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ABSTRACT

Deep Learning-Based Text Detection and Recognition

by

Qingqing Wang

Texts play a critical role in our daily life. They are everywhere such as slogans

on posters, licence plates on cars, etc., to transmit information and knowledge.

With the popularity of mobile devices with cameras, more and more texts are

collected, transmitted and stored as text images. Automatically reading texts

from images is of high application potentials. Therefore, related researches have

been attracting considerable attentions from the computer vision community. Scene

texts and handwritten texts are the two most difficult texts to be automatically read

because of the challenges posed by the complexity of backgrounds, the uncertainty

of capturing conditions, the diversity of text appearances, touching characters and

the variety of handwriting styles.

Text detection, i.e., localizing text areas from images, and text recognition,

i.e., transcribing located text areas into character sequences, are two key steps of

robust text reading. In recent years, they have entered a deep learning era, where

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) play

important roles. Here, we conduct researches on text detection and recognition

based on CNN and LSTM, as presented below.

1. To improve the recall rate of small text areas in oriented text detection,

we propose an Xception-based multi-ASPP-assembled scene text detector

named DeepText. DeepText inserts multiple Atrous Spatial Pyramid Pooling

(ASPP) modules into Xception after feature maps with different resolutions

to retain richer information for small text areas, and introduces auxiliary

connections and auxiliary losses to speed up convergence and boost the dis-



crimination ability of lower encoder layers.

2. To address the issue that Mask R-CNN cannot fully leverage global informa-

tion when performing predictions, we propose a scene text detector named

GMask R-CNN, where a global mask module is designed to perform semantic

segmentation by considering global information.

3. To tackle the problem that LSTM neglects the valuable spatial and structural

information of 2-D text images, we propose two scene text recognisers named

FACLSTM, which exploits convolution LSTM to directly perform sequen-

tial transcription in 2-D space, and ReELFA, which utilizes one-hot encoded

locations to enhance features with pixels’ spatial information.

4. To solve the problem that CNNs with fully connected layers are not suit-

able for sequential prediction tasks due to their requirements of fixed-size

inputs/outputs, we propose a CNN-based handwritten text recogniser CF-

SPP. CFSPP embeds a Spatial Pyramid Pooling-based intermediate layer

between convolutional layers and fully connected layers to convert arbitrary-

size feature maps into feature vectors with specific lengths.
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