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ABSTRACT

Efficient Query Processing and Analytics on High Dimensional Data

by

Wanqi Liu

As a fundamental problem in query processing, similarity search has been ap-

plied in many fields including multimedia, machine learning, database, recommen-

dation systems and so on. Generally, it will be challengeable when it comes to the

high-dimensional space due to ”the curse of dimensionality”. Since it would be too

expensive to find exact results, approximate solutions have been studied in many

papers. There are various distance metrics to evaluate the similarity between the

query object and other points in a dataset. In this thesis, we focus on some well-

known distance metrics including Euclidean distance and inner product. Except

for Euclidean space, we also study query processing on graphs and propose a novel

distance metric on graph. The thesis contains four similarity search problems re-

garding to different distance metrics, which are Approximate Nearest Neighbour,

Approximate Inner Product Search, Approximate Furthest Neighbour and Skyline

Nearest Neighbour. Given a query point, the four problems all focus on retrieving

a set of “similar” points from the dataset.

Given a set of d-dimensional data points, and a query point q, Approximate

Nearest Neighbour Search (ANNS) aims to find the approximate closest object to

q in the set. More specifically, in this thesis, we focus on c-ANNS problem, which

means given a constant c, the purpose is to find a result whose distance is not larger

than c times of the exact smallest distance with a certain possibility. Even though

this problem has been researched for a long time, there are still some shortage

of current algorithms. We studied the existed works, and proposed a novel I/O

efficient algorithm to solve c-approximate nearest neighbour problem in external

memory, which can dramatically reduce I/O cost and provide rigorous proof of its

correctness.

Maximum Inner Product Search (MIPS) is another valuable problem. It returns

an object with maximum inner product value to query point q. There are hundreds of

solutions for MIPS but still short of comprehensive evaluation and analysis of these

methods’ performance. In this thesis, we chose several state-of-the-art algorithms of

MIPS using different techniques, and conducted a set of comprehensive experiments

to evaluate their performance fairly.

Approximate Furthest Neighbour Search is an opposite problem of Nearest Neigh-



bour Search. It finds the furthest object to query point q in a dataset instead of

the closest one. Since most recent works for approximate furthest neighbour search

in external memory are only suitable for low-dimensional data, we proposed a new

I/O efficient technique to achieve a better performance on I/O cost.

In addition to Euclidian space, similarity search is also a fundamental problem in

other spaces like graphs. Considering real-world applications, the multi-layer graph

model is extensively studied to reveal the multi-dimensional relations between the

graph entities. In this thesis, we formulated a new problem called skyline nearest

neighbor search on multi-layer graphs, and proposed a baseline algorithm, and two

optimizations instead of naively adopting the traditional skyline procedure as a

subroutine. We also investigated the rule to optimize search order in the algorithm

so that further improve the algorithmic efficiency.
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Chapter 1

Introduction

In this chapter, we briefly introduce the research in this thesis, including the research

backgrounds, motivations and our contributions.

Similarity search is one of the significant problems to support query processing.

Given a query, similarity search aims to find data points in a dataset which are

similar to the query, while the definitions of similarity are varying. Many similarity

search problems become much more complex and difficult when they are in the high-

dimensional space due to the curse of dimensionality, which was first mentioned by

Richard E. Bellman [9]. Curse of dimensionality refers to some phenomenas which

only appear when analysing or processing high-dimensional data. Space increases

exponentially as dimensionality grows, and the growth will cost more unnecessary

storage space and time for processing queries. As a trade-off between result qual-

ity and time consumption, an acceptable method in high-dimensional space is to

retrieve approximate result instead of exact result. In this thesis, we focus on sim-

ilarity search problem regarding various distances. We studied several representa-

tive similarity search problems, including nearest neighbour search, maximum inner

product search, furthest neighbour search in high-dimensional space, and proposed

approximate algorithms to improve performance, and defined a new distance metric

in multi-layer graphs, coming with novel solutions for it.

Euclidean distance is one of the most popular distance metrics used in similar-

ity search, and it has been widely used in Nearest and Furthest Neighbour search

problem. In this thesis, we proposed novel I/O efficient algorithms for Approximate
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Nearest Neighbour Search (ANNS) problem and Approximate Furthest Neighbour

Search (AFNS) problem, by adopting a more reasonable search strategy and a more

aggressive termination condition. Maximum inner product is another important

distance metric. We notice that although this problem has been well studied, there

is a few works which have provided a fair and comprehensive evaluation for ex-

isted algorithms. Therefore we conducted a set of comprehensive experiments for

Approximate Maximum Inner Product (AMIP) search problem to fairly evaluate

state-of-the-art MIPS algorithms from different domains and analysed the result

carefully and objectively. We also studied similarity search on multi-layer graphs

which can be considered as another multi-dimensional space. We defined a new

problem called Skyline Nearest Neighbour Search which is applied on multi-layer

graphs, and proposed an efficient algorithm to process such queries.

1.1 Background

1.1.1 Approximate Nearest Neighbour Search

Nearest Neighbour (NN) problem is one of the fundamental similarity search

problems in similarity seach, and the common measures of distance in NN are

Hamming distance and Euclidean distance. In this thesis, we primarily focus on

Euclidean distance.

Given a set of d-dimensional objects and a query object q, Nearest Neighbour

(NN) search finds the object which has the smallest distance to a query object q.

This problem has a various applications in many fields such as database, computer

vision and machine learning. In these applications, each object is usually repre-

sented by a point with high-dimensionality. In low-dimensional space, NN is not a

complex problem and has been well-solved. But in high-dimensional space, it be-

comes more tricky due to the curse of dimensionality. Since it is too expensive to

find the exact NN point, Approximate Nearest Neighbour Search can be performed
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efficiently and are sufficiently useful for many practical problems, thus attracting

an enormous number of research efforts. There are two categories of approximate

NN search algorithms: (1) c-approximate NN (c-ANN) search algorithms, which

have (c, δ)-approximate theoretical guarantee, and (2) approximate NNS algorithms

without such guarantee. Our research focuses on c-ANN search. Considering the

huge volume of data due to the large number of objects and high dimensionality, we

aim to develop an I/O efficient algorithm based on external memory to handle the

large scale data which cannot be fitted in the main memory. Locality sensitive hash-

ing (LSH) [39] is a widely adopted method to support c-ANN search. In addition

to theoretical guarantee, it also enjoys great success in practice due to its excellent

performance and ease of implementation.

1.1.2 Approximate Maximum Inner Product Search

Inner product is another widely-used distance in similarity search, and Maximum

Inner Product Search (MIPS) is an important and challenging problem which has

been widely used in many domains such as database, recommendation system and

machine learning. Since the real-world datasets are generally in a high-dimensional

space with substantial size, computing accurate MIPS result could suffer from “curse

of dimensionality”. To get the result in an acceptable time, Approximate Maximum

Inner Product Search (Approximate MIPS) has been proposed and applied in most

cases. In this thesis, we mainly focus on the existed Approximate MIPS algorithms.

In many applications, data objects can be represented as points. Given a d-

dimensional dataset D and query point q, MIPS aims to find the point o∗ ∈ D

which has maximum inner product with q:

o∗ = arg max

d∑
i=1

oi · qi

where oi and qi denotes the ith coordinate value of point o and query q. In practice,

it is generally required to return top-k objects for a given query point, so all of the
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algorithms we chose in this thesis can be easily extended to the top-k version.

1.1.3 Approximate Furthest Neighbour Search

Furthest neighbour search is a logical opposite of NN we just mentioned above.

Given a set of d-dimensional objects and a query object, similar to Nearest Neighbor

search, the Furthest Neighbor search aims to find an object which has the longest

distance to the query point. It has been widely applied in many domains such as

recommendation systems to increase the diversity of the recommendation [76] [75].

c-AFN usually use same distance metrics with c-ANN, thus the difficulty caused

by high-dimensionality also exists. There are several existing solutions for furthest

neighbour search in low-dimensional space. It becomes very expensive to find the

exact furthest neighbour for a given query object. To solve this problem, an approx-

imate FN is an acceptable solution as a trade-off between efficiency and accuracy. In

this thesis, we focus on solving approximate furthest neighbor problem with theoret-

ical guarantee, which is also called c-AFN problem. Given an approximation ratio c

(c > 1) and a success possibility δ, a c-AFN query returns a c-approximate furthest

neighbor with confidence at least δ. Similar to c-AFN problem, a huge dataset is

also hard to be fitted in memory, so we also studied external memory algorithms.

1.1.4 Skyline Nearest Neighbour Search

To study they similarity search problem in other spaces other than Euclidean

space, we propose the skyline nearest neighbour search problem on graphs.

Unlike the previous problems, Skyline Nearest Neighbour Search is from an-

other aspect to work on similarity search. We have dug into NN problem in high-

dimensional space, while in many real-world scenarios, there are usually multiple

relationships between objects. For example, in a social network application such as

twitter, there are several types of relationships between users: following, reply and
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retweet. The multi-layer graph is frequently used to model such multi-dimensional

dataset, and has been well studied [12] [73]. However, there is no definition of NN

on a multi-layer graph.

Skyline nearest neighbour is a new problem defined by us to solve NN problem on

multi-layer graphs. For a query vertex, the NN on each layer can be totally different.

To solve such multi-criteria decision problem, skyline is a classical model which can

eliminate all the objects which are worse than some other on all the categories. In a

multi-layer graph, a skyline nearest neighbor search can eliminate the vertices whose

shortest distances to the query vertex on all the layers are larger than some other

vertices. For example, in figure 1.1, the distance between v0 and v3 on two layers are

both 2, and the distance between v0 and v2 on two layers are 2 and 3. Since v2 has

a same distance to v0 on layer 1 with v3 and a longer distance on layer 2, v2 should

not be considered as a skyline nearest neighbor candidate. Skyline nearest neighbor

search returns a set of vertices which are not dominated by any other vertex in the

multi-layer graph.

1.2 Motivations

1.2.1 Approximate Nearest Neighbour Search

ANNS problem is one of the typical similarity search problems. It aims to find

top-1 or top-k nearest points for a given query in a dataset approximately. The

accuracy of most approximate algorithms are dependent on datasets, which means

theoretically, an approximate algorithm could return a set of candidates which are

not even close to the real NN points if the data distribution is not friendly to this

algorithm. So we are more interested in developing c-ANN algorithms, which can

at least provide a guarantee for its result accuracy. LSH is the most popular scheme

for c-ANN search and there are various of LSH-based c-ANN algorithms which have

already been published. However, the recent I/O efficient c-ANN algorithms either
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suffered from a large approximation ratio problem or a non-efficient index structure.

Motivated by this, In the thesis, we aim to propose an efficient algorithm to solve the

c-ANN problem in d-dimensional Euclidean space with theoretical guarantee; that

is, given the approximate ratio c and the probabilistic threshold δ, the algorithm

should return the c-approximate nearest neighbor (c-ANN) with probability at least

δ. The theoretical will always hold regardless of the data distribution.

1.2.2 Approximate Maximum Inner Product Search

Despite Euclidean distance, inner product is also an extensively used distance

metric in many applications such as multi-class label prediction [23, 41], matrix fac-

torization [51, 97] and computer vision [27]. Similar to ANNS, Approximate MIPS

returns a set of points which have the largest inner product with a query point

approximately. This problem has attracted increasing attention and hundreds of

related works have been published, but there are only a few comprehensive compar-

isons among these algorithms. To get an objective and overall evaluation to these

existed algorithms, we conduct a set of experiments to evaluate the state-of-the-art

approximate maximum inner product search algorithms considering of the following

needs:

• Overall evaluation metrics and settings. A MIPS algorithm can be mea-

sured from a wide variety of aspects: time complexity, space complexity, recall,

ratio, precision, index size, index time, scalability and so on. In most papers,

due to the limitation of number of pages, they only choose several metrics and

parameter settings to conduct experiments. It is common that different papers

select different evaluation metrics in their own experiments. For example, ra-

tio and recall can both be used to evaluate result accuracy, but it is difficult to

compare the performance between two algorithms straightforward when they

are using ratio and recall respectively.
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In this thesis we evaluate the algorithms adopting a wide range of settings and

metrics on 8 datasets to get a complete understanding of them.

• Cover algorithms from different domains. As the MIPS problem has

been applied in various fields, there are multiple popular techniques to solve

it such as hashing, graph, product quantization and so on. When a new algo-

rithm is proposed, the author usually only compares with the existed papers in

the same domain or using similar techniques but ignore alternative algorithms

in other fields. For example, KNN-Graph is a well-known model which sup-

ports diverse distance metrics including maximum inner product. ip-nsw+,

a state-of-the-art Approximate MIPS algorithm based on KNN-Graph which

was published on AAAI 2020 [54], only considered other graph-based Approx-

imate MIPS algorithm in the experiments but neglected algorithms adopting

other techniques.

1.2.3 Approximate Furthest Neighbour Search

As an opposite problem of ANNS, a general solution for c-AFN is also LSH and

its variants since it has a good property that the close objects in the original space

are likely to be close as well after projection. We notice that most of the LSH

based c-AFN algorithms adopt exponentially reducing searching strategy, which

could involve a large number of points at each step. Besides, the current c-AFN

algorithms require a sizeable index before processing queries, which could be not

acceptable when there is no enough CPU and memory resources.

Therefore, we propose an I/O efficient c-AFN algorithm following the framework

of a state-of-the-art c-AFN algorithm called RQALSH but improving the searching

strategy to reduce I/O cost and index size. The theoretical guarantee for c-AFN

is still held: given a approximate ratio c < 1, and a probabilistic threshold δ,

our algorithm would return a c-approximate furthest neighbour of query q with a
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possibility at least δ. It offers a lower bound of the result quality regardless of

datasets.

1.2.4 Skyline Nearest Neighbour Search

In many real-world scenarios, there are usually multiple relationships between

objects. For example, in a social network application such as twitter, there are

several types of relationships between users: following, reply and retweet. If we hope

to get some information about a given user, Euclidean space cannot well represent

such relationships, so it is necessary to consider similarity search problem in other

spaces such as graph. Multi-layer graph is frequently used to model such multi-

dimensional dataset, and has been well studied [12] [73]. However, there is no

definition of NN on a multi-layer graph.

Skyline nearest neighbour is a new problem defined by us to solve NN problem

on multi-layer graphs. For a query vertex, the NN on each layer can be totally

different. To solve such multi-criteria decision problem, skyline is a classical model

which can eliminate all the objects which are worse than some other on all the

categories. In a multi-layer graph, a skyline nearest neighbor search can eliminate

the vertices whose shortest distances to the query vertex on all the layers are larger

than some other vertices. For example, in figure 1.1, the distances between v0 and

v3 on two layers are both 2, and the distances between v0 and v2 on two layers are 2

and 3. Since v2 has a same distance to v0 on layer 1 with v3 and a longer distance on

layer 2, v2 should not be considered as a skyline nearest neighbor candidate. Skyline

nearest neighbor search returns a set of vertices which are not dominated by any

other vertex in the multi-layer graph.

1.3 Contibutions

In this thesis, our contributions are described as follows.
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Figure 1.1 : Multi-layer graph example

1.3.1 Approximate Nearest Neighbour Search

• We propose a new c-approximate nearest neighbor search algorithm, namely

EI-LSH, for high-dimensional data, which uses a natural incremental search

strategy on the projected dimensions.

• We design a new early termination technique to aggressively reduce the number

of objects accessed without breaking the theoretical guarantee.

• We provide rigorous analysis to demonstrate the correctness and efficiency of

our proposed methods.

• We perform an extensive performance evaluation against two state-of-the-art

I/O efficient c-ANN algorithms regarding I/O costs and result accuracy. The

results demonstrate that our proposed methods can achieve the best I/O per-

formance under the same theoretical guarantee.
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1.3.2 Maximum Inner Product Search

As an experimental study, we mainly focus on fairly comparing state-of-the-

art MIPS algorithms from different fields and analyse the experiment results. Our

contributions are summarised as follows:

• We conducted comprehensive experiments to compare state-of-the-art Approx-

imate MIPS algorithms from different domains. In our experimental study, we

test all of the methods adopting a wide range of evaluation metrics. In our

experiments, all of the methods are executed in the same environment and

all of the implementation tricks have been deleted so that we can get a fair

conclusion from the results. We believe that from the experiments, it will be

straightforward to select the method which has the best performance.

• We group the algorithms into two categories according to the techniques they

used, compare methods within the same group and then report a detail eval-

uation of the experiment results. We also give a basic analysation and expla-

nation of the weakness and advantage of each algorithm.

1.3.3 Approximate Furthest Neighbour Search

The principal contributions of our work are summarized as follows:

• We propose a novel c-AFN algorithm called RI-LSH for high-dimensional data.

It uses continuous searching strategy on each projection dimension.

• We prove that our algorithm has theoretical guarantee and has a more strict

approximation bound.

• We conduct extensive performance evaluation against two c-AFN algorithms

regarding I/O cost, running time and result accuracy. The results show that
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our algorithm can achieve a better performance on both accuracy and effi-

ciency.

1.3.4 Skyline Nearest Neighbour Search

We formulate a new problem to discover skyline nearest neighbors for a given

query vertex in a multi-layer graph and propose efficient solutions for it. The main

contributions of this thesis are summarized as follows:

• We formulate a new problem which can be applied to discover vertices which

are not dominated by others in a multi-layer graph. To the best of our knowl-

edge, the problem has not been formulated before.

• We develop a baseline algorithm to answer the skyline nearest neighbor queries,

and then discuss the early-termination condition to improve the performance.

• We perform performance evaluation regarding on real-world graphs. The ex-

perimental results demonstrate that the optimizations can improve the per-

formance significantly.



12

Chapter 2

Literature Survey

2.1 Approximate Nearest Neighbour Search

In this section, we introduce the relevant existing works. Firstly, we introduce

some closely related works which are based on Locality-Sensitive Hashing (LSH) with

theoretical guarantee, and analyze their pros and cons. Then we will also briefly

introduce some other approximate nearest neighbour search (ANNS) algorithms

2.1.1 List-based LSH algorithm

A major solution to overcome the multiple indexes of LSH is the virtual rehash-

ing, which has been used in some LSH papers with a theoretical guarantee such as

LSB-tree [83], C2LSH [28] and QALSH [37].

Basically, instead of physically constructing the buckets with different widths to

cope with the possible radius (i.e., R values) in c-NN search, the virtual rehashing

increases the bucket width based on one hash function only (i.e., random projection

of the objects). Specifically, suppose the original hash function H(o) is (1, c, p1, p2)-

sensitive for R = 1. To enlarge the search radius from 1 to c, we may simply change

the hash function to Hc(o) = H(o)
c

, where Hc(o) is (c, c2, p1, p2)-sensitive. Then the

above procedure is repeated until the termination of the algorithm (i.e., retrieves

enough candidates or meets the early termination condition).

Virtual rehashing methods can be grouped into two categories: query-oblivious

LSH and query-aware LSH. In the following, we introduce two representative works,

C2LSH [28] and QALSH [37], in each category respectively.
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C2LSH [28] uses the virtual rehashing function to increase the width of the bucket.

Instead of following the AND-then-OR scheme [22], C2LSH does not use the LSH

table containing a set of hash functions (i.e., AND scheme) but uses a set of m LSH

functions. For an object o, if o collides with query q (i.e., in the same bucket) in at

least αm LSH functions, then o will be added to the candidate set. The algorithm

will terminate if there are already βn candidates during the search or there exists an

object o such that ‖ o, q ‖≤ cR where R is the current search radius. The advantage

of C2LSH is that it doesn’t require a complex hash table, which can significantly

reduce the total number of hash functions. As a result, C2LSH has a much smaller

I/O cost compared with LSH and LSH-forest. One disadvantage of C2LSH is that

its LSH function is query-oblivious ; that is, the possible virtual partitions have been

determined before the arrival of the query. As illustrated in Fig. 3.1(a), an object

close to q in the projected space may be assigned to different bucket even if we keep

on increasing the width of the bucket.

LSB-Tree [83] uses a set of LSB-tree to build an LSB-forest instead of hash tables.

In each LSH-tree, a data object is projected to a value where h(o) = �a · �o+ b∗. The

vector a and o have the same meaning as other LSH methods, and b∗ is uniformly

distributed in [0, 2fw) where f is a variable related to the dimensionality of the

largest coordinate in each dimension, and w is a constant. LSB-tree uses a Z-order

technique to implement the virtual rehashing step. Each data object o is mapped to

an m-dimensional data object G(o) = (h1(o), ..., hm(o)) where hi(·) is the ith hash

function, and then, each G(o) is converted to the Z-order value z(o). The Z-order

values are used to build the LSB-tree. The basic idea of an LSB-tree is to use

Length of the Longest Common Prefix (LLCP) method to evaluate any two Z-order

values’ “closeness”. The Z-order values stored in the leaf nodes will be visited in a

decreasing order of the LLCP with z(q), which simulates the process of processing

a set of (R, c)-NN search with increasing radius R.
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LSB-tree generally has excellent performance in terms of result accuracy, but

the I/O cost is much higher than other algorithms. Furthermore, the LSH function

is also query-oblivious. Both the LSB-tree and C2LSH have a major defect in that

they require c to be a power of 2, and since the approximation ratio of LSB-tree and

C2LSH is c2, the best guarantee they can keep is a 4-approximate nearest neighbor,

which might not be accurate enough in some scenario.

QALSH [37] addresses the above issue by proposing the query-aware virtual re-

hashing function. As shown in Fig. 3.1, QALSH always sets the query point as the

center of the bucket such that the point close to q in the projected space will have

a good chance to share the same bucket. Particularly, the hash function of QALSH

is defined as: h(o) = �a · �o, and for each hash function, the hash values are stored in

a B+ tree. When q arrives, the query point will always be at the center of the an-

chored bucket, and the data object whose hash value h(o) satisfies |h(o)−h(q)| ≤ w
2

collides with q. Although QALSH can enhance the search performance with the

query-aware technique and can accept any c greater than 1, it still has some draw-

backs. QALSH has to iteratively increase the bucket width and access all objects

touched by the expansion of the bucket. As shown in Fig. 3.1(a), it may explore

many unnecessary objects because it is difficult to find a good way to expand the

bucket.

2.1.2 Tree-based LSH method

Although LSB-tree and QALSH use B+tree or B-tree to build the index, they

are still considered as list-based LSH algorithms since the searching is done on single

hash functions whose structures are lists, and the tree structure is simply used to

speed up the search. A tree-based LSH method uses a multi-dimensional index.

In a nutshell, SRS [82] reduces the problem of “approximate NN search in high

dimensional space” to an “exact T-NN search in a low dimensional space”. As
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shown in [70, 82], if we use m independent 2-stable function to map each data point

in Rd to m-dimensional space Rm, the square of L2 distance between two objects

o1 and o2 within Rm (namely projected distance) follows the χ2 distribution with

m degrees of freedom regarding the square of their distances in Rd. SRS uses the

classical multi-dimensional index, e.g., R-tree, to organize the objects in Rm space.

Then, an incremental exact NN search can be conducted to solve the problem. The

key idea of SRS is very intuitive and the index size is very small compared with all

the other c-ANN methods under the same theoretical guarantee.

Discussion. The main limit of SRS is I/O efficiency when the index cannot be held

in the main memory. According to Algorithm 6 of SRS, the number of projected

dimensions m increases quickly with regard to the approximate accuracy. Moreover,

as shown in the empirical study, a considerable large number of objects (i.e., disk

pages) are accessed during the search. On the other hand, it is well known that a

multi-dimensional index like R-tree cannot efficiently support an exact NN search

for data with projected dimensionality over 5, and the performance drops dramat-

ically when dimensionality increases due to the curse of dimensionality. When the

approximation ratio c is set to be a smaller value, such as 2, SRS will require a 15-

dimensional R-tree to undertake the exact NN search, but the performance will be

extraordinarily bad. Moreover, I/O invoked in SRS is random I/O, which is much

more expensive than sequential I/O.

2.1.3 Other relevant work

In this paper, we focus on c-ANN algorithms which have a rigorous theoretical

guarantee. There are also some I/O efficient ANN search algorithms proposed in

the literature without theoretical guarantee. For instance, Liu et al. proposed SK-

LSH [56] for approximate NN problems as an improvement of LSB-tree, which used

linear order instead of Z-order for better I/O efficiency. In [55], an I/O efficient
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algorithm was proposed based on the PQ method [43]. Arora et al. proposed HD-

Index in [5] which consisted of a hierarchical structure called RDB-tree to support

the c-NN query in high-dimensional datasets. Gu et al. [33] applied the PCA [35]

technique to project the data from high-dimensional space to low-dimensional space

and proposed OR-tree to optimize the I/O cost.

In addition to the aforementioned external memory based techniques, a large

body of work has been proposed in the literature (e.g., Database, Machine Learning,

Data Mining and Multimedia) to enhance the performance of approximate NNS

assuming that the index and data can be held in the main memory without a

theoretical guarantee. As shown in [52], they can be classified into four categories

based on the nature of the techniques namely: (1) LSH-based methods such as multi-

prob LSH [57], Bi-level LSH [69]), and DSH [30]); (2) Encoding-based methods such

as Spectral Hashing [92], Neighbor Sensitive Hashing [72], Selective Hashing [29],

and Product Quantization [43], (see [88] for a comprehensive survey); (3) Tree-

based space partition methods such as randomized kd-tree [81], FLANN [65] and

Annoy [11]; and (4) Neighborhood-based methods such as KGraph [24], HNSW [61]

and DPG [52]. It is also worth mentioning that some recent works take advantage

of hardware to speed up the approximate NN search such as GPU [89, 46] and

FPGA [96].

2.2 Approximate Maximum Inner Product Search

Except for the algorithms we selected in this thesis, there are more existed meth-

ods for Approximate MIPS problem and exact MIPS problem. Similar to H2-ALSH,

there some other Locality Sensitive Hashing based Approximate MIPS algorithms

such as [50] and [79], both of which also provide theoretical guarantee to their re-

sults. Generally, LSH-based Approximate MIPS algorithm transforms the dataset

into another data space and then do nearest neighbour search to retrieve MIPS can-
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didates. Since LSH generally requires a longer hash code or multiple hash tables to

get an accurate enough result, which means a larger index size, and the recall grows

slowly when index size increasing , there is another hash-based idea called learning

to hash. The basic idea of learning to hash algorithms is to generate hash functions

by studying the dataset. More specifically, the purpose is make the hash distance

between two points can better present the real distance between them in the orig-

inal data space. [87] [99] [32] [95] [42] propose algorithms to solve Approximate

MIPS by learning to hash, which are evidently more efficient than data-independent

hash methods. Another approach is based on product quantization [31] [6] [34].

These algorithms also clustered vectors multiple times, and every time, each cluster

contains same number of points. Some approximate nearest neighbour algorithms

based on graphs or trees also support Approximate MIPS search such as kd-trees,

k-NN graphs [86, 16, 4] and Navigable Small World graphs which was first pro-

posed by J. Kleinberg [49, 48] and then was adopted by many nearest neighbour

search and Approximate MIPS algorithms [53, 47, 7]. Hardware also plays an im-

portant role to improve seed up Approximate MIPS search such as GPU [77]. Exact

MIPS algorithm also exists. LEMP and its variants [85, 84] can retrieve exact and

approximate maximum inner product points avoiding too expensive computations.

2.3 Approximate Furthest Neighbour Search

To solve the c-approximate furthest neighbour search ( c-AFN) problem, there

are basically two classifications: (1) using hash functions or (2) tree-based solutions.

Qiang Huang proposed two efficient c-AFN algorithms in TKDE 2017 [36] called

RQALSH and RQALSH*. Both of the two algorithms are based on the LSH scheme

proposed by Indyk [22], and the difference is that RQALSH holds a theoretical guar-

antee, while RQALSH* utilized machine learning skill to heuristically pre-process

the data. RQALSH used a query-aware reverse hashing function to project the d-
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dimensional dataset to a m-dimensional dataset and use B+ trees to store the hash

values. The advantage of RQALSH is that it uses a query aware hash function so

the query point is always located at the center of each bucket, and it adopts B+

tree to build the index and can have a good I/O performance since searching on

B+ tree cost a sequential I/O. DrusillaSelect [21] used a novel hashing strategy for

approximate furthest neighbor search that selects projection bases using the data

distribution. It selects a small number of data points as candidates based on data

distribution and also has a variant which provides an absolute approximation ratio.

Another method with theoretical guarantee is QDAFN [68] which has been adapted

for external memory. Compared with Indyk’s implementation, QDAFN is easier to

implement and keeps the theoretical guarantee as well. It also has a heuristic ver-

sion called QDAFN*. For the tree-based algorithms, two of the typical algorithms

are [94] proposed by B Yao and [20] proposed by RR Curtin. Both of the two algo-

rithms construct a tree using the data points and then adopt the branch-and-bound

pruning strategy to exclude the nodes which is not possible to be a FN of the query

point. Besides, most of the tree-based methods for NN problem can also be used

for c-AFN problem as well such as kd-tree [10], R+ tree [8], and etc.

2.4 Skyline Nearest Neighbour Search

Distance queries. There are some algorithms to answer distance queries on a

graph. Some methods are based on 2-hop cover [19]. 2-hop cover first computes

a spanning tree T for graph G as a part of the index. When computing distance

dis(u, v), it outputs the minimum over dis(u, w1) + disT (w1, w2) + dis(w2, v) where

w1 and w2 are vertices in labels of u and v respectively, and disT is the distance in

the tree T . There are several methods using 2-hop cover to solve the problem, such

as hierarchical hub labeling [1] and highway-centric labeling [45] which are suitable

for road networks. Another approach is based on tree decompositions which is also
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reported to be efficient. Tree decomposition on graph G is a tree T in which each

vertex is mapped to a set of vertices in G called a bag. The set of bags containing

a vertex in G forms a connected component in T . [67] uses tree decomposition for

distance queries on road networks.

For scale-free networks, such as social networks and web graphs, two important

algorithms are Pruned Landmark Labeling [2] and Hop-Doubling Labeling [44]. Hop-

Doubling Labeling doubles the length of each path in each iteration to compute the

2-hop labels. In [3], [15], [91], tree-decomposition is also used.

Skyline. Skyline and its related problems have been extensively studies. It was first

proposed by Borzsonyi et al [14]. The divide-and-conquer approach [63] divides the

dataset into several partitions to fit in memory, then compute the partial skyline for

each partition, and the final result is obtained by merging the partial skylines. Block

Nested Loop (BNL) is a straightforward approach to calculate skyline. It compares

each point p with other points, and reports whether p is a part of skyline or not.

SFS [17] improves the performance of BNL. It uses a presorting to ensure that if

p dominates p′ then p must be visited before p′. Index [26] is an algorithm which

organizes a set of d-dimensional points into d lists, if and only if the coordinate pi on

the ith axis of the point p is the minimum coordinate among all the d dimensions.

Then it uses a set of B-tree to store the lists and compute the skyline. Papadias et

al. proposed an efficient algorithm to progressively find the skyline [71]. Sheng and

Tao [78] proposed an algorithm to compute skyline efficiently on external memories.
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Chapter 3

Approximate Nearest Neighbour Search

3.1 Overview

In this chapter, we introduce two I/O efficient algorithms, called EI-LSH and

I-LSH, for c-ANN in high-dimensional space. I-LSH has already been published in

our conference paper [90] and EI-LSH was proposed in our extension of this paper.

The rest of this chapter is organized as follows. First we formally define the c-

ANN problem and give preliminary definitions in Section 3.3. In addition, we also

discuss advantages and shortages of some competitive algorithms in this section.

Then in Section 3.4, we describe our motivation of the algorithm and then detailed

illustrate our approach. The rigorous analysis of correctness of our algorithms are

given in Section 3.5. Section 3.6 evaluates our algorithms and state-of-the-art c-AFN

methods. At last, Section 3.7 concludes the chapter.

3.2 Motivation

The key of the LSH is that we hope two close objects in the high dimensional

space are also close to each other in each projected dimension. Assume there is a

nice hash function such that the closeness of the objects to q are well preserved in

the projected dimension. Intuitively, we should incrementally access the projected

objects according to their distances to q in the projected dimension as shown in

Fig. 3.1(c). However, C2LSH and QALSH adopt the bucket exponential expansion

strategy where the bucket widths must be a power of c (i.e., bucket width grows

exponentially), which may lead to some counter-intuitive scenarios. Particularly, the
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Figure 3.1 : Motivation for EI-LSH

hash values of the objects will be assigned to the buckets in C2LSH and QALSH.

We say an object collides with q if it is assigned to the same bucket with q in

the projected dimension. The objects collided with q will be explored, and the

bucket width will keep growing if necessary (e.g., from w1 to w2 in Figs. 3.1(a)

and (b)), and hence new objects may collide with q and be processed. It is shown

in [37] that the LSH function in C2LSH is query-oblivious ; that is, the possible

boundary of the buckets have been pre-determined before the arrival of the query.

In Fig. 3.1(a), although the object a is close to q in the projected dimension, it will

not be explored even the bucket width grows from w1 to w2. QALSH addresses this

issue by proposing query-aware LSH function where, as shown in Fig. 3.1(b), the

query is always centered at its corresponding bucket. By doing this, the object a in

the example will be explored at the beginning. Nevertheless, because the distribution

of the hash values is not uniformly distributed in practice, the search may encounter

too many new objects (e.g., Fig. 3.1(a)) or none new object (e.g., Fig. 3.1(b)) when

bucket width w1 is extended to w2.

3.3 Preliminary

In this section, we present the problem definitions. Some important notations

used throughout the paper are summarized in Table 5.1.
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Table 3.1 : Summary of Notations

Notation Definition

n the number of point objects in the dataset

d the dimensionality of the dataset

m the number of hash functions (projected dimensions)

q the query object

‖ o1, o2 ‖ the Euclidean distance between o1 and o2

o∗, R∗ NN object of q, with distance R∗

omin, Rmin c-ANN object returned, with distance Rmin

h�a(o) the hash value of point o using the vector �a

di(o) projected distance w.r.t i-th hash function

with di(o) = |hi(o)− hi(q)|
c and δ approximate ratio and success probability

w the initial bucket width in LSH functions

r the search radius on projected dimensions

R R = 2r
w , radius of ball B(q,R) in Rd space regarding search

radius r

γ the probability that the algorithm is terminated by the

normal termination condition

R+ R+ = λr, distance threshold for early termination where

λ is a pre-computed constant
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3.3.1 Problem Definition

First we give the formal definition of the c-ANN problem. Considering a dataset

D with n point objects in a d-dimensional space, denoted byRd. We are particularly

interested in the high-dimensional case where d is a large number (e.g., d ≥ 50).

The coordinate value of an object o on the ith dimension is denoted as o[i]. In this

paper, we focus on Euclidean distance which is one of the most popular distance

metrics widely used in a variety of applications. For a given query object q, the

Euclidean distance between o and q is denoted by ‖ o, q ‖=
√∑d

i=1(o[i]− q[i])2.

For presentation simplicity, we use “distance of the object” to represent the “dis-

tance between the object and the query” whenever there is no ambiguity. The

c-approximate nearest neighbor is defined as follows:

Definition 1: c-approximate nearest neighbor (c-ANN). For a given query

object q and a d-dimensional dataset D, suppose o∗ is the nearest neighbor of q with

distance R∗, a c-approximate nearest neighbor of q is a data object o ∈ D such that

‖ o, q ‖≤ cR∗ where c is the approximate ratio.

Problem statement. In this paper, we propose an efficient algorithm to solve the

c-ANN problem in d-dimensional Euclidean space with a theoretical guarantee; that

is, given the approximate ratio c and the probabilistic threshold δ, the algorithm

should return the c-approximate nearest neighbor (c-ANN) with probability at least

δ. The theoretical guarantee will always hold regardless of the data distribution.

3.3.2 LSH with bucket partitioning

Locality sensitive hashing (LSH) was first introduced by Indyk et al. in 1998 [39]

to solve the c-ANN problem in binary Hamming space and was extended by Datar

et al. [22] to Euclidean space.

In the nutshell, the LSH functions map the objects in a d-dimensional dataset
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D into an m-dimensional space, denoted by Rm, where m � d and the relative

distance among the objects are kept in the mapped space. That is, if two objects p1

and p2 are close to each other in d-dimensional space, hopefully they will be mapped

to nearby positions after a random projection. By partitioning these real values (i.e.,

one dimensional data) with a width w, the objects in Rd are mapped to different

buckets. Intuitively, two close objects in space Rd will have a good chance of being

mapped into the same bucket, and vice versa for the two distant objects.

An LSH function family H for a distance function f is defined as (r1, r2, p1, p2)-

sensitive if and only if for any two data points x and y, there exists two dis-

tance thresholds r1 and r2 and two probability thresholds p1 and p2 which satisfy:⎧⎪⎪⎨
⎪⎪⎩
PrH∈H[H(x) = H(y)] ≥ p1 , if f(x, y) < r1

PrH∈H[H(x) = H(y)] ≤ p2 , if f(x, y) > r2

. This implies that the chance of map-

ping two objects x, y to the same hash value (i.e., bucket) increases as the distance

between x and y, f(x, y) decreases.

In [22], an LSH function H can be formally represented by H�a,b(o) =
�a·�o+b
w

where

�a is a d-dimensional vector for the random projection, o is the d-dimensional data

object, w is the bucket width, and b is a variable randomly chosen from [0, w]. The

p-stable distribution, e.g., the Gaussian/normal distribution for p = 2, and Cauchy

distribution for p = 1, is able to construct �a of the LSH function for the random

projection. A formal definition of p-stable distribution follows.

Definition 2: p-stable distribution [22] A distribution D over R is called p-

stable, if there exists p ≥ 0 such that for any n real numbers v1, ... , vn and i.i.d.

variables X1 ,..., Xn with distributions D, the random variable
∑n

i vi · Xi has the

same distribution as (
∑n

i=1 v
p
i )

1/p where X is a random variable with the distribution

D. p-stable distribution has only been found when p = 1 and p = 2. When p = 1,

the p-stable distribution is the Cauchy distribution, when p = 2, the distribution is

the Normal distribution.
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Although the p-stable distribution is only found when p = 1 and p = 2, it is also

possible to use LSH to undertake the c-ANN search by conducting a transformation

on the dataset [98]. In this paper we only focus on the Euclidean space where p = 2.

In [22], only one LSH function has some guarantee of the probability, but to boost

accuracy and to limit the candidate set size, LSH [22] requires k hash functions

to build an LSH table, and all L hash tables are required to keep the theoretical

guarantee. For an object p and a query point q, if q falls into the same bucket on

the ith function with q, then we say p collides with q on function hi. If p collides

with query q on all the k hash functions in a hash table, then p is considered as a

c-NN candidate. The algorithm will stop if (i) there is a candidate p, ‖ p, q ‖≤ cR;

or (ii) 3L candidates have been accessed.

Discussion. LSH was designed for (R, c)-NN queries which is simply a decision

version of the c-ANN problem. Particularly, for a given distance R, the algorithm

will build an index considering the distance and then will return an object within

distance cR to query point q with at least a constant probability. But to solve the

c-ANN problem, radius R can’t be determined at the beginning. Since the index of

LSH is built on radius R, when the radius has to be changed to different values in

the c-ANN search, LSH with a fixed bucket partitioning requires multiple indexes

for different radii (e.g., 1, c, c2, . . .) because the radius needs to be expanded until

enough candidates can be found. However, multiple indexes will lead to indexes of

enormous sizes, which is the main drawback of LSH. It is almost impossible to solve

a c-ANN search using LSH with a fixed bucket partitioning.

3.4 Our Approach

In this section, we present our early-termination condition with the incremen-

tal LSH technique, which is I/O efficient with rigorous theoretical guarantee. In

Section 3.4.1, we briefly introduce the motivation of our approach. Section 3.4.2
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Figure 3.2 : Example: When ET could fail

describes our LSH algorithm for c-ANN problem and Section 3.4.4 shows that our

approach can be immediately extended to support top k c-approximate nearest

neighbor search (c-k-ANN).

3.4.1 Motivation

For an object o and a hash function hi, we use di(o) to denote |hi(a) − hi(q)|,
namely projected distance w.r.t hi, which is distance between o and q in the i-th

projected dimension. Just like other LSH schemes, a point o will be found as a

candidate if o has been visited on enough hash functions.

In a list-based LSH algorithm, the early-termination condition is used when a

“good enough” candidate has been found. For the traditional Early-termination

condition, it only uses a very loose condition Rmin ≤ cR to evaluate if the current

best candidate is close enough, where Rmin is the current smallest distance and R

is the current radius. Once a point o with distance Rmin satisfies the condition, it

will be a correct c-ANN of q without any false possibility according to the definition

of c-ANN. However, if we hope to terminate the algorithm as early as possible

without breaking theoretical guarantee, calculating the possibility that the current

best candidate is a correct c-ANN could be a better idea. As shown in figure 3.2,
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suppose there is only one hash function. q is the query point and o+ denotes the

current nearest candidate to the query point q with distance R+. If o+ is returned

as the NN of q, the result is wrong if and only if there exist a point o∗ which falls

in the ball B(q, R
+

c
) and ‖ h(o∗), h(q) ‖≥‖ h(o+), h(q) ‖, in other words, o∗ is not

found as a candidate before o+.

In our early-termination condition, an important feature is the projection dis-

tances of each data point on all the hash functions. So we also propose an algorithm

called incremental LSH to support our ET better. The key idea of our Early ter-

mination driven Incremental LSH (EI-LSH) method is to incrementally access

the objects (i.e, IDs and their hash values) according to their projected distances,

equipped with new aggressive early termination condition. As shown in Fig. 3.3 (a),

suppose there is one hash function h1 and By a1, we denote the projected distance

d1(a). In this example, a1, b1, c1 and d1 will be sequentially accessed. When there are

more than one hash function (e.g., two hash functions h1 and h2 in Fig. 3.3(b)), the

search will be conducted simultaneously with the same search radius. In Fig. 3.3(b),

the search region is a square. a1 (i.e, ID of the object a and its hash value on h1)

will be accessed first, followed by b2, b1, d2, etc.

Given the incremental search strategy and the new ET framework, the key chal-

lenge is to decide when the search should be terminated and how to identify a set of

candidate objects such that the c-ANN can be returned with theoretical guarantee.

In Section 3.4.2, we propose our incremental LSH algorithm. Suppose there are m

hash functions and n objects, an object becomes a candidate object if it has been

accessed at least αm times, and we will have at most βn candidates, where α and

β are pre-defined parameters according to the desired theoretical guarantee. The

limitation of the candidate set could offer a guarantee on the I/O performance. On

the other hand, we also devise early termination technique based on the closest can-

didate object seen so far. We set a value of pET which demonstrates the possibility
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Figure 3.3 : Example for incremental search

that a real c-ANN has already be found at the current projection radius r, and then

use this value to calculate a bond Rplus = λr. We maintain the current best candi-

date omin with a real distance Rmin to the query point q, and compare Rmin with

Rplus. If Rmin is smaller than Rplus, a value only related to pET and r, new ET will

play a role and omin will be returned as the result. As we explained in Section 3.5,

once pET is given, Rplus is only related to r and can be represented as λr, using

Rplus instead of calculating the possibility for each radius r and comparing with pET

could avoid integral operation which can be very expensive when repeating multiple

times. The theoretical underpinning of our approach is provided in Section 3.5.

3.4.2 Incremental LSH with new ET

In this subsection, we describe our incremental LSH (EI-LSH) with new ET

approach in details. The setting of the parameters such as m, α, β and λ will be

explained in the following theoretical analysis in Section 3.5. Our technique consists

of two parts: indexing and query processing.
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Indexing

The indexing step is similar to most LSH algorithms. In the indexing part, the

high-dimensional dataset is projected to a low-dimensional space using a set of LSH

functions. More specifically, for a given d-dimensional data D with n objects, we

use m 2-stable hash functions to randomly project each object o into m hash values,

denoted by hi(o) for the i-th hash function. Particularly, we have hi(o) = �ai · �o
where �ai is randomly chosen from the normal distribution N (0,1) (i.e., 2-stable

distribution). For the i-th random projection, we use a B+ tree to keep the pair

(ID(o), hi(o)) for each object, where ID(o) is the ID of the object o and the hash

value hi(o) is the search key. After indexing, the d-dimensional dataset is mapped

to a m-dimensional dataset where m � d. A good property of LSH is that the

required hash function number m is not effected by the dimensionality d, so even

the dataset is in a really high dimensionality space, m can still be a small value.

Thanks to the good performance of B+ tree, our index can easily handle large scale

data and support the insert/deletion of the objects in an I/O efficient way. As shown

in Section 3.5, we need to choose a proper m for the desired approximate ratio c

and success probability δ. Let mmax denote the maximal m value we will support,

we build the index with mmax B+ trees, denoted by B, and randomly choose m B+

trees from the forest to do the search. Note that we also use a B+ tree to maintain

the objects in Rd space, where the object ID is the search key.

Query processing.

In general, a query object q in the d-dimensional space will also be mapped into m

projected dimensions, then the objects and their hash values will be incrementally

accessed according to their projected distances in m projected dimensions. Accord-

ing to LSH property, if a point o is close to q on most LSH functions, it is likely to

be a c−ANN of q. So an object becomes a candidate if αm hash values of the point
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Algorithm 1: EI-LSH (B, q)
Input : B: m B+ tree indexes for object IDs and hash values;

q: the query object;

Output : o: the c-ANN object

ncan := 0; dmin := 0;1

Apply m hash functions on q;2

while ncan < βn do3

o ← next object with smallest projected distance;4

i ← the projection dimension o comes from;5

r ← |hi(o)− hi(q)|;6

cn(o) := cn(o) + 1;7

if cn(o) == αm then8

compute ‖ o, q ‖ and update omin;9

ncan := ncan + 1;10

if Rmin ≤ λr then11

break;12

return omin13

have been accessed. The search will terminate if there are already βn candidate

objects or the new early termination condition is satisfied. Note that α, β and λ are

pre-defined parameters, and their settings will be discussed in Section 3.5.

Algorithm 3 presents the pseudo-code of our incremental LSH technique. We use

ncan to record the number of candidate objects seen so far and omin is the candidate

object which is closest to q (Line 3). The query q will be mapped to m hash values

(Line 3). Lines 4-3 conduct incremental search according the projected distances of

the objects. Note that an object may appear m times. During the search, Line 3

keeps on retrieving the next closest object o with smallest projected distance, say
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from the i-th hash function, (Line 3) and the search radius r is set to the projected

distance (i.e., |hi(o) − hi(q)| at Line 3). Regarding the example in Fig. 3.3(b), we

have o ← a and i ← 1 in the first iteration, while o ← b and i ← 2 in the second

iteration. Then Line 3 increases the number of visited times of o, denoted by cn(o),

by one. The object o becomes a candidate object if cn(o) reaches αm. Then we

compute its distance to q in Rd space (i.e., ‖ o, q ‖) and omin may be updated

by o, where omin keeps the closest candidate object seen so far (Lines 3-3). The

incremental search will terminate in two cases: (1) we already have βn candidate

objects (Line 4); or (2) the early termination condition is satisfied based on the

current omin and search radius r (Lines 3-3). Finally, omin is returned as the c-ANN,

which is the closest candidate object.

Correctness. For the given query q, approximate ratio c, and success probability

δ, Section 3.5 shows that we can choose proper m, α, λ, and β values such that our

EI-LSH algorithm can return c-ANN with probability at least δ.

CPU Costs. The dominant CPU costs in Algorithm 3 are the computation of

distance in Rd space (Line 3) and the retrieval of the next object in the incremental

search against m projected dimensions (Line 3). As the hash values are readily

sorted by a B+ tree for each projected dimension, the bi-direction search can be

conducted after the position of hi(q) is identified. A min-heap can be used to

maintain 2m closest objects on each search direction, it takes O(ln(2m)) time to

conduct incremental search. Thus, the CPU costs of EI-LSH search are O(s(d +

ln(2m))) where s is the number of iterations at Lines 4-3.

I/O costs. The dominant I/O costs also come from the computation of distance

(Line 3) and the incremental search (Line 3). Both hash values and object data IDs

are organized by B+ trees, we use the number of leaf-node visited to evaluate the

I/O costs because it is the dominant cost. We use Iseq and Iran to denote the unit
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cost of sequential I/O read and random I/O read, where Iseq is much cheaper than

Iran in practice. To compute the distance between o and q, one random I/O will

be invoked to load the object with d coordinate values. For the incremental search,

as the hash values are sorted in B+ trees, we can retrieve the hash values and the

corresponding object IDs in a pre-fetch fashion; that is, we use one random I/O to

identify the position and apply l sequential I/O to load l pages. Thus, the total I/O

costs are O( s
ne

× Iseq +
s

ne×l
× Iran + ncan × Iran) where ne is the average number

of entries per page∗, ncan is the number of candidate objects accessed, and s is the

number of iterations (i.e., the number of hash values visited). In our implementation,

we set l = 10.

3.4.3 Incremental LSH with traditional ET

Our algorithm can also adopt the traditional early-termination condition which

is more safe. There are also two steps of I-LSH: indexing and querying. The index-

ing step is totally same as EI-LSH, while in the querying step, there is something

different. Instead of comparing Rmin, the current shortest distance to q, with λr,

I-LSH compares Rmin with cR where R = r
w/2

. Since R is the current radius of

B(q, R), if an object omin satisfies Rmin < cR, it is safe to terminate the querying

and return omin as the result.

3.4.4 Extension for c-k-ANN problem

In many real-life applications, in addition to the nearest neighbor, users are

interested in the k nearest neighbors. In this thesis we also study the problem of c-

approximate k nearest neighbor (c-k-ANN) search. We say an object o is a correct

result of c-k-ANN search if ‖ o, q ‖≤ c ‖ ok, q ‖, where ok is the k-th nearest neighbor

of q in the objects D.

∗Note that each entry takes 8 bytes for one hash value and the object ID.
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Algorithm 2: I-LSH (B, q)
Input : B: m B+ tree indexes for object IDs and hash values;

q: the query object;

Output : o: the c-ANN object

ncan := 0; dmin := 0;1

Apply m hash functions on q;2

while ncan < βn do3

o ← next object with smallest projected distance;4

i ← the projection dimension o comes from;5

r ← |hi(o)− hi(q)|;6

cn(o) := cn(o) + 1;7

R ← 2r
w ;8

if cn(o) == αm then9

compute ‖ o, q ‖ and update omin;10

ncan := ncan + 1;11

if Rmin ≤ cR then12

break;13

return omin14

Algorithm 3 can be easily extended to solve the c-k-ANN problem by the follow-

ing changes: (1) instead of βn, we need to access βn+ k − 1 candidate objects; (2)

instead of omin, we maintain the k-th closest candidate object ok, and its distance

to q will be used for early termination test; and (3) the k most closest candidate

objects will be returned as the result of c-k-ANN search.
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3.5 Analysis

In this section, we prove that if the new ET framework is used on a proper

LSH method, the algorithm can still have theoretical guarantee. Besides, we show

the correctness of our incremental LSH method; that is, for any given query q,

approximate ratio c (c > 1) and success probability δ (0 ≤ δ ≤ 1), our method can

return a c-ANN with probability at least δ.

Before the formal proof, we stress some important notations frequently used. By

o∗, we denote the NN object with distance R∗. By r, we denote the current search

radius in the projected dimensions, which corresponds to the anchored bucket with

width 2r and a ball B(q, R) in the high-dimensional space Rd, where R = 2r
w

and w

is the initial bucket width. The object omin, which is the closest candidate object

seen so far, will be returned as c-ANN in Algorithm 3. We use Rmin to denote its

distance to q, and we say omin is correct if Rmin ≤ cR∗.

Since the correctness of the ET framework is also related to the correctness of

EI-LSH, we first prove without ET, EI-LSH can return a correct c-ANN with a

success possibility of δ.

Incremental increase of search radius r

Same as other LSH based methods, the correctness of our proposed method also

relies on the (r1,r2,p1,p2)-sensitive property of the hash function. The key difference

is that we incrementally increase the search radius r in Algorithm 3, following the

distance of the hash values w.r.t the projection of q, i.e., |hi(o)−hi(q)| with 1 ≤ i ≤
m.

In this thesis, we use the 2-stable distribution to construct the hash function h.

Let fh(o) denote the distance between the object o and the query q in the projected

dimension resulting from the hash function h, where fh(o) = |h(o)−h(q)|. As shown
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in [22], following lemma indicates that the fh(o) follows the normal distribution

related to the distance between o and q in Rd space.

Lemma 1: For an object o with ‖ o, q ‖= ζ, fh(o) follows the normal distribution

as ζZ where Z is a random variable drawn from N (0,1) with density function φ(x) =

1√
2π
e−

x2

2 .

Figure 3.4 : Example of fh(x)

Suppose we have ‖ o1, q ‖= 1 and ‖ o2, q ‖= 2 Fig. 3.4 illustrates the distribution

of fh(o1) and fh(o2), respectively. Given the bucket width w and centered at h(q),

we use η(R,w) to denote the probability that o and q fall in the same bucket with

‖ o, q ‖= R, which is the probability mass
∫ w

2R

− w
2R

φ(x)dx.

In this thesis, our LSH function is query-aware because we enforce that the

bucket, namely anchored bucket, is always centered at h(q), in the projected di-

mension. We say the hash function h is (r1,r2,p1,p2)-sensitive with regarding to

the bucket width w if we have Pr(|h(o) − h(q)| ≤ w
2
) ≥ p1 given ‖ o, q ‖< r1 and

Pr(|h(o) − h(q)| ≤ w
2
) ≤ p2 given ‖ o, q ‖> r2. The following lemma shows that

a (1,c,p1,p2)-sensitive hash function with bucket width w can become (ξ, cξ, p1,
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p2)-sensitive if the bucket width is set to ξw.

Lemma 2: Given a hash function h, if it is (1,c,p1,p2)-sensitive w.r.t the bucket

width w, then it is (ξ, cξ, p1, p2) sensitive if the bucket width is set to ξw for any

real value ξ > 0.

Proof 1: According to the definition of (r1, r2, p1, p2)-sensitive hash function,

for the bucket width w, we have

p1 = η(1, w) =

∫ w
2

−w
2

φ(x)dx

, and

p2 = η(c, w) =

∫ w
2c

− w
2c

φ(x)dx

.

Then for the bucket width ξw, we have

η(ξ, ξw) =

∫ ξw
2ξ

ξw
2ξ

φ(x)dx =

∫ w
2

−w
2

φ(x)dx = p1

η(cξ, ξw) =

∫ ξw
2cξ

ξw
2cξ

φ(x)dx =

∫ w
2c

− w
2c

φ(x)dx = p2

Therefore, the function h is (ξ, cξ, p1, p2)-sensitive with bucket width ξw for any

ξ > 0.

According to Lemma 2, it is immediate that for any given bucket width ξw, it

corresponds to a ball B(q, R) in Rd centered by q with R = ξ
2
space such that for

any object o ∈ B(q, R), h(o) will fall in the anchored bucket (i.e., |h(o)− h(q)| ≤ ξ
2
)

with probability at least p1, while for any object o �∈ B(q, cR), it will collide with q

with probability less than p2.

Let r denote the current search radius in the projected dimensions (i.e., the

width of the corresponding anchored bucket is 2r). As ξ can be any non-negative
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real value in Lemma 2, the search radius r can be any real value with r > 0. And

the hash function is (ξ, cξ, p1, p2)-sensitive where ξ = 2r
w
.

Correctness of the Algorithm

Algorithm 3 may be terminated by normal termination condition (denoted by NT)

or early termination condition (ET), and both may be correct with some probability.

Thus, we need to carefully consider the correlation of two termination conditions.

Suppose the LSH algorithm will be stopped by termination condition 1 (NT) with

γ possibility, and will be terminated by early-termination condition with 1 − γ

possibility, the final success possibility is γ ·PNT +(1−γ) ·PET , where PNT and PET

are the success possibility of NT and ET separately. Our goal is to choose a set of

parameters so that the final success possibility δ is a constant value. First, we just

suppose that the normal termination condition and the early-termination condition

share the false possibility and prove the correctness of the algorithm. Furthermore,

we discuss what is the real proportion of false probability for the two termination

conditions. Below, we present the key idea of our proof, followed by the details.

B

A

ET-Only (W)

ET-Only (C) C

Figure 3.5 : The sample space S

(1) Outline of the Proof. Let S denote the sample space resulting from the m

hashing functions, and each sample is an instance of the projections for the objects

and the query. We first partition S into two disjoint two sets A and B. Suppose we

only consider the early termination condition in Algorithm 3, denoted by ET-Only,
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the instance in A means that ET-Only will terminate with a correct omin. Other

instances belong to the set B. Due to the use of normal termination condition in

Algorithm3, some instances in Amay be wrongly terminated by NT. Let C denote the

set of instances in which an instance† is wrongly terminated by NT; that is, there are

βn “bad” candidate objects and early termination condition is not satisfied. Note

that we say a candidate is “bad” if its distance is larger than cR∗. Note that if both

conditions are satisfied at the same time, the ET-Only algorithm is not interrupted

by NT because omin will be returned anyway.

Let P (B) and P (C) denote the probability mass of the samples in B and C,

respectively. If we have P (B) + P (C) ≤ 1 − δ, then Algorithm 3 will return the

correct c-ANN object with probability at least δ.

(2) Parameter Settings. The desired accuracy in this thesis is defined by c and δ,

where δ is the success possibility and c is the approximate ratio. Same as other LSH

papers, we set δ = 1/2− 1/e. Note that δ actually can be boosted by repeating the

procedure and taking the median of the results. For the initial bucket width w, we

set w to 3.5. Then we can calculate the probability p1 and p2 following the Lemma 1

with R = 1 and R = c, respectively. According to Lemma 2, it is immediate that the

hash function is (R, cR, p1, p2)-sensitive regarding the search radius r with R = 2r
w
.

In this thesis, let δ = 1/2− δ′ (So when δ = 1/2−1/e, δ′ = 1/e), we set β = 0.01

and α =

√
ln 2

β

ln 1
δ′

p1+p2

1+

√
ln 2

β

ln 1
δ′

where p1 < α < p2, and m = 	 ln 1
δ′

2(p1−p2)2
(1 +

√
ln 2

β

ln 1
δ′
)2
. For early

termination, we set PE = 1−δ
2

and the calculation of λ will be introduced in the

following part.

(3) Computation of P (B) for early termination only. Now we show that, if

we only use early termination condition in Algorithm 3, we have P (B) ≤ PE. Based

†Here, it is not necessary that the instance belongs to A.
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on the Lemma 1, it is immediate that the probability of hitting the anchored bucket

will monotonically decrease when the distance between object and the query grows,

which is formally described as follows.

Lemma 3: Given two objects o1 and o2 where o1 is closer to q than o2, with

distance R1 and R2 respectively, we have that η(R1, w) ≥ η(R2, w), recall that

η(R,w) denote the probability that an object o with distance R falls in the anchored

bucket with width w.

h(q)

q

2r

d-dimensional space

projected dimension w.r.t h

o+

o*

h(o+)

R+

h(o*)

R+

c

Figure 3.6 : Motivation of early termination

As shown in Fig. 3.6, o+ denotes the closest candidate object seen so far with

distance R+. If we simply return o+ as the c-ANN object, the result is incorrect if

R∗ ≤ R+

c
(i.e., o∗ falls in the ball B(q, R

+

c
) and o∗ is not a candidate object (e.g.,

|h(o∗)−h(q)| > r for m = 1). Thus, for the given r, m, c, and the probability PE, we

can come up with a distance R+ such that, with probability PET = 1−PE, an object

o with distance R+

c
will become a candidate w.r.t search radius r. Specifically, for

the given PE and m, we can find a probability p such that PE = 1−∑m
i=αm C i

mp
i(1−

p)(m−i). That is, for an object with distance R+

c
, it will have probability p to hit an
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anchored bucket w.r.t r on a single hash function, and hence become a candidate

(i.e., hit at least αm times) with probability 1 − PE on m independent 2-stable

hashing functions. With the given p and r, we can calculate a distance R+ = λr

such that η(λr
c
, 2r) = p. Particularly, we have λ = c

N−1( p+1
2

)
and N−1(·) is the inverse

function of the cumulative distribution function of the standard normal distribution.

Note that the calculation of λ is not related to the search radius r, and hence λ can

be pre-computed based on PE, c, and m.

Then we have the following lemma showing that P (B) ≤ PE.

Lemma 4: The Algorithm 3 with early termination only will return an incorrect

c-ANN with probability at most PE; that is, we have P (B) ≤ PE;

Proof 2: According to the Lemma 3 and the calculation of R+, if the early ter-

mination condition is satisfied (i.e., Rmin ≤ R+), the probability that the returned

omin is not a c-ANN is at most PE. That is, P (B) ≤ PE.

(4) Computation of P (C). In this part, we show that P (C) ≤ 1−δ
2
. Recall that

for each instance in C, Algorithm 3 is terminated by normal termination condition

with an incorrect omin meanwhile the early termination condition is not satisfied;

that is, we have: (1) βn “bad” candidates; and (2) Rmin > R+.

Lemma 5: With probability at most 1−δ
2
, Algorithm 3 is terminated by normal

termination condition with an incorrect c-ANN; that is, we have P (C) ≤ 1−δ
2
.

Proof 3: Given that ET condition is not satisfied at search radius r, which implies

that none of the objects within ball B(q, R+) are chosen as candidate. Now the

algorithm is stopped by NT condition, which means there have already been βn

candidate objects outside of the ball B(q, R+). According to the setting of PE, m

and the calculation of R+, we have R+ > cR. Thus, all these candidate objects are

also outside of ball B(q, cR).



41

Given an object outside of ball B(q, cR), we use p3 to denote the probability

that o is chosen as a candidate (i.e., Pr(cn(o) ≥ αm)) where cn(o) is number of

hits of the anchored bucket with width 2r. According to the Chernoff bound, we

have p3 < exp(−2(α− p2)
2m) because our LSH function is (R, cR, p1, p2)-sensitive

for any R according to Lemma 2. Let X denote the number of candidate objects

outside of the ball B(q, cR) (i.e., number of false positives). According to the Markov

Inequality, we have PN = Pr(X ≥ βn) ≤ n·p3
βn

= p3
β
. Since p3

β
can be calculated with

given parameters, the probability of early terminate with βn candidates is bounded

by 1−δ
2
. Therefore, P (C) is bounded by PN because the probability of “visiting βn

bad candidates and ET not satisfied” is bounded by that of “visiting βn candidates

and ET not satisfied”.

(5) Correctness of Algorithm. Based on the above analysis, the correctness of

Algorithm 3 follows since P (B) + P (C) ≤ 1− δ.

Theorem 1: When Algorithm 3 terminates with object omin, we have ‖ omin, q ‖≤
cR∗ with probability at least δ, where R∗ is the distance of NN object o∗ to q in Rd

space.

(6) Discussion of of PB and PC. We suppose PB and PC have a same value

to simplify the proof, and in this section, we discuss about whether it is possible

allowing PB to be a larger value so that the early-termination condition can be more

efficient. In figure 3.7, we can get the final success possibility δ = PET ·(1−γ)+PNT ·γ
where PET , PNT , γ demonstrate the success possibility of ET (PET = 1 − PB), the

success possibility of NT (PNT = 1− PC), and the possibility that the algorithm is

terminated by NT separately. If we can prove that γ is a smaller value than 50% (the

value we set in the proof above, which means ET and NT divide the false possibility

equally), PB could be set to a larger value and the total success possibility won’t be

changed. Here we discuss the bond of γ.
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With the given p which effects the success possibility of the new early termination

condition PET , we can compute the stop possibility of the normal termination (NT)

γ as following:

When we are doing the c-ANN search, if the search is terminated by ET, it

will satisfy that Rmin ≤ λr where λ = c

N−1( p+1
2

)
. Therefore, if it is stopped by the

normal termination condition, we will have Rmin > λr for all the candidate which

have been assessed for at least αm times. Let pcan denotes the possibility that a point

o, whose distance to q is slightly greater than λr, has been found as a candidate, we

have pcan =
∑m

i=αm C i
mp

i(1− p)m−i. The normal termination condition will work if

and only if all of the βn candidates found don’t satisfy the new early-termination

condition, which means all the candidates o have a distance to q larger than λr. It

is easily to get γ, the possibility that NT terminates the algorithm, is pβncan.

Figure 3.7 : Success possibility δ

Because the success possibility for normal termination condition only is at least
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δ, which has bee proved before, we have

(1− γ)PET + γ · δ ≥ δ

(1− γ)PET ≥ δ − γ · δ

(1− γ)PET ≥ (1− γ)δ

(3.1)

Just as we mentioned above, the relation ship between p and PET is PET =

pcan =
∑m

i=αm C i
mp

i(1 − p)m−i, so from the above possibilities, because 0 < γ < 1,

we will get a total success probability greater than δ as long as choosing a proper p

to have PET > δ. The theoretical guarantee still holds.

Compared with the formal setting PE = 1−δ
2
, the new P ′

E has a lower bound of

1− PET ≤ 1− δ, which is a larger value of PE. A greater PE leas to a greater R+,

so the algorithm can stop earlier without breaking the theoretical guarantee.

Comparison with C2LSH and QALSH.

Although our technique follows the framework of C2LSH and QALSH, we show

that the new early-termination framework and the incremental search strategy un-

derpinned by the above analysis can bring us the following benefits.

(1) More promising early termination technique. C2LSH and QALSH use

the traditional early termination condition where the algorithm can be terminated

with Rmin ≤ cR. This decision is safe (i.e., deterministic) because it ensures to

return a correct c-ANN in their algorithms, and hence they do not need to consider

its correlation with normal termination condition. But the safe early termination

condition also causes extra success possibility to the theoretical bond. Our strategy

is much more aggressive as we have R+ > cR, and hence can significantly reduce the

number of candidate objects visited in practice, at the cost of a more complicated

proof to handle correlation between two termination conditions.

(2) Better approximate ratio. As shown in [37], C2LSH and QALSH return a
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c2-approximate NN if the approximate ratio is set to c in their algorithms. This is

because their bucket width grows to wck during the search where k is an integer,

and Rmin ≤ cR and R ≤ cR∗ when their search algorithms terminate, where R∗ is

the NN distance and R is the corresponding ball radius in Rd for the search radius

r. This implies that the value of c has to be set to
√
c to achieve c-approximate in

their algorithms. Thanks to our incremental search strategy and the novel early ter-

mination condition, Algorithm 3 and algorithm 2 can directly use c as the parameter

to achieve c-approximate NN with success probability at least δ. Thus, under the

same theoretical guarantee, the number of hashing functions required by EI-LSH is

much smaller than that of C2LSH and QALSH.

3.6 Performance Studies

In this section, we conduct comprehensive experiments to demonstrate the I/O

efficiency of our proposed algorithm, and compare the performance with two state-

of-the-art I/O efficient c-ANN search algorithms using a variety of metrics.

3.6.1 Experiment Setup

In this subsection, we present the experiment settings of our performance eval-

uation.

Benchmark methods. SRS [82] and QALSH [37] are two state-of-the-art I/O

efficient c-ANN search algorithms. In [37], QALSH has demonstrated superior I/O

performance compared with C2LSH [28] and LSB-tree [83], hence we exclude C2LSH

and LSB-tree from the performance evaluation. Besides, we also compare EI-LSH

and I-LSH to show the effect of our early termination framework.

• QALSH uses a set of single LSH functions for c-ANN search. It requires m B-

trees to store the index. The source code of QALSH is provided by the authors.
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Note that, in their implementation, authors only keep the minimal hash value

for each B+ tree leaf-node, together with all object IDs in the leaf-node. This

can significantly reduce the index size.

• SRS has several variants. In the performance evaluation, we use the I/O ef-

ficient version with theoretical guarantee, where objects are indexed by an

m-dimensional R-tree based on their hash values. The source code of SRS is

public available at https://github.com/DBWangGroupUNSW/SRS.

• I-LSH is our incremental search LSH algorithm proposed in this thesis without

the new early termination condition (Algorithm 2).

• EI-LSH is our incremental search LSH algorithm proposed in this thesis (Al-

gorithm 3 in Section 3.4) using the new early termination condition.

Same as the previous work, we evaluate the performance on the c-k-ANN version

of these algorithms in the experiments where k varies from 1 to 100, with default

value 40.

Datasets. We use four million-scale datasets in the experiments, which are down-

loaded from a recent nearest neighbor search benchmark‡. Since all of the three

methods are available to deal with real numbers, we didn’t scale up the data.

• Tiny contains around 5 million GIST feature vectors with dimensionality 384.

• Million Song is a collection of audio features and meta-data for a million

contemporary popular music tracks with 420 dimensions.

• Glove contains 1.1 million 100-dimensional word feature vectors extracted

from Tweets.

‡https://github.com/DBWangGroupUNSW/nns_benchmark/tree/master/data

https://github.com/DBWangGroupUNSW/SRS
https://github.com/DBWangGroupUNSW/nns_benchmark/tree/master/data
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• Sift consists of 1 million 128-dimensional SIFT vectors

• Audio is a 192-dimensional dataset with 50000 points

• Tiny 800m is the full tiny dataset containing 800 million 384-dimensional vec-

tors.

Evaluation Metrics. Our main focus is the I/O efficiency of the c-ANN algorithms

under the same theoretical guarantee. Following the convention, we count the num-

ber of I/Os during the computation for three algorithms, where each random I/O

read counts one and each sequential I/O read contributes 0.1 considering the differ-

ence costs between random and sequential I/O. Recall that all I/O reads in SRS are

random ones, while both random and sequential I/Os are invoked in QALSH and

I-LSH. We also evaluate the accuracy of the search results by reporting the ratios

of returned results compared with the ground truth answers.

Parameter Setting. To compare the methods fairly, the success possibility δ is set

to 1
2
− 1

e
for all algorithms. The default approximate ratio c is set to 4. Note that

QALSH is c2 approximate method and hence need to sets c to
√
4.0 = 2 to achieve

the 4-approximation, while both SRS and I-LSH are c-approximate methods. We

use the default settings of QALSH and SRS unless otherwise specified. Specifically,

QALSH sets β = 100
n
, so at most 100 + k − 1 candidate objects will be evaluated.

As suggested, its initial bucket size is set to 2.72 and the number of required hash

functions m is calculated accordingly. In SRS, we use a constant value of m for a

given c, following its settings in [82]. For I-LSH, the parameters are set according

to the specification of the parameter setting in Section 3.5. The page size B is set

to 8, 192 bytes for all the datasets and algorithms.

All of the experiments were conducted on a PC with intel(R) Xeon(R) CPU E3-

1231 v3 with 3.04GHz, 8 cores and 16G main memory. All of the source codes were
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implemented in C++ and compiled with g++ -with -O3 flag. We evaluate three

algorithms by studying the performance after averaging the 200 queries. To compare

the performance fairly, we use the same random vectors to project the datasets.

3.6.2 Evaluate Index Size

We list the index size for all the datasets we have used in experiments under the

default settings (e.g., c = 4 and δ = 1
2
− 1

e
). Table 3.2 shows the index sizes for

QALSH,I-LSH and SRS and the number of hash function (m) used for the desired

theoretical guarantee. It is reported that SRS uses the smallest size of index. This

is because a small m value is required and SRS only keeps one data entry for each

object. I-LSH uses much less number of hash functions compared with QALSH,

mainly because QALSH is a c2-approximation algorithm. Index sizes of the three

methods are independent of the dimensionality d, and grow linearly with the dataset

size n.

Table 3.2 : Index size

dataset

(d)

Glove

(100)

Sift (128) Tiny

(384)

Million

Song

(420)

Audio

(192)

m 84 83 93 83 60

QALSH

(MB)

444 394 2150 391 32

m 16 16 16 16 16

I-LSH

(MB)

165 149 735 157 12

m 6 6 6 6 6

SRS (MB) 46 43 254 46 2.4
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3.6.3 Evaluate Index Building time

Another important evaluation matrix is the efficiency to build indexes for the

LSH methods. Although the indexes are only built once for each dataset, if building

index takes too much time compared with other algorithms, it can also be a shortage.

To compare the algorithms fairly, all the three algorithms read data from text files

instead of binary files. We list the index building time for all the datasets we have

used in the experiments under the default settings. Table 3.3 shows the indexing

time cost for QALSH, SRS and I-LSH. For list-based LSH algorithms, the index time

is mainly dependent on the number of hash functions. According to our proof, I-LSH

needs less hash functions than QALSH to hold the same theoretical guarantee, and

building procedures of the two algorithms are similar. So for all the datasets, I-LSH

only cost about 25% time to build index compared with QALSH. For the tree-based

LSH methods, there is some different reasons to be considered. Although m is less

than 10 in SRS , the algorithm has to do the insertions on a m-dimensional tree,

which is a more comprehensive operation compared with insertion on a B+ tree.

SRS has the smallest size of index, but the slowest index building speed.

Table 3.3 : Index time

dataset tiny Audio Glove Million

Song

Sift

SRS(s) 1777 9.42 568 421 490

QALSH(s) 386 2.71 67 153 56

I-LSH (s) 89 1.1 13 30 11
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3.6.4 Evaluate I/O costs

In this section, we evaluate the goodness of an I/O efficient c-ANN algorithm

and the most essential criteria is to use as less I/O costs as possible under the same

theoretical guarantee for the given approximate ratio c and success probability δ.

Three algorithms have rigorous theoretical analysis to ensure the desired theoret-

ical guarantee, and it turns out that all queries in the experiments are answered

correctly regarding the given approximate ratio c. Fig 3.8 reports the I/O costs

of three algorithms on four datasets where k varies from 1 to 100 and the approxi-

mate ratio c is set to 4 (default value) or 2 respectively. Besides, to prove that our

new early termination framework can decrease the I/O cost dramatically, we also

conduct experiments for EI-LSH and I-LSH only to demonstrate the results more

clearly because both of the two methods use a much smaller I/O compared with

SRS and QALSH. From figure 3.8, we have the following observation.

• I-LSH has the best I/O performance on four datasets under all settings, espe-

cially on the million-scale and billion-scale datasets.

• When c = 4 (i.e., 4-ANN), QALSH is not competitive compared with SRS and

I-LSH mainly because it has to set c =
√
c to achieve the same approximate

ratio with SRS and I-LSH, which causes a much largerm. SRS has the smallest

index size, but because of the penalty of random I/O, SRS requires more I/O

costs to find enough candidates. The performance gap between SRS and I-

LSH is not very significant on Sift data where the dimensionality is 128. On

Tiny and Million song datasets with dimensionality 384 and 420, respectively,

I-LSH outperforms SRS by a big margin.

• When the approximate ratio c is set to 2, it is not surprising that the higher

demand of the accuracy leads to much more expensive I/O costs for three

algorithms. As shown in Fig.6 (c)-(f), SRS is more sensitive to the decrease of
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c (i.e., increase of the accuracy required) compared with QALSH and I-LSH.

Although SRS consistently outperforms QALSH when c = 4, it consumes more

I/O costs when c = 2. This is because the performance of exact NN search on

R-tree is very sensitive to the dimensionality, and m of SRS is set to 15 for

c = 2. Although the number of B+ trees also increases to a large number, e.g.,

m = 60 andm = 351 for I-LSH and QALSH respectively on Tiny dataset, their

performance is less sensitive to the increase of approximate ratio compared to

SRS.

• When k increases, the I/O costs also grow steadily for three algorithms. It is

noticed that, k doesn’t significantly affect the I/O costs when the dataset size

is large, because the dominant I/O costs of three algorithms on large dataset

are to find the first candidate.

• When only considering I-LSH and EI-LSH, I-LSH can reduce the I/O cost on

all the datasets under the same theoretical guarantee because it has a more

strict bond of the success possibility. If k grows to a large value, the I/O cost

difference between I-LSH and EI-LSH becomes more obvious.

3.6.5 Evaluate Accuracy

Our experiments show that all three algorithms are quite pessimistic. Given a

very low success probability δ = 1
2
− 1

e
= 0.132, all queries of three algorithms are

answered correctly with ratio smaller than 2.0 for the required ratio c = 4.0. Given

the fact that all of the three algorithms rely on the same hash function, and the

key differences are the search strategy and the indexing method. Suppose the same

number of hash functions are deployed for three algorithms. Intuitively, the more

candidate objects accessed by an algorithm, the better ratio it should be able to

achieve given a reasonable good search heuristic. The key challenge is how to stop
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as early as possible under the theoretical guarantee. As expected, given the same

c and δ, the ratio of QALSH is much better than that of SRS and I-LSH because

QALSH terminates much later.

Instead of just reporting the ratio vs. k, in Fig 3.9, we report the trade-off

between I/O costs and average approximate ratio of the queries for three algorithms

on Sift, Tiny, Audio and MillionSong datasets by enforcing the algorithm to explore

some objects (i.e., more I/O costs incurred) even the early termination condition

has been satisfied. It is shown that, under the same I/O costs, I-LSH can achieve

lower ratio. Similarly, under the same ratio, I-LSH uses much less I/O costs. The

performance of SRS is not competitive in this set of experiments mainly because of

the penalty of random I/O assesses and the R+ tree property. Another observation

from this set of experiments is that, SRS is harder to return a high quality result

even it is forced to visit more points. From the figures, the ratio decreases slowly

when the I/O cost increasing. If there is a requirement of accuracy of the result,

SRS could not well support it.

3.6.6 Effect of the approximate ratio c

A good c-ANN algorithm should support different approximate ratio, especially

when c is a small value. We conduct experiments on Tiny and Million Song datasets

where c varying from 2.0 to 4.0, and evaluating the I/O costs. The results are re-

ported in Fig 3.10. Same as Section 3.6.4, the difference between EI-LSH and I-LSH

are shown separately. As expected, the performance of three algorithms degrades

against the decrease of the approximate ratio. It is shown that the performance

of SRS is most sensitive to the change of the approximate ratio c. This is because

the higher requirement of accuracy leads to a larger m, and hence deteriorates the

performance of the exact NN search on R-tree in SRS.
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3.6.7 Effect of the value of PET

As we discussed in Section 3.5, as long as the value of PET is greater than δ,

the theoretical guarantee will still hold. We conduct experiments to illustrate the

effect of adopting a stricter theoretical bond to the I/O cost. In the default setting,

PET is set to be 1 − 1−δ
2

= 1/2 + δ/2 in I-LSH and in this experiment, PET − new

is set to be δ + 0.001. When c = 4, λ should be 8.7 and 22.3, separately. The

results are reported in Fig 3.11. The ’old p’ line demonstrates the former setting of

PET and the ’new p’ line means the new setting of PET . The effect of PET is more

tremendous on a higher dimensional dataset or on a larger dataset. It is because

that on a larger dataset or a higher dimensional dataset there is less possibility to

find k-c-ANN within k candidates only and therefore, a small PET can terminate

the algorithm earlier and reduce the I/O cost. On the million-scale datasets, the

tiny dataset is the largest one and shows the most obvious difference between the

two PET . For any k in the figure, the I/O cost of new p is at least 400 less than the

old p.

3.6.8 Large dataset

Another important feature of a c-ANN algorithm is the scalability. We run our

algorithm on the large dataset tiny with different scales to evaluate the performance

on non-trivial dataset. Since QALSH’s indexing time cost is unfordable, we only
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compare SRS and our algorithm.

The following table shows the index size of I-LSH and SRS for different size of

the tiny dataset.

Table 3.4 : Index size

size of dataset

(million)

10 30 50 80

m 16 16 16 16

I-LSH (GB) 1.3 3.8 6.4 10.1

m 6 6 6 6

SRS (GB) 0.34 1.1 1.9 3

We change the dataset size from 10 million to 80 million to show the I/O per-

formance of our algorithm. The value of k is set to 50, and all the other settings are

same with other experiments. To better shows the I/O efficiency of our ET frame-

work and our incremental search strategy, we use the most strict bond of the success

possibility where PET = δ+0.001. Under this setting, in most cases, the first k can-

didates found by I-LSH could satisfy the early-termination condition. Figure 3.12

shows the I/O cost for different size of the tiny dataset. When the size grows to

80 million, the I/O cost of I-LSH to solve the c-k-ANN problem is less than 6000,

which is a tiny value considering the huge dataset size. Comparing with SRS, I-LSH

use less I/O over all the experiments.

3.6.9 Summary

Based on the experimental results, we have the following observations:

• Under the same theoretical guarantee, I/O performance of EI-LSH consistently

outperforms QALSH and SRS under all settings. This is because: (1) EI-LSH
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Figure 3.12 : I/O cost on difference dataset size (k = 50)

adopts a natural incremental search strategy, which enables us to achieve c-

approximation (unlike the c2 approximation of QALSH); (2) EI-LSH uses a

much aggressive early termination technique, which can significantly reduce

I/O costs without sacrificing the theoretical guarantee; and (3) EI-LSH can

take advantage of efficient sequential I/O brought by the B+ tree.

• SRS has a good performance when c = 4, but it cannot comfortably support

smaller c (higher accuracy) because of the curse of dimensionality for the

exact NN search on the multi-dimensional index including R-tree. Moreover,

the random I/O incurred by R-tree is also a limit of SRS.

• The performance of QALSH is not competitive on the I/O efficiency under the

same theoretical guarantee. This is mainly because: (1) the c2 approximate

algorithm resulting from its bucket expansion search strategy; and (2) the

conservative early termination strategy may miss many opportunities to stop

the algorithm without breaking the theoretical guarantee.

• I-LSH and EI-LSH require a same size of index and same parameter settings

to hold a given theoretical guarantee, but EI-LSH adopts a more aggressive
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early-termination condition and can stop earlier than I-LSH.

• The value of PET has a dramatical effect on the I/O efficiency of EI-LSH when

the dataset is enormous. Because in most cases, our algorithm is stopped by

the early-termination condition, and on extremely large dataset a smaller PET

can reduce the candidate set size.

3.7 Conclusion

To deal with the fundamental similarity search on large scale high dimensional

data, in this thesis we investigate the problem of c-ANN search and propose an

aggressive early-termination condition, which can be used on most list-based LSH

algorithms to reduce the I/O cost. Besides, we also develop an I/O efficient incre-

mental LSH method, namely I-LSH. We show that, by applying a natural incremen-

tal search strategy and the new early termination technique, I-LSH can significantly

enhance the I/O efficiency under the same theoretical guarantee. By using the more

aggressive early-termination strategy, EI-LSH can improve I/O performance further

compared with I-LSH. Our comprehensive experiment results show that, compared

with state-of-the-art I/O efficient c-ANN techniques, our algorithm can achieve much

better I/O efficiency under the same theoretical guarantee. The experiment on large

scale dataset shows that our algorithm also performs well on non-trivial datasets.
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Chapter 4

Approximate Maximum Inner Product Search

4.1 Overview

In this chapter, we select a set of state-of-the-art Approximate MIPS algorithms

and conduct comprehensive experiments to evaluate their performance in terms of

both accuracy and efficiency. First we introduce the background of this problem

in section 4.2, then we briefly introduce the algorithms are category them into

two categories in section 4.4 and section 4.3. The experiment studies are given in

section 4.5.

4.2 Background

In this section, we first define MIPS problem formally, and describe the scope of

algorithms we selected in this paper, then we introduce how we divide the algorithms

into three groups and the idea of each group.

4.2.1 Problem definition

Given a dataset D with n points in d-dimensional space, inner product of two

points o1 and o2 is defined as:

Definition 3: Inner Product

Let 〈o1, o2〉 denotes the inner product of points o1 and o2,

〈o1, o2〉 = ‖o1‖‖o2‖cosβ

where ‖o‖ =
√∑d

i=1 o
2
i means the l2 norm of point o, and β is the angle between o1

and o2.
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The Maximum Inner Product is defined as follows.

Definition 4: Maximum Inner Product Search

Given a query point q, the maximum inner product of q is the point o∗ ∈ D

which satisfies 〈o∗, q〉 > 〈o, q〉 where o is any point also in dataset D.

Considering the time and space consumption, most MIPS algorithm aim to find the

approximate solution of this problem. To measure the result accuracy, recall, ratio

and precision are commonly adopted in many papers.

4.2.2 Algorithm scope

MIPS is a fundamental problem and plays an important role in various areas

such as database, recommendation systems and computer visions. There are nu-

merous papers published to propose a novel improvement of current solution from

different aspects. It is impossible, and also unfair to compare all of the algorithms

together. So in this thesis, we only choose several state-of-the-art algorithms which

also satisfies the following requirements.

No dependence on hardware. It is a popular implementation to use GPU or

multiple CPUs, multiple threads to speed up similarity search but not all of the

algorithm use such techniques. In this thesis, we disabled the hardware-related

optimisation for all algorithms to do a fair comparing.

In-memory algorithm. Similarity search in high-dimensional space can be done

in internal memory or external memory. For internal memory algorithms, running

time is the most important part of algorithm efficiency while for external memory

algorithms, the primary goal is to reduce I/O cost. Since I/O operations cost much

more time than CPU operation, in this thesis, we only compare algorithms based

on internal memory, and use running time to evaluate the efficiency.

Exact Maximum Inner Product as the ground truth. Some methods require
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a label for each data point in the input, and also use the label to evaluate result

accuracy (especially in some recommendation system papers). Since we hope to use

a same set of datasets in our experiments, we only use algorithms which use exact

k maximum inner product points as the ground truth.

4.2.3 Categories

The algorithms are divided into two categories: Approximate MIPS algorithm

with theoretical guarantee and without theoretical guarantee. Some of the algo-

rithms are not designed for MIPS specifically, just like Annoy [25], which supports

several distance such as Euclidean distance, angular distance and so on.

The algorithms with theoretical guarantee are all based on LSH scheme. LSH is

short for Locality-Sensitive Hashing, a well-known solution for kNN search in high-

dimensional space. LSH-based algorithms transform the whole data space to a new

one so that kNN algorithm could work. Due to the property of LSH, most LSH-

based algorithms provide a theoretical guarantee for results, which will be explained

in next section. This category contains [38, 66, 80, 93].

The other category contains graph-based MIPS algorithms and Tree-based MIPS

algorithms, which map the dataset to a graph or divide the dataset to sub-spaces,

then use graph related algorithm or tree related algorithm to achieve query process-

ing. ip-nsw [64], ip-nsw+ [54] and Annoy [25] all belong to this group.

4.3 Approximate MIPS algorithms with theoretical guaran-

tee

Theoretical guarantee means that all algorithms belong this category could pro-

vide a guarantee for their result accuracy. Norm-ranging LSH [93] guarantees that

the result will be greater than cS0 with a possibility greater than 1 − δ where c

and δ are constants smaller than 1 and S0 is a pre-defined parameter. The other
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algorithms provide a guarantee that the result will greater than cR∗ with a constant

possibility, where R∗ is the real MIPS of query q.

The state-of-the-art Approximate MIPS algorithm with theoretical guarantee

all adopt LSH scheme. Locality-Sensitive Hashing is used in approximate nearest

neighbour search in high-dimensional space. It uses a set of hash functions to map

high-dimensional data objects to a low-dimensional vector and keeps distance rela-

tionship among points to some extent. In this section, we first describe some basic

information of LSH, then introduce how to use LSH to solve MIPS problem, and

the details of algorithms belonging to this category.

4.3.1 Locality-Sensitive Hashing

Locality-Sensitive Hashing is first proposed by Indyk [40] in 1998 to solve c-ANN

problem in binary hamming space, and extended to Euclidean space by Datar et

al. [22]. The most significant part of LSH is LSH function.

Definition 5: LSH function

Given a Locality-Sensitive hash function h(·), it is (r1, r2, p1, p2)-sensitive if and

only if for any two points x and y, there exists two distance thresholds r1 and r2

and two possibility thresholds p1 and p2, which satisfy:

⎧⎪⎪⎨
⎪⎪⎩
Pr[h(x) = h(y)] ≥ p1 , if f(x, y) < r1

Pr[h(x) = h(y)] ≤ p2 , if f(x, y) > r2

From definition 5, if the distance between any two points o1 and o2 increases, the

possibility of h(o1) = h(o2) will decrease accordingly. In Euclidean space, the Gaus-

sian/normal distribution, which is also called 2-stable distribution, is used to gen-

erate LSH functions.
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4.3.2 From LSH to MIPS

LSH can well support kNN search in high-dimensional space, however, inner

product is not a metric, LSH can’t be simply applied on MIPS problem because

there is no symmetric nor asymmetric LSH in the entire space [66]. A feasible

solution is to convert MIPS to NN search by transforming the whole dataset and

query set: D : Rd → Rd′ , and Q : Rd → Rd′ where d′ > d. After transforming the

two sets into new data space, using LSH to do kNN search and the result will be

returned as MIPS result.

There are two errors of using LSH to solve MIPS problem. The first appears

when converting dataset and query set to a new data space. Most asymmetric

transformations require to add a large constant to the Euclidean distance ‖D(o)−
Q(q)‖ after transformation, which will cause distortion error for the next step NN

search. Suppose in a dense dataset D and a query point q, if every point o ∈ D has

a very small distance to q, after adding the large constant in transformation, every

point can be NN of q. It is obvious that the final result can be extremely bad.

The second error happens when processing NN search. LSH is able to offer a

theoretical guarantee of its result, which means, given an approximation ratio c,

LSH guarantees that the result can be c-NN of query q with a constant possibility

regardless of the data distribution, but the recall is not always very competitive

comparing with other NN methods.

As a result, the primary challenge of LSH-based MIPS algorithm is to minimise

the two errors meanwhile try to achieve a good performance on time consumption.

We select H2-ALSH [38], L2-ALSH [79], norm-range LSH [93] and Sign-ALSH [80] in

the thesis. Except for norm-range LSH, all the other algorithms provide theoretical

guarantee to the result.



63

4.3.3 H2ALSH

H2ALSH is the most recent MIPS algorithm with theoretical guarantee, which

was published in 2018 by Qiang H et. al. It put forwards a novel transformation

method to reduce the error occurred in data space converting and doesn’t need

any assumptions on dataset and query set. Based on their previous NN paper

QALSH [37], they use QALSH to retrieve top-k nearest neighbour in the new data

space, meanwhile keeps the theoretical guarantee.

H2-ALSH utilized a new asymmetric transformation method, which is called

Query Normalized First (QNF) transformation, to reduce Approximate MIPS prob-

lem to c-ANN problem. The vector transformations of dataset D and query set Q

are defined as follows:

D′(o) = [o1, o2, ..., od,
√
M2 − ‖o‖2]

Q′(q) = [λq1, λq2, ..., λqd, 0],where λ =
M

‖q‖ and M = maxo∈D‖o‖

The QNF transformation maps the d-dimensional dataset and query set to a d+ 1-

dimensional data space without transformation error because λ = M
‖q‖ is a fixed

constant.

There are two steps in H2-ALSH. The first step is to pre-process the dataset.

H2-ALSH first sort the data points in increasing order according to their norms ‖o‖
and then divides them into different sets, then compute Mi for each set and applies

QNF to transform the whole dataset to Rd+1 space. In the new data space, QALSH

is used to build indexes for each subset if there are a large amount of points in the

subset, which consists of multiple B+ trees.

The next step of H2-ALSH is query processing. It computes an upper-bond ub

for each subset according to Mi and ‖q‖, which means the norm of q. If ub is greater

than a pre-defined threshold, q will be mapped to Rd+1 space and use QALSH to
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find kNN for this subset, or linear scan will be used on the subset when the subset

size is small, which means it doesn’t need a index in the first step. When every

subset has been precessed, the union set of all results is MIPS result.

4.3.4 L2-ALSH

L2-ALSH is another important LSH-based MIPS algorithm, which was published

on NIPS in 2014. The key idea of L2-ALSH is that using different hash functions in

pre-processing step and querying step but keep LSH’s property, unlike the classical

LSH solving NNS problem generally requires using a same hash function in the two

steps.

There are two assumptions for L2-ALSH on dataset and query set:

• All of the data points are located in a unit sphere, which means ‖o‖ ≤ U < 1

satisfied for all points in D, where U is a constant value less than 1.

• The norms of all query points in Q are 1.

The assumptions are very strict so that In most real-world dataset, they can’t

always hold, then we have to rescale the dataset D or query set Q. ALSH transforms

dataset and query set from Rd to Rd+m:

D(o) = [o, ‖o‖2, ‖o‖4, ..., ‖o‖2m ]

Q(q) = [q, 1/2, 1/2, ..., 1/2]

After transformation, LSH and its variants could be applied for c-NN search. In

L2-ALSH, the most classical LSH was used [22]. There are L hash tables used in

LSH, and each hash table contains k LSH functions. For every hash function, all

of the data points are divided into different hash buckets according to their hash

values. In query processing step, if a point o is in all of the k hash buckets with
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q in a hash table, the o can be a candidate of MIPS. The algorithms will look for

enough candidates in the L tables and then return top-k of those candidates.

4.3.5 Sign-ALSH

Bothe of H2-ALSH and L2-ALSH are converting MIPS problem into Nearest

Neighbour search problem, but Sign-ALSH is different. Sign-ALSH is the improve-

ment version of L2-ALSH, but it uses signed random projection to convert approx-

imate MIPS problem into correlation similarity problem. The two assumptions for

L2-ALSH are still required in Sign-ALSH. This algorithms also adopts asymmetric

transformation on dataset Rd → Rd+mand query set Rd → Rd+m which is defined

as follows:

D(o) = [o1, o2, ..., od, 1/2− ‖o‖2, 1/2− ‖o‖4, ..., 1/2− ‖o‖2m ]

Q(q) = [q1, q2, ..., qd, 0, ..., 0]

4.3.6 Norm-range LSH

Norm-range LSH is an improvement of simple-LSH. It is also based on simple-

LSH space transformation, but divide data points into disjoint sub-datasets thus

reducing the distortion error in the data transformation. There are also two steps in

norm-range LSH: index and query processing. Query processing is similar to other

LSH-based algorithms, here we mainly introduce index building step.

In the index building step, norm-range LSH first partitions dataset D into m

subsets and then builds index for each sub-dataset Sj after normalising each sub-

dataset using U| = maxx∈Sj
‖x‖. Unlike the three algorithms above, norm-range LSH

uses a symmetric transformation to transform MIPS to angular similarity search

problem as follows:

P (x) = [x,
√

1− ‖x‖2]
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P (q)TP (x) = [q, 0]T[x,
√

1− ‖x‖2] = qTx

The querying step, Norm-ranging LSH conducts MIPS using multi-probe on

every sub-dataset then selects the largest candidates among all the sub-datasets as

Approximate MIPS result.

4.4 Approximate MIPS algorithms without theoretical guar-

antee

4.4.1 Graph-based algorithms

Navigable small world graph [49, 13] is network with a diameter which is dra-

matically smaller than its size and is bounded by a polynomial in logN where N is

the graph size (number of vertexes in graph). In a Navigable Small World graph,

in most cases, any two nodes can always be connected by a very short path. It

has been used to solve k-approximate nearest neighbour search problem [59, 60]. A

NSW graph is built by continuously inserting nodes randomly and connecting them

to theirm nearest neighbours in current graph using bidirectionally edge. An advan-

tage of NSW is that the construction procedure can be parallelized without losing

accuracy. However, the performance of NSW is not stable. In some low-dimensional

dataset, it will degrade and lose to tree-based algorithms.

In this section, we introduce three representative NSW-based algorithms: ip-

NSW and ip-NSW+.

ip-NSW

ip-NSW is based on the authors’ previous work HNSW [62] so first we briefly

introduce HNSW.

HNSW improves performance of NSW by separating the links according to their

length scale into multiple layers, and then applies searching in a multi-layer graph.
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The algorithm starts from upper-layer (with longer links) until reaching a local

minimum, and then it goes to a lower layer to continue searching from the current

node. It is achievable to limit every node’s maximum connection in all the layers

to be a constant, therefore the complexity of routing is logarithmic. The key idea

of HNSW is very similar to another well-known data structure called probabilistic

skip list structure [74].

Index construction. The index of HNSW is a multi-layer graph, whose lower layers

contain more points and higher layers have fewer points. The ground layer includes

all the data points in a dataset. HNSW adopts a similar method to insert elements

with NSW. For each data point, first HNSW computes its layer l = �−ln(unif(0..1))·
mL� where mL is a pre-defined constant and unif(0..1) means randomly choosing

a value from a uniform distribution, then the new point is added to all the layers

from level l+1 layer down to level 0. There are two phases of the insertation. First,

from layer l+1 down to layer L, where L is the level of current enter point, and also

is the top level of current graph, the algorithm only search for the closet point to

the new point in each layer by greedily traversing the graph, which will be used as

the next enter point. The second phase is from layer L down to ground layer. The

algorithm requires M nearest neighbours of the new point on each layer, where M

is a value affected by a pre-defined parameter ef , and connects them with the new

point. The major difference between this two phases is that ef is always 1 in the

first phase.

Query processing. Compared with index building, searching is much simpler. The

searching procedure is basically same as inserting a new point into the graph with

l = 0. Unlike LSH-based algorithms, HNSW doesn’t provide theoretical guarantee

to result quality, but it support multiple distance metrics such as Hamming distance,

Euclidean distance, angular distance and so on.
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ip-NSW ip-NSW extends HNSW to support inner product search. It defines a

novel kind graph called s-Delaunay graph for a similarity function s(x, y).

Definition 6: A s-Delaunay graph Gs(V,E) is a graph whose vertices set V is

the dataset X and every edge (i, j) in edges set E connecting two vertices i and j if

the corresponding s-Voronoi cells Ri and Rj are adjacent.

Definition 7: Given a dataset X, the s-Voronoi cell R− i is a set

Ri = x ∈ Rd|s(x, xi) > s(x, xj)∀i �= j

where xi and xj are all elements in set X, and s(x, y) means the distance between

x and y regardless of the distance metric.

Since it is infeasible to use exact s-Delaunay graph to solve MIPS problem in

high-dimensional space, ip-NSW uses approximate s-Delaunay graph and processes

queries using the method proposed in HNSW [58].

ip-NSW+

ip-NSW+ analysed the reason that why ip-NSW has a remarkable performance,

and then further improves ip-NSW by introducing a novel angular proximity graph.

In ip-NSW+, the author found that there is a strong norm bias in ip-NSW which can

avoid calculation on small norm items. However, when the elements with large norm

bias are not MIPS result, ip-NSW will waste a large amount of time to compute

distance of these elements. ip-NSW+ solves this problem by proposing a new rule:

the MIPS neighbor of an angular neighbor is probably a MIPS neighbor, instead of

the old one adopted in ip-NSW: the MIPS neighbor of another MIPS neighbor is

likely to be a MIPS neighbor. The index building and query processing procedure

are given as follows.

Index Construction.ip-NSW+ builds two graphs As and Gs, where As is an angu-

lar NSW graph and Gs is an inner product NSW graph, and the points are inserted
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into both of the two graphs in a random order. For each point o, it is first inserted

into the angular graph and then o is inserted into Gs, and the neighbors of o in the

inner product graph will be found using query processing procedure.

Query processing. Given a point q, first, ip-NSW+ finds top-k′ angular neighbors

of point q and then for each of these neighbors v, the algorithm add every point

connected with v in Gs into a candidate set C. Then, the algorithm adopts the

classical graph walk in NSW with set C to return top-k inner product neighbor of

q.

4.4.2 Tree-based algorithms

Another method to solve Approximate MIPS problem is tree-based space parti-

tion method, which is also popular in nearest neighbour search. In this section we

introduce an algorithm used in commercial recommendation system which is called

Annoy [25] and it has been used in spotify.com.

Index construction. Annoy builds index by conducting multiple hierarchical k-

means trees where k = 2 in this algorithm. Each tree is constructed by recursively

dividing the data points into two parts. The following is detail procedure of data

partition. For each iteration:

• Annoy executes a clustering algorithm on a set of samples from input data set,

and then find two centres (since it is 2-means tree).

• Partition the input data points into two parts and each part is a sub-tree of

the current node. Each centre can define a hyperplane according to distance

and the hyperplane is used to decide which sub-tree a point should belong to.

After recursively construction of each sub-tree, the index construction is completed.

Query processing. The query processing is achieved by traveling each 2-means

tree from root. Every root is pushed to a maximum priority queue with a very
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large value to ensure root can always be first popped out from the queue. At each

iteration, if q belongs to node ni, Annoy calculates a key for ni which equals to the

minimum of ni’s parent’s key value and the distance to the hyperplane. If q doesn’t

fall in node ni, the key value of ni will be the minimum of ni’s parent’s key value,

and the distance to the hyperplane times −1. Annoy always select the node with

larger key value to continue searching.

4.5 Experiments

In this section, we conduct a set of experiments to evaluate all algorithms men-

tioned above.

4.5.1 Experiment settings

Datasets and query sets

We conduct experiments on 6 real-world datasets which have been generally used

on existing works covered a wide range of applications including text, video and im-

age. All fo the datasets are in high-dimensional space where dimensionality is greater

than 100. Below, we introduces the datasets which are used in the experiments.

• Audio contains about 0.05 million 192-dimensional audio feature vectors from

DARPA TIMIT dataset.

• Enron is collected from a set of emails. The vectors have 1369 dimensions.

• Glove is a dataset extracted from Twitter, which contains 1.2 million points

in 100-dimensional space.

• Sift has 1 million SIFT vectors in 128-dimensional space.

• MillionSong is another audio feature vector set which consists of about one

million music tracks in 420 dimensions.
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• Tiny5M is a sample of Tiny80M dataset which contains visual descriptors of

the tiny images. The dimensionality of Tiny is 384.

For each dataset, we randomly choose 100 points from it as the query point and

average their performance in the final report. The value of k is varied from 1 to 100

with default value 40.

Benchmarks

We choose 9 representative MIPS algorithms from two categories. All the source

code are got from the author’s website. The algorithms are all implemented in

C++. To fairly compare them, we made some necessary changes such as multi-

thread technique on the code to get a fair result.

MIPS method with theoretical guarantee. This type contains all LSH-based

algorithms including H2-ALSH, L2-ALSH, Norm-range LSH and sign-ALSH. The

unique point of these algorithms is they all provide a theoretical guarantee to the

result quality, which means, given a approximate ratio c, they guarantee that the

result is a c-maximum inner product of the query point q.

MIPS method without theoretical guarantee. This type contains 2 graph-

based methods, ip-NSW, ip-NEW+ and one tree-based method Annoy. The algo-

rithms in this category generally are faster than algorithms with theoretical guar-

antee, but the performance is affected by data distribution.

In our experiments, all C++ source codes are compiled using G++ 4.7 in Linux

environment with Intel Xeon 8 core CPU at 2.9GHz and 128G memory.

4.5.2 Evaluation Metrics

The result quality is measured by the following metics:

• Running time-k. Since all methods are internal memory algorithms, running
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time can well represents efficiency of an algorithm.

• Recall-k. Recall is used to evaluate the overall quality of results.

• Recall-Running time. It is evident that visiting more points can have a better

recall performance but costing longer time, so compared recall-running time

can well reflect which algorithm has a good performance on both accuracy and

efficiency.

• Recall-speedup. Since exact MIPS result can be got by running brute-force

linear scan algorithm, speedup of an algorithm A is defined as TBF

TA
where TBF

represents time consumption of brute-force algorithm and TA means average

running time of algorithm A. Comparing recall-speedup is a fair method to

evaluate efficiency and accuracy from another aspect: time.

• Fixed Recall-Speedup. Given a specific recall value, we compare the speedup

of each algorithm over various datasets.

• Index size. All of the algorithms required to construct indexes before query

processing, therefore index size should also be considered.

• Index time.

All reported results are averaged over all 100 query points in the query sets by

running multiple times.

4.5.3 Parameter settings.

We adopted default settings of each algorithm:

• Annoy. The number of trees m to build index is set to 100.

• ip-NSW and ip-NSW+. M is set to 32 and ef is set to 100.
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• H2-ALSH. The approximation ratio c is set to 0.5.

• L2-ALSH, Sign-ALSH. U is set to 0.83

• Norm-ranging LSH. Hash code length is set to 16.

4.5.4 Comparison within each category

In this section, we compare algorithm using evaluation metrics given in sec-

tion 4.5.2 within each category only. The purpose of this round of evaluation is

to select the algorithm in this group with best performance as representative to be

compared in the second round.

MIPS algorithm with theoretical guarantee

Table 4.1 and table 4.2 describe the index size and index time of each algorithm.

Norm-ranging LSH and H2-ALSH have a smalleer index size and index building

time compared with L2-ALSH and Sign-ALSH. The reason is that H2-ALSH only

conduct index for sub-dataset whose size is greater than a given threshold so that

the index size can be reduced dramatically. All of the algorithms are implemented

in memory so the index time is basically increased when index size is growing up.

So H2-ALSH is also the method with shortest index building time. And the index

size of Norm-ranging LSH depends on the hash code length which is set to 16 for

all datasets.

Figure 4.1 shows recall-k of these LSH-based algorithms where k is varied from

20 to 100. From the figure, Norm-range LSH and H2-ALSH behave much better

than the others. The majority reason is that the data space transformation of

H2-ALSH doesn’t cause distortion error, and in query-processing step, if the sub-

dataset only contains a few points, H2-ALSH directly adopts linear search on the

set, which leads to a higher accuracy result. Norm-ranging LSH also doesn’t cause
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Table 4.1 : Index size

dataset

(d) )

Sift

(128)

Enron

(1396)

Song

(420)

Audio(192)Glove(100) Tiny(384)

H2-ALSH

(MB)

11.39 0.6 10.96 0.61 12.47 57

L2-ALSH

(MB)

316 24 313 13 352 1773

Sign-ALSH

(MB)

1953 185 1933 106 2148 1324

Norm-range

LSH (MB)

3.82 0.38 3.82 0.19 4.58 19.1

too much distortion error when transforming data since it divides the whole dataset

into sub-dataset as well.

Figure 4.2 gives information of running time-k. Considering efficiency only, it

is difficult to choose the best method. L2-ALSH is the worst algorithm on almost

all the datasets, except Audio. H2-ALSH usually has short running time when k is

small, but the running time increases dramatically when k rises. Norm-range LSH

has a quite stable running time consumption over all the six datasets but it is not the

best one on most datasets. Sign-LSH also doesn’t cost more time when k grows, but

it is the worst algorithm on Audio dataset. Overall, to evaluate efficiency, running

time vs. k is not convinced enough.

From the above two figures, it is difficult to simply choose the most efficient

algorithm, and H2-ALSH and norm-ranging LSH achieve high accuracy, so we choose

norm-ranging LSH and H2-ALSH to compare their recall-running time, and the

results are shown in figure 4.3. In norm-range LSH, we change the probed item
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Table 4.2 : Index time

dataset

(d) )

Sift

(128)

Enron

(1396)

Song

(420)

Audio(192)Glove(100) Tiny(384)

H2-ALSH

(s)

15.73 5.62 31.74 0.9272 12.85 168

L2-ALSH

(s)

28.68 12.29 62.58 1.34 27.62 366

Sign-ALSH

(s)

68.26 75 231.49 5.66 56.72 1046

Norm-range

LSH (s)

3.47 2.5 8.23 0.25 2.56 45.2

number to get different recall and running time, and in H2-ALSH, we change the

candidate set size upper bound βn in QALSH to get the results. k is set to 20 in this

experiment. From the figure, except for Audio dataset, norm-ranging LSH always

reach a higher recall with less time compared with H2ALSH. So norm-range LSH

is selected as the best algorithm within this category to be compared in the next

round.

MIPS algorithm without theoretical guarantee

This category contains ip-NSW, ip-NSW+ and Annoy. Table 4.4 and 4.3 com-

pares the index size and index construction time of these algorithms. Index con-

struction time of ip-NSW and ip-NSW+ is affected by dataset. ip-NSW+ requires

one more graph in its index but each single graph is smaller than ip-NSW. On sift

and glove datasets, ip-NSW+ costs more time to build index but on the others,

ip-NSW is faster. Comparing index size,
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Figure 4.1 : recall varying k

Figure 4.4 shows running time vs. k of these three algorithms. Since running

time is actually affected by visited item number but not k, we set the expected visited

item number as k+100 and show the tendency. It is quite clear that ip-NSW+ costs

least time among these three methods and Annoy is the slowest one. Annoy cost

even more than 10 times of running time compared with ip-NSW and ip-NSW+.

Since Annoy is tree-based algorithm and it partitioned data into sub-spaces, when

dimensionality is a large value, time consumption of Annoy will increase fast. ip-

NSW+ is specifically designed for Approximate MIPS problem based on NSW graph

so that it has the best performance. Only on Audio dataset, ip-NSW has a similar

performance with ip-NSW+ since audio is a small dataset with lower dimensionality.
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Figure 4.2 : running time varying k

The running time difference between ip-NSW and ip-NSW+ becomes larger then

dataset size is increasing or dimensionality is a large value.

Figure 4.5 is the result of recall vs. k experiment. ip-NSW+ also beat Annoy

and ip-NSW on this evaluation metric. It is obvious that Annoy is not a good choice

for MIPS problem. On some easy dataset such as Audio, recall of Annoy is always

below 10% while ip-nsw and ip-nsw+ can both hit at leat 90%. On million-scale

datasets, Annoy can be even worse. It totally cannot compete with the other two

methods. Over the six datasets, ip-NSW has a comparable recall with ip-NSW+

when k = 20, but it drops down dramatically when k becomes larger. It shows that
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Figure 4.3 : running time vs. recall

ip-NSW requires to check more points than ip-NSW+ to reach similar recall.

Since time vs. k cannot well present which algorithm can perform a higher recall

in a shorter time, we conduct experiments of recall vs. running time for ip-nsw and

ip-nsw+. It has been proved above that Annoy is not competitive with these two

algorithms, we don’t consider it in this part. Figure 4.6 shows the result. k = 20 in

this experiment.

From the figure, we notice that to return a higher quality result, ip-nsw+ doesn’t

have to visit more elements because its running time doesn’t increase very sharply,

while ip-nsw has to sacrifice more time consumption to achieve a more accurate

result. On million song dataset and tiny dataset, ip-nsw even can’t reach ip-nsw+’s

recall when it takes more than 5 times of running time. So ip-NSW+ could return

a higher quality Approximate MIPS result using less time.

Among the three algorithms, ip-NSW+ is the best one considering running time
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Table 4.3 : Index time

dataset

(d) )

Sift

(128)

Enron

(1396)

Song

(420)

Audio(192)Glove(100) Tiny(384)

ip-NSW+

(s)

444 67.69 342 18.22 766 3126

ip-NSW

(s)

25.6 660.492 1502.67 59.29 207 10692

Annoy

(s)

1953 185 36688 257.44 2148 561231

and recall. So it is chosen as the representative to be evaluated in the next round.

4.5.5 Second round comparing

In this section, we compare the two best algorithms from the two categories

above: Norm-range LSH and ip-NSW+. Norm-range LSH represents Approximate

MIPS algorithms based on LSH-scheme and ip-NSW+ is the best one based on NSW

graph. In this section, we evaluate the two algorithms more comprehensively.

Recall vs. Running Time Generally, checking more points means higher time

consumption and better quality of result. This experiment is conducted to show

which method can achieve higher recall with less time. We set k = 40 and let the

ip-NSW+ and norm-range LSH visit different size of points to compare their running

time and recall, all the other settings are using the default setting provided in their

papers. Fig 4.7 shows that norm-ranging LSH requires longer time to attain same

recall as ip-nsw+. The recall-running time curse shows that norm-ranging LSH’s

recall increases sharply from 10% to about 70%, but to reach more than 90% recall,

the running time is exponentially growing.
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Table 4.4 : Index size

dataset

(d) )

Sift

(128)

Enron

(1396)

Song

(420)

Audio(192)Glove(100) Tiny(384)

ip-NSW+

(MB)

873.4 555.3 2048 61.3 837.6 10002

ip-NSW

(MB)

788.3 547.2 1945.6 59.29 743.9 9318

Annoy

(MB)

14950 2764 23859 301.9 3122 26502

Recall vs. Speedup

Speedup can well represent an algorithm’s efficiency. From figure 4.8, speedup

of norm-ranging is able to reach more than 100 on sift, glove and enron, but as a

trade-off, the corresponding recall is very poor, which is even less than 10%. ip-

NSW+ stably achieves a recall higher than 90% on sift, million song, enron, and

higher than 60% on glove, while its speedup is also competitive. Overall, ip-nsw+

has a dramatically higher recall than norm-ranging LSH when speedup is same.

Speedup vs. fixed recall value

Given a recall which is greater than 95%, k = 40, figure 4.9 compares the speedup

of norm-ranging LSH and ip-nsw+ over 4 datasets. norm-ranging LSH apperantly

has a lower speedup compared with ip-NSW+. Except for enron, speedup of ip-

NSW+ is almost more than ten times higher than speedup of norm-ranging LSH.
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Figure 4.4 : running time varying k

4.5.6 Conclusion

According to the experiments, LSH-based methods can provide a guarantee of its

result quality but the trade-off is longer processing time, and graph-based algorithms

generally require a larger index size and longer index construction time, but after

building index, the query processing step.is much faster and the candidate accuracy

is pretty good although theoretically the result is possible to be much smaller than

real MIPS. Annoy, a tree-based nearest neighbour search algorithm which support

multiple distance metrics, doesn’t have a good performance in the experiments.

Recall of Annoy is substantially lower than all the other algorithms chosen in this
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Figure 4.5 : recall varying k

thesis but Annoy is a popular solution for approximate nearest neighbour problem,

which shows that it is not a suitable algorithm for Approximate MIPS problem.

ip-NSW+ is the best algorithm considering query processing step, while its index

size is larger than other algorithms except for Annoy.

Below are some suggestions according to our experimental observations.

• If resources including both CPU and memory are enough for off-line index

construction, ip-NSW+ is the best choice for Approximate MIPS problem.

After building two graphs, ip-NSW+ can quickly process Approximate MIPS

query and its recall is nearly to 100% on most datasets. It also supports multi-
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Figure 4.6 : recall vs. time

thread in index construction step, so the indexing procedure can be even faster

if CPU resource is sufficient.

• If a guarantee of accuracy is required, norm-ranging LSH and H2-ALSH are

both considerable. These two algorithm both offer a kind of theoretical guar-

antee for their result quality. Norm-ranging LSH costs a longer index con-

struction time, but it processes queries faster and can reach higher recall with

shorter time, while H2-ALSH provides a more strict theoretical guarantee.

It guarantees that the result is always no less than cr∗ where r∗ is the real

maximum inner product to the query with a constant possibility.

• Annoy shouldn’t be considered as a Approximate MIPS algorithm. It takes the

longest index building time, and longest query processing time, but achieves

the worst recall over all the datasets.
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Figure 4.7 : recall vs. time

4.6 Summary

MIPS is a fundamental and important query processing problem and has been

widely used. It is not practical to ask for exact maximum inner product in real

scenarios, and the common solution is to try to retrieve k Approximate MIPS by

visiting a limited number of points. In this thesis, we selected several state-of-the-

art Approximate MIPS algorithms to evaluate their performance comprehensively

and also gave recommendations for users.



85

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100  1000  10000

R
e
c
a
ll

norm-range LSH

ip-NSW+

(a) Sift

 40

 50

 60

 70

 80

 90

 100

 1  10

R
e
c
a
ll

norm-range LSH

ip-NSW+

(b) MillionSong

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

R
e
c
a
ll

norm-range LSH

ip-NSW+

(c) Glove

 70

 75

 80

 85

 90

 95

 100

 10  100

R
e
c
a
ll

norm-range LSH

ip-NSW+

(d) Enron

Figure 4.8 : recall vs. speedup

 1

 10

 100

 1000

enron glove song sift

Sp
ee

du
p

norm-range LSH ip-NSW+

Figure 4.9 : Recall ≥ 95%



86

Chapter 5

Approximate Furthest Neighbour Search

5.1 Overview

In this chapter, we introduce an I/O efficient algorithm RI-LSH to solve c-AFN

problem in high-dimensional space. This work has been accepted by DASFAA 2020.

The rest of this chapter is organized as follows. First we give preliminaries in sec-

tion 5.3, then introduce our approach in section 5.4. Detailed analysis and experi-

mental results are shown in section 5.5 and section 5.6, respectively.

5.2 Motivation

Locality Sensitive Hashing is also a possible solution for c-AFN problem. As we

mentioned above, LSH can map high-dimensional data into a low-dimensional space

and likely keep the distance relationship among data points. Using such property,

we can also design an algorithm for c-AFN search by modifying LSH to make it

suitable for c-AFN problem. The projection distance on a LSH function is the most

important information to reflect the distance between two points in the original

space. In most LSH schemes, there is a “bucket” with a certain width. If two points

o1 and o2 fall in the same bucket, we say o1 and o2 collide over this function. In

the NN problem, the number of collisions of a point o and query point reflects the

possibility of o to be a NN points. As an opposite problem of Nearest Neighbor, it is

easy to get a conclusion: if o1 and o2 don’t collide in a LSH function, the Euclidean

distance between o1 and o2 is likely to be a large value in the original space.
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Table 5.1 : Summary of Notations

Notation Definition

n the number of point objects in the dataset

d the dimensionality of the dataset

m the number of hash functions (projected dimensions)

q the query object

‖ o1, o2 ‖ the Euclidean distance between o1 and o2

o∗, R∗ the FN object of q, with distance R∗

omax, Rmax c-AFN object returned, with distance Rmax

c and δ approximate ratio and success probability

w the initial bucket width in LSH functions

R and r R = 2r
w , radius of ball B(q,R) in Rd space regarding search

radius r

5.3 Preliminary

In this section, we present the formal definition of the problem. The important

notations used throughout the thesis are summarized in Table 5.1.

5.3.1 Problem Definition

Given a d-dimensional dataset D with n points, donated by Rd, where d is a large

number (e.g., d ≥ 100), each point o in the dataset has d coordinate values. The

coordinate value of o on the ith dimension is denoted as o[i]. For a query point q,

the Euclidean distance between o and q is denoted by ‖ o, q ‖=
√∑d

i=1(o[i]− q[i])2.

The c-approximate furthest neighbor is defined as follows:

Definition 8: c-approximate furthest neighbor (c-AFN). Given a query ob-

ject q and a d-dimensional dataset D and a furthest neighbor o∗ of q whose distance
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to q is R∗, a c-approximate furthest neighbor of q is a point o ∈ D which satisfied

‖ o, q ‖≥ R∗
c
, where c is the approximation ratio (c > 1).

Note that the theoretical guarantee is independent to the distributions of the dataset

D and the query q. Thus, our proposed algorithm can guarantee the success prob-

ability upon arbitrary data points and query points distributions.

Problem Statement. In this thesis, we focus on proposing an efficient algorithm

to solve the c-AFN problem in a high-dimensional Euclidean space with theoretical

guarantee, which means given the approximation ratio c, a query point q and the

probabilistic threshold δ, the algorithm will return a c-AFN of q with probability at

least δ.

5.3.2 LSH family for furthest neighbor

Our algorithm is designed on the LSH scheme, since LSH scheme has already be

introduced in chapter 3, in this section, we only describe the modification of LSH

for c-AFN problem.

To solve the c-AFN problem, the inequaltion of LSH should be modified:⎧⎪⎪⎨
⎪⎪⎩
PrH∈H[H(x) separates with H(y)] ≥ p1 , if f(x, y) ≥ r1

PrH∈H[H(x) separates with H(y)] ≤ p2 , if f(x, y) ≤ r2

. The definition of ”sep-

arate” is given in definition 9.

Definition 9: Separate Given a constant value w and a query point o, if the

projection distance of o and q is larger than w
2
(‖ H(o), H(q) ‖≥ w

2
), then we say o

and q are separated on H(·).

In Figure 5.1, q is the query points and there are two bucket widths R1 and R2.

For bucket R1, all the objects are separated with q, while for bucket R2, all the

points are collided with q.
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Figure 5.1 : Example for separation

5.3.3 (c, 1, p1, p2)-sensitive Reverse LSH

Similar as RQALSH, a reverse LSH function can be formally represented by

H�a(o) = �a ·�o where o is the d-dimensional object and a is a d-dimensional vector for

the random projection, whose elements are following the p-stable distribution. To

solve the Euclidean space problem, p is set to 2, e.g., the normal distribution.

Let s =‖ o, q ‖, r1 = c and r2 = 1. We can compute p1 and p2. According

to the property of p-stable distribution, (�a · �o − �a · �q) has the same distribution

with sX where X is a random variable chosen from the normal distribution N (0, 1).

Let φ(x) = 1√
2π
e−

x2

2 , the Probability Density Function (PDF) of N (0, 1), then the

possibility that o and q are separated is:

p(s) = 2

∫ − w
2s

−∞
φ(x)dx = 1−

∫ w
2s

− w
2s

φ(x)dx

When r1 = c and r2 = 1, we have p1 = p(c) and p2 = p(1). Because p(s) =

2norm(− w
2s
) where norm(x) is the CDF of N (0, 1) and is a monotonic increasing

function of x, and the value of − w
2s

increases when s increases. Thus, p(s) increases

monotonically as s increases. So the reverse LSH function is (c, 1, p1, p2)-sensitive.
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5.4 Approach

In this section, we present our RI-LSH algorithm in detail. First, in Sec-

tion 5.4.1, we briefly introduce our motivation and then introduce our algorithm

in Section 5.4.2. Section 5.4.3 shows that our algorithm can also be easily extended

to solve top-k c-approximate furthest neighbor problem (c-k-AFN).

5.4.1 Motivation

From section 5.3 we can get that for two points o1, o2 and a reverse LSH function

hi, the projection distance ‖ hi(o1), hi(o2) ‖ reflects the Euclidean distance between

o1 and o2. If o has a far projection distance on most hash functions, o is likely to be

a c-AFN of q. Most LSH based algorithms used a “bucket” to determine the original

distance relationship between two points. To expand the radius, the algorithm using

buckets has to involve all the points falling into the bucket at one time. While in

our method, the key idea is to continuously reduce the radius R and only one point

on a single hash function is involved in each iteration.

For example, in Figure 5.2, there are two hash functions h1 and h2, and q is

located at the origin, i.g. the hash value of q on h1 and h2 are both 0. The point

who has the longest projection distance to q on h1 is o4, and ‖ h1(o4), h1(q) ‖= 3.

So point o4 will be accessed first, and then the algorithm will visit the next furthest

point. o4 on h2 is the next point to visit, because ‖ h2(o4), h2(q) ‖= 3 and all the

other points have a smaller projection distance. The searching area is a square with

a decreasing size when there are two hash functions. The points will be accessed

one by one according to their projection distances on the functions.

To boost the success possibility, we need a set of reverse LSH functions. Suppose

there are m hash functions, and a point o separated with q on all of the functions,

o is a c-AFN of q with a high probability. But if we set the separation threshold as



91

m, it is too strict to have enough candidates. In our scheme, we use a parameter α

(p2 < α < p1). When a point o is separated with q for at least αm times, it could be

far from o with a high enough probability. Following the traditional LSH scheme, o

will be added to the candidate set S. Only the candidates in S will be calculated

its real distance to q. We keep set S as a limited size to guarantee that the I/O

performance is much better than linear search.

5.4.2 Approach

In this subsection, we describe our algorithm in details and give the pseudo-

code. The setting of parameters will be given in Section 5.5. There are two steps

of RI-LSH: indexing and querying. In the indexing step, we project the whole d-

dimensional dataset into a m-dimensional space, and store the hash values in B+

trees. In this step, the query point is still unknown. In the querying step, the query

point comes. The algorithm searches in the projection space to find the c-AFN

result.

Indexing. We adopt the similar method in chapter 3 to build index for RI-LSH

algorithm. The difference is, we store mini and maxi for the minimum hash value

and maximum hash value for each hash function.

Query processing. When the query point q comes, we first project q to m hash

functions and insert the hash values of q into B+ trees, then the points in the dataset

and their hash values will be accessed according to their projection distance to q

on the m projected dimensions. Since we are looking for c-AFN of q, the algorithm

starts from the furthest point over the m projection dimensions and decreases the

projection distance continuously. For example, in Figure 5.2,m = 2, and the furthest

projection distance to q is ‖ h1(o1), h1(q) ‖. So o1 will be accessed first, and then the

second furthest projection distance to q is ‖ h2(o2), h2(q) ‖. o2 is the second object

to be visited. A point will be considered as a candidate if it has been accessed
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Figure 5.2 : Motivation for RI-LSH

at αm times, where α is a parameter related to c and the initial bucket width.

The termination conditions of RI-LSH are similar with I-LSH: (1) if there are βn

candidates in the candidate set S, RI-LSH will terminate and return the furthest

point in S as the c-AFN fo q, or (2) if there is a point o satisfied that ‖ o, q ‖≥ R/c

(in I-LSH, the condition is ‖ o, q ‖≤ cR) then return o as the result, where R is

corresponding l2 distance of the current searching radius r.

Algorithm 3 shows the details of the query processing step. The input consists

of m B+ trees indices, the query point q and an initial bucket width w. Let ncan

denotes the number of candidates found in the searching procedure. Firstly the query

point q will be projected to the m hash functions (line 3) and then the searching

start at the furthest point to q over all of the m B+ trees (line 4 to line 3). At

each iteration, the next object with largest projected distance to q will be accessed

(line 3). We use o and i to denote the object and the projection dimension separately.

r =‖ hi(o), hi(q) ‖ is the projection distance between o and q on i. Using r, the

corresponding radius R can be calculated (line 3). cn(o) demonstrates the visited

times of o. If cn(o) == αm then o will be added to the candidate set S. The real
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Algorithm 3: Reverse incremental LSH search(B, q)
Input : B: m B+ tree indices for object IDs and hash values;

q: the query object;

w: the initial bucket width;

Output : o: the c-AFN object

ncan := 0;1

Apply m hash functions on q;2

while ncan < βn do3

o ← next object with largest projected distance;4

i ← the projection dimension o comes from;5

r ← ‖ hi(o), hi(q) ‖;6

R ← 2r
w ;7

cn(o) := cn(o) + 1;8

if cn(o) == αm then9

compute ‖ o, q ‖ and update omax and Rmax;10

ncan := ncan + 1;11

if Rmax ≥ R/c then12

break;13

return omax14

distance between o and q will be computed (line 3). If ‖ o, q ‖> Rmax then update

o as the current c-AFN result omax and set Rmax =‖ o, q ‖ (line 3). The candidate

set size ncan will be added to 1 (line 3). If the current largest distance Rmax satisfies

the termination condition 2 ( 3), the algorithm will terminate (line 3) otherwise it

continues until the first termination condition is satisfied (line 4). Finally, the point

omax will be returned as the c-AFN.

Correctness. Given a query point q, an approximation ratio c and a success pos-
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sibility δ, when we choose proper parameters m, α and β, RI − LSH can return a

c−AFN with a probability at least δ. The details of the parameters will be described

in Section 5.5.

I/O costs. The majority of I/O cost comes from reading data from the B+ trees for

reverse incremental search and the computation of real distance between candidates

and the query point. We use the number of leaf-node visited to evaluate the I/O cost

because all the hash values and data IDs are in the leaf-nodes. To compute the real

distance between two points, one random I/O will be invoked to read the original

d-dimensional data from the disk. For the reverse incremental search, each time we

load l leaves together and cost 1 random I/O and l sequence I/O. Thus the total

I/O cost is O( s
ne

· Iseq + s
nel

· Iran+ncan · Iran), where s is the total iteration times, ne

is the number of entries per page, ncan is the number of candidate objects accessed

and lseq, lran denote the unit cost of sequence I/O and random I/O respectively.

5.4.3 c-k-AFN

Algorithm 3 can be easily extended to solve the c-k-AFN search problem by

the following changes: (1) instead of at most βn candidates in the set, we require

βn+k−1 candidates as the termination condition; (2) instead of omax, we maintain k

furthest candidate points ok, and their distances to q will be used for the termination

condition test, and (3) there will be k points returned by the algorithm as the result.

5.5 Analysis

In this section, we provide the theoretical guarantee of RI-LSH: given a query

point q, approximation ratio c (c > 1) and success possibility δ (0 ≤ δ ≤ 1), our

algorithm can return a c-AFN of q with probability at least δ.

Correctness of (R, c)-FN Given a radius R, a reverse LSH family can return a

point o satisfies that ‖ o, q ‖≥ R/c. First, we prove the correctness when the radius
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R is given. Suppose R = c, and q is the query point, the reverse LSH family is

(c, 1, p1, p2)-sensitive. There are two termination conditions.

E1: There is a point o which satisfies ‖ o, q ‖≥ R/c.

E2: There are βn candidates have been found in the searching procedure.

We use P1 = Pr[E1] and P2 = Pr[E2] to denote the possibility that our algorithm

is terminated by E1 or E2 and returns a correct result, separately.

Proof 4: A point o will be considered as a candidate if #collision(o) ≥ αm. For

∀o /∈ B(q, R),

Pr[#collision(o) ≥ αm] =
m∑

i=αm

C i
mp

i(1− p)m−i

, where p = Pr[o separates with q]. According to C2LSH [28], Pr[#collision(o) ≥
αm] ≥ 1− exp(−2(p1 −α)2m). This is the value of P1. To compute P2, we consider

for any data object o ∈ B(q, R/c),

Pr[#collision(o) ≥ αm] =
m∑

i=αm

C i
mp

i(1− p)m−i

, where p = Pr[o separates with q] ≤ p2 < α, j = 1, 2, ...,m. Similarly, based on

Hoeffding’s Inequality, the upper bound of Pr[#collision(o) ≥ αm] is exp(−2(α −
p2)

2m). And based on Markov’s Inequality, we have

P2 > 1− 1

β
· exp(−2(α− p2)

2m)

. When m = 	max( 1
2(p1−α)

ln1
δ
, 1
2(α−p2)2

ln 2
β
)
, we have P1 ≥ 1 − δ and P2 > 1

2
. So

the total success possibility is P1 + P2 − 1 > 1
2
− δ.

Reverse Incremental Search The correctness of RI-LSH is depending on the

(r1, r2, p1, p2)-sensitive property of the reverse LSH function. We have proved in

chapter 3 section 3.5 to indicate that a (1, c, p1, p2)-sensitive hash function with

bucket width w is (k, ck, p1, p2)-sensitive if the bucket width is set to kw. So each

bucket width kw has a corresponding B(q, R) in Rd centered at q with radius R = k,
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which means for any point o /∈ B(q, R), o separates with q (i.e., ‖ h(o), h(q) ‖> kw
2
)

with possibility at least p1, and for any point o ∈ B(q, R/c), o separates with q with

possibility at most p2.

Since k can be any real value greater than 0, kw and ck can be any non-negative

real value as well. Let r be the current searching radius, we can always find a k

satisfied ck = r. So the hash function is always (cr, r, p1, p2)-sensitive.

Correctness of algorithm. We have proved the correctness of (R, c)-AN situation,

and proved the correctness won’t be broken when w changes with the bucket width

R. So RI-LSH can return a c-AFN with at least 1
2
− δ possibility.

Approximation Ratio. The existing c-AFN algorithm with theoretical guarantee

RQALSH achieves a c2 approximation ratio. Since the number of B-trees required

to keep the theoretical guarantee m is related to the approximation ratio c, a c2-

approximate furthest neighbor algorithm will require a larger size of index and a

larger I/O cost compared with c-approximate algorithm under the same condition.

Our algorithm reduce the approximation ratio to c and can use a much smaller size

of index to keep the theoretical guarantee.

Let P1 denote the condition that if there is a point o falling out of B(q, R),

‖ h(o), h(q) ‖≥ r. Let P2 denote the condition that the total false positive number

is less than βn, which means when the algorithm finds βn candidates, at least one

candidate is a c-AFN of q.

Lemma 6: When both of P1 and P2 hold, given a query point q, suppose the

furthest neighbor of q is o∗ and ‖ o∗, q ‖= R∗, rilsh will stop at a radius R which

satisfies R ≥ R∗.

Proof 5: Since P1 is satisfied, the furthest neighbor of q must have a projection

distance larger than r∗, where r is the corresponding projection radius of B(q, R∗),

which means ‖ h(o∗), h(q) ‖≥ r. So when all the points falling out of B(q, R∗) have
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been checked, there are two possible conditions: (1) There are more than βn points

visited, then the algorithm will be terminated by C1 since P2 holds. Then we have

R ≥ R∗; (2) Before RI-LSH visits βn candidates, it finds o∗ and then return it as

the result since o∗ falls out of r according to P1. We still have R ≥ R∗.

According to lemma 6, we have that under a constant possibility 1/2 − δ, the

algorithm can always return a c-approximate furthest neighbor of q. So the approx-

imation ratio is c.

5.6 Experiments

In this section, we present results of comprehensive experiments to evaluate the

I/O efficiency and accuracy of the proposed technique in the thesis compared with

the existing c-AFN algorithms. We choose the state-of-the-art algorithm RQALSH

and use the same setting to conduct experiments.

5.6.1 Experiment Setup

In this section, we introduce the experiment settings of our performance evalua-

tion including the chosen benchmark methods, the datasets, the evaluation metrics

we use to compare the algorithm fairly and the initial parameter setting.

Benchmark methods. RQALSH is the state-of-the-art c-AFN algorithm with

theoretical guarantee.

• RQALSH was proposed by Qiang Huang [36] in 2017. The source code is from

the author’s website https://github.com/HuangQiang/RQALSH .

• RI-LSH is the algorithm proposed in this thesis.

Datasets. We conduct experiments on several million-scale real-world high-dimensional

datasets.
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• Sift contains 1 million 128-dimensional SIFT vectors.

• Tiny contains 5 million GIST feature vectors in a 384-dimensional space.

• MillionSong contains 1 million 420-dimensional data points.

Evaluation Metrics. We evaluate the algorithms using three evaluation metics:

I/O cost, running time and I/O/ratio. We also compare the index size between

RI-LSH and RQALSH under the same theoretical guarantee. Since the algorithms

are built for external memory, we use I/O cost as the primary evaluation metric

to evaluate the algorithms. Each random I/O contributes one I/O cost to the I/O

costs, and each sequential I/O contributes 0.1 I/O cost. Parameter Setting. To

fairly compare the algorithms, we set the theoretical guarantee to be 1/2 − 1/e,

which means the algorithm will return a c-AFN with at least δ possibility. And the

default ratio c is 4. Since RI-LSH is a c-approximate algorithm but RQALSH is

c2-approximate algorithm, we set c to be 4 for our algorithm and 2 for RQALSH.

All the other settings follow the default setting in RQALSH. The success possibility

is δ = 1/2− 1/e and the required hash function number m is calculated using c, β

and δ. In our algorithm, we set β = 0.001 and when c = 4, m is a constant value 16

for all the datasets. The page size B is set to 8192 bytes for all the algorithms and

all the datasets.

All the experiments were executed on a PC with intel(R) Xeon(R) CPU E3-

1231 v3 with 3.04GHz, 8 cores and 32G memory. The program was implemented in

C++ 11. We select 100 query points for each dataset and use the average result to

evaluate the algorithms.

5.6.2 Index Size

Using the default approximation ratio c = 4, the index sizes of our algorithm

and RQALSH are shown in Table 5.2. Since we set m to be a constant value and
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changes β to achieve the theoretical guarantee, our algorithm always requires 16

B+ trees when c = 4. RQALSH sets β to be a constant and changes m to hold the

guarantee, so the index size varies dramatically.

Table 5.2 : Index size

dataset

(d) )

Sift

(128)

Tiny

(384)

Song

(420)

m 77 86 77

RQALSH

(MB)

372 2000 391

m 16 16 16

RI-LSH

(MB)

151 760 155

5.6.3 I/O costs

For a c-AFN algorithm with theoretical guarantee, the best solution to evaluate

its I/O efficiency is to calculate the minimum I/O cost required to hold the theo-

retical guarantee. For the given approximation ratio c = 4 and success possibility

δ = 1/2 − 1/e, we conduct experiments for the two algorithms over the real-world

datasets. The value of k is varying from 1 to 100 and the default value is 30. The

experiment results are given in Figure 5.3. From the figures, we have the following

observations:

• The I/O consumption of RQALSH is larger than RI-LSH over all the four

datasets under the save theoretical guarantee and success possibility. This is

because RQALSH is c2-approximate algorithm while RI-LSH is c-approximate

algorithm. When the approximation ratio is same, RQALSH requires much

larger hash functions to project the dataset, and causes a larger I/O cost.
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• When c = 2, the difference between our algorithm and RQALSH becomes

larger. RQALSH costs more than 1500 I/O per query on the sift dataset.

• The I/O cost of both RQALSH and RI-LSH increase steadily when k grows.

Because to solve the c−k−AFN problem, the algorithm has to visit more

points to find more candidates.
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Figure 5.3 : I/O costs varying k

5.6.4 Running time

Another evaluation metric is to compare the running time of the two algorithms.

Since both methods use external memory, the I/O time is also included in the total

running time. To get a fair and accurate result, we conduct experiments on the same

PC and repeat for several times. The experiment results are shown in Figure 5.4.

From the experiment result, we get the following conclusion:

• The running time is related to I/O cost. Since RQALSH always costs more

I/O than our algorithm, it also has a larger time consumption over all the
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datasets. The running time of RQALSH is at least 2 times of the RI-LSH’s

running time.

• On some easy dataset, like millionSong, the running time of RI-LSH basically

doesn’t increase when k becomes larger, but QALSH’s running cost grows

dramatically. The main reason is on easy dataset, the number of candidates

finally found won’t be much greater than k. Our algorithm requires less B+

trees so that the value of k doesn’t affect running time a lot.
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Figure 5.4 : Running time varying k

5.6.5 I/O and ratio

To evaluate the accuracy of the two algorithms fairly, we conduct experiment

to compare the ratio-I/O of RI-LSH and RQALSH instead of ratio-k. A I/O effi-

cient algorithm means that it can achieve a same ratio using less I/O for the same

theoretical guarantee. We set k = 20 and modify the termination condition: for

a given upper bound of the candidate set size, the algorithm will terminate if the

point number in the candidate set has achieved the upper bound. The experimental

results are given in Figure 5.5. From the results we have the following observations:

• For all the datasets, RI-LSH can get a higher accuracy result when using

the same I/O cost compared with RQALSH. Since the two algorithms use a
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similar scheme, the ratio difference is small. Our algorithm uses a continuous

searching strategy on each B+ tree, so it can find a better solution earlier than

RQALSH.

• Another reason that RI-LSH can get a better I/O-ratio result is our algorithm

requires a smaller number of B+ trees to build index. Then in the searching

step, it is easier to find a candidate. So using similar I/O cost, our algorithm

can visit and verify more points, which leads to a better ratio.
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Figure 5.5 : I/O vs. ratio

5.6.6 Summary

Based on the experimental results, we have the following observations:

• Under the same theoretical guarantee, our algorithm can behave better than

RQALSH considering both I/O cost and running time. This is because we

adopt a continuous searching strategy, which enables us to decrease the ap-

proximation ratio from c2 to c and decreases the hash functions number re-

quired to keep the theoretical guarantee.

• When the approximation ratio is a smaller value, RI-LSH’s time consumption

and I/O consumption grow evidently slower than RQALSH. It can be expected
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that when c tends to be 1, RQALSH will require a huge size of index, and also

an extremely expensive I/O cost and time cost.

5.7 Conclusion

In this thesis, we proposed a novel I/O efficiency c-AFN method based on the

classical LSH scheme. It can return a c-AFN result with a constant possibility

regardless of the data distribution. Compared with existing work such as RQALSH,

our algorithm uses a much smaller index and cost less I/O and running time to hold

the same theoretical guarantee. Besides, RI-LSH discards the ’bucket’ in LSH and

keep the theoretical guarantee as well. To the best of our knowledge, our algorithm

is the first c-AFN method with theoretical guarantee to achieve a c approximation

ratio.
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Chapter 6

Skyline Nearest Neighbour Search on multi-layer

graph

6.1 Overview

In this chapter, we define a new problem on multi-layer graph called Skyline

Nearest Neighbour Search and propose two algorithms to solve it. This work has

been published on ICDE2019 workshop. Section 6.2 defines the problem, and in-

troduces our approaches in section 6.3. The optimization is given in section 6.4.

Section 6.5 shows evaluation results of baseline and optimizations.

6.2 Preliminaries

In this section, we present the problem definition and relevant existing works.

Some important notations used throughout the thesis are summarized in Table 6.1.

6.2.1 Problem definition

A multi-layer graph is a set of graphs {G1, G2, ..., Gl}, where l is the number of

layers, and Gi is the graph on layer i. All the l graphs contain the same vertex set

V . A l-layer graph can be represented by G = (V,E1, E2, ..., El), where V is the

universal vertex set, and Ei is the edge set of graph Gi. For each vertex v ∈ V , the

neighbors of v in graphGi, denoted asN(v, i), is defined asN(v, i) = {u|(v, u) ∈ Ei}.
Each edge e = (u, v, i) ∈ Ei is associated with a positive weight φ(u, v, i).

Definition 10: Path A path on layer j is a sequence of vertices p = (v1, v2, ..., vk)
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Table 6.1 : Summary of Notations

Notation Definition

G(V,E1, ..., El) a l-layer graph G whose vertex set is V and edge set is Ei

of layer i

V the vertex set in the graph

Ei the edge set of layer i in the graph

l the number of layers in the graph

φ(u, v, i) the weight of the edge between vertex u and v on layer i

dis(u, v, i) the shortest distance between u and v on layer i

Num(u, dis, i) for vertex u, the estimated vertex number within the dis-

tance dis on layer i

Max[i] the current largest shortest distance has been found on

layer i

N(v, i) the vertices which are connected to v on layer i



106

where (vi, vi+1) ∈ Ej for every 1 ≤ i < k. The weight of the path p is denoted as

φ(p) =
∑k−1

i=1 φ(vi, vi+1). Given two vertices s, t ∈ V , a shortest path p between s

and t is a path whose weight is the smallest among all the paths starting from s and

ending at t.

Definition 11: Shortest distance The shortest distance between s and t on

graph Gi, denoted as dis(s, t, i), is the weight of any shortest path between s and t

on layer i.

Skyline nearest neighbor. The nearest neighbor of a vertex in a simple graph

has been widely studied. To capture the nearest neighbor information on multi-layer

graphs, we first introduce the dominance relationship between two vertices.

Definition 12: Dominate Given a graph G(V,E1, ..., El) and a query vertex v0,

we say v1 dominates v2, denoted by v1 ≺v0 v2, if ∀dis(v0, v1, i) ≤ dis(v0, v2, i) where

i = 1, 2, ..., l, and ∃i ∈ {1, ..., l} : dis(v0, v1, i) < dis(v0, v2, i).

For example, given a query vertex v0 ∈ G(V,E1, ..., E2) in figure 1.1, dis(v0, v1, 0) =

dis(v0, v1, 1) = 1, and dis(v0, v3, 0) = dis(v0, v3, 1) = 2, so v1 ≺v0 v3.

Given a query vertex v0 in a multi-layer graphG(V,E1, ..., El), the skyline nearest

neighbors set of v0 is a vertex set S in which vertices are not dominated by all other

vertices in V .

The formal definition of our problem is given as follows:

Definition 13: Skyline nearest neighborGiven a multi-layer graphG(V,E1, ..., El)

and a query vertex v0, the problem is to find all the skyline nearest neighbors of v0

from G. More formally, given a multi-layer graph G and a query vertex v0, we aim

to compute a subset S which is defined as

S = {v ∈ V | �v′ ∈ V : v′ ≺v0 v}
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Figure 6.1 : Skyline nearest neighbors of v0 on graph 1.1

Example 1: We give an example of the skyline nearest neighbors of vertex v0 in

figure 6.1. Graph G(V,E1, E2) contains 10 vertices and two layers. v0 is the query

vertex. According to the definition of skyline nearest neighbor, v1 is the only object

in the skyline set of v0 because it dominates all the other vertices.

6.3 Approach

In this section, we will briefly introduce the baseline algorithm and theoretically

analyze the time complexity. The drawbacks of the baseline and optimizations will

be given in section 6.4.

To compute skyline nearest neighbors, the complete coordinates of each vertex,

which are the shortest distances to the query vertex v0 on each layer, are required.

Since shortest distance and skyline are both well-solved problems, a simple idea is

just calculating the shortest distances for all the vertices on every layer of G to v0,

then using these values as coordinates to calculate skyline. The pseudocode is given

in algorithm 4.
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First, line 4 computes the shortest distance between v0 and v on each layer using

Dijkstra’s algorithm. Then based on these distances, we use an efficient skyline

algorithm SFS [18] to calculate the skyline. It requires O(l(|E|+ |V |log|V |)+TSFS)

to calculate the shortest distances between the query vertex and every vertex in V

on all the layers and compute the skyline nearest neighbors, where TSFS denotes the

time complexity of the SFS algorithm.

Algorithm 4: BASE

Input : G(V,E1, ..., El): a graph G which has l layers. The vertex set is V and

the edge set of layer i is Ei. v0: the source vertex

Output : S: a set of skyline nearest neighbors of v0 in G

for i ← 1 to l do1

Compute the shortest distance from v0 to every vertex in V on layer i using2

Dijkstra’s algorithm;

S ←SFS(V );3

return S4

6.4 Optimizations

6.4.1 An Early-Stop Approach

The baseline is able to return a correct answer for the skyline nearest neighbor

query, but it always has to compute shortest distances between every vertex in V

to the query vertex on all the layers. The time consumption is expensive when the

graph is large. To decrease the time cost, intuitively we hope to decrease the number

of vertices needed to be visited. According to the property of Dijkstra’s algorithm,

we observe lemma 7 which can be useful to stop the shortest distance computation

much earlier.
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Lemma 7: In the procedure of Dijkstra’s algorithm, the first vertex v which is

visited on all the layers must be a skyline nearest neighbor.

Proof 6: From the procedure of Dijkstra’s algorithm, it is straightforward that

for two vertices v1, v2, if dis(v0, v1, i) < dis(v0, v2, i), then v1 will be visited earlier

than v2 on layer i. A skyline nearest neighbor is definitely won’t be dominated by

any other vertex, which means, if v is a skyline point, then �u ∈ V satisfies ∀i ∈
{1, ..., l} : dis(v0, u, i) ≤ dis(v0, v, i) and ∃i ∈ {1, ..., l} : dis(v0, u, i) < dis(v0, v, i).

If the first vertex v which is first found on all the layers is not belonging to the

skyline of v0, then there must be a vertex v′ ≺v0 v, means that ∀i ∈ {1, ..., l} :

dis(v0, v
′, i) ≤ dis(v0, v, i) and ∃i ∈ {1, ..., l} : dis(v0, v

′, i) < dis(v0, v, i). If v′

exists, from the property of Dijkstra’s algorithm, it is impossible to visit v on all of

the l layers before v′, so v′ doesn’t exist, and v is belonging to the skyline nearest

neighbor result of v0.

Based on lemma 7, it is easy to get lemma 8.

Lemma 8: Given a graph G(V,E1, ..., El) and a query vertex v0, when a skyline

nearest neighbor v is found, any vertex u which hasn’t been accessed on at least one

layer is impossible to be a skyline nearest neighbor of v0.

Proof 7: For two vertices v and u in V , if v and v are both skyline nearest

neighbors of query vertex v0, then u ⊀v0 v and v ⊀v0 u, which means ∃i ∈ {1, ..., l} :

dis(v0, v, i) < dis(v0, u, i) and ∃j ∈ {1, ..., l} : dis(v0, u, j) < dis(v0, v, j). If u

hasn’t been visited on any layer when v is visited for l times, then ∀i ∈ {1, ..., l} :

dis(v0, v, i) < dis(v0, u, i), so v ≺v0 u, u must not be a skyline nearest neighbor of

v0.

The general idea to solve the problem contains two steps: (1) compute the

shortest distance, and (2) calculate the skyline. For step 1, using lemma 8, we

propose an early-termination condition: during the procedure of computing shortest
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Figure 6.2 : Procedure of optimization

distances from the query vertex to each vertex in graph G, once a vertex v has been

visited on all of the l layers, step 1 can be stopped. Using this pruning strategy can

stop step 1 much earlier in most cases, meanwhile reduce the candidate size of step

2 to compute skyline. Example 2 shows the procedure.

Example 2: In figure 6.2, there are two layers of an undirected graphG(V,E1, E2).

Each edge has the same weight. Suppose the query vertex is v0. In the first iter-

ation, v1 and v6 are visited on layer 1 and layer 2 respectively. Then in the next

iteration, v4 and v5 are visited on layer 1 and layer 2 repectively. Up to now, there

is no vertex which has been visited for 2 times, so the algorithm will continue to

the third iteration. In iteration 3, v5 and v7 are visited on layer 1 and 2. Since v5

currently is visited on both layer 1 and layer 2, the early-termination condition is

satisfied. Compared with the baseline, using early-termination can reduce the total

visited vertices from 20 to 6.

We propose algorithm 5 to improve the performance. To find a vertex satisfied
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the early-termination condition, the algorithm visits one vertex in a layer every time,

and selects each layer in turn. Different from baseline, we need a set C to store the

possible skyline candidates, and SFS will only consider the vertices in set C but not

all the vertices in V . The set C is initialized in line 5. Then for each layer in G,

the algorithm selects the top element of the priority queue P [i] to visit, adds it to

C and updates its neighbors. Once there is a vertex v which has been visited for

l times, the step for shortest distance computing will terminate, and the algorithm

will compute the skyline of the query vertex.

While before the computation of skyline, we haven’t computed the shortest dis-

tances for vertices in C on all of the l layers. T. Akiba proposed an effective algo-

rithm [2] called landmark labelling to answer such queries in social network. Using

landmark labelling, we can get the complete shortest distances on l layers for all the

vertices in C efficiently.

6.4.2 Layer chosen strategy

In algorithm 5, every layer is selected in turn to find a skyline nearest neighbor.

To find a skyline vertex of v0 earlier, another idea is to choose the layer based

on the current known shortest distance to v0 on this layer. In each iteration, the

algorithm still only visit one vertex, but the layer chosen rule (line 5 in algorithm 4)

is changed: we store the current maximum value of visited vertices’ shortest distance

to v0 for each layer, donated as Max[i]. For each iteration, the layer i which satisfies

�Max[j] < Max[i] where i, j ∈ {1, ..., l} will be selected. In figure 6.3, given a query

vertex v0, using this layer chosen rule can stop visit less vertices. In the first iteration,

v5 is visited on layer 1 and v1 is visited on layer 2, now Max[1] = Max[2] = 1.

The algorithm continues on layer 1, and v3 is visited. Because Max[1] = 2 and

Max[2] = 1, the algorithm will keep choosing layer 2 until v3 is accessed. Now

v3 has been accessed on all the layers, so Dijkstra can stop. The early-termination
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Figure 6.3 : a graph suitable for SNNS-ET2

condition could be satisfied when 5 vertices have been visited, and only 4 candidates

will be added to C. If using SNNS-ET, 6 vertices are needed to be visited. The

procedure is as follows:

However, the distance-based strategy is still not suitable for every graph. For

example, in figure 6.2, for the query vertex v0, if the early-termination condition can

be activated at v6, the total visited vertex number won’t exceed 8 even in the worst

case (because the number is affected by the Dijkstra). Using either of the two orders

above is not able to lead to the result. Is there a method to estimate the amount

of vertices required to be visited on each layer so that we can stop the algorithm

earlier?

The purpose is to reduce the unnecessary visited vertex number. If the algorithm

can estimate the vertices number still need to be visited on each layer, and select

the layer which has a smallest estimated vertices number, the early-termination

condition is more likely to be satisfied earlier.

For example, in a 2-layer graph, suppose the algorithm is currently running on
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layer 1 and visiting v on this layer. Let v′ denote the latest vertex visited on layer

2, and U ⊂ V be a vertex set. ∀u ∈ U satisfied dis(v0, u, 2) ≥ dis(v0, v
′, 2) and

dis(v0, u, 2) ≤ dis(v0, v, 2). The size of U is the number of vertices needed to be

visited for v to satisfy the early-termination condition.

To estimate the vertices number, we can precompute an index. Given a graph

G(V,E1, ..., El), for ∀v ∈ V , we first compute the shortest distance between v and

all the other vertices in G on the l layers. D is a set which contains all the distinct

values of the distances. The index can be builded to support such operation: given a

vertex v ∈ V , a distance d and a layer i ∈ {1, ..., l}, Num(v, d, i) returns the number

of vertices u which satisfies dis(v, u, i) ≤ d for vertex i in a l-layer graph G.

However, in the worst case, the size of D can be |V |. To decrease the index size,

if |D| > k, where k is a parameter set by the user, we select k elements from D.

For each vertex vs ∈ V , sorting the distances from vs to all the other vertices in

an increasing order for all the layers respectively. Then store all the dis(vs, vj, i) as

elements in D′, where vj is the j · |V |/kth vertex after sorting on layer i. The space

consumption for the index is O(kln).

Especially, if the value j /∈ D′, we use j′ : j′ < j
∧

�j∗ : j > j∗ > j′ instead. The

index can well support the estimating function with O(logk) time complexity.

We maintain two values for each layer i: Max[i] and Limit[i]. Max[] has the

same meaning as it in SNNS-ET2, and Limit[i] = min{dis(v0, v, i)}, where v

satisfies v ∈ C ∧ vis[v][i] = false. At the beginning, the algorithm chooses a layer

i using the choose layer() function, then for layer i, selects the top element v of the

priority queue P [i] to visit, adds it to C, updates Max[i] to the current distance. If

v is unvisited on another layer j and the dis(v0, v, j) is smaller than Limit[j], then

update Limit[j] to dis(v0, v, j).

In the choose layer() function (algorithm 6), the function estimates the number
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of vertices which satisfies Max[i] ≤ dis(v0, v, i) ≤ Limit[i]. The layer which has the

smallest estimated number will be returned as the result.

6.5 Performance Studies

This section shows our experimental results on a set of real-world graphs. The

parameter k is set as 1000 in our experiments.

6.5.1 Experiment setup

Dataset. There are three real-world graphs. All of the real-world graphs are chosen

from SNAP and KONECT.

• math overflow. This is a network of interactions on the stack exchange web

site Math Overflow. There are three different types of interactions represented

by a directed edge (u, v):

user u answered user v’s question;

user u commented on user v’s question;

user u commented on user v’s answer;

There are about 20000 vertices and 500000 edges in the graph.

• soc. This is who-trusts-whom network of people who trade using Bitcoin on a

platform called Bitcoin OTC. It can be modeled as a weighted network with

timestamp. For an edge created before 2014, it belongs to layer 1, otherwise it

belongs to layer 2. The graph contains about 6000 vertices and 24000 edges.

• College. This dataset is comprised of private messages sent on an online social

network at the University of California, Irvine. Users could search the network

for others and then initiate conversation based on profile information. An edge

(u, v, t) means that user u sent a private message to user v at time t. We model
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Figure 6.4 : running time

it as a 2-layer graph considering the timestamp. There are 1899 vertices and

59835 edges.

We evaluate the algorithm by studying the performance after averaging the 100

random queries. The query vertices are randomly chosen from the graph.

6.5.2 Running time

The experiment results show that BASE is much slower than the other three

approachs, especially on large graphs. The reason is it always needs to access almost

the entire graph, and all the vertices will be included in the candidate set to compute

skyline. The performance on the same graph is effected by the query vertex, but

SNNS-OPT always utilizes the shortest time. On sx, the running time of SNNS-

OPT is only about 10% of the cost of BASE, and about 50% of the running time

of SNNS-ET and SNNS-ET2. SNNS-ET2 is slightly slower than SNNS-ET,

and both of them are faster than BASE.

6.5.3 Effectiveness of the optimizations

To prove the optimizations are effective, we conduct experiments to compare

the total visited vertices number when Dijkstra is stopped. The results represent

that the early-termination condition can reduce the skyline candidate set size signif-

icantly. SNNS-OPT decreases the visited vertices number most significantly com-
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Figure 6.5 : number of visited vertices

pared with SNNS-ET and SNNS-ET2. The visited vertices number of SNNS-

OPT is no more than 70% of the number of SNNS-ET2 and SNNS-ET. The

differences among these algorithms are also effected by the graph. On sx, SNNS-

ET2 visits about 8 times vertices of SNNS-ET.

6.6 Conclusion

To find the nearest neighbors on multi-layer graphs for a given query vertex,

we formulate a problem called skyline nearest neighbor search (SNNS), and pro-

pose a baseline method to answer a query correctly. The optimizations use an

early-termination condition, which can generally stop the algorithm in a shorter

time. The experiments on several real-world graphs demonstrate that the early-

termination condition and the strategy to choose layer can reduce the time con-

sumption significantly.
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Algorithm 5: SNNS-ET

Input : G(V,E1, ..., El): a graph G which has l layers, the vertex set is V and

the edge set of layer i is Ei. v0: the source vertex

Output : S: a set of skyline points of v0 in G

C ← ∅;1

for i ← 1 to |V | do2

sum[vi] ← 0;3

for j ← 1 to l do4

if vi �= v0 then5

dis(v0, vi, j) ← ∞;6

for i ← 1 to l do7

P [i].insert(v0);8

while ∃i ∈ {1, ..., l} : P [i] is not empty do9

if ∃v ∈ V : sum[v] = l then10

break;11

for i ← 1 to l do12

v ← P [i].top();13

Add v to C;14

vis[v][i] ←true ;15

sum[v] ← sum[v] + 1;16

if sum[v] = l then17

break;18

for u ∈ N(v, i) do19

if !vis[u][i] and dis(v0, u, i) > dis(v0, v, i) + (u, v) then20

P [i].insert(u);21

for v in C do22

for i ← 1 to l do23

if !vis[v][i] then24

compute dis(v0, v, i) using landmark labelling;25

S ←SFS(C);26
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Algorithm 6: choose layer

Input : G(V,E1, ..., El): a graph G which has l layers, the vertex set is V and

the edge set of layer i is Ei. v0: the source vertex Max[]: currently the

maximum visited distance on each layer Limit[]: the minimum unvisited

distance on each layer

Output : i: the layer which is chosen in the next iteration

ans ← ∞; layer ← 0;;1

for i ← 1 to l do2

if ans < Num(v0, Limit[i], i)−Num(v0,Max[i], i) then3

ans ← Num(v0, Limit[i], i)−Num(v0,Max[i], i);4

layer ← i;5

return i6
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Chapter 7

Conclusion

In this thesis, we studied the query processing problem in high-dimensional space as

well as graph space considering different distance metrics: Euclidean distance, inner

product and skyline on graphs. In this chapter we summarize the contributions we

have made and talk about our future research.

7.1 Contributions

In this thesis, we made the following contributions:

• For c-ANN problem, we proposed a new c-approximate nearest neighbor search

algorithm and a more aggressive version, namely EI-LSH, seperately, for high-

dimensional data, which uses an incremental search strategy on the projected

dimensions. We also designed a new early termination technique which can be

used by most list-based LSH algorithms to aggressively reduce the number of

objects accessed without breaking the theoretical guarantee. In addition, we

provided a rigorous analysis to demonstrate the correctness and efficiency of

our proposed methods. Furthermore, we performed an extensive performance

evaluation against two state-of-the-art I/O efficient c-ANN algorithms regard-

ing I/O costs and result accuracy. The results demonstrate that our proposed

methods can achieve the best I/O performance under the same theoretical

guarantee.

• for Approximate MIPS problem, we selected a set of state-of-the-art Approxi-

mate MIPS algorithms and conducted comprehensive experiments using real-
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world datasets considering a variety of metrics to evaluate their performances.

We also gave some practical suggestions.

• For c-AFN problem, we proposed a novel c-AFN algorithm called RI-LSH for

high-dimensional data. It uses a continuous searching strategy on each pro-

jection dimensions. We proved that our algorithm can return a c-approximate

result efficiently and wouldn’t break the theoretical guarantee. We conducted

extensive performance evaluation against two c-AFN algorithms regarding I/O

cost and result accuracy. The results show that our algorithm can achieve the

best I/O performance.

• Considering processing problems on graphs, we formulated a new problem

which can be applied to discover vertices which are not dominated by others

in a multi-layer graph. To the best of our knowledge, the problem has not

been formulated before. We developed a baseline algorithm to answer the

skyline nearest neighbor queries, and then discussed the early- termination

condition to improve the performance. We performed performance evaluation

regarding on real-world graphs. The experiment results demonstrate that the

optimizations can improve the performance significantly.

7.2 Future work

Even we have already made substantial improvements in this thesis, the sim-

ilarity search problem is still far from being well solved. Our experimental work

on Approximate MIPS problem opens a potential direction for further study. More

specifically, LSH is also a popular scheme which is widely applied in Approximate

MIPS algorithms and can provide theoretical guarantee for quality. After converting

the whole dataset and query data into a new data space, LSH is used to solve NN

problem in the new data space. There are already some works using LSH for Ap-
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proximate MIPS problem but it is still possible to further improve the performance.

For example, proposing new techniques to reduce errors when converting the dataset

to a new data space, or adopting better LSH scheme to return results with higher

accuracy.
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