropping, small rotations, etc.

Flipping and mirroring images vertically or horizontally producing two samples of each

is a commonly used data augmentation technique for face recognition.

Some training information that cover different circumstances is needed in order to

better classify unseen information. Facial micro-expressions databases such as CASME,

CASME II, CAS(ME)2, SAMM and SMIC do, however, contain only a couple of hundred

sequences. As there are many parameters in a typical deep network, training with fewer

samples could cause the system to overfit. To overcome the overfitting problem, various

data augmentation techniques are implemented. In current work, all image sequences

in the training datasets are horizontally flipped, generating a mirror image of the face.

Only one technique of horizontal flipping is implemented, which will merely double the

training set and not increase the samples significantly. The purpose behind keeping

the training samples small is that we will fine-tune the pre-trained network on small

datasets and still deliver improved outcomes.

4.2.3 CNN Fine-tuning

Lack of samples for training reduces CNN-based micro-expression recognition approach

performance. This problem may be handled partially by an increase in the amount of

data that could overfit. Fine-tuning is therefore used to draw expression-associated

functionalities from facial gray images by referring to the deeper neural network, which

has achieved great success in comparable tasks. Fine-tuning helps researchers train
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Table 4.1: VGGFace architecture

Conv1 Conv2 Conv3 Conv4 Conv5 Full6 Full7 Full8
conv1_1(64*3*3)
relu1_1

conv2_1(128*3*3)
relu2_1

conv3_1(256*3*3)
relu3_1

conv4_1(512*3*3)
relu4_1

conv5_1(512*3*3)
relu5_1 FC6 (4096) FC7 (4096) Softmax

conv1_2(64*3*3)
relu1_2
pool1

conv2_2(128*3*3)
relu2_2
pool2

conv3_2(256*3*3)
relu3_2

conv4_2(512*3*3)
relu4_2

conv5_2(512*3*3)
relu5_2

conv3_3(256*3*3)
relu3_3
pool3

conv4_3(512*3*3)
relu4_3
pool4

conv5_3(512x3x3)
relu5_3
pool5

neural networks with considerably less time if the conditions are met. It is one approach

to transfer learning, and it is prevalent in computer vision and Natural Language

Processing (NLP).

The pre-trained model used in the experiments to compute the deep micro-expression

feature of the face is the VGGFace network, trained on 2.6M images of 2.6k individuals

[157]. Table 4.1 describes the layers of the VGGFace pre-trained model used for fine-

tuning by modifying the Full8 Softmax layer with the number of class labels in the

respective databases. CNN VGG-Face descriptor is calculated on the basis of the VGG-

Very Deep-16 CNN architecture mentioned in [157] and is assessed on Labeled Faces in

the Wild [74] and the YouTube Faces [223] dataset.

Fine-tuning is usually achieved by freezing the weights of all layers of neural net-

works except for the penultimate layer. Usually, the last layer (Softmax) is replaced with

another one of our choice (depending on the number of outputs we require for the new

problem). However, for the two experiments that we have conducted in this chapter,

we have considered different number of databases. For Experiment I, the training and

testing of the model is carried out on images from CASME, CASME II and an additional

database that we formed by aggregating CASME and CASME II, which is referred to as

CASME+2 [192]. These databases consists of images labelled with one of five emotion

categories: disgust, fear, happiness, sadness, and surprise. We have also taken into

consideration the sixth category as ‘Neutral’. The given images are divided into two

different sets which are training and testing sets.

For data augmentation, mirrored images were generated by flipping images horizon-

tally. The training set comprises of 80% of the total images in the synthetic database and

remaining 20% of the images are further divided as the testing set (10%) and validation

set (10%). The training process generated three fine-tuned model versions of VGGFace

pre-trained model.

However, for Manifold Feature Integration that is Experiment II we have included

data ranging from three to six micro-expression categories from eight different micro-
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Figure 4.2: The proposed CNN architecture for image-based micro-expression
recognition

expression databases such as CASME, CASME II, CASME+2, CAS(ME)2, SAMM, SMIC

(HS, NIR, VIS), so the last Softmax layer is replaced with respective (3,5 or 6) node. Each

database has data distributed in different micro-expression classes. Details about the

publicly available databases is discussed in Chapter 2. Hence, the VGGFace (pre-trained)

network is fine-tuned on each database individually generating eight fine-tuned models.

4.3 Proposed Methods

This section discusses in detail the proposed feature extraction methods used by train-

ing and testing phases for both image-based as well as manifold feature integration

experiments.

4.3.1 Image-based facial micro-expression recognition

CNN is a biologically-inspired model. The input layer receives normalised images with

identical size. The convolutional layer will process a set of units in a small neighbourhood

(local receptive field) in the input layer and creates a feature map. Rectified Linear Unit

(ReLU) is a non-linear operation. Each feature map has only one convolutional kernel.

The CNN design can effectively save computation time and allow particular feature stand

out in a feature map. Typically there is more than one feature map in a convolutional

layer which involves several features in the layer. To make the feature invariant to the

geometrical shift and distortion, a pooling layer is followed by the convolutional layer

can subsample the feature maps. Max pooling function is used for subsampling. The first

convolutional layer and the pooling layer would obtain low-level details of the image,

while their stack would allow for the extraction of high-level features.

The output layer acts as an input to the fully connected layer that uses a Softmax

activation function in the output layer. The purpose of the fully connected layer is to use

these features for classifying the input image into respective classes depending on the

training dataset.
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Figure 4.3: The comprehensive structure of Manifold Feature Integration model for
micro-expression recognition

Putting it all together, the Convolutional + Pooling layers act as Feature Extractors

while Fully Connected layer acts as a Classifier.

The CNN architecture for image-based micro-expression recognition system is de-

picted in Figure 4.2. This model is fine-tuned individually on each of the databases used.

The three fine-tuned VGGFace models are utilised as feature extractor for any subjective

face image by operating the image through the whole network, then extracting the output

of the fully connected layer FC7. The extracted feature is exceedingly discriminative,

minimal, and interoperable encoding of the input image. Once the features are acquired

from FC7 layer of the fine-tuned VGG-Face CNN, they are utilised for training and

testing subjective Softmax classifier.

4.3.2 Manifold Feature Integration Model

When recognising facial micro-expression, the motion is a cue, and it can produce a

powerful countermeasure in conjunction with texture. A spatio-temporal representa-

tion, which incorporates facial aspect and dynamics, is regarded for defining the face

micro-expression for classification. The proposed manifold feature integration model for

recognition of micro-expression is presented in this section and describes a further outline

of the process to generate synthetic training data for network. The model suggested is a

multiple feature integrating method that is trained and tested using two classification

methods (Figure 4.3). The Local Binary Pattern-Three Orthogonal Planes (LBP-TOP)

and the deep Convolutional Neural Network (CNN) are two feature extraction techniques.

The handcraft descriptor LBP-TOP extracts the block-based spatio-temporal feature that

is required to detect facial micro-expression. The CNN, a deep neural network, collects

the dense local information from the region of interest (RoI). The mentioned both feature

descriptors work in parallel to each other. Finally, the two feature vectors are integrated
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to enhance the micro-expression recognition performance.

4.3.2.1 Manifold Feature Learning

LBP-based spatio-temporal representation performs convincingly well in modelling facial

movements, recognition of facial expression and recognition of dynamic texture [165].

An LBP textural analysis operator characterised as an invariant gray-scale texture mea-

surement obtained from normal texture definition in a local neighborhood is presented

by Ojala et al. [153, 154]. This computation is expressed as [216]:

(4.1) LBPP,R(xc, yc)=
P−1∑
p=0

s(gp − gc)2P

where,

xp = xc +RX cos(2πp/P), yp = yc +RY sin(2πp/P)

are the points of neighborhood, and step function:

s(x)=
⎧⎨
⎩0 i f x < 0

1 i f x ≥ 0

gc is the gray value center pixel, P reflects the total number of neighboring points, while

gp is the gray value of P equally spaced neighbouring pixels on a circle of radius R at this

center pixel. An extension to three-dimensional space of LBP is referred to as LBP-TOP.

LBP-TOP comprises of temporal texture (video sequence) as a value in set (X ,Y ,T) space

where the space coordinates are marked by X and Y and time coordinates are referred

to as T. The histogram containing the texture features of the image is computed on the

basis of the LBP patterns derived from all the pixels in the image. A video is shown as a

series of XY planes in axis T, Y T planes in axis X and X T planes in axis Y , respectively.

Bilinear interpolation estimates the values of neighbours that do not exactly fall on

pixels. The radii in axes X , Y and T and the number of neighbouring points in the XY ,

X T and Y T planes may differ, marked as RX , RY and RT , PXY , PX T and PY T . Using

micro-expression as an example, the XY plane contains spatial information that involves

both the identification and appearance of the face, while the X T and Y T planes contain

information on pixel shifts in vertical and horizontal directions with time relative to

the motion of the face. Three co-occurrence-based statistics obtained separately from

three orthogonal planes are therefore used for the purposes of obtaining this information.

As it is not appropriate for dynamic textures to set the radius in time to be equivalent

68



4.3. PROPOSED METHODS

to radius in the space axis, we have different space and time radius parameters. The

parameter values used in our calculations for RX , RY and RT are 1, 1 and 2 respectively

and values for neighbouring points [PXY PX T PY T] are [8 8 8].

The changes of the neighbouring points around the centre pixel are also taken into

account with the time as the facial motion direction is uncertain. Taking into account the

movement of the facial region, the face image is divided into a number of non-overlapping

blocks. Each block’s LBP-TOP histogram is computed to form one histogram and feature

vector of size 3×2P . The features were merged to reflect the appearance and motion of the

series of the facial expression derived from each block size. Given that micro-expression

has partial facial motion, the low-level features obtained from multiple local regions are

crucial for recognition.

Local dense feature descriptors such as Convolutional Neural Networks (CNN) are

deep neural networks utilised principally to categorise images (e.g. labelling images),

grouping by similarity (photo data mining), and executing object recognition within scene

images. The ideas of receptive field and weight sharing are applied by CNN. These ideas

are causing the proliferation of data through the layers to be computed by convolution,

and the quantity of trainable parameters is being diminished. A feature map is generated

by convolving a signal with a filter map that contains the shared weights.

For the handcrafted feature, it is observed that the features from the local region are

more crucial for the recognition of micro-expression owing to the brief length and partial

facial motions. The handcrafted feature used is therefore the block-based LBP-TOP. The

block-based LBP-TOP covers the facial motion on the spatial and temporal levels.

A CNN model is trained (fine-tuned) with eight databases separately for the deep local

feature. Later, the pre-trained fine-tuned VGGFace CNN models are used to calculate the

face’s deep micro-expression feature. Five convolutional blocks and three fully connected

layers form the network. Each of the pre-processed and selected facial region with micro-

expression annotation is supplied as a CNN input during the training (fine-tuning) ,

and the weights of the FC7 fully connected layer are saved as the facial features (4096

dimensions).

4.3.2.2 Manifold Feature Integration

Integration seeks to accommodate and fuse into a common feature the advantages of

handcrafted and deep features. The fusion at feature level occurs by merging deep CNN

with handcrafted LBP-TOP features. The handcrafted LBP-TOP features of dimension

(177×1) and the deep CNN features of dimension (4096×1) which are saved separately
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into separate text files are fetched by the concatenation function to integrate LBP-TOP

and CNN features and form a flattened feature vector of dimension (4273×1). The

integration is just to attach the deep feature values to LBP-TOP.

Overall, with the integration of two existing methods, LBP-TOP and CNN, our

framework is integrating spatial and temporal features extracted from LBP-TOP with

dense spatial features from CNN. The concatenation of LBP spatial and CNN spatial

features will give the model more comprehensive learning means about micro-expressions.

The low-level temporal features from Three Orthogonal Planes (TOP) will provide the

model about the transition or shift of the spatial features between consecutive frames

that enables to process the micro-expression within a video. The 4273 dimensional vector

is the shape of the training and testing samples.

4.3.2.3 Classification

The categorisation of expressions based on the selected features input is usually referred

to as Classification. Classification typically involves training and testing, where the

training phase prepares the classifier to distinguish micro-expression according to fea-

tures and labels provided, while testing verifies the classifier’s effectiveness. A number

of supervised classification techniques including Support Vector Machine (SVM) [9, 81],

Multiple Kernel Learning (MKL) [164], k-Nearest Neighbour (k-NN) [64], Random Forest

(RF) [164], and Softmax in CNN [159] were applied to recognise micro-expression. The

fully connected layer [192], the last layer in CNN, functions as classifier in the high-level

approaches for micro-expression recognition. The fully connected layer is composed of

conventional multilayer perceptron used in classifying high-level features. These deep

features are derived from the convolutional and max-pooling layer in distinct classes

with the initiation of Softmax. As this layer is initiated by Softmax, it is described as a

Softmax classifier.

A classification system has two significant parts, one score function, which maps

the raw data to class scores, and other loss function which assesses the agreement

between the estimated results and labels of ground truth [84]. For the experiments, SVM

loss (hinge loss) and Cross-entropy (used for Softmax classifier) are used. Suppose the

xi ∈ RD training dataset each labelled with yi. Here i = 1...N and yi ∈ 1...K . This implies

that there are N instances (all with D dimensionalities) of K discrete classes. A linear

mapping function can be written as:

(4.2) f (xi,W ,b)=Wxi +b
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This is estimated by flattening all the pixels of the image xi in a single column

vector [D×1]. The parameters of this function are W matrix (of size [K ×D]), which are

frequently called weights, and the b vector (of size [K ×1]) called a bias vector. Without

interacting with the current information xi, the parameters of the biased vector impact

output results.

The features are combined into a single [4273×1] column during the experiment, W
is [6×4273], [5×4273] and [3×4273] and b is [6×1], [5×1] and [3×1] (6 for CASME,

CASME II, CASME+2; 5 for CAS(ME)2, SAMM and 3 for SMIC-E). So 4273 numbers are

supplied into the function (features extracted) and 6 or 5 or 3 number is given as the

outcome (as the class scores).

The SVM loss is combined so that for each sample image the SVM “wants” the true

class to achieve an approximately fixed margin Δ above the false classes. While hinge

loss is quite popular, Deep Learning and Convolutional Neural Networks are more likely

to use cross-entropy and Softmax classifiers. This is because Softmax classifier outputs

the probabilities for each class label whereas the hinge loss returns the margin.

The new concatenated feature contains more abundant information. The classifiers

used are, Softmax and Support Vector Machines (SVM), for micro-expression recognition.

SVM uses four kernels-linear, polynomial, radial basis (RBF) and sigmoid-to test the

efficiency of the CNN model. Traditionally, SVM and Softmax are analogous. Put differ-

ently, the Softmax classifier continuously improves its score: the right class always has

elevated probabilities and the wrong classes are often less likely, with the loss constantly

improving. The SVM is nevertheless persuaded when the margins are filtered and the

precise results are not regulated beyond this restriction. Naturally, this can be considered

a feature.

Hence, for validating the comparability and effectiveness, both the classifiers are

implemented in the proposed model.

4.4 Experimental setup and Outcomes

4.4.1 Databases

Adequate quantity of data for the training of CNN without any underfitting or overfitting

is a key element for working with the deep learning networks. In this case, micro-

expressions do not have many samples that allow a deep network to be trained from

scratch.
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Table 4.2: Experimental Micro-expression databases and emotion categories

Database Micro-expression classes
CASME

6 (Disgust, Fear, Happy, Neutral, Sad, Surprise)CASME II
CASME+2
CAS(ME)2

5 (Disgust, Fear, Happy, Sad, Surprise)
SAMM

SMIC
HS

3 (Negative, Positive, Surprise)NIR
VIS

Table 4.2 gives details about the number of emotion classes used in analysis. Six

emotion classes from CASME and CASME II are selected, which are common to both

the datasets and also for the combined dataset. The micro-expression class Neutral is

added to CASME, CASME II and CASME+2 class since there are a few unlabelled videos

without expressions. Similar micro-expression categories from CAS(ME)2 and SAMM

datasets are also selected except for Neutral as these datasets do not have any unlabelled

videos. As SMIC dataset has three micro-expression types, all the classes are considered

for the experiments.

The Experiment I uses CASME, CASME II and CASME+2 databases with six emotion

classes whereas the Experiment II uses all the databases mentioned above, along with

the combined CASME+2 database to assess the potency of the proposed micro-expression

recognition approach.

4.4.2 Experimental Setup

4.4.2.1 Experiment I

The micro-expression recognition model verifies the effectiveness by conducting ex-

periments on the CASME, CASME II and CASME+2 datasets. All the images in the

databases are pre-processed and flipped vertically to increase the number of samples.

The new synthetic database is then divided into three groups as Training, Testing and

Validation. Each image has been categorised as: 0 = Disgust, 1 = Fear, 2 = Happiness, 3

= Neutral, 4 = Sadness, and 5 = Surprise.

We implemented the deep convolutional neural networks based on the Caffe [82]

(a fast open framework for deep learning and computer vision) and took 10-12 hours

to train this network. The models were trained for 100,000 iterations on CASME and

41,000 iterations on CASME II and CASME+2. The initial learning rate is changed from

0.001 to 0.0001 when the training iteration reaches 10,000. The layer parameters of
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the network are modified at each round of iterations in model training on the basis of

the loss. We obtain a trained model when the maximum training iterations are reached,

which is basically the parameter of all the filters. The model is then saved in order to use

it to predict a micro-expression from images. The input is given from the Validation sets

which are the raw face images collected from the original databases. For each experiment,

a corresponding Validation set is used depending on the Training database.

4.4.2.2 Experiment II

The aim is to obtain an LBP-TOP flattened feature histogram of the dimensionality of

177. The VGGFace pre-trained model is fine-tuned using all the samples in the train set

from all the eight micro-expression databases individually. The fine-tuned CNN extracts

a feature vector from Fully Connected (FC7) layer of dimension 4096. A concatenation

operation on LBP-TOP (177×1) and CNN (4096×1) features is performed to flatten the

two separate feature vectors into one feature vector of 4273 dimensionality. CNN model

is also built using Caffe deep learning toolbox.

Data augmentation technique is used to double the amount of sample information

in all training sets. Each of the eight databases is split into a Training set (80%), and

Testing set (20%) for the assessment of the suggested framework. The hyper-parameter

“max_iter” value, which defines the maximum number of iterations to be performed,

differs considering the number of training set samples. Since there are fewer training

samples in some databases, the number of iterations is also reduced. The initial learning

rate ‘base_lr’ hyper-parameter value is 0.001 for training and ranges from 0.001 to

0.00001 during testing with Softmax classifier.

The models for both the experiments are trained and tested on NVIDIA(R) GeForce(R)

GTX 1060 with 6GB GDDR5. This hardware configuration boosted the fine-tuning process

by reducing the time taken for fine-tuning as the code is run in GPU mode. The databases

with a sizable number of training samples (CASME+2 and SMIC-HS) took around 96

hours due to the higher number of iterations it had to run. Whereas the other databases

(CASME, CASME II, CAS(ME)2, SMIC-NIR, SMIC-VIS) have less training samples

which took less than 48 hours to finish the fine-tuning.

4.4.3 Evaluation Results

The intension of this section is to compare proposed methodology with alternative

progressive algorithms in facial micro-expression recognition. The comparison is done
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on the basis of the databases used in the experiments. The experimental setup and

conditions for the existing methods are as mentioned in the respective research.

4.4.3.1 Experiment I

The Experiment I recognition accuracy results for the three databases used are sum-

marised in Table 4.3. From the table, we can observe that the recognition accuracy

improves as the number of training samples increases.

Table 4.4 lists the recognition accuracy of using our method and of the state-of-the-art

methods in CASME dataset and CASME II dataset respectively. Most of the existing

methods are video based, which more or less take advantage of the temporal informa-

tion from the video. Our method is image based, which applies CNN on image frames

extracted from videos. The tables testify that proposed CNN method exhibits satisfying

micro-expression recognition accuracy. These results also demonstrate that image based

micro-expression recognition delivers identical results as video based approaches.

Due to slightly greater number of samples in CASME II as compared to CASME

dataset, the researchers in [88] opted to demonstrate deep learning results on video clips

from CASME II dataset. In our research, we have applied data augmentation technique

to increase the number of samples. Therefore, we could use both CASME and CASME II

datasets to showcase the effectiveness of proposed CNN method.

The studies [60, 88, 127, 210, 215] have considered the temporal factor from the video

for recognition of micro-expressions which have contributed an additional feature in the

calculations. In case of our method, we tried to eliminate the temporal factor and simply

Table 4.3: Micro-expression recognition accuracy with different databases

Database CASME CASME II CASME+2
Accuracy 74.25% 75.57% 78.02%

Table 4.4: Accuracy correlation with existing advanced approaches on public databases

Database Method Accuracy

CASME

LBP-TOP+ELM [60] 73.82%
MDMO+SVM [127] 68.86%

LBP-TOP+SVM [210] 61.85%
Experiment I 74.25%

CASME II

LBP-TOP+SVM [215] 75.3%
MDMO+SVM [127] 67.30%
CNN+LSTM [88] 60.98%
Experiment I 75.57%
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Figure 4.4: Accuracy comparison graph of Softmax and SVM kernels

exhibit the image based micro-expression recognition approach.

4.4.3.2 Experiment II

For this experiment we use all the databases to fine-tune the VGGFace model and train

two classifiers. Observations in Table 4.5 shows that both the classifiers perform equally

well, but sometimes SVM takes over the Softmax classifier by 4-7%.

Figure 4.7 presents a graphical demonstration of Table 4.5 to visualise the recognition

accuracy results of both Softmax and SVM classifiers. The attempt to implement two

classifiers, Softmax and SVM, is to verify the accuracy of our approach and to identify a

more suitable classifier for our method.

Table 4.6 testifies that the suggested manifold feature integrating method outper-

Table 4.5: Evaluation results of the Manifold Feature Integration

Database
Recognition Accuracy (%)

Softmax
SVM

Linear Polynomial RBF Sigmoid
CASME 85.71% 76.19% 80.95% 76.19% 85.71%
CASME II 82.75% 72.41% 79.31% 79.31% 86.21%
CASME+2 86.36% 79.55% 79.55% 81.82% 79.55%
CAS(ME)2 83.33% 75.00% 83.33% 83.33% 91.67%
SAMM 80.00% 73.33% 73.33% 73.33% 80.00%

SMIC
HS 84.84% 81.82% 84.84% 81.82% 81.82%
NIR 93.33% 93.33% 100% 100% 100%
VIS 93.33% 80.00% 86.67% 86.67% 93.33%
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forms cutting-edge techniques. The experimental observations of the proposed approach

applied on the seven publicly available databases are considerably better than most

modern techniques. Notably, the efficiency of the proposed approach is not only goes

beyond the present deep learning techniques but is outstanding to handcraft based tech-

niques. These outcomes reflect the validity of the suggested manifold feature learning

and integration micro-expression recognition approach.

Table 4.6: Comparison of recognition accuracy on eight databases

compared with our approach

Database Methods
Recognition

Accuracy (%)

CASME

LBP-TOP+SVM [210] 61.9%

MDMO+SVM [127] 68.9%

FHOFO+ LSVM [64] 71.6%

LBP-TOP+CNN+Softmax 85.7%
LBP-TOP+CNN+SVM (Sigmoid) 85.7%

CASME II

CNN+SVM [159] 47.3%

MMFL+SVM [65] 59.8%

CNN+LSTM [88] 61.0%

FHOFO+LSVM [64] 64.0%

Joint feature+Multi-task [71] 66.2%

HIGO+LSVM [111] 67.2%

MDMO+SVM [127] 67.4%

Firefly+ISO-FLANN [1] 68.7%

EVM+LBP-TOP+SVM [215] 75.3%

SME+SVM [147] 85.0%

LBP-TOP+CNN+Softmax 82.8%
LBP-TOP+CNN+SVM (Sigmoid) 86.2%

CASME I/II OR

CASME+2

DSTCNN+SVM [161] 66.7%

LBP-TOP+CNN+Softmax 86.4%
LBP-TOP+CNN+SVM (RBF) 86.2%

CAS(ME)2

DRMF+Bi-WOOF+SVM [122] 59.3%

MicroExpSTCNN [173] 87.8%

LBP-TOP+CNN+Softmax 83.3%
LBP-TOP+CNN+SVM (Sigmoid) 91.7%

Continued on next page
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Table 4.6 – continued from previous page

Database Methods
Recognition

Accuracy (%)

SAMM

HOG3D+SMO-SVM [28] 63.9%

LBP-TOP+SMO-SVM [28] 81.9%

LBP-TOP+CNN+Softmax 80.0%
LBP-TOP+CNN+SVM (Sigmoid) 80.0%

SMIC-HS

CNN+SVM [159] 53.6%

SME+SVM [147] 58.7%

AC-GAN+Bi-WOOF [119] 61.8%

SAGAN+Bi-WOOF [119] 62.2%

DRMF+Bi-WOOF+SVM [122] 62.2%

Joint feature+Multi-task [71] 65.1%

MicroExpSTCNN [173] 68.8%

LBP-TOP+CNN+Softmax 84.8%
LBP-TOP+CNN+SVM (Polynomial) 84.8%

SMIC-NIR

SME+SVM [147] 44.1%

HIGO+LSVM [111] 67.6%

LBP-TOP+CNN+Softmax 93.3%
LBP-TOP+CNN+SVM 100.0%

SMIC-VIS

SME+SVM [147] 45.9%

CNN+SVM [159] 56.3%

HIGO+LSVM [111] 81.7%

LBP-TOP+CNN+Softmax 93.3%
LBP-TOP+CNN+SVM (Sigmoid) 93.3%

4.4.4 Performance Metrics

The evaluation of the experimental results of proposed approach, apart from accuracy,

other performance evaluation metrics such as a confusion matrix, F1 score, Precision

and Recall are also considered. The confusion matrix is considered one amongst the pre-

eminent spontaneous and most comfortable parameter for identifying the true positives

of the model. It is generally used for classifying the output in two or more categories.

We plotted confusion matrix of each database for Experiment I and II based on the

probability calculated by the classifiers used for each experiment, respectively, placed

side-by-side. Figures 4.5 (a)-(c) shows the confusion matrix for Experiment I databases

and Figures 4.6 (a-p) represents the confusion matrix for Experiment II databases.
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Figure 4.5: (a)-(c) Confusion matrices based on probabilities predicted by Softmax
classifier

Accuracy is the number of right predictions produced by the model, over all sorts

of predictions in classification problems. Tables 4.3 and Table 4.5 gives the accuracy

numbers for projections from Softmax as well as Softmax and SVM (all kernels) classifiers

for Experiment I and Experiment II respectively.

Along with accuracy, precision, recall and F1 score are reliable performance evalua-

tion metrics.

Precision is a degree that tells us what extent of positive identifications are actually

correct. It is also called positive predictive values.

Recall manages to determine the portion of actual positives that were correctly

identified. In other words, recall (also known as sensitivity) is the portion of significant

occurrences that have been recovered over the entire extent of relevant instances.

F1 score measures a test’s accuracy. The harmonic mean between accuracy and recall

is the F1 score. The F1 scoring range is [0,1] [144].

An understanding and measure of relevance are the basis for precision and recall;

and F1 score shows how accurate and robust our classification is (Figure 4.7 (a-c)).
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For Experiment II we took a step further and performed additional analysis and

report precision, recall and F1 scores. Accuracy is an extremely important measure, but

only with symmetrical datasets (false negative and false positive counts are close), and

false negatives and false positives also carry the same costs. If false positive and false

negative costs differ, F1 will be a saviour here. F1 is preferable if the class distribution is

uneven, as-like in our case where the micro-expression classes have varying number of

samples. Precision shows how certain our model is of the true positives while recall is

how certain the model is that no positives are missing.

We chose to calculate precision and recall (Figure 4.7 (a-c)) as we wanted to be more

sure with our true positives to eliminate any false negatives and also F1 score because

we wanted to cover all true negatives to avoid false alarms and did not want any false

positives. Results from all these performance measures have reinforced the results of

our classification and convinced us that our proposed system provides significant results

in comparison with state-of-the-art approaches.
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Figure 4.6: (a)-(d) Confusion matrices based on probabilities predicted by Softmax and
SVM classifier
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Figure 4.6: (e)-(l) Confusion matrices based on probabilities predicted by Softmax and
SVM classifier
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Figure 4.6: (m)-(p) Confusion matrices based on probabilities predicted by Softmax and
SVM classifier
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Figure 4.7: (a) Figure of Merit for experimental datasets
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Figure 4.7: (b)-(c) Figures of Merit for experimental datasets

4.4.5 Ablative Analysis

4.4.5.1 Comparison with original features

Manifold Feature Integration model (Experiment II) is a model that utilises multiple

features for calculating a feature vector used to train and test the classifiers. In addition

to comparing the proposed framework with existing methods, we performed classification

checks on LBP-TOP feature using 8×8 block partitions, CNN feature and joint feature

individually. Table 4.7 demonstrates that in all repositories, our joint functionality

delivers consistently better performance than the original features LBP-TOP and CNN.

The explanation for the original features not being individually effective than the joint

features is the number and type of features extracted for classifiers’ learning. LBP-
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Table 4.7: Recognition accuracy of original features

Database
Softmax SVM

CNN LBP-TOP
CNN+

LBP-TOP CNN LBP-TOP
CNN+

LBP-TOP
CASME 81.0% 42.8% 85.7% 71.4% 47.6% 85.7%
CASME II 75.9% 44.8% 82.7% 75.8% 51.7% 86.2%
CASME+2 77.3% 45.7% 86.4% 75.0% 48.9% 81.8%
CAS(ME)2 75.0% 25.0% 83.3% 75.0% 33.3% 91.7%
SAMM 66.7% 40.0% 80.0% 66.7% 41.6% 80.0%
SMIC-HS 78.8% 48.4% 84.8% 75.7% 69.6% 81.8%
SMIC-NIR 80.0% 33.3% 93.3% 73.3% 53.3% 100.0%
SMIC-VIS 73.3% 53.3% 93.3% 80.0% 40.0% 93.3%

TOP has 59 containers and three orthogonal planes with a 177-dimensional feature

vector. Given a limited facial region with a micro-expression, extraction of LBP-TOP

features alone may be of little significance. In order to have a thorough feature vector

we used CNN, which shows better results than LBP-TOP but is a spatial extractor that

overlooks the time factor. The analysis shows that the deep features can strengthen

the discriminating capability of the low-level handcrafted features leading to a better

recognition efficiency.

4.4.5.2 Significance of data augmentation

As discussed under Section 4.2.2, data augmentation is an alternative means of reducing

model overfitting, where we only increase the number of training data using information

in our training data. An increasingly common and recognised technique for augmentation

is the combination of affinity transformations, such as shifting, zooming in/out, rotating,

flipping, distortion, or shading with hue. In this approach, augmented data is generated

before the classifier training. The classification of micro-expression is impeded by lack of

data. Table 4.8 supports the usefulness of the data augmentation methodology by way of

affine transformation to boost number of training samples and recognition accuracy.

4.5 Discussions

In addition to width, height and time, Wang et al. [210] use the color as a tensor

of fourth-order for deriving LBP-TOP features and SVM as classifier. The findings

indicate that Tensor Independent Color Space (TICS) offers useful information than
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Table 4.8: Comparing proposed model with and without data augmentation (DA)

Database
Softmax SVM

DA w/o DA DA w/o DA
CASME 85.7% 71.4% 85.7% 66.6%
CASME II 82.7% 68.9% 86.2% 58.6%
CASME+2 86.4% 69.3% 81.8% 57.1%
CAS(ME)2 83.3% 58.1% 91.7% 50.0%
SAMM 80.0% 53.3% 80.0% 60.0%
SMIC-HS 84.8% 63.6% 81.8% 69.6%
SMIC-NIR 93.3% 73.3% 100.0% 60.0%
SMIC-VIS 93.3% 66.6% 93.3% 73.3%

RGB and grayscale. Certain studies like [64, 77] indicate that LBP-TOP alone may not

be appropriate to produce reliable performance. Table 4.7 shows that the accuracy is low

for LBP-TOP.

In the study by Patel et al. [159], they attempted to use deep features passed from

pre-trained ImageNet models. The researchers found that it is not feasible to fine-tune

the network with micro-expression datasets and chosen a feature selection approach.

Also, several works such as Kim et al. [88], Peng et al. [161] investigated the utilised deep

neural networks through encoding space and time features learned from comparatively

shallow network architecture than those of the ImageNet challenge. The model we have

used is VGGFace, which is pre-trained on a massive face image repository, contrary to the

pre-trained models used in other research approaches. Using VGGFace lets us take the

lead because the CNN model already knows facial characteristics, and then we fine-tune

VGGFace on the increased micro-expression data.

4.5.1 Difficulties with certain expressions and databases

Confusion matrix observations demonstrate that the model projections for some classes

of micro-expression tend to differ according to the training scheme and adaptive architec-

ture scoring lower accuracy, as these classes turns out to be “harder” to train. In case of

Image-based model, the classes such as “Fear”, “Happiness”, and “Sadness” appear to be

the classes that shows inconsistency in the classification results. Whereas, in Manifold

Feature Integration model, the classes for instance “Fear” and “Sadness” from CASME,

CASME II and CASME+2 datasets, “Fear” from CAS(ME)2, “Disgust” and “Sadness”

from SAMM, and “Surprise” from SMIC exhibits similar behaviour.

The observed inconsistency might be due to two reasons as discussed. First, the
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mentioned micro-expression categories contains very scanty training data samples as

related to other categories in the respective datasets, making it difficult for the network

to train for recognising them. Second, these micro-expressions can be extremely subtle

and even the specialists find it difficult to comply with their true annotations [221].

We suspect that the inherent difficulty in assigning labels to some of the samples

may have caused them to be “mislabelled”, thereby affecting the models that were

trained on them. We would also highlight here that some of the models were unable

to predict a sufficient number of samples for label “Fear” correctly. The reason for this

could be an imbalance in the training datasets. The imbalance in the number of training

samples for each class of micro-expressions most likely caused our models to overfit the

micro-expressions with more samples (e.g. “Disgust”) at the expense of this class.

We attempted to keep the Training (80%) and Testing (20%) set distribution as

person-independent in most scenarios possible. However, for instance, CAS(ME)2, micro-

expression class “Sadness” has only one sample, or CASME where only one person has

“Neutral” sample videos. In such situations, the same person can be in Train as well as

Test set, as can be seen from the confusion matrix. Moreover, not all subjects has all

categories of micro-expression in any specified database. Some subjects have either two

or sometimes just one micro-expression class in the SMIC database. As a consequence,

person-independent validation becomes challenging and unjust.

4.6 Summary

This chapter presents and examines two modern methods for extraction of features for

the implementation of micro-expression recognition.

The primary contribution for the Experiment I lies in fine-tuning a CNN model using

small datasets to recognise micro-expressions from images. It is suggested that if we

were to exploit deep neural networks such as CNN for facial micro-expression recognition

to achieve the significant gains seen in other domains, then having bigger datasets is

crucial. This is where we implanted the idea of combining the two databases CASME

and CASME II to form a larger database. We demonstrated through our experiments

that image-based micro-expression recognition could also yield acceptable accuracy as

compared to image-base facial expression recognition.

A thorough study and verification of the combination between handcrafted and deep

features is carried out in Experiment II to enhance the accuracy of recognition for micro-

expression. This research proves to be the first work to train and test the proposed
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manifold feature integration model on all seven publicly available datasets and one

combined dataset and achieve acceptable micro-expression recognition accuracy. It is

observed that proposed micro-expression recognition approach achieves appreciable

results in comparison to the state-of-the-art techniques and networks.
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GEME: DUAL-STREAM MULTI-TASK GENDER-BASED

MICRO-EXPRESSION RECOGNITION

Recognition of micro-expressions remains a topic of concern considering its brief span

and low intensity. This issue is addressed through convolutional neural networks (CNNs)

by developing multi-task learning (MTL) method to effectively leverage a side task:

gender detection. A dual-stream multi-task framework called GEME is introduced

that recognises micro-expressions by incorporating unique gender characteristics and

subsequently improves the micro-expression recognition accuracy. This research aims to

examine how gender differences influence the way micro-expressions are displayed. The

current study proves that selecting relevant features of micro-expressions distinctive to

the gender and added to the micro-expression features improves the micro-expression

recognition accuracy. This network learns gender-specific features and micro-expression

features and adds them together to learn the combination of shared and task-specific

representations. A multi-class focal loss is used to mitigate the class imbalance issue

by down-weighing the easy samples and concentrate more on misclassified samples.

The Class-Balanced (CB) focal loss is also implemented for a better class balancing

during Leave-One-Subject-Out (LOSO) validations where CB loss re-balances and re-

weights the loss. The experimental results on four widely used databases demonstrate

the improved performance of the proposed network and achieve comparable results with

the state-of-the-art methods.
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5.1 Introduction

Throughout recent decades, micro-expressions have gained growing publicity. A facial

micro-expression is a stifled movement of the face that only persists quite briefly (i.e. 40

milliseconds) [42]. They are either a consequence of deliberate or involuntary manipula-

tion of expressions. It is rather challenging for humans to identify a micro-expression

with naked eyes. Micro-expressions may be crucial, because they relate closely to gen-

uine emotions, to demonstrate how people seek to dissimulate emotions, particularly

in contexts of great concern, like health treatments, national security and criminal

investigations [44].

Evidence suggests that it is unlikely for human facial muscles to sufficiently expand

in 0.5 secs to render a discernible facial expression [139, 230]. Thus, it is not straight-

forward for humans to reliably identify and classify micro-expressions with little or no

professional knowledge. Ekman [41] has built a Micro-Expression Training Tool (METT),

where people involved can acquire professional skills of seven elusive facial expressions

to detect and recognise micro-expressions. Despite undertaking METT’s training [51],

the recognition efficiency remained deficient. Furthermore, human understanding of

emotions is easily influenced by the human’s perception, rendering the outcomes vary

for different subjects on different occasions.

Analysing human activities is a crucial and intriguing open issue in the field of

video analysis. Lately, a significant number of reviews are conducted to understand

human behaviour on some specific aspects of the larger problems namely, pedestrian

detection [103], human detection for driver-assistance systems [56]. Reviews on action

recognition approaches [233] extending to human-object interactions and group activities

[3] are also studied under human behaviour analysis. Similar to the visible actions,

the detection of the emotional state is necessary to understand the human behaviour

which proves to be a critical aspect in various applications such as social, medical and

behavioural science. The non-verbal cues displayed in the conscious awareness like

facial expressions [10, 37, 49, 93, 109, 146] and valence and arousal [91, 146, 237] of

an expression depicts the mental state of a person and can be applied in evaluating

the emotional impairment in neuropsychiatric disorders. The studies conducted by

Thuseethan et al. uses action unit (AU) intensities to predict the intensity of the basic

facial emotions [198], revealing real emotions of a person by detecting micro-expression

intensity changes [197] and later extending the work to estimate the continuous pain

intensity [195]. The expressions related to facial muscle movements can be distinguished
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from momentary facial appearances using the Facial Action Coding System [46]. Some

methodologies presented in [128, 149, 174] have been proposed to detect the occurrence

of the action units on facial images.

Past research has also analysed supervised and unsupervised pre-training to enhance

generalisation, some suggested turning the initial one-task problem into a new Multi-

Task Learning (MTL) issue. “MTL enhances generalisation by consolidating the domain-

specific information in the related task training signals” [19]. Over the years, multi-task

learning has demonstrated its importance in several areas [92, 174]. Current MTL

approaches are focused on an architecture template with shared CNN layers at the

bottom and top layers for specific tasks [90, 145, 171, 172]. Nonetheless, it is often

heuristic to choose the sharing design as it is hard to determine which layers to share.

Multi-task learning commonly used in tandem with ConvNets in computer vision to co-

model related tasks, such as pose prediction and action recognition [124], face detection

and facial landmark detection [171], auxiliary tasks in detection [115], relevant classes

for image classification [171] and so on. These approaches typically share certain features

(ConvNet layers) among tasks, including some task-specific features.

Lately, there have been many efforts to establish computer vision approaches for

recognition of micro-expressions. Micro-expression study has motivated some researchers

to assess individual difference in Emotion Recognition Ability (ERA) that differs through

gender, ethnicity, culture and psychiatric status [140]. Thereby, the effect of various

ethnic groups, gender [194] and cultural communities must be addressed in order to

achieve a complex and reliable facial micro-expression recognition system.

There are many existing neuropsychological studies [16, 33, 63, 94, 96, 142, 204]

that give pieces of evidence of the gender difference in facial behaviours. The literature

[16, 17, 33, 63, 94, 96, 204] concludes that women are more expressive and good conveyor

of non-verbal communication than men. The evidence in [48, 66] suggests that women

try more to conceal the expression of anger. Overall, from these researches, it is clear

that women express facial muscle movements very often as compared to men, and

mainly display more positive valence actions. The study conducted in [142] is by far the

most extensive study of gender differences in facial behaviour which puts forward the

observations that women express anger related actions less and fear and sadness related

actions more than men. Moreover, the research performed by Hu et al. [70] using the

computer vision approach illustrates that gender difference also affects micro-expression

recognition performance.

Given the amount of research in Psychology and growing interest in Computer Vision
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regarding influence of gender on expressiveness of emotions and emotion recognition,

respectively, the aforementioned research is motivated to back the psychological study

with the technological observations. Hence, the attention is concentrated on using the

unique gender features from the input data to achieve higher micro-expression classifica-

tion accuracy. It is evident that people of different gender typically have different ways

to express micro-expression.

Thus, the contributions of this work are as listed 6.

∗ This research evaluates to demonstrate that the influence of including gender

features with micro-expression features is quite significant and that gender affects

the way a person expresses emotions. The dual stream model uses one stream to

learn gender features and infuse these specific gender features with the second

stream micro-expression features.

∗ A thorough search of the relevant literature yielded that this study is the first

to use deep learning techniques for proposing and incorporating gender features

by combining it with the micro-expression features for recognition. In this pre-

dictive network, multi-task learning approach for processing facial images which

breaks down the high dimensional “gender” features and low dimensional “micro-

expression” features in order to determine the impact of gender on human emotions.

∗ Comparable micro-expression recognition accuracy is achieved on databases used

for experiments. The results are compared with state-of-the-art methods to illus-

trate the robustness and efficiency of the proposed multi-task learning GEME

model.

∗ Experiments by using only single micro-expression recognition stream are also

performed to indicate the impact of the gender features on the process of micro-

expression recognition. It is observed that the micro-expression recognition per-

formance using single stream is reduced as compared to the dual stream GEME

model. The results are also comparable with state-of-the-art methods, and it is

observed that the single emotion-stream of the proposed network also performs

slightly better than the existing studies.

The remainder of the chapter has been distributed in various sections as mentioned

below. Section 5.2 addresses several existing works on micro-expression recognition

6Xuan Nie, Madhumita A. Takalkar, Mengyang Duan, Haimin Zhang, Min Xu, GEME: dual-stream
multi-task GEnder-based Micro-Expression recognition, Neurocomputing. (Under Review)
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and multi-task learning. Section 5.3 outlines the proposed framework for recognising

micro-expression using gender properties. Next, in Section 5.4, the experimental setup

and outcomes for the GEME approach are analysed. Eventually, Section 5.5 draws

conclusions.

5.2 Related Research

Micro-Expression Recognition (MER) has become a prominent research topic which

inspired the development of comprehensively successful approaches. There are two key

elements involved in traditional MER approaches: the extraction of facial features that

seek to extract relevant information for defining micro-expression from facial videos,

and the classification of micro-expression by building a classification system based on

the features collected in the first step of MER method. Facial feature extraction has

drawn growing research focus. Local Binary Patterns on Three Orthogonal Planes (LBP-

TOP) and its variants are some of the extensively used feature extraction methods

practised in video-based MER as well as in specific computer vision applications [152,

243]. Researchers in studies [79, 111] further notes that the video’s time dynamics can

boost MER efficiency as they can accurately reflect the movement through a series of

micro-expression frames. In some experiments, to obtain motion-based spatio-temporal

information from micro-expressions, optical flow (OF) methods are used [64]. Various

classifiers used for micro-expression classification such as support vector machine (SVM),

relaxed K-SVD, and group sparse learning (GSL) are machine learning-based. Zong et al.

[248], notably, suggested a kernelised GSL to promote acquiring a set of weights from

hierarchical spatio-temporal descriptors, which might help pick essential segments from

different facial segments. Zheng et al. [245] introduced a relaxed K-SVD which learned

to discern various micro-expressions with a sparse dictionary by reducing the sparse

coefficient variance.

Research teams also reviewed deep learning approaches to deal with the MER issue

in recent years. Yang et al. [232], for instance, suggested, MERTA, a Long Short-Term

Memory (LSTM) deep learning approach for MER where three attention networks are

integrated with three VGGNets to extract spatio-temporal information and predict micro-

expression class. The inputs to MERTA are enhanced using optical flow and optical

strain, adopted from [87], and are given to the two VGGNet variants. Xia et al., in [226],

suggested a spatio-temporal based enhanced version of RNNs to collectively consider

both spatial as well as temporal patterns from micro-expression samples to distinguish
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micro-expressions. Reddy et al. launched a recent study [173] which introduced two

3D-CNN based methods (MicroExpSTCNN and MicroExpFuseNet) for identifying micro-

expressions through simultaneous extraction of spatial and temporal details using a 3D

convolution operation to micro-expression videos.

Similarly, for self-learning feature extraction, Zhi et al. [246] proposed 3D convolu-

tional neural networks (3D-CNN) model to illustrate facial micro-expressions. Khor et

al. [86] recommended a lightweight dual-stream shallow network (DSSN) as a combina-

tion of condensed CNNs with different input characteristics in MER process. Recently,

transfer learning has become one of the popular approach because of the small datasets.

Lui et al. [126] introduces a neural micro-expression recogniser which implements an

optical flow on onset and apex frames to detect the face motion. Next, a part-based

average pooling model is applied to obtain discriminative information from the input

source. Finally, to overcome the lack of training set, they proposed to transfer domain

knowledge from macro-expression recognition tasks to micro-expression by adopting two

domain adaptation methods, such as adversarial training and expression magnification

and reduction (EMR). Furthermore, Sun et al. [187] proposed a novel knowledge transfer

approach that transfer knowledge from action unit for micro-expression recognition.

The network follows a teacher-student correlative framework where a pre-trained deep

teacher network transfers knowledge to a shallow student network.

In several vision applications, deep CNNs have been very useful. The finding indi-

cates that a salient hint includes small shifting of facial landmarks (e.g., eye-widening)

when the subtle expressions reflect the emotional state. In order to include this prior

information as an inductive bias for deep network design, multi-task learning is pre-

ferred. Multi-task learning is possible in numerous ways, such as joint learning, learning

to learn, and learning with an auxiliary task are just a few terms included. Moreover,

multi-task learning is often indirectly implemented with no reference, fine-tuning or

transfer learning [187, 205, 246] are good examples. In general, when more than one

loss function is optimised, it essentially becomes multi-task learning, unlike single-task

learning. Although only one loss is optimised, as in a usual scenario, there is a possibility

that an auxiliary function will further boost the primary task.

Multi-task learning is a paradigm which simultaneously learns a task with other

associated tasks for classification problem. Multi-task learning’s penalty term is an

effective method to conduct the feature selection and model estimation problem. Various

studies have demonstrated this structure experimentally to be beneficial [65, 70, 72].

He et al. [65] introduced a multi-task mid-level feature selection system, for micro-
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Figure 5.1: The comprehensive structure of GEME model for micro-expression
recognition

expression recognition issue, by learning a series of class-specific feature mappings of the

derived low-level LBP-TOP features. Hu et al. [70] proposed expansion of the local gabor

binary pattern from three orthogonal planes (LGBP-TOP) employing pyramid histogram

of centralised gabor binary pattern from three orthogonal planes. The gender-specific

sparse multi-task learning system with adaptive regularisation concept is introduced to

choose the appropriate micro-expression features to learn a compact subset of pyramid

CGBP-TOP feature for micro-expression classification of different genders.

5.3 GEnder-based Micro-Expression (GEME) model
description

Gender detection is ancillary to the primary function of recognising micro-expressions.

In GEME, we are training the network to learn a pattern of how men and women

express themselves using the facial muscles and predict the micro-expression shown

in the input sequence. The input is provided to the network in the form of a dynamic

image. The concept of dynamic imaging is followed [202] in the proposed approach, which

brings together the subtle and unintentional motion of micro-expression image sequences

in a single image. The dual-stream GEME processes these dynamic images that uses

dynamic-aware features to depict the micro-expression class.
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5.3.1 Pre-processing: Dynamic Imaging

Micro-expressions, in their essence, are quick and short-lived. Therefore, they are only

seen in a few frames. The dynamic imaging approach is adopted to obtain these temporary

shifts from the video.

A dynamic image is a regular RGB image representing the temporal and spatial

details of an entire video sequence in one single instance. The method that Verma et al.

[202] implements for producing precisely the same type of image has been applied in

pre-processing the input video sequence for the proposed approach.

Video is referred to as a ranking method for generating a dynamic image through its

frames F1,F2, ...FT i.e. σ(FT) ∈ Rd where σ(FT) reflects the RGB feature vector derived

from each FT frame. Eq. (5.1) measures the time-average ϕt of the available feature

vector.

(5.1) ϕt = 1
t

t∑
T=1

σ(FT)

Later, by using Eq. (5.2), the ranking method determines a value correlated with time t.

(5.2) ψ(t | d)=< d,ϕt >

where, d ∈ Rd illustrates a vector that evaluates the frame score in a video [184]. At

time l, higher ranks are allocated to the frames i.e. (l > t)⇒ψ(l | d)>ψ(t | d). Lastly, d

Figure 5.2: Dynamic images
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is calculated by applying RankSVM [184] as described in Eq. (5.3) and Eq. (5.4).

(5.3) d∗ = η(F1,F2, ...,FT ;σ)= arg min(E(D))

(5.4) E(D) = δ

2
∥ d ∥2 + 2

T(T −1)
× Σl>tmax{0,1 − ψ(l | d) + ψ(t | d)}

Eq. (5.4) combines the solution of two key functions: one is quadratic regularisation func-

tion often implemented in SVMs, and hinge-loss soft-computing is the second function

that indicates the number of pairs (l > t) incorrectly ranked by the rank function. Eq.

(5.3), although, describes a function η(F1,F2, ...,FT ;σ) that translates video frames into a

single vector d∗. d∗, consequently, provides adequate details to rank all frame sequences

in the video, it has combined details regarding all the frames and is often utilised as a

video descriptor. It is seen from the resulting dynamic images that both uniform and

non-uniform details are effectively retained within a single frame as shown in Figure

5.2. For detecting micro-expressions, the non-uniform differences serve a significant part.

The input to GEME, for training and testing, are these dynamic images.

5.3.2 GEME Framework

GEME is a dual-stream architecture build to recognise micro-expressions from the

dynamic images based on the gender feature. The proposed architecture of GEME is

seen in Figure 5.1.

GEME consists of CBR blocks which is a Convolution, Batch Normalisation and

ReLU function pipeline. The input dynamic image of dimensions 112×112×3 is fed to

the first CBR block. This first CBR block feature map is then given to the second CBR

block. After passing the feature maps through second CBR block, the model is divided

into two streams. One stream recognises the gender and the second stream recognises

the micro-expression of the input dynamic images. There are two Fully Connected (FC1

and FC2) layers towards the end of each stream with an FC3 layer as the classifier to

classify gender and micro-expression classes respective to each stream. The description

of the various blocks of the model is given below.

5.3.2.1 CBR Block

The model begins with two CBR blocks. The functions within this block are Convolution

(Conv), Batch normalisation (BN) and Rectified Linear Unit (ReLU) as shown in the

Figure 5.3.
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Convolution layer implements the convolution mechanism to the input image for

the extraction of features and transfers them to the next layer. The layer comprises

of a collection of neurons with acceptable weights and biases. The neuron weights are

adjusted based on the activation map while adding any new feature. In GEME, the first

CBR Conv layer imposes 8 filters of size 1×1 which are carried by another CBR Conv

layer instituting 3×3 sized 16 filters. The feature map from second CBR is passed as

input to the ResBlock. The final Conv block conv6 is also a CBR block which gets its

input from ResBlock and passes its output to the FC layer.

Batch normalisation (BN) is a method applied to standardise inputs to a network,

particularly for activations of a prior layer or specifically for inputs. In some instances,

it expedites training by reducing the epochs in half or better and offers generalisation,

thereby decreasing errors in generalisation. The purpose of BN is to ensure the dis-

tribution of activation values remain consistent during training. Using BN before the

non-linearity is considered, in order to match the first and the second moments resulting

in a stable distribution.

ReLU is an activation mechanism that appears and behaves similar to a linear

function, but instead is a non-linear feature enabling complex relationships in the data

to be learned. It is said to be sparsely activated as the function outputs 0 if the input

is negative; however, for any positive input x, the output is the same value. It can then

be translated as f (x)= max(0, x). Since it converges the network quiet rapidly, it is also

computationally competent. Another component named ResNet BasicBlock or ResBlock

is introduced after CBR block.

5.3.2.2 ResBlock

ResNet utilises “skip-connections”- layers which do not do anything at the beginning.

Such identical layers are skipped during training, and the activation functions from the

previous layers are reused. This scales down the network to only a few layers, thereby

speeding up the learning cycle. The identical layers extend and assist the system to

CBR Convolution + Batch 
Normalizaiton + ReluCBR Convolution + Batch
Normalizaiton + Relu

Figure 5.3: CBR Pipeline
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examine more feature area when the network retrains. The ResNet’s principal asset is

its capacity to familiarise with various datasets and issues in a better way.

There are two variations of the skip connections as Identity Shortcut and Projection

Shortcut. The identity shortcut bypasses the amount of data to the addition operator. The

projection shortcut conducts a convolution process insuring the volumes remain the same

size during addition operation. The implementation in GEME includes the projection

shortcut that results in down-sampling by increasing the stride to 2. To maintain the

time complexity for each process, the number of filters is duplicated (56×16= 28×32).

The reason the ResNet blocks are incorporated in GEME framework is its ability to

generalise well to different datasets and problems, which, in this case, is more necessary

as the network is trained to be capable of learning gender as well as micro-expression

properties. The structure contains three ResNet BasicBlocks each with 16, 32 and 64

filters of identical size 3×3 where a projection shortcut connection is between each pair

of 3×3 filters as shown in the Figure 5.4.

5.3.2.3 Summation Function

In GEME, this layer adds the output feature maps of Convolutional blocks from conv3 to

conv5 of Gender stream with the output feature maps of Convolutional blocks conv3 to

conv5 of Emotion stream respectively feature-by-feature and passes the newly formed

summation feature to the next Conv block of Emotion stream as can be seen in Figure 5.1.

For example, feature maps from conv3 block of Gender stream is added with the feature

map from conv3 of Emotion stream element-wise in the same channel and position and

this fused feature map is fed to the next conv4 block of Emotion stream. This is repeated

ResBlock

conv 3x3

conv 3x3

x:

+

conv 1x1

Figure 5.4: ResNet BasicBlock
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for Conv blocks 3, 4, and 5. The purpose of adding gender features with emotion features

is to highlight the importance of the gender features for improving micro-expression

recognition accuracy. The unique gender characteristics are utilised for recognising

unique micro-expression features related to particular gender. The input to conv6 CBR

block is the addition of output of conv5 Gender features and output of conv5 Emotion

features.

5.3.2.4 Fully Connected Layers (FC)

Within this layer, analogous to the multi-perceptron neural networks, the previous layer

activations are completely linked to the neurons. The neuron activation is determined by

applying a bias offset as matrix multiplication. The fully connected input layer (FC1)

“flattens” the output into a single vector for the next layer. The next fully connected

layer (FC2) uses the feature analysis to determine the accurate label by using weights.

Eventually, the fully connected output layer (FC3), a classifier node, provides absolute

probabilities for each label.

Dropout layer has been introduced to enhance the sensitivity of neurons for particular

weight and to address the issue of training data overfitting.

5.3.2.5 Losses

The framework has two streams performing two different tasks; therefore, there are two

different losses implemented. For gender detection, Cross-entropy loss is implemented,

whereas, for micro-expression recognition using gender features, Focal loss is chosen

[8, 54, 98, 116, 125]. The Class-Balanced (CB) Focal loss and CB Sigmoid Loss [25] are

applied for the LOSO CV evaluation.

Gender Loss

Cross-entropy Loss: Cross-entropy loss or log loss calculates the efficiency of the

classification model with a likelihood value between 0 and 1. The standard cross-entropy

loss for classification can be written as [116]

(5.5) CE(p, y)=
{

−log(p) i f y= 1

−log(1− p) otherwise
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where y ∈ {±1} determines the ground-truth class and p ∈ [0,1] is the predicted probability

of the model with y= 1 as the class label. More concisely, CE(pt)=−log(pt) where

(5.6) pt =
{

p i f y= 1

1− p otherwise

As the Gender stream of the proposed network is bound to get the predictions between

‘male’ and ‘female’ which is binary, hence, cross-entropy loss is implied here.

Emotion Loss

Focal Loss: A balanced dataset has equally distributed target labels in the multi-

class classification. However, when the number of samples in one category is exceedingly

higher than the other, such datasets are regarded as imbalanced datasets. Such an

imbalanced dataset results in a weakly trained model. Relevant data augmentation

strategies for image classification are applied in order to build synthetic data for under-

represented classes.

Lin et al. [116] introduced a focal loss function to address the problem of class imbal-

ance for dense object detection, a binary classification problem, by re-formulating the

cross-entropy (CE) loss. Although, the CE can be extended to deal multi-class classifica-

tion issues. The discrete CE version expression is [125]

(5.7) H(p, y)=−
n∑

i=1
yi log pi

where n corresponds to the number of all possible distinct distribution bins. Similar to

Eqs. (5.5) and (5.6), yi is the ground-truth probability, and pi is the prediction probability.

All the yi ’s are zero except one and all the pi ’s will be non-zero according to the definition

of sigmoid or Softmax function and log(0) cannot be calculated.

The emphasis of the focal loss is to train on an inadequate array of hard instances,

avoiding large amounts of easy negatives from disrupting the network during training.

The multi-class focal loss addresses the class imbalance by down-weighting easy sam-

ples in order to reduce their contribution to the total loss despite their large number,

particularly, aiming its attention on minority samples for training.

An approach adopted for solving the class imbalance issue is to include a modulating

factor α(1− pt)γ to multi-class CE loss. The multi-class focal loss can be defined as in Eq.

(5.8) [125]

(5.8) FL(pt)=−
C∑

i=1
αt (1− pt)γ log(pt)
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where C is the total number of classes and i is the class number.

This is typically a reverse class frequency or is interpreted as cross-validation hy-

perparameter set. The focusing parameter γ ≥ 0 is tuned for down weighing the easy

samples, and the balancing variant αt ≥ 0 denotes the weight for each class which is

utilised to magnify the significance of the minority class. It can be observed that the

modulating weight factor α(1− pt)γ with CE loss is reliant on the pt value. The weight is

small if pt is large and the weight is large when pt is small.

The multi-class Focal loss mentioned in Eq. 5.8 is implemented for 5-fold CV experi-

ments.

Class-Balanced Focal Loss: Cui et al. [25] developed a re-weighting method that

re-balances the loss using the effective number of samples within each class, resulting in

a class-balanced loss. The effective number of samples is defined as “the sample volume,

and it can be determined using a simple formulation as (1−βn)/(1−β), where n is the

number of samples and β ∈ [0,1) is a hyperparameter” [25].

A weighting factor αi, which is inversely proportional to the effective number of

samples for class i, is adopted to balance the loss: αi ∝ 1/Eni . In order to render the

overall loss approximately in the same range while implementing αi, αi is normalised

such that
∑C

i=1αi = C.

Conventionally, a weighting factor (1−β)/(1−βni ) is applied to the loss function

provided a sample of class i containing a total of ni samples, and hyperparameter

β ∈ [0,1). The class-balanced (CB) loss is represented as [25]:

(5.9) CB(p, y)= 1
Eny

L(p, y)= 1−β

1−βny
L(p, y)

where ny is the number of samples in the ground-truth class y, prediction probabilities

of the model denoted as p; the loss is reported as L(p, y) and effective number of samples

for class y is Eny .

Class-balanced loss can be applied regardless of the loss function preference. For

LOSO CV, the focal loss is used with class-balanced loss, i.e. CB Focal loss. The original

focal loss is as written in Eq. 5.8, and the CB Focal loss can be presented as shown in Eq.

5.10 [25].

(5.10) CBf ocal(z, y)= 1−β

1−βny

C∑
i=1

(1− pi)γ log(pi)

where z is the predicted output for all classes, C is the total number of classes, and pi is

the probability distribution over all classes.
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It can be observed from Eq. 5.8 and 5.10 that the original focal loss uses α as

a balancing variant. This implies that an α-balanced focal loss is equivalent to class-

balanced focal loss when αt = (1−β)/(1−βny). The class-balance term can thus be regarded

as an explicit means of determining αt in focal loss depending on the effective number of

samples.

The Class-Balanced Focal loss mentioned in Eq. 5.10 performed better for LOSO CV

experiments on CASME II, SAMM and Combined 3DB databases.

Class-Balanced Sigmoid Loss: Unlike softmax, class-probabilities determined

by sigmoid rule suggest that each class is distinct rather than mutually exclusive. By

utilising the sigmoid function, the multi-class visual recognition is interpreted as several

binary classification activities in which network‚Äôs output node executes a one-vs-all

classification to estimate the likelihood of the target class over the remainder of classes.

Sigmoid potentially has two benefits for real-world datasets compared to softmax : (1)

Sigmoid believes that the classes are not mutually exclusive and are very much in line

with the real-world results where a number of classes may be identical particularly with

vast number of fine-grained groups. (2) As each class is distinct with its own predictive

model, sigmoid integrates single-label classification with multi-label prediction. It is a

desirable attribute as the real-world data typically have more than one semantic label.

From Eqs. 5.6, 5.9 and [? ], the sigmoid cross-entropy loss can be denoted as in Eq.

5.11

(5.11)

CEsigmoid(z, y)=−
C∑

i=1
log(sigmoid(zi))

=−
C∑

i=1
log

(
1

1+ exp (−zi)

)

Hence, similar to CB Focal Loss, CB Sigmoid cross-entropy loss can be represented

as in Eq. 5.12

(5.12) CBsigmoid(z, y)= 1−β

1−βny

C∑
i=1

log
(

1
1+ exp (−zi)

)

The Class-Balanced Sigmoid loss mentioned in Eq. 5.12 is used for LOSO CV on

SMIC database.

Total Loss
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As mentioned earlier, GEME uses two loss functions, hence the total loss for the

GEME network can be calculated as in Eq. (5.13)

(5.13) LossTotal = 1.0×LossGender +λ×LossEmotion

where LossGender is the Cross-entropy loss of Gender stream, LossEmotion, for Emotion

stream, is the multi-class Focal loss for 5-fold CV, CB Focal loss for LOSO CV on CASME

II, SAMM and Combined 3DB and CB Sigmoid loss for SMIC database. λ represents the

ratio of LossGender in the

LossTotal . The best results are achieved with λ= 0.5 for individual datasets and λ= 0.7

for Combined 3DB.

The hyperparameter settings for all the loss functions used are explained in Section

4.2.

5.4 Experimental setup and Outcomes

This section provides information about the different databases used and various param-

eter settings for performing the experiments.

5.4.1 Databases

Analyses are performed on standard micro-expression repositories including the Chinese

Academy of Sciences Micro-Expression database’s updated version, i.e. CASME II [229],

Spontaneous MIcro-expression Corpus (SMIC) [112] and Spontaneous Actions and Micro-

Movements (SAMM) [29]. More information is provided below on the four spontaneous

micro-expression databases used in this study.

Yan et al. from the Institute of Psychology, Chinese Academy of Science have compiled

CASME II [229]. The collection comprises of 246 micro-expression samples which gave

a high spatial and temporal resolution of 200 fps out of 26 participants, including 14

females and 22 males, with an average facial area of approximately 280×340 pixels. The

database was collected in a sophisticated laboratory conditions with appropriate lighting

preventing unregulated illumination. The samples are divided into five major categories,

including disgust (63), happiness (32), repression (27), others (99) and surprise (25).

Besides, there are also smaller categories in the dataset such as sadness (7) and fear (2),

with the corresponding number of micro-expression samples in the brackets.

Li et al. collected a Spontaneous Micro-expression Corpus (SMIC) [112] at the Uni-

versity of Oulu. The database is comprised of three sets: High speed (HS), Near-InfraRed
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(NIR) and normal VISual camera (VIS). The HS set consists of 164 ME clips from 16

participants (7 female and 9 male) captured at 100 fps and 280×340 face image reso-

lution whereas NIR and VIS both are captured at 25 fps from 8 participants giving 71

micro-expression sequences with a resolution of 640×480. The sequences are classified

under positive, negative and surprise emotion classes. The HS dataset is chosen for

experiments in the current analysis with positive (51), negative (70) and surprise (43)

samples solely due to the number of samples as compared to NIR and VIS.

Davison et al. [29] indicated that micro-expression repositories, today, have been de-

prived of ethnic diversity. Spontaneous Actions and Micro-Movements (SAMM) database

was therefore developed. The SAMM database is recorded using a grey-scale sensor

with an average facial size of 650×960 at 200 frames per second and 2040×1088 pixels

resolution in regulated lights to avoid distortion when recording at a high rate. Par-

ticipants representing 13 ethnicities from 32 subjects and even a gender split with 17

male and 16 female have been reported in this database. SAMM is reported as the first

high-resolution collection of 159 spontaneously triggered micro-movements with the

most extensive demographic heterogeneity. These samples are categorised into eight

micro-expression classes. Contrary to the prior datasets, participants first had to fill in

a questionnaire before experiments were performed. The experiment instructor shows

videos that are appropriate to the responses given. All the videos captured are FACS

coded with limited focus on emotional annotations. It should be noted that there are

only a few micro-expression classes in SAMM with more than ten samples for experi-

mentation. The classes includes anger (57), contempt (12), happiness (26), surprise (15),

and others (26), with the corresponding number of micro-expressions in the database

mentioned in brackets.

5.4.2 Setup and Parameters

The GEME model implementation is done using the open-source platform, Pytorch [158].

The GPU used for performing the computations is NVIDIA GeForce GTX 1080 with 8GB

memory. The training and testing images are of size 112×112. During training, SGD

optimisation technique is used with an initial learning rate of 0.001 and L2 normalisation

is implemented to prevent overfitting. The other parameter values, such as weight decay

and momentum, are set to 0.001 and 0.9, respectively. The batch size is 64, and the model

training is executed for 100 epochs for individual databases where the learning rate is

reduced to half of the previous learning rate at the 40th and 70th epoch, respectively.

While the model is trained for 60 epochs on combined database by reducing the learning
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rate to half of the previous learning rate at the 40th and 50th epoch, respectively. The

dropout value during training is set to 0.3 for 5-fold CV experiments and 0.5 for LOSO

CV evaluation.

The databases used for the analysis are CASME II, SMIC and SAMM. The validation

schemes implemented to evaluate the GEME model are 5-fold cross-validation and

Leave-One-Subject-Out (LOSO). In 5-fold cross-validation (CV), each database is divided

into five parts where four parts are used for training and the fifth part is given as the

test set. The 5-fold CV approach is motivated from the study presented by Verma et

al. [202] with a better distribution of the samples in train and test sets. The database

distribution for 5-fold training and testing is done in an 80 : 20 (Training:Testing) ratio.

The second validation technique is the most widely used Leave-One-Subject-Out

(LOSO) cross-validation technique where one subject from the training database is held

out for testing and the process is iterated for the number of subjects in the dataset. An

additional evaluation is performed where the datasets CASME II, SAMM and SMIC are

combined to address the issue of lack of dataset availability. This evaluation is called as

the Composite Database Evaluation (CDE) using LOSO CV [176].

Focal Loss:

The micro-expression databases are split into 3 and 5 emotion classes. Moreover,

there are noticeable differences in the number of samples in different categories of

each database as depicted in Figure 5.5. It is difficult to classify some of the expression

categories such as surprise (25) from CASME II, or contempt (12) from SAMM, in contrast

to the categories others (99) from CASME II and negative (71) from SMIC which are

more easily classified. The focal loss balancing parameter value α is set depending on

the number of samples in each database, and focusing parameter γ value is set to 2. The

following Eq. (5.14) defines the formulation for α in the experiments.

(5.14) αi = max({Si : i ∈ L})
Si

where,

L = {i : i is a label in respective micro-expression dataset} ,

and Si is the number of samples in label i of the dataset. For instance, let’s calculate α

for CASME II database. Set of labels is,

L = {Disgust,Happiness,Repression,Surprise,Others} and set of number of samples
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Figure 5.5: Pie charts to illustrate the class imbalance problem for the four databases
used

corresponding to each label is Si = {63,32,27,25,99}. Therefore,

max({Si : i ∈ L})= max(63,32,27,25,99)= 99

and,

αDisgust = 99/63= 1.57

Similarly, α value can be calculated for each label in CASME II dataset.

However, the elements of set L would differ based on the label in the database used

and the number of samples S corresponding to each label in that database.

CB Focal Loss and CB Sigmoid Loss:

There are two different losses calculated during the LOSO CV; the parameter

values for CB Focal loss are β= 0.9999 and γ= 2 and CB Sigmoid loss with β= 0.99 as

per the settings in [25].
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Figure 5.6: Data augmentation process

Data Augmentation:

To overcome the difficulty of scarce data and prevent overfitting, data augmenta-

tion is implemented in the experiments. Each of the newly generated dynamic images is

enhanced by performing histogram equalisation and rotated between [−15°,15°] with 5°

increment. Then all the generated images are horizontally flipped. The data augmenta-

tion process is illustrated in Figure 5.6.

5.4.3 Performance Metrics

There is a clear imbalance in the class distribution of composite database, i.e. nega-

tive:positive:surprise classes are distributed in 3:1.3:1 ratio (Figure 5.5). The outcome is

recorded using three appropriate measures in order to manage these class imbalances

better.

5.4.3.1 Accuracy (Acc)

The recognition accuracy for both the validation schemes is calculated using the following

formula [202].

(5.15) Recog. Acc.= Total no. of correctl y predicted samples
Total no. of samples

×100

5.4.3.2 Unweighted F1-score (UF1)

The metric, also known as macro-averaged F1-score, is an ideal choice to offer equal

consideration to rare categories in imbalanced multi-class environments. In this calcula-

tion, all the True Positives (TP), False Positives (FP) and False Negatives (FN) for each

class c (of C classes) over all LOSO k-folds are initially obtained, and later relevant F1
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scores are determined. The average of F1 score per class is measured to evaluate the

unweighted F1-score (UF1), F1c:

(5.16) F1c = 2 ·TPc

2 ·TPc +FPc +FNc

(5.17) UF1= F1c

C

5.4.3.3 Unweighted Average Recall (UAR)

This measurement is also called as balanced accuracy and is considered as a better

measure than the standard Accuracy metric (or Weighted Average Recall) which could

predict the more significant categories correctly. Similarly, the accuracy values per class

are determined first, before being averaged by the number of classes:

(5.18) U AR = 1
C

∑
c

TPc

nc

where nc denotes the number of samples of the cth class. UF1 and UAR offer a fair

estimation of whether an approach can anticipate that a method might only function

effectively for specific categories.

5.4.4 GEME Multi-task outcome comparison with
state-of-the-art methods

GEME Multi-task approach provides valuable justification for using the gender features

combined with micro-expression features. Tables 5.1-5.3 compare GEME model with

the state-of-the-art approaches on the selected databases and similar micro-expression

classes. The published results are taken for the compared approaches taking into consid-

eration the databases used and the number of micro-expression classes.

It is observed that most of the recognition approaches use CASME II due to long

video sequences, and also that CASME II and SMIC are introduced earlier than SAMM.

Also, as the comparison criteria, here, is depending on the number of classes used

for classification, many existing studies could not be considered for comparison. The

recognition results using 5-fold CV scheme are observed to achieve higher accuracy than

some of the existing approaches.

Considering CASME II, SAMM and SMIC results when compared to the state-of-the-

art methods, GEME achieves comparable results and better than most of the existing
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results justifying the importance of including gender features, and also that person

of different gender expresses emotions uniquely and differently. Combining the micro-

expression features extracted from a dynamic image along with unique gender features

produces a comprehensive description of the facial features of a person enabling the

network to learn thoroughly.

Another factor contributing to the improved accuracy is the use of the loss function.

Rigorous experiments were performed to determine the suitable loss function for each

database during the LOSO CV scheme. The CB Focal loss function delivered higher

results for CASME II and SAMM databases while CB Sigmoid loss achieved better

accuracy for SMIC database.

Class wise recognition performance of CASME II on single-task as well as multi-task

frameworks can be seen in Figure ?? (a) and (b) respectively. It is observed that GEME

shows improvement in the micro-expression recognition accuracy by combining gender

feature maps. Figure 5.7 (c) and (d) illustrates the confusion matrix for SAMM database,

where Figure 5.7 (c) shows signs of overfitting using single-task framework due to the

small data samples. However, GEME, in LOSO validation, does not seem to alleviate

the overfitting problem completely. The confusion matrix (Figure 5.7 (d)) demonstrates

Table 5.1: Comparing the recognition accuracy of GEME with modern approaches on
CASME II database

Ref. No. Method Classes Accuracy (%) F1-score
[228] FDM 5 41.96% 0.4700
[87] ELRCN 5 52.44% 0.5000

[108] OF+CNN 5 56.94% N\A
[88] CNN+LSTM 5 60.98% N\A

[141] TIM+DCNN+SVM 5 64.90% N\A

[248]
Hierarchical STLBP-IP
+ KGSL 5 65.18% 0.6254

[70] Pyramid CGBP-TOP 5 65.8% N\A

[246]
3D-CNNs
(with transfer learning) 5 65.90% N\A

[111] EVM+HIGO 5 67.21% N\A
[86] DSSN 5 70.78% 0.7297
[86] SSSN 5 71.19% 0.7151

[185] TSCNN-I 5 74.05% 0.7327
[185] TSCNN-II 5 80.97% 0.8070
− GEME (MTL; LOSO) 5 75.20% 0.7354
− GEME (MTL; 5 fold) 5 77.24% 0.7528
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Table 5.2: Comparing the recognition accuracy of GEME with modern methods on
SAMM database

Ref. No. Method Classes Accuracy (%) F1-score
[243] LBP-TOP 5 34.56% 0.2892
[67] LBP-SIP 5 36.03% 0.3133

[111] HIGO-TOP 5 41.18% 0.3920
[86] SSSN 5 56.62% 0.4513
[86] DSSN 5 57.35% 0.4644

[185] TSCNN-I 5 63.53% 0.6065
[185] TSCNN-II 5 71.76% 0.6942
− GEME (MTL; LOSO) 5 52.21% 0.4433
− GEME (MTL; 5 fold) 5 65.44% 0.5467

Table 5.3: Comparing GEME recognition accuracy with state-of-the-art methods on
SMIC database

Ref. No. Method Classes Accuracy (%) F1-score
[228] FDM 3 54.88% 0.538

[248]
Hierarchical STLBP-IP
+ KGSL 3 60.37% 0.6125

[70] Pyramid CGBP-TOP 3 59.4% N\A
[86] SSSN 3 63.41% 0.6329
[86] DSSN 3 63.41% 0.6462

[200] CapsuleNet 3 58.00% 0.5900
[185] TSCNN-I 3 72.74% 0.7236

- GEME (MTL; LOSO) 3 64.63% 0.6158
- GEME (MTL; 5 fold) 3 65.24% 0.6431

a slight increase in recognition accuracy for “Anger”, “Happiness” and “Others” classes.

Due to the fact that SAMM consists of participants from diverse cultural backgrounds

and class-wise gender imbalance affects the recognition accuracy. Figures 5.7 (e) and

(f) depicts the confusion matrics for SMIC database. Two out of the three classes shows

improved results for GEME compared with single-task.

5.4.5 Composite Database Evaluation (CDE)

The composite database evaluation (CDE) is another approach followed for ablative

experiments. Based on the instructions given in MEGC 2019 challenge [176], the samples

of the three widely used spontaneous databases CASME II, SAMM and SMIC are

combined to form a single composite database with generalised emotion classes. Training
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Predicted label

(a) CASME II : Single-task

Predicted label

(b) CASME II : Multi-task

Predicted label

(c) SAMM : Single-task

Predicted label

(d) SAMM : Multi-task

Predicted label

(e) SMIC : Single-task

Predicted label

(f) SMIC : Multi-task

Figure 5.7: Confusion matrix using LOSO validation scheme for single-task network and
multi-task GEME network on individual databases

and Test set distribution is determined by LOSO CV method. To enable the three

databases to be used together, the emotion classes are combined to reduce and generalise

the categories. The elementary classes are mapped to three distinct classes Negative,

Positive and Surprise. The categories combined to form these three classes are:

∗ Negative: Repression, Anger, Contempt, Disgust, fear, Sadness

∗ Positive: Happiness

∗ Surprise: Surprise

The emotion category “Others” from CASME II and SAMM are discarded because the

samples have unrelated and non-specific emotions. Table 5.4 shows a summary of the

number of samples for all three databases. A total of 68 subjects from three databases (24

from CASME II, 28 from SAMM and 16 from SMIC) are repeatedly evaluated for 68 times

by holding out samples from one test subject and training the network on remaining sam-

ples from 67 subjects. The CDE approach depicts real-time circumstances with increased

number of participants from variable environmental settings such as illumination with

diverse identity backgrounds, including ethnicity, gender, and the emotional intensity in

a single recognition model. The LOSO CV also ensures a subject-independent evaluation.

Table 5.5 presents compiled outcomes using UF1 and UAR against some handcrafted
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Table 5.4: Sample distribution after combining three databases CASME II, SAMM and
SMIC into three classes for CDE

Emotion class CASME II SAMM SMIC 3DB-combined
Negative 32 26 51 109
Positive 88 92 70 250
Surprise 25 15 43 83
TOTAL 145 133 164 442

Table 5.5: Combined 3DB LOSO CV performance compared against various baseline and
recent methods

Method
Full SMIC CASME II SAMM

UF1 UAR UF1 UAR UF1 UAR UF1 UAR
LBP-TOP [243] 0.5882 0.5785 0.2000 0.5280 0.7026 0.7429 0.3954 0.4102
Bi-WOOF [122] 0.6296 0.6227 0.5727 0.5829 0.7805 0.8026 0.5211 20.5139
OFF-ApexNet [55] 0.7196 0.7096 0.6817 0.6695 0.8764 0.8681 0.5409 0.5392
Quang et al. [200] 0.6520 0.6506 0.5820 0.5877 0.7068 0.7018 0.6209 0.5989
Zhou et al. [247] 0.7322 0.7278 0.6645 0.6726 0.8621 0.8560 0.5868 0.5663
Liong et al. [118] 0.7353 0.7605 0.6801 0.7013 0.8382 0.8686 0.6588 0.6810
Liu et al. [126] 0.7885 0.7824 0.7461 0.7530 0.8293 0.8209 0.7754 0.7152
GEME (Single task) 0.7395 0.7500 0.6288 0.6570 0.8401 0.8508 0.6868 0.6541
GEME (Multi-task) 0.7221 0.7303 0.6038 0.6387 0.8831 0.8790 0.5843 0.5455

benchmark methods as well as some latest micro-expression recognition approaches

based on CNN. It is clearly visible from the results that in comparison to CASME II,

SAMM and SMIC databases persist to be more challenging datasets with the use of

CB focal loss function. Perhaps the factors affecting the performance could be: the low

resolution and slow frame rate used during the collection of SMIC while the diversity in

age and nationality of participants in the SAMM dataset.

Figure 5.8 (a-h) demonstrates the confusion matrix for 3 combined databases and

validation on individual database from the combined 3DB. The Figure 5.8 (a) and (b) is

the evaluation of the combined three databases using single-task stream and multi-task

GEME. The results for “Negative” class significantly improved in the multi-task system

whereas the results decreased for “Positive” and “Surprise” classes. This could be the

effect of overfitting. However, the results for CASME II database of Combined 3DB

(Figures 5.8 (c) and (d)) shows slight improvement for multi-task approach as compared

to single-task. Figures 5.8 (e) and (f) are results for SAMM database and Figures 5.8 (g)

and (h) are results for SMIC database for which the single-task performs slightly better
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(a) Single-task: Full Combined 3DB
Predicted label

(c) Single-task : CASME II of Combined 3DB

Predicted label

(e) Single-task : SAMM of Combined 3DB

Predicted label

(b) GEME : Full Combined 3DB
Predicted label

(d) GEME : CASME II of Combined 3DB
Predicted label

(f) GEME : SAMM of Combined 3DB

Predicted label

(g) Single-task : SMIC of Combined 3DB
Predicted label

(h) GEME : SMIC of Combined 3DB

Figure 5.8: Confusion matrix using LOSO validation scheme for single-task network and
multi-task GEME network on Combine 3DB and individual databases

than the multi-task approach. The probable reason for reduced classification results

is the number of samples available in each of the micro-expression category as well as

gender-wise sample distribution.

5.4.6 Ablative Analysis

The ablative study is performed by removing the Gender stream from the GEME frame-

work and performing only micro-expression recognition. The single micro-expression

recognition stream is as shown in the Figure 5.9.

The task is labelled as Single-task in Tables 5.6 and 5.7, and Multi-task is using

both Gender and Micro-expression streams. The Single-task evaluation is also done

using 5-fold and LOSO cross-validation. The original Focal loss achieved acceptable

results for 5-fold evaluation whereas the LOSO CV performance was improved by using
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Figure 5.9: Single-task Micro-expression recognition network

Table 5.6: Performance metrics for Single-task and Multi-task learning using 5-fold
validation approach

Single-Task Multi-Task
Acc.(%) UF1 UAR Acc.(%) UF1 UAR

CASME II 72.76% 0.7073 0.6841 77.24% 0.7528 0.7312
SMIC 64.63% 0.6376 0.6297 65.24% 0.6431 0.6375
SAMM 59.56% 0.4659 0.4640 65.44% 0.5467 0.5414

Table 5.7: Performance metrics for Single-task and Multi-task learning using LOSO
validation approach

Single-Task Multi-Task
Acc.(%) UF1 UAR Acc.(%) UF1 UAR

CASME II 72.36% 0.7255 0.7271 75.20% 0.7354 0.7315
SMIC 63.41% 0.6055 0.6001 64.63% 0.6158 0.6023
SAMM 51.47% 0.3962 0.3907 55.88% 0.4538 0.4635

Class-Balanced (CB) Focal loss for CASME II and SAMM databases and CB Sigmoid

loss for SMIC database.

Tables 5.6 and 5.7 reports the performance of the single-task and multi-task GEME

model for 5-fold and LOSO cross validation, respectively, on the databases used. The

outcomes presented in these tables makes it more evident that the inclusion of gender

features trains the network to learn unique features and as a consequence improves the

recognition accuracy. It can also be observed from Tables 5.6 and 5.7 that the single-task

analysis attains slightly higher recognition accuracy as compared to the state-of-the-art

methods except for a few methods. Therefore, in this work, a new micro-expression

recognition single-task model is also proposed.

5.4.7 Qualitative Analysis

The examples of prediction results of the proposed single-task and multi-task (GEME)

networks with the ground-truth of CASME II database are as presented in Figure 5.10.
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(a) (b)

(c) (d)

(f)
(g)

Figure 5.10: Examples of recognition performance. A check mark (�) represents a
correct prediction result, while a cross mark (×) represents an incorrect prediction

result. The value in the parentheses is the confidence of the prediction.

In order to highlight the difference between single-task network and GEME network’s

attention to micro-expression features, Grad-CAM [177] is implemented to visualise the

activation map of the last convolutional layer.

The GEME network fuses gender features with micro-expression features and the

network learns better about the facial properties distinct to male and female face. Hence,

by using Grad-CAM to return the activation intensity of the final Conv block in the form

of heatmap visualisation, as demonstrated in Figure 5.10, it is obvious that GEME is

capable of highlighting appropriate facial regions of significant facial muscle movement

in the video giving accurate predictions about the micro-expression classes.

5.5 Summary

The research presented in this chapter aims in validating and confirming the significance

of incorporating gender characteristics in the process of micro-expression recognition.
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In this work, a dual-stream network is designed to perform multiple tasks of gender

recognition and micro-expression recognition. The input given to the network is generated

as a dynamic image which is a regular RGB image representing spatial and temporal

details of a video in a single image frame.

The extracted image features are fed to the two separate streams of the network. The

Gender stream extracts gender-related features and is added to the micro-expression

related features extracted from the similar block of the parallel Emotion stream. They

are then given to the next layer in the Emotion stream. The classifier layer FC3 classifies

the input dynamic image in one of the micro-expression class.

The evaluation results demonstrate that the inclusion of gender features adds an

additional depth of detail to the micro-expression feature, which is unique to the person

and the micro-expression being displayed. As compared to the state-of-the-art approaches,

the proposed GEME model demonstrates an acceptable micro-expression recognition

accuracy and testifies the influence of gender on micro-expressions. It was found that

the databases with different gender ratios did impact the experimental results to some

extent. Similarly, the single-task model for micro-expression recognition also delivers

slightly better results when compared with the state-of-the-art methods. The preceding

research is believed to provide a new perspective in capturing discriminative human

characteristics for classification of captured micro-expressions.

Even though GEME is performing well with comparable results, there are some

limitations observed. First, the proposed model is not an end-to-end learning network

since the pre-processing module processes the raw input external to the network. The

pre-processes dynamic image is given as the input to GEME. As a part of the future

works, the pre-processing unit will be remodelled to embed it within the network to form

an end-to-end learning network. Second, during the experiments and testing phase, it is

encountered that even if the overall female to male ratio of the database is somewhat

balanced, the emotion category-wise gender ratio is imbalanced which can also be seen

from the results. Hence, balancing the gender ratio for each emotion class is considered

as the future work for this study. Transfer learning is one of the possible solutions

to mitigate the gender imbalance where the network can be trained on either facial

expression databases or specific gender annotated databases.

Apart from gender features, based on the psychological studies [38, 50, 80, 179, 222],

age and cultural background or ethnicity of the subject also alters human emotions.

Further extending the current study to include the age and nationality of the participants

can mimic the real-world scenario.
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The challenge in including the age and ethnicity features for micro-expression recog-

nition is the availability of databases with diversity in age and nationality. The mean

age of the participants is around 22 years for most of the databases and 34 years for

some databases. Moreover, the diversity in the ethnic backgrounds of the participants

is minimal with only one database SAMM to include subjects from 13 nationalities. In

general, to make the micro-expression recognition system more robust and suitable for

real-time scenarios, the databases should involve more participants with different age

groups and varied cultural backgrounds.
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CONCLUSIONS AND FUTURE WORKS

6.1 Synopsis

Chapter 3 concentrates on the micro-expression detection phase in the micro-expression

analysis. We designed an architecture, called LGAttNet, which is a dual-stream of

attention networks concentrating on different regions of the face along with the full

face. Attention networks are capable of collecting the local-level and global-level feature

maps for identifying the existence of micro-expressions in the image from particular

facial regions of interest as well as the full face. This is an image-based supervised

micro-expression detection network. LGAttNet outperforms the state-of-the-art results

in detecting the micro-expression in the input image. Upon additional experimentation

it is observed that LGAttNet is capable of accurately detecting micro-expression frames

from a sequence of video frames.

However, in Chapter 4, we proposed two approaches for micro-expression recognition

from images and video sequences. Our first approach proposes fine-tuning a CNN frame-

work to recognise the micro-expression from the image. This method demonstrated that,

unlike facial macro-expression recognition from images, image-based micro-expression

recognition could also yield acceptable accuracy. The second approach discussed in

this chapter involves using handcrafted and deep features in an early fusion method

framework. Fusing handcrafted LBP-TOP features with CNN deep features enables the

network to learn comprehensive features of the input, giving an appropriate prediction

of the micro-expression class. Experiments show that both methods can obtain better
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and comparable results than traditional features.

Further, Chapter 5 encourages an analysis on the influence of gender features on

micro-expressions. In this chapter, we explore the factor that affects the micro-expression

recognition accuracy. We have developed a multi-task network, named as GEME, to detect

the gender of the input subject and fuse gender features with micro-expression features

to enhance micro-expression feature description benefiting the recognition accuracy.

From the observations, it can be inferred that gender influences the way humans exhibit

micro-expressions and that incorporating gender features in micro-expression recognition

process improves the recognition accuracy compared to the state-of-the-art approaches.

6.2 Open and Unsettled Issues

There remain specific unresolved issues.

The datasets involved in the studies have young and healthy student or teacher

participants with no criminal background, hindering the database from examining

real-life deception, high-stake scenario or medical attention. A database for working

with illumination based research requiring diverse illumination settings is hard to find.

Furthermore, research correlated with occlusion is essential since partial occlusion

often occurs in the real world. Notwithstanding occlusions from sunglasses, facial hairs,

hands, scarves, etc., the method requires to be competent enough to recognise micro-

expressions. Typically speaking, establishing a database to fulfil everyone’s requirements

is a challenging task.

We anticipate accepting new and additional micro-expression repositories which

are publicly accessible comprising more data samples, data captured in actual deceit

circumstances different occlusion situations, illumination, etc.

Among the problems mentioned above, the following are some available concerns:

∗ All the samples gathered for the databases are only front face view of the partici-

pant. Considering this, can micro-expression be identified and recognised from side

facial profiles?

∗ The tests are performed in regulated settings, and the studied approached might

not be germane in a natural setting with obstacles such as irregular lighting,

noise, etc. Micro-expression datasets with an emphasis on real-world scenarios are

required.
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∗ Disparities in the distribution and low sample sizes exacerbate the performance

of the algorithms being evaluated. For high-level analysis, a dataset containing a

broad amount of samples for balanced classes is vital.

∗ The existing datasets are focused solely on facial expressions. Body language micro-

expressions may assist in boosting precision because it has been revealed that the

resemblance in body language can be cross-cultured.

6.3 Future Directions

Although feasible solutions have been proposed in the field of micro-expression spotting

and recognition, there might still be a couple of possible research directions that we can

suggest. This thesis can contribute to some of the potential future work ideas.

Micro-expression spotting using Attention Nets. In this thesis, we deal with

detecting the presence of the micro-expression from static micro-expression frames. As a

part of future work, attention networks will be investigated for micro-expression spotting

from the videos. Implementing 3D CNN to replace 2D CNN to continue working with

Attention networks that concentrate on the Local and Global facial features can be

applied to spot micro-expressions. It would be beneficial to identify the onset, apex and

offset frames of the micro-expression videos.

Dimensionality reduction and late fusion. Currently, the network processes a

very high dimensional feature vector generated after the concatenation of the handcrafted

and deep features. This affects the processing speed and accuracy of the model. The

inclusion of a dimensionality reduction method to reduce the dimensionality of the

feature vector to store specific and relevant features and remove irrelevant information

can be considered in the future work. It would also be intriguing to investigate late

fusion of handcrafted and deep features for micro-expression recognition results.

Age and Cultural background influence. We incorporated gender features for

the micro-expression recognition system. Based on the justification that gender influences

micro-expressions, it is logically inferrable that age and ethnicity as a factor may also

have some influence on the way the micro-expressions are decoded. Investigating the

effects of age and cultural background on micro-expressions would be included as future

works.
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[22] D. C. CIREŞAN, U. MEIER, J. MASCI, L. M. GAMBARDELLA, AND J. SCHMIDHU-

BER, High-performance neural networks for visual object classification, arXiv

preprint arXiv:1102.0183, (2011).

[23] T. F. COOTES, G. J. EDWARDS, AND C. J. TAYLOR, Active appearance models,

IEEE Transactions on pattern analysis and machine intelligence, 23 (2001),

pp. 681–685.

[24] T. F. COOTES, C. J. TAYLOR, D. H. COOPER, AND J. GRAHAM, Active shape models-
their training and application, Computer vision and image understanding, 61

(1995), pp. 38–59.

[25] Y. CUI, M. JIA, T.-Y. LIN, Y. SONG, AND S. BELONGIE, Class-balanced loss based
on effective number of samples, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp. 9268–9277.

[26] N. DALAL AND B. TRIGGS, Histograms of oriented gradients for human detection,

in 2005 IEEE computer society conference on computer vision and pattern

recognition (CVPR’05), vol. 1, IEEE, 2005, pp. 886–893.

[27] A. DAVISON, W. MERGHANI, C. LANSLEY, C.-C. NG, AND M. H. YAP, Objective
micro-facial movement detection using facs-based regions and baseline eval-
uation, in 2018 13th IEEE International Conference on Automatic Face &

Gesture Recognition (FG 2018), IEEE, 2018, pp. 642–649.

[28] A. DAVISON, W. MERGHANI, AND M. YAP, Objective classes for micro-facial
expression recognition, Journal of Imaging, 4 (2018), p. 119.

[29] A. K. DAVISON, C. LANSLEY, N. COSTEN, K. TAN, AND M. H. YAP, Samm: A
spontaneous micro-facial movement dataset, IEEE transactions on affective

computing, 9 (2016), pp. 116–129.

[30] A. K. DAVISON, M. H. YAP, N. COSTEN, K. TAN, C. LANSLEY, AND D. LEIGHTLEY,

Micro-facial movements: An investigation on spatio-temporal descriptors, in

European conference on computer vision, Springer, 2014, pp. 111–123.

125



BIBLIOGRAPHY

[31] F. DE LA TORRE, W. CHU, X. XIONG, F. VICENTE, X. DING, AND J. COHN,

Intraface, in 2015 11th IEEE International Conference and Workshops on

Automatic Face and Gesture Recognition (FG), vol. 1, May 2015, pp. 1–8.

[32] J. DENG, W. DONG, R. SOCHER, L.-J. LI, K. LI, AND L. FEI-FEI, Imagenet: A
large-scale hierarchical image database, in 2009 IEEE conference on computer

vision and pattern recognition, Ieee, 2009, pp. 248–255.

[33] U. DIMBERG AND L.-O. LUNDQUIST, Gender differences in facial reactions to
facial expressions, Biological psychology, 30 (1990), pp. 151–159.

[34] J. DING, Z. TIAN, X. LYU, Q. WANG, B. ZOU, AND H. XIE, Real-time micro-
expression detection in unlabeled long videos using optical flow and lstm neural
network, in International Conference on Computer Analysis of Images and

Patterns, Springer, 2019, pp. 622–634.

[35] M. DIXIT, R. KWITT, M. NIETHAMMER, AND N. VASCONCELOS, Aga: Attribute-
guided augmentation, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 7455–7463.

[36] M. M. DONIA, A. A. YOUSSIF, AND A. HASHAD, Spontaneous facial expression
recognition based on histogram of oriented gradients descriptor., Computer and

Information Science, 7 (2014), pp. 31–37.

[37] S. DU, Y. TAO, AND A. M. MARTINEZ, Compound facial expressions of emotion,

Proceedings of the National Academy of Sciences, 111 (2014), pp. E1454–E1462.

[38] N. C. EBNER AND M. K. JOHNSON, Young and older emotional faces: are there age
group differences in expression identification and memory?, Emotion, 9 (2009),

p. 329.

[39] G. J. EDWARDS, C. J. TAYLOR, AND T. F. COOTES, Interpreting face images using
active appearance models, in Proceedings Third IEEE International Conference

on Automatic Face and Gesture Recognition, IEEE, 1998, pp. 300–305.

[40] P. EKMAN, The argument and evidence about universals in facial expressions,

Handbook of social psychophysiology, (1989), pp. 143–164.

[41] P. EKMAN, Microexpression training tool (mett)[computer software], University of

California, San Franscico, (2002).

126



BIBLIOGRAPHY

[42] P. EKMAN, Lie catching and microexpressions, The philosophy of deception, 1

(2009), p. 5.

[43] P. EKMAN AND W. V. FRIESEN, Nonverbal leakage and clues to deception, Psychia-

try, 32 (1969), pp. 88–106.

[44] P. EKMAN AND W. V. FRIESEN, Constants across cultures in the face and emotion.,
Journal of personality and social psychology, 17 2 (1971), pp. 124–9.

[45] P. EKMAN AND W. V. FRIESEN, Unmasking the face : a guide to recognizing
emotions from facial clues, 1975.

[46] , Facial action coding system: Investigator’s guide, Consulting Psychologists

Press, 1978.

[47] J. ENDRES AND A. LAIDLAW, Micro-expression recognition training in medical
students: a pilot study, BMC medical education, 9 (2009), p. 47.

[48] C. EVERS, A. H. FISCHER, AND A. S. MANSTEAD, Gender and emotion regulation:
A social appraisal perspective on anger, in Emotion regulation and well-being,

Springer, 2011, pp. 211–222.

[49] C. FABIAN BENITEZ-QUIROZ, R. SRINIVASAN, AND A. M. MARTINEZ, Emotionet:
An accurate, real-time algorithm for the automatic annotation of a million facial
expressions in the wild, in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 5562–5570.

[50] M. FÖLSTER, U. HESS, AND K. WERHEID, Facial age affects emotional expression
decoding, Frontiers in psychology, 5 (2014), p. 30.

[51] M. G. FRANK, C. J. MACCARIO, AND V. GOVINDARAJU, Behavior and security.
protecting airline passengers in the age of terrorism, 2009.

[52] M. G. FRANK AND E. SVETIEVA, Microexpressions and deception, in Understand-

ing facial expressions in communication, Springer, 2015, pp. 227–242.

[53] E. FRIESEN AND P. EKMAN, Facial action coding system: a technique for the
measurement of facial movement, Consulting Psychologists Press, 1978.

[54] L. GAN, Y. ZOU, AND C. ZHANG, Discriminative feature learning using two-stage
training strategy for facial expression recognition, in International Conference

on Artificial Neural Networks, Springer, 2019, pp. 397–408.

127



BIBLIOGRAPHY

[55] Y. GAN, S.-T. LIONG, W.-C. YAU, Y.-C. HUANG, AND L.-K. TAN, Off-apexnet on
micro-expression recognition system, Signal Processing: Image Communication,

74 (2019), pp. 129–139.

[56] D. GERONIMO, A. M. LOPEZ, A. D. SAPPA, AND T. GRAF, Survey of pedestrian
detection for advanced driver assistance systems, IEEE transactions on pattern

analysis and machine intelligence, 32 (2009), pp. 1239–1258.

[57] R. GROSS, I. MATTHEWS, J. COHN, T. KANADE, AND S. BAKER, Multi-pie, Image

and Vision Computing, 28 (2010), pp. 807–813.

[58] C. GUO, J. LIANG, G. ZHAN, Z. LIU, M. PIETIKÄINEN, AND L. LIU, Extended local
binary patterns for efficient and robust spontaneous facial micro-expression
recognition, IEEE Access, 7 (2019), pp. 174517–174530.

[59] Y. GUO, Y. TIAN, X. GAO, AND X. ZHANG, Micro-expression recognition based
on local binary patterns from three orthogonal planes and nearest neighbor
method, in 2014 international joint conference on neural networks (IJCNN),

IEEE, 2014, pp. 3473–3479.

[60] Y. GUO, C. XUE, Y. WANG, AND M. YU, Micro-expression recognition based on
cbp-top feature with elm, Optik, 126 (2015), pp. 4446–4451.

[61] Z. GUO, L. ZHANG, AND D. ZHANG, A completed modeling of local binary pattern
operator for texture classification, IEEE transactions on image processing, 19

(2010), pp. 1657–1663.

[62] E. A. HAGGARD AND K. S. ISAACS, Micromomentary facial expressions as indica-
tors of ego mechanisms in psychotherapy, in Methods of research in psychother-

apy, Springer, 1966, pp. 154–165.

[63] J. A. HALL AND S. D. GUNNERY, Gender differences in nonverbal communication.,
(2013).

[64] S. HAPPY AND A. ROUTRAY, Fuzzy histogram of optical flow orientations for micro-
expression recognition, IEEE Transactions on Affective Computing, (2017).

[65] J. HE, J.-F. HU, X. LU, AND W.-S. ZHENG, Multi-task mid-level feature learning
for micro-expression recognition, Pattern Recognition, 66 (2017), pp. 44–52.

128



BIBLIOGRAPHY

[66] U. HESS, R. ADAMS JR, AND R. KLECK, Who may frown and who should smile?
dominance, affiliation, and the display of happiness and anger, Cognition &

Emotion, 19 (2005), pp. 515–536.

[67] X. HONG, G. ZHAO, S. ZAFEIRIOU, M. PANTIC, AND M. PIETIKÄINEN, Capturing
correlations of local features for image representation, Neurocomputing, 184

(2016), pp. 99–106.

[68] B. K. HORN AND B. G. SCHUNCK, Determining optical flow, in Techniques and

Applications of Image Understanding, vol. 281, International Society for Optics

and Photonics, 1981, pp. 319–331.

[69] C. HOUSE AND R. MEYER, Preprocessing and descriptor features for facial micro-
expression recognition, IEEE transaction, (2015).

[70] C. HU, J. CHEN, X. ZUO, H. ZOU, X. W. DENG, YU-CHENG, AND SHU, Gender-
specific multi-task micro-expression recognition using pyramid cgbp-top feature,

2019.

[71] C. HU, D. JIANG, H. ZOU, X. ZUO, AND Y. SHU, Multi-task micro-expression recog-
nition combining deep and handcrafted features, in 2018 24th International

Conference on Pattern Recognition (ICPR), IEEE, 2018, pp. 946–951.

[72] G. HU, L. LIU, Y. YUAN, Z. YU, Y. HUA, Z. ZHANG, F. SHEN, L. SHAO,

T. HOSPEDALES, N. ROBERTSON, ET AL., Deep multi-task learning to recog-
nise subtle facial expressions of mental states, in Proceedings of the European

Conference on Computer Vision (ECCV), 2018, pp. 103–119.

[73] G. HU, X. PENG, Y. YANG, T. M. HOSPEDALES, AND J. VERBEEK, Frankenstein:
Learning deep face representations using small data, IEEE Transactions on

Image Processing, 27 (2017), pp. 293–303.

[74] G. B. HUANG, M. MATTAR, T. BERG, AND E. LEARNED-MILLER, Labeled faces
in the wild: A database forstudying face recognition in unconstrained environ-
ments, in Workshop on faces in’Real-Life’Images: detection, alignment, and

recognition, 2008.

[75] X. HUANG, S. WANG, G. ZHAO, AND M. PIETIKÄINEN, Facial micro-expression
recognition using spatiotemporal local binary pattern with integral projection,

129



BIBLIOGRAPHY

2015 IEEE International Conference on Computer Vision Workshop (ICCVW),

(2015), pp. 1–9.

[76] X. HUANG AND G. ZHAO, Spontaneous facial micro-expression analysis using
spatiotemporal local radon-based binary pattern, in 2017 International Con-

ference on the Frontiers and Advances in Data Science (FADS), IEEE, 2017,

pp. 159–164.

[77] X. HUANG, G. ZHAO, X. HONG, W. ZHENG, AND M. PIETIKÄINEN, Spontaneous
facial micro-expression analysis using spatiotemporal completed local quantized
patterns, Neurocomputing, 175 (2016), pp. 564–578.

[78] C. M. HURLEY, The effects of motivation and training format on the ability to
detect hidden emotions, State University of New York at Buffalo, 2010.

[79] N. T. ISSA, V. STATHIAS, S. SCHÜRER, AND S. DAKSHANAMURTHY, Machine and
deep learning approaches for cancer drug repurposing, in Seminars in Cancer

Biology, Elsevier, 2020.

[80] R. JACK, O. GARROD, H. YU, R. CALDARA, AND P. SCHYNS, Dynamic cultural
representations of facial expressions of emotion are not universal, Journal of

Vision, 11 (2011), p. 563.

[81] B. C. JC ET AL., A tutorial on support vector machines for pattern recognition,

Data mining and knowledge discovery, 2 (1998), pp. 121–167.

[82] Y. JIA, E. SHELHAMER, J. DONAHUE, S. KARAYEV, J. LONG, R. GIRSHICK,

S. GUADARRAMA, AND T. DARRELL, Caffe: Convolutional architecture for fast
feature embedding, in Proceedings of the 22nd ACM international conference

on Multimedia, ACM, 2014, pp. 675–678.

[83] Y. JIAO, Y. NIU, Y. ZHANG, F. LI, C. ZOU, AND G. SHI, Facial attention based
convolutional neural network for 2d+ 3d facial expression recognition, in 2019

IEEE Visual Communications and Image Processing (VCIP), IEEE, 2019,

pp. 1–4.

[84] A. KARPATHY ET AL., Cs231n convolutional neural networks for visual recognition,

Neural networks, 1 (2016).

130



BIBLIOGRAPHY

[85] S. A. KHAN, A. HUSSAIN, AND M. USMAN, Reliable facial expression recognition
for multi-scale images using weber local binary image based cosine transform
features, Multimedia Tools and Applications, 77 (2018), pp. 1133–1165.

[86] H.-Q. KHOR, J. SEE, S.-T. LIONG, R. C. PHAN, AND W. LIN, Dual-stream shallow
networks for facial micro-expression recognition, in 2019 IEEE International

Conference on Image Processing (ICIP), IEEE, 2019, pp. 36–40.

[87] H.-Q. KHOR, J. SEE, R. C. W. PHAN, AND W. LIN, Enriched long-term recurrent
convolutional network for facial micro-expression recognition, in 2018 13th

IEEE International Conference on Automatic Face & Gesture Recognition (FG

2018), IEEE, 2018, pp. 667–674.

[88] D. H. KIM, W. J. BADDAR, AND Y. M. RO, Micro-expression recognition with
expression-state constrained spatio-temporal feature representations, in Pro-

ceedings of the 24th ACM international conference on Multimedia, ACM, 2016,

pp. 382–386.

[89] I. KIM, J. H. SHIM, AND J. YANG, Face detection.

[90] I. KOKKINOS, Ubernet: Training a universal convolutional neural network for low-,
mid-, and high-level vision using diverse datasets and limited memory, in Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2017, pp. 6129–6138.

[91] D. KOLLIAS, A. SCHULC, E. HAJIYEV, AND S. ZAFEIRIOU, Analysing affective
behavior in the first abaw 2020 competition, arXiv preprint arXiv:2001.11409,

(2020).

[92] D. KOLLIAS, V. SHARMANSKA, AND S. ZAFEIRIOU, Face behavior\a la carte:
Expressions, affect and action units in a single network, arXiv preprint

arXiv:1910.11111, (2019).

[93] D. KOLLIAS, P. TZIRAKIS, M. A. NICOLAOU, A. PAPAIOANNOU, G. ZHAO,

B. SCHULLER, I. KOTSIA, AND S. ZAFEIRIOU, Deep affect prediction in-the-
wild: Aff-wild database and challenge, deep architectures, and beyond, Interna-

tional Journal of Computer Vision, 127 (2019), pp. 907–929.

[94] M. E. KRET AND B. DE GELDER, A review on sex differences in processing emo-
tional signals, Neuropsychologia, 50 (2012), pp. 1211–1221.

131



BIBLIOGRAPHY

[95] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification
with deep convolutional neural networks, in Advances in neural information

processing systems, 2012, pp. 1097–1105.

[96] E. KRUMHUBER, A. S. MANSTEAD, AND A. KAPPAS, Temporal aspects of facial
displays in person and expression perception: The effects of smile dynamics,
head-tilt, and gender, Journal of Nonverbal Behavior, 31 (2007), pp. 39–56.

[97] A. KUMAR, A. KAUR, AND M. KUMAR, Face detection techniques: a review, Artifi-

cial Intelligence Review, 52 (2019), pp. 927–948.

[98] Z. LAI, R. CHEN, J. JIA, AND Y. QIAN, Real-time micro-expression recognition
based on resnet and atrous convolutions, Journal of Ambient Intelligence and

Humanized Computing, (2020), pp. 1–12.

[99] S. M. LAJEVARDI AND H. R. WU, Facial expression recognition in perceptual color
space, IEEE transactions on image processing, 21 (2012), pp. 3721–3733.

[100] A. C. LE NGO, A. JOHNSTON, R. C.-W. PHAN, AND J. SEE, Micro-expression
motion magnification: Global lagrangian vs. local eulerian approaches, in 2018

13th IEEE International Conference on Automatic Face & Gesture Recognition

(FG 2018), IEEE, 2018, pp. 650–656.

[101] A. C. LE NGO, Y.-H. OH, R. C.-W. PHAN, AND J. SEE, Eulerian emotion magnifi-
cation for subtle expression recognition, in 2016 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2016, pp. 1243–

1247.

[102] Y. LECUN, L. BOTTOU, Y. BENGIO, P. HAFFNER, ET AL., Gradient-based learning
applied to document recognition, Proceedings of the IEEE, 86 (1998), pp. 2278–

2324.

[103] K. LEE, D. SATO, S. ASAKAWA, H. KACORRI, AND C. ASAKAWA, Pedestrian detec-
tion with wearable cameras for the blind: A two-way perspective, in Proceedings

of the 2020 CHI Conference on Human Factors in Computing Systems, 2020,

pp. 1–12.

[104] C. LI, R. WANG, J. LI, AND L. FEI, Face detection based on yolov3, in Recent

Trends in Intelligent Computing, Communication and Devices, Springer, 2020,

pp. 277–284.

132



BIBLIOGRAPHY

[105] J. LI, C. SOLADIE, AND R. SEGUIER, Ltp-ml: micro-expression detection by recog-
nition of local temporal pattern of facial movements, in 2018 13th IEEE In-

ternational Conference on Automatic Face & Gesture Recognition (FG 2018),

IEEE, 2018, pp. 634–641.

[106] J. LI, C. SOLADIE, R. SEGUIER, J. LI, C. SOLADIE, R. SEGUIER, S.-J. WANG,

M. H. YAP, R. WEBER, J. LI, ET AL., A survey on databases for facial micro-
expression analysis, 2019.

[107] J. LI, C. SOLADIE, R. SEGUIER, S.-J. WANG, AND M. H. YAP, Spotting micro-
expressions on long videos sequences, in 2019 14th IEEE International Con-

ference on Automatic Face & Gesture Recognition (FG 2019), IEEE, 2019,

pp. 1–5.

[108] Q. LI, J. YU, T. KURIHARA, AND S. ZHAN, Micro-expression analysis by fusing
deep convolutional neural network and optical flow, in 2018 5th International

Conference on Control, Decision and Information Technologies (CoDIT), IEEE,

2018, pp. 265–270.

[109] S. LI AND W. DENG, Reliable crowdsourcing and deep locality-preserving learning
for unconstrained facial expression recognition, IEEE Transactions on Image

Processing, 28 (2018), pp. 356–370.

[110] W. LI, M. LI, Z. SU, AND Z. ZHU, A deep-learning approach to facial expression
recognition with candid images, in 2015 14th IAPR International Conference

on Machine Vision Applications (MVA), IEEE, 2015, pp. 279–282.

[111] X. LI, X. HONG, A. MOILANEN, X. HUANG, T. PFISTER, G. ZHAO, AND

M. PIETIKÄINEN, Towards reading hidden emotions: A comparative study
of spontaneous micro-expression spotting and recognition methods, IEEE trans-

actions on affective computing, 9 (2017), pp. 563–577.

[112] X. LI, T. PFISTER, X. HUANG, G. ZHAO, AND M. PIETIKÄINEN, A spontaneous
micro-expression database: Inducement, collection and baseline, in 2013 10th

IEEE International Conference and Workshops on Automatic face and gesture

recognition (fg), IEEE, 2013, pp. 1–6.

[113] X. LI, J. YU, AND S. ZHAN, Spontaneous facial micro-expression detection based
on deep learning, in 2016 IEEE 13th International Conference on Signal Pro-

cessing (ICSP), IEEE, 2016, pp. 1130–1134.

133



BIBLIOGRAPHY

[114] Y. LI, X. HUANG, AND G. ZHAO, Micro-expression action unit detection with
spatio-temporal adaptive pooling, ArXiv, abs/1907.05023 (2019).

[115] L. LIEBEL AND M. KÖRNER, Auxiliary tasks in multi-task learning, arXiv preprint

arXiv:1805.06334, (2018).

[116] T.-Y. LIN, P. GOYAL, R. GIRSHICK, K. HE, AND P. DOLLÁR, Focal loss for dense ob-
ject detection, in Proceedings of the IEEE international conference on computer

vision, 2017, pp. 2980–2988.

[117] H. LING, J. WU, J. HUANG, J. CHEN, AND P. LI, Attention-based convolutional
neural network for deep face recognition, Multimedia Tools and Applications,

79 (2020), pp. 5595–5616.

[118] S.-T. LIONG, Y. GAN, J. SEE, H.-Q. KHOR, AND Y.-C. HUANG, Shallow triple
stream three-dimensional cnn (ststnet) for micro-expression recognition, in 2019

14th IEEE International Conference on Automatic Face & Gesture Recognition

(FG 2019), IEEE, 2019, pp. 1–5.

[119] S.-T. LIONG, Y. GAN, D. ZHENG, H.-X. XUA, H.-Z. ZHANG, R.-K. LYU, K.-H. LIU,

ET AL., Evaluation of the spatio-temporal features and gan for micro-expression
recognition system, arXiv preprint arXiv:1904.01748, (2019).

[120] S.-T. LIONG, J. SEE, R. C.-W. PHAN, Y.-H. OH, A. C. LE NGO, K. WONG, AND

S.-W. TAN, Spontaneous subtle expression detection and recognition based on
facial strain, Signal Processing: Image Communication, 47 (2016), pp. 170–182.

[121] S.-T. LIONG, J. SEE, K. WONG, A. C. LE NGO, Y.-H. OH, AND R. PHAN, Automatic
apex frame spotting in micro-expression database, in 2015 3rd IAPR Asian

Conference on Pattern Recognition (ACPR), IEEE, 2015, pp. 665–669.

[122] S.-T. LIONG, J. SEE, K. WONG, AND R. C.-W. PHAN, Less is more: Micro-
expression recognition from video using apex frame, Signal Processing: Image

Communication, 62 (2018), pp. 82–92.

[123] S.-T. LIONG AND K. WONG, Micro-expression recognition using apex frame with
phase information, in 2017 Asia-Pacific Signal and Information Processing As-

sociation Annual Summit and Conference (APSIPA ASC), IEEE, 2017, pp. 534–

537.

134



BIBLIOGRAPHY

[124] A.-A. LIU, N. XU, W.-Z. NIE, Y.-T. SU, AND Y.-D. ZHANG, Multi-domain and
multi-task learning for human action recognition, IEEE Transactions on Image

Processing, 28 (2018), pp. 853–867.

[125] W. LIU, L. CHEN, AND Y. CHEN, Age classification using convolutional neural
networks with the multi-class focal loss, in IOP Conference Series: Materials

Science and Engineering, vol. 428, IOP Publishing, 2018, p. 012043.

[126] Y. LIU, H. DU, L. ZHENG, AND T. GEDEON, A neural micro-expression recognizer,

in 2019 14th IEEE International Conference on Automatic Face & Gesture

Recognition (FG 2019), IEEE, 2019, pp. 1–4.

[127] Y.-J. LIU, J.-K. ZHANG, W.-J. YAN, S.-J. WANG, G. ZHAO, AND X. FU, A main di-
rectional mean optical flow feature for spontaneous micro-expression recognition,

IEEE Transactions on Affective Computing, 7 (2015), pp. 299–310.

[128] Z. LIU, J. DONG, C. ZHANG, L. WANG, AND J. DANG, Relation modeling with
graph convolutional networks for facial action unit detection, in International

Conference on Multimedia Modeling, Springer, 2020, pp. 489–501.

[129] C. LU, J. SHI, AND J. JIA, Online robust dictionary learning, in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2013,

pp. 415–422.

[130] H. LU, K. KPALMA, AND J. RONSIN, Micro-expression detection using integral
projections, (2017).

[131] Z. LU, Z. LUO, H. ZHENG, J. CHEN, AND W. LI, A delaunay-based temporal coding
model for micro-expression recognition, in Asian conference on computer vision,

Springer, 2014, pp. 698–711.

[132] B. D. LUCAS, Generalized image matching by the method of differences., (1986).

[133] P. LUCEY, J. F. COHN, T. KANADE, J. SARAGIH, Z. AMBADAR, AND I. MATTHEWS,

The extended cohn-kanade dataset (ck+): A complete dataset for action unit and
emotion-specified expression, in 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition-Workshops, IEEE, 2010, pp. 94–101.

[134] X. LUN, L. XIN, Y. XIUJUN, AND W. ZHILIANG, Cognitive regulation and emotion
modeling for micro-expression, Int J Control Autom, 9 (2016), pp. 361–372.

135



BIBLIOGRAPHY

[135] M. J. LYONS, S. AKAMATSU, M. KAMACHI, J. GYOBA, AND J. BUDYNEK, The
japanese female facial expression (jaffe) database, in Proceedings of third inter-

national conference on automatic face and gesture recognition, 1998, pp. 14–16.

[136] P. D. MARRERO FERNANDEZ, F. A. GUERRERO PENA, T. REN, AND A. CUNHA,

Feratt: Facial expression recognition with attention net, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops,

2019.

[137] P. J. MARSH, M. J. GREEN, T. A. RUSSELL, J. MCGUIRE, A. HARRIS, AND

M. COLTHEART, Remediation of facial emotion recognition in schizophrenia:
Functional predictors, generalizability, and durability, American Journal of

Psychiatric Rehabilitation, 13 (2010), pp. 143–170.

[138] D. MATSUMOTO AND H. C. HWANG, Microexpressions differentiate truths from
lies about future malicious intent, Frontiers in psychology, 9 (2018), p. 2545.

[139] D. MATSUMOTO AND H. S. HWANG, Evidence for training the ability to read
microexpressions of emotion, Motivation and emotion, 35 (2011), pp. 181–191.

[140] D. MATSUMOTO, J. LEROUX, C. WILSON-COHN, J. RAROQUE, K. KOOKEN,

P. EKMAN, N. YRIZARRY, S. LOEWINGER, H. UCHIDA, A. YEE, ET AL., A new
test to measure emotion recognition ability: Matsumoto and ekman’s japanese
and caucasian brief affect recognition test (jacbart), Journal of Nonverbal

behavior, 24 (2000), pp. 179–209.

[141] V. MAYYA, R. M. PAI, AND M. M. PAI, Combining temporal interpolation and
dcnn for faster recognition of micro-expressions in video sequences, in 2016

International Conference on Advances in Computing, Communications and

Informatics (ICACCI), IEEE, 2016, pp. 699–703.

[142] D. MCDUFF, E. KODRA, R. EL KALIOUBY, AND M. LAFRANCE, A large-scale
analysis of sex differences in facial expressions, PloS one, 12 (2017).

[143] S. MINAEE AND A. ABDOLRASHIDI, Deep-emotion: Facial expression recognition
using attentional convolutional network, arXiv preprint arXiv:1902.01019,

(2019).

136



BIBLIOGRAPHY

[144] A. MISHRA, Metrics to evaluate your machine learning algorithm, Towards

Data Science. URL: https://towardsdatascience. com/metrics-toevaluate-your-

machine-learning-algorithm-f10ba6e38234. Accessed, 12 (2018), p. 2018.

[145] I. MISRA, A. SHRIVASTAVA, A. GUPTA, AND M. HEBERT, Cross-stitch networks
for multi-task learning, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 3994–4003.

[146] A. MOLLAHOSSEINI, B. HASANI, AND M. H. MAHOOR, Affectnet: A database for fa-
cial expression, valence, and arousal computing in the wild, IEEE Transactions

on Affective Computing, 10 (2017), pp. 18–31.

[147] N. MUNA, U. D. ROSIANI, E. M. YUNIAMO, AND M. H. PUMOMO, Subpixel subtle
motion estimation of micro-expressions multiclass classification, in 2017 IEEE

2nd International Conference on Signal and Image Processing (ICSIP), IEEE,

2017, pp. 325–330.

[148] S. NAG, A. K. BHUNIA, A. KONWER, AND P. P. ROY, Facial micro-expression
spotting and recognition using time contrasted feature with visual memory, in

ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), IEEE, 2019, pp. 2022–2026.

[149] S. NERELLA, A. BIHORAC, P. TIGHE, AND P. RASHIDI, Facial action unit detection
on icu data for pain assessment, arXiv preprint arXiv:2005.02121, (2020).

[150] H.-W. NG, V. D. NGUYEN, V. VONIKAKIS, AND S. WINKLER, Deep learning for
emotion recognition on small datasets using transfer learning, in Proceedings

of the 2015 ACM on international conference on multimodal interaction, ACM,

2015, pp. 443–449.

[151] P. M. NIEDENTHAL AND M. BRAUER, Social functionality of human emotion,

Annual review of psychology, 63 (2012), pp. 259–285.

[152] Y.-H. OH, J. SEE, A. C. LE NGO, R. C.-W. PHAN, AND V. M. BASKARAN, A
survey of automatic facial micro-expression analysis: Databases, methods, and
challenges, Frontiers in psychology, 9 (2018), p. 1128.

[153] T. OJALA, M. PIETIKÄINEN, AND D. HARWOOD, A comparative study of texture
measures with classification based on featured distributions, Pattern recogni-

tion, 29 (1996), pp. 51–59.

137



BIBLIOGRAPHY

[154] T. OJALA, M. PIETIKÄINEN, AND T. MÄENPÄÄ, Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns, IEEE Trans-

actions on Pattern Analysis & Machine Intelligence, (2002), pp. 971–987.

[155] Y. OUYANG AND N. SANG, A facial expression recognition method by fusing mul-
tiple sparse representation based classifiers, in International Symposium on

Neural Networks, Springer, 2013, pp. 479–488.

[156] S. Y. PARK, S. H. LEE, AND Y. M. RO, Subtle facial expression recognition using
adaptive magnification of discriminative facial motion, in Proceedings of the

23rd ACM international conference on Multimedia, 2015, pp. 911–914.

[157] O. M. PARKHI, A. VEDALDI, A. ZISSERMAN, ET AL., Deep face recognition., in

bmvc, vol. 1, 2015, p. 6.

[158] A. PASZKE, S. GROSS, F. MASSA, A. LERER, J. BRADBURY, G. CHANAN,

T. KILLEEN, Z. LIN, N. GIMELSHEIN, L. ANTIGA, ET AL., Pytorch: An im-
perative style, high-performance deep learning library, in Advances in Neural

Information Processing Systems, 2019, pp. 8024–8035.

[159] D. PATEL, X. HONG, AND G. ZHAO, Selective deep features for micro-expression
recognition, in 2016 23rd International Conference on Pattern Recognition

(ICPR), IEEE, 2016, pp. 2258–2263.

[160] D. PATEL, G. ZHAO, AND M. PIETIKÄINEN, Spatiotemporal integration of opti-
cal flow vectors for micro-expression detection, in International conference on

advanced concepts for intelligent vision systems, Springer, 2015, pp. 369–380.

[161] M. PENG, C. WANG, T. CHEN, G. LIU, AND X. FU, Dual temporal scale convolu-
tional neural network for micro-expression recognition, Frontiers in psychology,

8 (2017), p. 1745.

[162] Y. PENG, D. MENG, Z. XU, C. GAO, Y. YANG, AND B. ZHANG, Decomposable nonlo-
cal tensor dictionary learning for multispectral image denoising, in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2014,

pp. 2949–2956.

[163] T. PFISTER, X. LI, G. ZHAO, AND M. PIETIKÄINEN, Differentiating spontaneous
from posed facial expressions within a generic facial expression recognition

138



BIBLIOGRAPHY

framework, in 2011 IEEE International Conference on Computer Vision Work-

shops (ICCV Workshops), IEEE, 2011, pp. 868–875.

[164] T. PFISTER, X. LI, G. ZHAO, AND M. PIETIKÄINEN, Recognising spontaneous
facial micro-expressions, IEEE, 2011, pp. 1449–1456.

[165] M. PIETIKÄINEN, A. HADID, G. ZHAO, AND T. AHONEN, Computer vision using
local binary patterns, vol. 40, Springer Science & Business Media, 2011.

[166] S. POLIKOVSKY, Y. KAMEDA, AND Y. OHTA, Facial micro-expressions recognition
using high speed camera and 3d-gradient descriptor, (2009).

[167] F. QU, S.-J. WANG, W.-J. YAN, H. LI, S. WU, AND X. FU, Cas(me)2: A database for
spontaneous macro-expression and micro-expression spotting and recognition,

IEEE Transactions on Affective Computing, 9 (2017), pp. 424–436.

[168] F. QU, S. YAN, J. LIANG, AND J. WANG, Effect of short-term micro-expression
training on the micro-expression recognition performance of preschool chil-
dren, in International Conference on Cognitive Systems and Signal Processing,

Springer, 2018, pp. 54–62.

[169] S. RAGHAV AND H. KIRSTIE, ( can’t ) lie to me : Using micro expressions for user
authentication, in Symposium on Usable Privacy and Security (SOUPS), 2014.

[170] R. RANJAN, A. BANSAL, J. ZHENG, H. XU, J. GLEASON, B. LU, A. NANDURI, J.-C.

CHEN, C. D. CASTILLO, AND R. CHELLAPPA, A fast and accurate system for
face detection, identification, and verification, IEEE Transactions on Biometrics,

Behavior, and Identity Science, 1 (2019), pp. 82–96.

[171] R. RANJAN, V. M. PATEL, AND R. CHELLAPPA, Hyperface: A deep multi-task
learning framework for face detection, landmark localization, pose estimation,
and gender recognition, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 41 (2017), pp. 121–135.

[172] R. RANJAN, S. SANKARANARAYANAN, C. D. CASTILLO, AND R. CHELLAPPA, An
all-in-one convolutional neural network for face analysis, in 2017 12th IEEE

International Conference on Automatic Face & Gesture Recognition (FG 2017),

IEEE, 2017, pp. 17–24.

139



BIBLIOGRAPHY

[173] S. P. T. REDDY, S. T. KARRI, S. R. DUBEY, AND S. MUKHERJEE, Spontaneous fa-
cial micro-expression recognition using 3d spatiotemporal convolutional neural
networks, arXiv preprint arXiv:1904.01390, (2019).

[174] A. RUIZ, J. VAN DE WEIJER, AND X. BINEFA, From emotions to action units with
hidden and semi-hidden-task learning, in Proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2015, pp. 3703–3711.

[175] T. A. RUSSELL, E. CHU, AND M. L. PHILLIPS, A pilot study to investigate the
effectiveness of emotion recognition remediation in schizophrenia using the
micro-expression training tool, British journal of clinical psychology, 45 (2006),

pp. 579–583.

[176] J. SEE, M. H. YAP, J. LI, X. HONG, AND S.-J. WANG, Megc 2019–the second
facial micro-expressions grand challenge, in 2019 14th IEEE International

Conference on Automatic Face & Gesture Recognition (FG 2019), IEEE, 2019,

pp. 1–5.

[177] R. R. SELVARAJU, M. COGSWELL, A. DAS, R. VEDANTAM, D. PARIKH, AND

D. BATRA, Grad-cam: Visual explanations from deep networks via gradient-
based localization, in Proceedings of the IEEE international conference on

computer vision, 2017, pp. 618–626.

[178] H. SHAHAR AND H. HEL-OR, Micro expression classification using facial color and
deep learning methods, in Proceedings of the IEEE International Conference

on Computer Vision Workshops, 2019, pp. 0–0.

[179] B. SHAO, L. DOUCET, AND D. R. CARUSO, Universality versus cultural specificity
of three emotion domains: Some evidence based on the cascading model of
emotional intelligence, Journal of Cross-Cultural Psychology, 46 (2015), pp. 229–

251.

[180] X.-B. SHEN, Q. WU, AND X.-L. FU, Effects of the duration of expressions on the
recognition of microexpressions, Journal of Zhejiang University Science B, 13

(2012), pp. 221–230.

[181] M. SHREVE, S. GODAVARTHY, D. GOLDGOF, AND S. SARKAR, Macro-and micro-
expression spotting in long videos using spatio-temporal strain, in Face and

Gesture 2011, IEEE, 2011, pp. 51–56.

140



BIBLIOGRAPHY

[182] P. Y. SIMARD, D. STEINKRAUS, AND J. C. PLATT, Best practices for convolutional
neural networks applied to visual document analysis, 2003, pp. 958–963.

[183] P. Y. SIMARD, D. STEINKRAUS, J. C. PLATT, ET AL., Best practices for convolu-
tional neural networks applied to visual document analysis., in Icdar, vol. 3,

2003.

[184] A. J. SMOLA AND B. SCHÖLKOPF, A tutorial on support vector regression, Statistics

and computing, 14 (2004), pp. 199–222.

[185] B. SONG, K. LI, Y. ZONG, J. ZHU, W. ZHENG, J. SHI, AND L. ZHAO, Recogniz-
ing spontaneous micro-expression using a three-stream convolutional neural
network, IEEE Access, 7 (2019), pp. 184537–184551.

[186] Y. SONG, L.-P. MORENCY, AND R. DAVIS, Learning a sparse codebook of facial and
body microexpressions for emotion recognition, in Proceedings of the 15th ACM

on International conference on multimodal interaction, ACM, 2013, pp. 237–

244.

[187] B. SUN, S. CAO, D. LI, J. HE, AND L. YU, Dynamic micro-expression recogni-
tion using knowledge distillation, IEEE Transactions on Affective Computing,

(2020).

[188] W. SUN, H. ZHAO, AND Z. JIN, A visual attention based roi detection method for
facial expression recognition, Neurocomputing, 296 (2018), pp. 12–22.

[189] X. SUN, P. WU, AND S. C. HOI, Face detection using deep learning: An improved
faster rcnn approach, Neurocomputing, 299 (2018), pp. 42–50.

[190] C. SZEGEDY, W. LIU, Y. JIA, P. SERMANET, S. REED, D. ANGUELOV, D. ERHAN,

V. VANHOUCKE, AND A. RABINOVICH, Going deeper with convolutions, in

Proceedings of the IEEE conference on computer vision and pattern recognition,

2015, pp. 1–9.

[191] M. TAKALKAR, M. XU, Q. WU, AND Z. CHACZKO, A survey: facial micro-expression
recognition, Multimedia Tools and Applications, 77 (2018), pp. 19301–19325.

[192] M. A. TAKALKAR AND M. XU, Image based facial micro-expression recognition
using deep learning on small datasets, in 2017 International Conference on

Digital Image Computing: Techniques and Applications (DICTA), IEEE, 2017,

pp. 1–7.

141



BIBLIOGRAPHY

[193] M. A. TAKALKAR, H. ZHANG, AND M. XU, Improving micro-expression recogni-
tion accuracy using twofold feature extraction, in International Conference on

Multimedia Modeling, Springer, 2019, pp. 652–664.

[194] P. K. C. TAY, The adaptive value associated with expressing and perceiving angry-
male and happy-female faces, Frontiers in psychology, 6 (2015), p. 851.

[195] S. THUSEETHAN, S. RAJASEGARAR, AND J. YEARWOOD, Deep hybrid spatiotem-
poral networks for continuous pain intensity estimation, in International Con-

ference on Neural Information Processing, Springer, 2019, pp. 449–461.

[196] , Detecting micro-expression intensity changes from videos based on hybrid
deep cnn, in Pacific-Asia Conference on Knowledge Discovery and Data Mining,

Springer, 2019, pp. 387–399.

[197] , Detecting micro-expression intensity changes from videos based on hybrid
deep cnn, in Pacific-Asia Conference on Knowledge Discovery and Data Mining,

Springer, 2019, pp. 387–399.

[198] , Emotion intensity estimation from video frames using deep hybrid convo-
lutional neural networks, in 2019 International Joint Conference on Neural

Networks (IJCNN), IEEE, 2019, pp. 1–10.

[199] M. VALSTAR AND M. PANTIC, Induced disgust, happiness and surprise: an addi-
tion to the mmi facial expression database, in Proc. 3rd Intern. Workshop on

EMOTION (satellite of LREC): Corpora for Research on Emotion and Affect,

Paris, France, 2010, p. 65.

[200] N. VAN QUANG, J. CHUN, AND T. TOKUYAMA, Capsulenet for micro-expression
recognition, in 2019 14th IEEE International Conference on Automatic Face &

Gesture Recognition (FG 2019), IEEE, 2019, pp. 1–7.

[201] A. VASWANI, N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N. GOMEZ,

Ł. KAISER, AND I. POLOSUKHIN, Attention is all you need, in Advances in

neural information processing systems, 2017, pp. 5998–6008.

[202] M. VERMA, S. K. VIPPARTHI, G. SINGH, AND S. MURALA, Learnet: Dynamic
imaging network for micro expression recognition, IEEE Transactions on Image

Processing, 29 (2019), pp. 1618–1627.

142



BIBLIOGRAPHY

[203] P. VIOLA AND M. J. JONES, Robust real-time face detection, International journal

of computer vision, 57 (2004), pp. 137–154.

[204] H. G. WALLBOTT, Big girls don’t frown, big boys don’t cry‚Äîgender differences of
professional actors in communicating emotion via facial expression, Journal of

Nonverbal Behavior, 12 (1988), pp. 98–106.

[205] C. WANG, M. PENG, T. BI, AND T. CHEN, Micro-attention for micro-expression
recognition, arXiv preprint arXiv:1811.02360, (2018).

[206] G. WANG, W. WANG, J. WANG, AND Y. BU, Better deep visual attention with
reinforcement learning in action recognition, in 2017 IEEE International Sym-

posium on Circuits and Systems (ISCAS), IEEE, 2017, pp. 1–4.

[207] L. WANG, X. YU, T. BOURLAI, AND D. N. METAXAS, A coupled encoder–decoder
network for joint face detection and landmark localization, Image and Vision

Computing, 87 (2019), pp. 37–46.

[208] S.-J. WANG, H.-L. CHEN, W.-J. YAN, Y.-H. CHEN, AND X. FU, Face recogni-
tion and micro-expression recognition based on discriminant tensor subspace
analysis plus extreme learning machine, Neural processing letters, 39 (2014),

pp. 25–43.

[209] S.-J. WANG, B.-J. LI, Y.-J. LIU, W.-J. YAN, X. OU, X. HUANG, F. XU, AND X. FU,

Micro-expression recognition with small sample size by transferring long-term
convolutional neural network, Neurocomputing, 312 (2018), pp. 251–262.

[210] S.-J. WANG, W.-J. YAN, X. LI, G. ZHAO, AND X. FU, Micro-expression recogni-
tion using dynamic textures on tensor independent color space, in 2014 22nd

International Conference on Pattern Recognition, IEEE, 2014, pp. 4678–4683.

[211] S.-J. WANG, W.-J. YAN, X. LI, G. ZHAO, C.-G. ZHOU, X. FU, M. YANG, AND

J. TAO, Micro-expression recognition using color spaces, IEEE Transactions on

Image Processing, 24 (2015), pp. 6034–6047.

[212] S.-J. WANG, J. YANG, M.-F. SUN, X.-J. PENG, M.-M. SUN, AND C.-G. ZHOU,

Sparse tensor discriminant color space for face verification, IEEE Transactions

on Neural Networks and Learning Systems, 23 (2012), pp. 876–888.

143



BIBLIOGRAPHY

[213] S.-J. WANG, J. YANG, N. ZHANG, AND C.-G. ZHOU, Tensor discriminant color
space for face recognition, IEEE Transactions on Image Processing, 20 (2011),

pp. 2490–2501.

[214] X. WANG, Y. WU, L. ZHU, AND Y. YANG, Symbiotic attention with privileged
information for egocentric action recognition, arXiv preprint arXiv:2002.03137,

(2020).

[215] Y. WANG, J. SEE, Y.-H. OH, R. C.-W. PHAN, Y. RAHULAMATHAVAN, H.-C. LING,

S.-W. TAN, AND X. LI, Effective recognition of facial micro-expressions with
video motion magnification, Multimedia Tools and Applications, 76 (2017),

pp. 21665–21690.

[216] Y. WANG, J. SEE, R. C.-W. PHAN, AND Y.-H. OH, Lbp with six intersection points:
Reducing redundant information in lbp-top for micro-expression recognition, in

Asian conference on computer vision, Springer, 2014, pp. 525–537.

[217] Y. WANG, J. SEE, R. C.-W. PHAN, Y.-H. OH, AND P. J. HILLS, Efficient spatio-
temporal local binary patterns for spontaneous facial micro-expression recogni-
tion, PloS one, 10 (2015).

[218] G. WARREN, E. SCHERTLER, AND P. BULL, Detecting deception from emotional
and unemotional cues, Journal of Nonverbal Behavior, 33 (2009), pp. 59–69.

[219] S. WEINBERGER, Intent to deceive? can the science of deception detection help
to catch terrorists? sharon weinberger takes a close look at the evidence for it,
Nature, 465 (2010), pp. 412–416.

[220] K. WEZOWSKI AND P. WEZOWSKI, The micro expressions book for business, New

Vision, Antwerp, 127 (2012).

[221] S. C. WIDEN, J. A. RUSSELL, AND A. BROOKS, Anger and disgust: Discrete
or overlapping categories, in 2004 APS Annual Convention, Boston College,

Chicago, IL, 2004.

[222] A. WIERZBICKA, Human emotions: Universal or culture-specific?, American an-

thropologist, 88 (1986), pp. 584–594.

[223] L. WOLF, T. HASSNER, AND I. MAOZ, Face recognition in unconstrained videos
with matched background similarity, IEEE, 2011.

144



BIBLIOGRAPHY

[224] S. WOO, J. PARK, J.-Y. LEE, AND I. SO KWEON, Cbam: Convolutional block
attention module, in Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 3–19.

[225] H.-Y. WU, M. RUBINSTEIN, E. SHIH, J. GUTTAG, F. DURAND, AND W. FREEMAN,

Eulerian video magnification for revealing subtle changes in the world, ACM

transactions on graphics (TOG), 31 (2012), pp. 1–8.

[226] Z. XIA, X. HONG, X. GAO, X. FENG, AND G. ZHAO, Spatiotemporal recurrent
convolutional networks for recognizing spontaneous micro-expressions, IEEE

Transactions on Multimedia, (2019).

[227] J. XING, J. GAO, B. LI, W. HU, AND S. YAN, Robust object tracking with online
multi-lifespan dictionary learning, in Proceedings of the IEEE International

conference on computer vision, 2013, pp. 665–672.

[228] F. XU, J. ZHANG, AND J. Z. WANG, Microexpression identification and categoriza-
tion using a facial dynamics map, IEEE Transactions on Affective Computing,

8 (2017), pp. 254–267.

[229] W.-J. YAN, X. LI, S.-J. WANG, G. ZHAO, Y.-J. LIU, Y.-H. CHEN, AND X. FU,

Casme ii: An improved spontaneous micro-expression database and the baseline
evaluation, PloS one, 9 (2014), p. e86041.

[230] W.-J. YAN, Q. WU, J. LIANG, Y.-H. CHEN, AND X. FU, How fast are the leaked
facial expressions: The duration of micro-expressions, Journal of Nonverbal

Behavior, 37 (2013), pp. 217–230.

[231] W.-J. YAN, Q. WU, Y.-J. LIU, S.-J. WANG, AND X. FU, Casme database: a dataset
of spontaneous micro-expressions collected from neutralized faces, in 2013 10th

IEEE international conference and workshops on automatic face and gesture

recognition (FG), IEEE, 2013, pp. 1–7.

[232] B. YANG, J. CHENG, Y. YANG, B. ZHANG, AND J. LI, Merta: micro-expression
recognition with ternary attentions, Multimedia Tools and Applications, (2019),

pp. 1–16.

[233] J. YANG, W. LIU, J. YUAN, AND T. MEI, Hierarchical soft quantization for skeleton-
based human action recognition, IEEE Transactions on Multimedia, (2020).

145



BIBLIOGRAPHY

[234] J. YANG, L. ZHANG, Y. XU, AND J.-Y. YANG, Beyond sparsity: The role of l1-
optimizer in pattern classification, Pattern Recognition, 45 (2012), pp. 1104–

1118.

[235] M. YANG, D. DAI, L. SHEN, AND L. VAN GOOL, Latent dictionary learning for
sparse representation based classification, in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2014, pp. 4138–4145.

[236] M. YANG, L. VAN GOOL, AND L. ZHANG, Sparse variation dictionary learning for
face recognition with a single training sample per person, in Proceedings of the

IEEE international conference on computer vision, 2013, pp. 689–696.

[237] S. ZAFEIRIOU, D. KOLLIAS, M. A. NICOLAOU, A. PAPAIOANNOU, G. ZHAO, AND

I. KOTSIA, Aff-wild: Valence and arousal’in-the-wild’challenge, in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops, 2017, pp. 34–41.

[238] E. ZAREZADEH AND M. REZAEIAN, Micro expression recognition using the eulerian
video magnification method, BRAIN. Broad Research in Artificial Intelligence

and Neuroscience, 7 (2016), pp. 43–54.

[239] M. ZHANG, Q. FU, Y.-H. CHEN, AND X. FU, Emotional context influences micro-
expression recognition, PloS one, 9 (2014), p. e95018.

[240] S. ZHANG, B. FENG, Z. CHEN, AND X. HUANG, Micro-expression recognition by
aggregating local spatio-temporal patterns, in International Conference on

Multimedia Modeling, Springer, 2017, pp. 638–648.

[241] X. ZHANG, L. CHEN, Z. ZHONG, H. SUI, AND X. SHEN, The effects of the micro-
expression training on empathy in patients with schizophrenia, in International

Conference on Man-Machine-Environment System Engineering, Springer, 2017,

pp. 189–194.

[242] Z. ZHANG, T. CHEN, H. MENG, G. LIU, AND X. FU, Smeconvnet: A convolutional
neural network for spotting spontaneous facial micro-expression from long
videos, IEEE Access, 6 (2018), pp. 71143–71151.

[243] G. ZHAO AND M. PIETIKAINEN, Dynamic texture recognition using local binary
patterns with an application to facial expressions, IEEE transactions on pattern

analysis and machine intelligence, 29 (2007), pp. 915–928.

146



BIBLIOGRAPHY

[244] Y. ZHAO AND J. XU, An improved micro-expression recognition method based on
necessary morphological patches, Symmetry, 11 (2019), p. 497.

[245] H. ZHENG, X. GENG, AND Z. YANG, A relaxed k-svd algorithm for spontaneous
micro-expression recognition, in Pacific Rim International Conference on Artifi-

cial Intelligence, Springer, 2016, pp. 692–699.

[246] R. ZHI, H. XU, M. WAN, AND T. LI, Combining 3d convolutional neural networks
with transfer learning by supervised pre-training for facial micro-expression
recognition, IEICE Transactions on Information and Systems, 102 (2019),

pp. 1054–1064.

[247] L. ZHOU, Q. MAO, AND L. XUE, Dual-inception network for cross-database micro-
expression recognition, in 2019 14th IEEE International Conference on Auto-

matic Face & Gesture Recognition (FG 2019), IEEE, 2019, pp. 1–5.

[248] Y. ZONG, X. HUANG, W. ZHENG, Z. CUI, AND G. ZHAO, Learning from hierarchical
spatiotemporal descriptors for micro-expression recognition, IEEE Transactions

on Multimedia, 20 (2018), pp. 3160–3172.

[249] K. ZUIDERVELD, Contrast Limited Adaptive Histogram Equalization, Academic

Press Professional, Inc., USA, 1994, pp. 474–485.

147




	Title Page
	Certificate of Original Authorship
	Abstract
	Dedication
	Acknowledgments
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Factors Influencing Recognition of Micro-Expressions
	1.2.1 Emotional Context
	1.2.2 Duration of Expression

	1.3 Challenges
	1.3.1 Environmental factor
	1.3.2 Spontaneous and subtle motion of the facial movement
	1.3.3 Imbalanced dataset

	1.4 Research Questions and Hypothesis
	1.5 Influence of Micro-Expressions on different domains
	1.5.1 Social Impact
	1.5.2 Scientific Impact

	1.6 Contributions and Outline

	𝗜 𝗕𝗮𝗰𝗸𝗴𝗿𝗼𝘂𝗻𝗱
	2 Related Research Review
	2.1 Introduction
	2.2 Micro-Expression Databases
	2.2.1 Database Comparison

	2.3 Approaches for Facial Micro-Expressions Analysis
	2.3.1 Face detection
	2.3.2 Pre-processing
	2.3.3 Features
	2.3.4 Classification

	2.4 Discussions

	𝗜𝗜 𝗣𝗿𝗼𝗽𝗼𝘀𝗲𝗱 𝗠𝗲𝘁𝗵𝗼𝗱𝘀 𝗳𝗼𝗿 𝗠𝗶𝗰𝗿𝗼-𝗘𝘅𝗽𝗿𝗲𝘀𝘀𝗶𝗼𝗻 𝗗𝗲𝘁𝗲𝗰𝘁𝗶𝗼𝗻 𝗮𝗻𝗱 𝗥𝗲𝗰𝗼𝗴𝗻𝗶𝘁𝗶𝗼𝗻
	3 LGAttNet: Automatic Micro-Expression Detection using Dual-Stream Local and Global Attentions
	3.1 Introduction
	3.2 Related Research
	3.3 LGAttNet Detection Model Description
	3.3.1 Pre-processing
	3.3.2 LGAttNet Components
	3.3.3 Loss Function

	3.4 Experimental setup and Outcomes
	3.4.1 Datasets used
	3.4.2 Experimental setup and Parameters
	3.4.3 Outcomes and Analysis
	3.4.4 Discussion

	3.5 Summary and Future Direction

	4 Effective Facial Features for Recognition
	4.1 Introduction
	4.2 Micro-expression Recognition Pipeline
	4.2.1 Face detection and Face registration
	4.2.2 Data Augmentation
	4.2.3 CNN Fine-tuning

	4.3 Proposed Methods
	4.3.1 Image-based facial micro-expression recognition
	4.3.2 Manifold Feature Integration Model

	4.4 Experimental setup and Outcomes
	4.4.1 Databases
	4.4.2 Experimental Setup
	4.4.3 Evaluation Results
	4.4.4 Performance Metrics
	4.4.5 Ablative Analysis

	4.5 Discussions
	4.5.1 Difficulties with certain expressions and databases

	4.6 Summary

	5 GEME: dual-stream multi-task GEnder-based Micro-Expression recognition
	5.1 Introduction
	5.2 Related Research
	5.3 GEnder-based Micro-Expression (GEME) model description
	5.3.1 Pre-processing: Dynamic Imaging
	5.3.2 GEME Framework

	5.4 Experimental setup and Outcomes
	5.4.1 Databases
	5.4.2 Setup and Parameters
	5.4.3 Performance Metrics
	5.4.4 GEME Multi-task outcome comparison with state-of-the-art methods
	5.4.5 Composite Database Evaluation (CDE)
	5.4.6 Ablative Analysis
	5.4.7 Qualitative Analysis

	5.5 Summary

	𝗜𝗜𝗜 𝗖𝗼𝗻𝗰𝗹𝘂𝘀𝗶𝗼𝗻
	6 Conclusions and Future Works
	6.1 Synopsis
	6.2 Open and Unsettled Issues
	6.3 Future Directions

	Bibliography

