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ABSTRACT

Efficient Query Processing and Analytics on High Dimensional Data

by
Wangqi Liu

As a fundamental problem in query processing, similarity search has been ap-
plied in many fields including multimedia, machine learning, database, recommen-
dation systems and so on. Generally, it will be challengeable when it comes to the
high-dimensional space due to ”the curse of dimensionality”. Since it would be too
expensive to find exact results, approximate solutions have been studied in many
papers. There are various distance metrics to evaluate the similarity between the
query object and other points in a dataset. In this thesis, we focus on some well-
known distance metrics including Euclidean distance and inner product. Except
for Euclidean space, we also study query processing on graphs and propose a novel
distance metric on graph. The thesis contains four similarity search problems re-
garding to different distance metrics, which are Approximate Nearest Neighbour,
Approximate Inner Product Search, Approximate Furthest Neighbour and Skyline
Nearest Neighbour. Given a query point, the four problems all focus on retrieving
a set of “similar” points from the dataset.

Given a set of d-dimensional data points, and a query point ¢, Approximate
Nearest Neighbour Search (ANNS) aims to find the approximate closest object to
g in the set. More specifically, in this thesis, we focus on ¢-ANNS problem, which
means given a constant ¢, the purpose is to find a result whose distance is not larger
than ¢ times of the exact smallest distance with a certain possibility. Even though
this problem has been researched for a long time, there are still some shortage
of current algorithms. We studied the existed works, and proposed a novel 1/O
efficient algorithm to solve c-approximate nearest neighbour problem in external
memory, which can dramatically reduce 1/O cost and provide rigorous proof of its
correctness.

Maximum Inner Product Search (MIPS) is another valuable problem. It returns
an object with maximum inner product value to query point ¢q. There are hundreds of
solutions for MIPS but still short of comprehensive evaluation and analysis of these
methods’ performance. In this thesis, we chose several state-of-the-art algorithms of
MIPS using different techniques, and conducted a set of comprehensive experiments
to evaluate their performance fairly.

Approximate Furthest Neighbour Search is an opposite problem of Nearest Neigh-



bour Search. It finds the furthest object to query point ¢ in a dataset instead of
the closest one. Since most recent works for approximate furthest neighbour search
in external memory are only suitable for low-dimensional data, we proposed a new
I/O efficient technique to achieve a better performance on I/O cost.

In addition to Euclidian space, similarity search is also a fundamental problem in
other spaces like graphs. Considering real-world applications, the multi-layer graph
model is extensively studied to reveal the multi-dimensional relations between the
graph entities. In this thesis, we formulated a new problem called skyline nearest
neighbor search on multi-layer graphs, and proposed a baseline algorithm, and two
optimizations instead of naively adopting the traditional skyline procedure as a
subroutine. We also investigated the rule to optimize search order in the algorithm
so that further improve the algorithmic efficiency.
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