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ABSTRACT

Deep Learning-Based Text Detection and Recognition

by

Qingqing Wang

Texts play a critical role in our daily life. They are everywhere such as slogans

on posters, licence plates on cars, etc., to transmit information and knowledge.

With the popularity of mobile devices with cameras, more and more texts are

collected, transmitted and stored as text images. Automatically reading texts

from images is of high application potentials. Therefore, related researches have

been attracting considerable attentions from the computer vision community. Scene

texts and handwritten texts are the two most difficult texts to be automatically read

because of the challenges posed by the complexity of backgrounds, the uncertainty

of capturing conditions, the diversity of text appearances, touching characters and

the variety of handwriting styles.

Text detection, i.e., localizing text areas from images, and text recognition,

i.e., transcribing located text areas into character sequences, are two key steps of

robust text reading. In recent years, they have entered a deep learning era, where

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) play

important roles. Here, we conduct researches on text detection and recognition

based on CNN and LSTM, as presented below.

1. To improve the recall rate of small text areas in oriented text detection,

we propose an Xception-based multi-ASPP-assembled scene text detector

named DeepText. DeepText inserts multiple Atrous Spatial Pyramid Pooling

(ASPP) modules into Xception after feature maps with different resolutions

to retain richer information for small text areas, and introduces auxiliary

connections and auxiliary losses to speed up convergence and boost the dis-



crimination ability of lower encoder layers.

2. To address the issue that Mask R-CNN cannot fully leverage global informa-

tion when performing predictions, we propose a scene text detector named

GMask R-CNN, where a global mask module is designed to perform semantic

segmentation by considering global information.

3. To tackle the problem that LSTM neglects the valuable spatial and structural

information of 2-D text images, we propose two scene text recognisers named

FACLSTM, which exploits convolution LSTM to directly perform sequen-

tial transcription in 2-D space, and ReELFA, which utilizes one-hot encoded

locations to enhance features with pixels’ spatial information.

4. To solve the problem that CNNs with fully connected layers are not suit-

able for sequential prediction tasks due to their requirements of fixed-size

inputs/outputs, we propose a CNN-based handwritten text recogniser CF-

SPP. CFSPP embeds a Spatial Pyramid Pooling-based intermediate layer

between convolutional layers and fully connected layers to convert arbitrary-

size feature maps into feature vectors with specific lengths.
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Chapter 1

Introduction

In this chapter, we give a general knowledge of text detection and recognition as

well as a brief introduction of this thesis, including research backgrounds, research

motivations, related works, widely used evaluation metrics, contributions of our

work, thesis organisations, etc.

1.1 Background of Text Detection and Recognition

Text is one of the most brilliant inventions in the history of human civilization

and has been playing a critical role in recording information, conveying knowl-

edge and facilitating communication. With the dramatic development of tech-

niques, especially ones on mobile devices, images have become essential carriers of

texts. Therefore, automatically reading texts from images is of high application

potentials, such as automatic navigation, intelligent transportation system, blind

assistance system, image retrieval, digitization of historical documents, machine

translation for texts present in images, etc. On the other hand, as shown in an

experimental study [51], humans are more likely to fixate on texts when they view

images containing both texts and other objects, which further improves the impor-

tance of texts. Thus, researches on automatically reading texts from images will

undoubtedly benefit humans’ well-being.

According to literature, text detection, i.e., localizing text from images, and text

recognition, i.e., transcribing text images into human readable ASCII characters,

are the two primary focuses of current researches on robust text reading in the field

of computer vision. The basis of performing text detection and text recognition is

the structural information of text strokes. As we all know, texts are constructed

by a series of strokes and strokes are connected components (CCs) with pairs
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pq

Figure 1.1 : Texts are the combination of strokes.

Tree-structured models for the 
combination of strokes Co-occurrence of strokes

Co-occurrence of strokes’ HOG 
features Stroke width transformation

Figure 1.2 : Stroke-related features used in [111, 30, 120, 27] for text detection and

recognition.
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of opposite edges, like edge p and edge q on the letter ‘E’ in Fig. 1.1. Besides,

widths of strokes, i.e., distances between opposite edges, belonging to the same

character or word usually keep consistent. Therefore, in literature, stroke-related

features including co-occurrence of strokes, histogram of oriented gradients (HOG)

of strokes, aspect ratio of the combined strokes, consistency of stroke width and

intensity, etc., are the most commonly used features for both text detection and

text recognition, as shown in Fig. 1.2.

In our daily life, texts mainly present in two forms, i.e., scene texts and hand-

written texts. Scene texts refer to texts appearing in scene images, which are

captured in the wild without constraints, such as images shown in Fig. 1.3 and

Fig. 1.4. Challenges of handling scene texts mainly arise from the three aspects

listed as follows.

� Complicated backgrounds. Texts could present anywhere together with any

scene contexts, such as houses, bags, cars, bottles, trees, animals, etc., among

which many may have similar texture as texts like bricks and fences. False

positives caused by the complicated backgrounds severely affect models’ per-

formance of discriminating texts from other objects.

� Unrestricted capturing conditions, including uneven illumination, perspective

distortion, low resolution, motion blur, skew, etc. These factors make texts

harder to be detected and recognized.

� Various text appearances in terms of colours, sizes, fonts, directions, scales,

shapes and so forth. In other words, scene texts suffer from huge intra-class

variance, which introduces extra challenges to models’ representation abilities

and robustness.

On the other hand, handwritten texts are texts written by human beings on

papers or touch screens, such as signatures and money amounts on bank cheques,

phone numbers and mail addresses on express waybills, notes on papers, comments

on historical documents, etc. As shown in Fig. 1.5, handwritten texts are usually
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Horizontal text from ICDAR 2013 dataset

Oriented text from ICDAR 2015 dataset

Figure 1.3 : Scene images with horizontal text (selected from ICDAR 2013

dataset [53]) and oriented text (selected from ICDAR 2015 dataset [52]).
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Multi-lingual multi-oriented text from MLT dataset

Curved text from Total-text dataset

Figure 1.4 : Scene images with multi-lingual multi-oriented text (selected from

MLT dataset [91]) and curved text (selected from Total-text dataset [18]).
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with uniform appearances and lie over relatively clean backgrounds, and their pic-

turing conditions are usually under control. However, even so, reading handwritten

texts is still full of challenges because of their following characteristics.

� Diverse writing styles. Everyone has his unique writing style, which is the ba-

sis of writer identification. However, for handwritten text recognition, diverse

writing styles represent huge intra-class variance and higher requirement on

model’s robustness and discriminative abilities.

� Touching characters. Strokes of adjacent characters often connect to each

other because of human writing habits, and thus shapes of these characters

may be significantly changed. To deal with these touching characters, spe-

cial and complicated operations are sometimes required because it is almost

impossible to correctly separate them.

In our research community, related benchmark datasets are usually collected ac-

cording to texts’ languages and orientations. For example, ICDAR 2013 [53] dataset

and ICDAR 2015 [52] dataset are English horizontal scene text dataset and English

oriented scene text dataset, respectively, while ICDAR 2017 [91] dataset, i.e., MLT,

is a multi-lingual multi-oriented dataset, where 9 languages are involved, including

English, Chinese, Japanese, Korean, French, Arabic, Italian, German and Indian.

In Table 1.1, we give a brief description to benchmark scene text datasets that

widely used in last decade (according to [81]) and related samples are shown in

Fig. 1.3 and Fig. 1.4. Note that in literature, detection results of horizontal texts,

oriented texts and curved texts are represented by horizontal rectangles, convex

quadrangles (or rectangles with angels) and polygons, respectively.

Since handwritten texts usually lie over relatively clean backgrounds, and are

not troubled by the detection problem, the existing handwritten text datasets are

mainly proposed for the recognition task. In Table 1.2, we list some widely used

datasets that published in last decade for ICDAR handwritten recognition competi-

tions, together with their recognition performances reported in these competitions.

Corresponding samples are presented in Fig. 1.5.
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Table 1.1 : Scene text datasets that widely used in last decade. EN and CN denote

English and Chinese, respectively.

Dataset Image Num Text Num orientations Language Detection Recognition
(Year) (train/test) (train/test)

SVT(2010) 100/250 257/647 Horizontal EN X X

SVHN(2010) 73257/26032 73257/26032 Horizontal Digits - X

MSRA-TD500(2012) 300/200 1068/651 Oriented EN, CN X -

IIIT5K(2012) 2000/3000 2000/3000 Horizontal EN - X

SVTP(2013) -/639 -/639 Oriented EN - X

ICDAR 2013(2013) 229/233 848/1095 Horizontal EN X X

CUTE(2014) -/80 -/- Curved EN X X

ICDAR 2015(2015) 1000/500 -/- Oriented EN X X

ICDAR RCTW(2017) 8034/4229 -/- Oriented CN X X

Total-Text(2017) 1255/300 -/- Curved EN, CN X X

MLT(2017) 9000/9000 -/- Oriented 9 languages X -

CTW1500(2017) 1000/500 -/- Curved EN X -

Table 1.2 : Handwritten text datasets that published in last decade and their

recognition performance in ICDAR competitions. Evaluation metrics are word-

level accuracy except ones marked by CRA (character level accuracy).

Dataset(Year) Language Word Num/String Num/Vocabulary Size Accuracy

CASIA-OLHWDB(2011) [69] Chinese 224419/91563/- 70.63

CASIA-OLHWDB(2013) [146] Chinese 224419/91563/- 89.28

ORAND-CAR & CVL(2014) [26] Digits -/19689/- 78.72

TRANSCRIPTORIUM(2015) [103] English 186643/21752/1067 69.8

READ(2016) [101] German 43460/10550/8120 79.1

READ(2017) [102] German 1798535/209146/108813 82.9

READ(2018) [114] German, Italian 98239/16984/- 82.1 (CRA)



8

Handwritten text from IAM dataset

Handwritten text from CVL and CAR dataset 
(Real data collected from bank cheques)

Handwritten text from PhPAIS dataset (Real cell-phone 
number collected from China post mail images)

Figure 1.5 : Samples of handwritten text. (selected from IAM dataset [86], real

bank cheque dataset CVL and CAR [26], and real cell-phone number dataset Ph-

PAIS [128]).
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Finally, we would like to briefly introduce the flagship conference in the field

of document analysis, i.e., International Conference on Document Analysis and

Recognition (ICDAR), where various robust text reading competitions are organ-

ised and many benchmark datasets are released. ICDAR is held every two years

since 1991. The community provides us an excellent communication platform by

organizing competitions, workshops and tutorials. In every ICDAR, hundreds of

scientists, researchers and practitioners working on document understanding, his-

torical document analysis, graphic analysis and robust text reading are gathered

to present their work, exchange ideas, seek opportunities and discuss the future

of related researches. Moreover, the sister conference of ICDAR, i.e., the Interna-

tional conference on Frontiers in Handwriting Recognition (ICFHR), is specially

organised for handwriting recognition. Therefore, we can say that ICDAR has

contributed a lot to document analysis and has witnessed the development of text

detection and recognition.

1.2 Motivation

Last few years have witnessed the explosion of deep learning techniques, es-

pecially those developed for computer vision tasks. Meanwhile, solutions to text

detection and text recognition have been through a great revolution since 2015,

when deep learning was introduced to this area and has since made a great break-

through.

The detection and recognition pipelines used before 2015 are very complicated

and involve sub-tasks like character candidate extraction, non-text filtering, word

merging, text segmentation, single character recognition, word rectification, path

evaluation, optimal path searching, etc. In these sub-tasks, hand crafted features

and carefully designed classifiers play critical roles. According to literature, though

these traditional optical character recognition (OCR) techniques have been studied

intensively for decades, they can only achieve good performance on scanned and

regular texts, even for the commercial OCR software like ABBYY FineReader and

Tesseract. As for the complicated scene texts and handwritten texts from real-word
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applications, their performance is still far from satisfactory.

In contrast, after 2015, deep learning-based models become the dominating

solutions to both text detection and text recognition because of their fantastic

characteristics presented below.

� Strong representation abilities. Deep networks can extract powerful, adaptive

and discriminative features from complex images, and when the training data

is adequate, their representation abilities will increase as the network depth

and width expanded.

� Flexible structures. Various activation functions (sigmoid, tanh, ReLu, Leaky

ReLu, etc.), loss functions (Softmax Loss, Cross Entropy Loss, L1 Loss, L2

Loss, IoU Loss, GAN Loss, etc.), network layers (convolutional layer, decon-

volutional layer, pooling layer, upsampling layer, normalization layer, fully

connected layer, etc.), network modules (SPP, ASPP, Inception, RoIAlign,

LSTM, etc.), network backbones (VGG, ResNet, Xception, GAN, GCN, etc.)

and optimizers (Adam, SGD, Adadelta, Amsgrad, etc.) can be flexibly com-

bined according to customers’ requirements, and the way to combine them

can even be automatically searched via Neural Architecture Searching (NAS)

techniques. Moreover, thanks to this flexibility, network sharing and knowl-

edge transfer are allowed among different tasks so that problems like data

scarcity and slow convergence can be addressed. For example, backbones

pre-trained on the ImageNet dataset are often employed by models for other

computer vision tasks including object detection, semantic segmentation, text

detection/recognition and so on.

� Convenient architectures. Deep networks integrate their feature extraction

module and task-specific module into one unified and end-to-end trainable

framework, and the training procedure is automatically performed without

manual adjustment. In addition, when the same network is applied for dif-

ferent applications, we just need to format new data and annotations in a

particular way and then feed them into the network.
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� Well-developed frameworks and technical documents. Many advanced and

highly optimized deep learning frameworks and tools like Caffe, Torch, Keras,

Theano, Tensorflow, MXNET, etc., and their technical documents are avail-

able online. Especially, the most widely used Tensorflow has been updated

from v0.12 (static graph version) to v.20 (dynamic graph version) within

about five years, and thus is highly complimented by researchers from both

industry and academia.

Compared with traditional text detectors and recognisers, the deep learning-

based ones are with more compact structures, more robust features, more discrimi-

native classifiers, less pre-/post-processing operations and most importantly, better

performances. Therefore, in recent five years, almost all of the state-of-the-art text

detectors and recognisers are based on deep learning. In this thesis, given the

above observations and advantages of deep networks, we conduct research on text

detection and text recognition based on deep learning techniques.

1.3 Related Works

In this section, we firstly give a brief description to convolutional neural net-

work (CNN) and Long Short-term Memory (LSTM), which are the two most basic

deep learning techniques for text detection and text recognition. Then, literature

review regarding text detection and text recognition are followed. Given the pop-

ularity of traditional detectors and recognisers before 2015, and the effectiveness

and superiority of the most recent deep learning-based ones, in this part, we will

present more details to the latter and less details to the former.

1.3.1 Convolutional Neural Network and Long Short-term Memory for

Text Detection and Recognition

Fig. 1.6 shows a typical CNN structure named LeNet5 [56], which is composed

of two convolutional layers, two pooling layers, two fully connected layers and

one softmax output layer. Here, the softmax layer is designed as a task-specific

module, and the other layers are utilized for feature extraction. Especially, the
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Figure 1.6 : Structure of LeNet5 [56]).

convolutional layers imitate human receptive field mechanism and share kernels

among individual locations. Therefore, compared with the fully connected layers,

they introduce fewer parameters and are capable of extracting features from inputs

with arbitrary sizes.

Given input X of the lth convolutional layer or fully connected layer, i.e., output

of the (l − 1)th layer, we can calculate output O of the lth layer with the function

shown in Eq. 1.1, where W , b and f denote the randomly initialized kernels, bias

and activation function, respectively. Note that, in the convolutional layers, ∗

means the convolution operation, while in the fully connected layers, it represents

the vector product operation. Pooling layers of CNNs introduce no parameters and

they are usually employed to increase networks’ invariance towards translation,

rotation and scale, and meanwhile, reduce the number of dimensions so that the

computation burden can be alleviated. In addition, Batch Normalization (BN)

layer proposed in [47] is also critical to CNNs as it can effectively reduce the internal

covariate shift of input features. In the existing CNN models, BN layers are often

embedded before the convolutional layer and the fully connected layer, and related

calculation can be formulated in Eq. 1.2, where xi and yi are the input feature

maps and output feature maps of the BN layer, and µ and δ2 can be regarded as
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the mean and variance of the m samples in current mini-batch, respectively.

O = f(X ∗W + b). (1.1)

µ = 1
m

∑m
i=1 xi,

δ2 = 1
m

∑m
i=1(xi − µ)2,

x̂i = xi−µ√
δ2+ε

,

yi = γx̂i + β.

(1.2)

In recent years, a large number of variants of the above mentioned layers have

been proposed in CNNs, such as atrous convolutional layer, depth separable convo-

lutional layer, RoIAlign layer, etc. By combining these layers, new CNN structures

have been developed and achieved promising performances in various computer

vision tasks, such as IncepText [141] designed for text detection, as presented in

Fig. 1.7.
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Figure 1.7 : Structure of IncepText [141]).

Recurrent Neural Network (RNN) take activations from last time step as inputs

of current time step, as shown in Fig. 1.8, so it can bridge long time delays of inputs
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and takes historical information into consideration when performing predictions.

However, as pointed out in [2], RNN suffers from the long time dependency problem,

i.e., it forgets information from the long past. To tackle this problem, LSTM

introduces three gates on the base of RNN, i.e., input gate, forget gate and output

gate, to store and access information over long time periods. Flow diagram of

LSTM is presented in Fig. 1.8, and involved calculations are formulated in Eq. 1.3,

where ι, φ and ω represent input gate, forget gate and output, respectively, and btι,

btφ and btω denote outputs of corresponding gates. Here, stc and btc are the cell state

and output of current time step t.

cell

Output 
Gate

Input 
Gate

Forget 
Gate

LSTM blockRNN

Figure 1.8 : Structure of RNN and LSTM [2]).

Inspired by speech recognition and machine translation, text recognition has

been widely treated as a sequence-to-sequence problem, where LSTM plays a crit-

ical role. However, RNN and LSTM are originally designed for processing stream

signals, e.g., audio and sentences, so they take 1-D feature vectors as inputs, as

illustrated in Eq. 1.3. To adapt LSTM to text recognition, a straightforward way is

to map 2-D feature maps of text images into 1-D space via the flattening or pool-

ing operations. Unfortunately, this will result in the neglect of the valuable spatial
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and structural information of 2-D text images. To tackle this problem, bi-direction

LSTM (bi-LSTM) and multi-dimensional LSTM (MDLSTM) are further proposed

in literature to extract information from two directions or four directions with a

stack of LSTMs. This strategy works to some extent, but it also introduces extra

computations, which linearly increase with the number of LSTM layers. There-

fore, as a trade-off between accuracy and efficiency, current text recognisers prefer

bi-LSTM over other LSTM variants.

atι =
∑I

i=1wiιx
t
i +

∑H
h=1whιb

t−1
h +

∑C
c=1wcιs

t−1
c ,

btι = f(atι),

atφ =
∑I

i=1wiφx
t
i +

∑H
h=1whφb

t−1
h +

∑C
c=1wcφs

t−1
c ,

btφ = f(atφ),

atc =
∑I

i=1wicx
t
i +

∑H
h=1whcb

t−1
h ,

stc = btφs
t−1
c + btιg(atc),

atω =
∑I

i=1wiωx
t
i +

∑H
h=1whωb

t−1
h +

∑C
c=1wcωs

t
c,

btω = f(atω),

btc = btωh(stc).

(1.3)

1.3.2 Text Detection

In this section, we review literature for text detection. Text detectors applying

traditional techniques are very popular before 2015, but their performance are far

behind that of the CNN-based ones. Therefore, to follow the new trend, in this

part, our focus is put on the CNN-based text detectors.

1.3.2.1 Region-based and CC-based Detectors

Traditional text detectors can be split into two groups: region-based ones and

CC-based ones. Region-based detectors utilize sliding windows to localize regions

with high confidence to be texts, and the distinct texture of texts, e.g., Wavelet

coefficients, Discrete Cosine Transform, etc., make it possible to differentiate text

regions from non-text ones. According to literature, region-based detectors are

robust to noise, but, to adapt to different text sizes, they often leverage multi-scale

operators, resulting in time-consuming systems. In contrast, CC-based detectors
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assume that pixels belonging to the same CC have similar local properties such

as grey level, intensity, stroke width, etc., and characters can be extracted from

images by generating CCs. The number of CCs is much less than that of regions, so

CC-based detectors are much more efficient than region-based detectors. However,

it is a tough task to find a robust CC generator that can deal with blur, skew, low

resolution, uneven illumination, etc.

Region-based detectors. Gao et al. [29] obtained numerous regions by sliding

pre-defined windows along input images, and extracted 104 features from each of

them, including HOG, LBP, number of extended edges, etc. Subsequently, these

features were fed into a cascade Real Adaboost classifier to distinguish text regions

from non-text ones. Learners of the cascade classifier were re-weighted according to

their abilities, and afterwards, candidate regions were re-scored by the re-weighted

learners before proceeding to the followed post-processing procedure. Wang et

al. [131] employed a 32-by-32 sliding window to create regions, which were then

fed into a two-class CNN classifier. The first layer of their CNN was trained with

a k-means related unsupervised algorithm, and parameters in this layer were fixed

when the whole network was optimized with L2-SVM classification error. To ease

the computation burden, Neumann et al. [92] only took regions containing strokes

into consideration, so they conducted stroke detection before any other operations

like patch classification, word formulation, etc.

CC-based detectors. The key to the success of CC-based text detectors is

finding a robust and effective CC generator. Currently, there are two most widely

used CC generators in literature, i.e., Stroke Width Transform (SWT) proposed

by Epshtein et al. [27] and MSER proposed by Matas et al. [87]. SWT creates

CCs according to the consistency of stroke width, while MSER takes advantage of

pixels’ intensity similarity. Specifically, SWT calculates stroke widths for individual

pixels by measuring the distances of opposite point pairs from edges detected by

the well-known Canny edge detector [50], while MSER can be understood from

the view of image binarization. If a threshold is continuously changed from 0 to

255, a large amount of components, so-called extremal regions, can be obtained
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from the binarization results of input images. MSER enumerates these extremal

regions and selects an affinely invariant subset from them. According to literature,

among all of the traditional text detectors, ones based on SWT and MSER achieve

state-of-the-arts and outperform others significantly.

Yao et al. [143] employed SWT as CC generator, and then classified CCs with

a two-stage coarse-to-fine classification framework. Bai et al. [4] also made use

of characteristics of strokes to produce CCs, but different from SWT, they cal-

culated text confidence maps according to the density of pairwise edges and the

consistency of stroke width. Yin et al. [148], the winner of ICDAR 2013 Robust

reading competition [53], experimentally proved that MSER was more effective

than SWT. In their work, MSERs were detected and pruned firstly to generate

character candidates. The prune algorithm consisted of two sub-steps, i.e., linear

reduction and tree accumulation. Then, a single-link clustering procedure was per-

formed to construct these candidates into groups that corresponded to words or

text lines. In this stage, distance metric learning and features like interval, width

and height differences as well as colour differences were adopted. Afterwards, a

text classifier was employed to eliminate false positives. Finally, this work was ex-

tended to handle multi-oriented text detection via a forward-backward algorithm.

Neumann et al. [94] also held the view that Extremal Regions (ERs) were more

robust to colour, blur, uneven illumination, etc., than other CC generator, so they

proposed a real-time scene text detector on the base of ERs. However, the way

they selected character candidates from ERs was different from that of MSER. In

particular, they calculated a group of incrementally computed descriptors including

area, perimeter, Euler number, etc., for individual ERs, and fed these descriptors

into a Real AdaBoost classifier to obtain text probabilities. Only ERs with locally

maximal probabilities were kept and processed by subsequent steps. Afterwards,

SVM classifier together with another group of computationally expensive features,

such as hole area ratio, convex hull ratio, etc., were utilized to perform further

ER selection. Chen et al. [10] took MSERs with enhanced edges as their charac-

ter candidates. Shi et al. [110] built a graph model on the base of MSERs, and
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employed the max-flow/min-cut algorithm to optimize it. Neumann et al. [93] de-

signed a variant of MSER, i.e., MSER++, for scene text detection, and proposed

an efficient pruning algorithm for the exhaustive search so that the system could

work in real-time. Yin et al. [149] utilized geometry-based grouping and AdaBoost

classifier to extract characters from MSERs.

In summary, the pipelines of region-based detectors and CC-based detectors

are very complicated and researchers working on this area have concentrated on

designing effective and efficient hand-crafted features, single character classifiers

and pruning strategies. We suggest readers refer to [145] and [159] for more com-

prehensive surveys on detectors applying traditional techniques.

1.3.2.2 CNN-based Detectors

As clarified in [81], text detection and text recognition have entered a deep

learning era. CNN-based detectors and recognisers integrate feature extraction

and task-specific module into one end-to-end trainable framework, so the reading

systems are becoming more and more compact. Moreover, compared with tra-

ditional detectors, CNN-based ones only require some simple data augmentation

operations like resizing, cropping, flipping, etc., in the pre-processing stage to boost

detection performances, and most of the CNN-based detectors only need the Non-

maximum Suppression (NMS) algorithm in the post-processing stage to remove

redundant bounding boxes.

According to literature, currently, there are two mainstream branches for CNN-

based detectors. Models in the first branch cast text detection to the semantic seg-

mentation problem and perform pixel-level predictions. The prediction results of

individual pixels may refer to text confidences, distances to edges of corresponding

bounding boxes, links to adjacent pixels, angles of segments or other pre-defined

concepts. In contrast, models from the second branch treat texts as a kind of par-

ticular objects, and utilize general object detection pipeline to handle this task. In

particular, they firstly generate a large number of text proposals, and then per-

form classification and regression to refine them and, meanwhile, filter out those
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without texts. Note that, when traditional techniques are used, text detection,

semantic segmentation and object detection are studied separately because tradi-

tional models rely heavily on task-oriented features and frameworks, while after

the introduction of deep learning, connections among these tasks become stronger

and ideas as well as network structures are often shared by them since deep net-

works automatically learn adaptive features under the guidance of the task-specific

modules.

Text Detectors Motivated by Semantic Segmentation. The popularity

of deep learning in semantic segmentation starts from the propose of Fully Con-

volutional Network (FCN) [80], which is the first network to perform pixel-level

predictions. Thereafter, a series of FCN variants are reported and achieve state-of-

the-arts in literature. Inspired by these advanced semantic segmentation models,

FCN-derived text detectors are also widely explored since 2015. For example, Yao

et al. [144] designed a single FCN to predict maps corresponding to text regions,

characters and linking directions of characters. Since character-level annotations

were required in this mode, word partition had to be done on images from datasets

that only provided word-level ground truth. In the inference stage, a formulation

step was designed to obtain final rotated bounding boxes. Zhang et al. [153] also

made use of salience maps generated by FCN, but their text lines were produced

by combining salience maps and MSERs. Wu et al. [136] proposed border learning

in this work, where pixels were classified into text, non-text and borders of text

areas at the output layer of FCN.

Recently, a more simplified pipeline was explored by many state-of-the-art ap-

proaches. This pipeline predicted offsets of bounding boxes in a more straightfor-

ward way. For instance, EAST proposed by Zhou et al. [156] employed PVANet [55]

to perform pixel-level prediction and produce score and geometry maps. The score

map indicated how likely current pixel belonged to text, and the geometry maps

(four maps for rotated boxes or eight maps for quadrangles) were used to restore

bounding boxes for individual pixels. Finally, redundant bounding boxes were re-

moved by NMS. He et al. [44] named the offset regression from a given point as di-
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rect regression, and analysed the drawback of indirect regression, which was widely

used in Faster-RCNN [98] and Single Shot Multibox Detector (SSD) [73]. After-

wards, they designed a simple and effective detector for multi-oriented text detec-

tion and proposed a new NMS, i.e., recalled NMS, to remove redundant bounding

boxes. PixleLink proposed in [24] took VGG as its backbone, and predicted score

maps and links for individual pixels at the header layer. Given a pixel, its links were

presented by eight maps with respect to connections to its eight adjacent neigh-

bours. In [123], Wang et al. proposed Instance Transformation Network (ITN)

to build a translational variant scene text detector. In this work, an in-network

transformation embedding module was set to learn a geometry-aware representa-

tion and an affine matrix, which were then employed by a multi-task module. The

multi-task module performed classification, coordinate regression and transforma-

tion regression, so compared with other models, additional six parameters needed

to be predicted for individual pixels in ITN. Long et al. [82] treated text with

arbitrary shape, i.e., curved text, as a sequence of oriented and overlapped disks,

which could be represented by radius and orientations. Therefore, they proposed

TextSnake, an FCN-based scene text detector that produced score maps for text

regions, text centres as well as disks’ geometry attributes regarding to radius, cosθ

and sinθ, where θ denoted disks’ orientations. To reconstruct text regions from pre-

dicted maps, a striding algorithm was designed in their post-processing stage. Xue

et al. [139] proposed to detect text borders in the view of semantic segmentation,

and designed a bootstrapping algorithm to augment their training data.

Text Detectors Derived from Object detection. Currently, one-stage

detectors and two-stage detectors are the two best solutions to general object de-

tection. The former are known for their efficiency, while the latter are popular for

their effectiveness. SSD [73] and Faster R-CNN [98] are the most well-known rep-

resentatives of these two branches, and have played a key role in object detection.

SSD produces prediction results directly with one single network, while faster R-

CNN combines Region Proposal Network (RPN) and Fast R-CNN [33] to perform

classification and regression twice with a two-stage framework.
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Scene text detectors derived from object detection could be motivated by either

SSD or Faster R-CNN. For example, inspired by SSD, He et al. [43] proposed an

attention-equipped single shot text detector, where a hierarchical Inception module

and a text attention module were combined to aggregate deep features from mul-

tiple scales and suppress background pixels. At the output layer, for each default

word box, a softmax classifier and a regression module were employed to predict

its text confidence and regression parameters. TextBoxes proposed in [64] was also

motivated by SSD. This network took VGG [113] as its backbone, and predicted a

72-D vector for each location at the output layer, i.e., 2-D scores and 4-D offsets

for 12 default boxes. To deal with text with arbitrary orientations, Liao et al. [63]

further improved TextBoxes by predicting additional offsets for rectangle boxes

(4-D) or quadrilateral bounding boxes (8-D) at the text-box layer. Shi et al. [106]

held the idea that the existing object detection-based methods might miss some

long words or text lines due to the limitation of default anchor setting. Therefore,

they proposed to predict bounding boxes for segments, i.e., portions of words, and

related links, which were used to indicate whether two segments belonged to the

same word or not. Classification and regression were two indispensable modules

in most state-of-the-art approaches, and they were usually built on the same deep

features. However, between these two modules, only the regression was rotation

sensitive. Therefore, in [66], a group of rotation-sensitive features and a group of

rotation-invariant features were specially extracted for regression and classification,

respectively. By doing so, a more accurate regression could be achieved for long

and thin texts. The existing SSD-inspired scene text detectors usually exploited

FCN for prediction, but in [100], Rong utilized an LSTM-based decoder to sequen-

tially predict bounding boxes and corresponding confidence scores. Therefore, their

model was able to used for both scene text detection and context reasoning text

retrieval.

On the other hand, many scene text detectors were inspired by Faster R-CNN,

such as R2CNN proposed by Jiang et al. [49]. In R2CNN, a batch of axis-aligned

text boxes were firstly generated by Region Proposal Network (RPN). Then, a pool-
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ing layer with multiple pooling sizes was assembled to convert feature maps into

vectors before the prediction layer, which was designed to calculate text/non-text

scores, axis-aligned box coordinates and inclined box coordinates for axis-aligned

text boxes. Liu et al. [77] proposed a curved text detector under the coarse-to-fine

framework. In their model, ResNet [42] was used as the backbone of entire net-

work, and RPN was used to roughly detect text regions with default rectangular

anchors. Subsequently, an RNN-based regression module was designed to predict

the offsets of curved locating points. RPN produced horizontal proposals, but texts

presented in scene images were usually with arbitrary orientations. To improve the

robustness of current models, Ma et al. [85] proposed Rotated Region Proposal

Network (RRPN) to generate rotated proposals. Moreover, they also proposed ro-

tated RoI (Region of Interest) pooling, skew IoU computation and skew NMS to

work with their RRPN. Zhang et al. [152] thought that traditional RPN module

only applied 1 × 1 convolution, which was insufficient for text detection. There-

fore, they presented a feature enhancement network to fuse task-specific features,

high-level features and low-level features for region proposals. Tian et al. [121]

proposed a Connectionist Text Proposal Network (CTPN) for accurate text detec-

tion. Different from traditional FCN style RPN, CTPN employed Bi-LSTM and

fully connected layer for score, coordinates and offsets prediction. Dai et al. [23]

designed a Fused Text Segmentation Network, where two groups of fused feature

maps were generated for region proposals and text instance predictions, respec-

tively. Zhu et al. [158] incorporated a vertical proposal mechanism in RPN to

avoid proposal classification, and achieved good performance on horizontal text

detection.

Mask R-CNN [40] performed pixel-level prediction inside of text proposals ob-

tained by Faster R-CNN. According to literature, scene text detectors based on

Mask R-CNN have achieved state-of-the-arts among the existing works. For ex-

ample, SPCNET proposed in [137] applied MASK-RCNN with Feature Pyramid

Network (FPN) to scene text detection. To reduce false positives and improve ac-

curacies of predicted confidence scores, a re-score mechanism was designed in this
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work. Huang et al. [46] proposed Pyramid Attention Network (PAN) to improve

performance of Mask R-CNN. According to their reported results, false positives

posed by text-like regions were able to effectively suppressed by PAN. Moreover,

Mask R-CNN achieved promising performance in [70] by augmenting training sam-

ples via cropping operation, and its performance was able to further improved by

replacing traditional masks with newly designed soft masks.

Text Detectors Combining Two Branches. According to literature, object

detection-based methods are usually troubled by long texts and texts with arbitrary

directions, while semantic segmentation-based ones suffer from relatively compli-

cated post-processing steps. To take advantage of both branches and, meanwhile,

avoid their shortcomings, Lyu et al. [84] proposed a network by combining ideas

from both branches. In particular, a position sensitive segmentation module and a

corner detection module were designed to predict text score maps and corner loca-

tions of related bounding boxes, respectively. In this work, NMS was also applied

in the post-processing stage to reduce redundant bounding boxes. Mask Textspot-

ter [83] proposed for curved text detection and recognition leveraged an Faster

R-CNN branch to detect text areas. Subsequently, a pixel-level word/character

segmentation branch was carefully designed for recognition. He et al. [39] divided

the detection task into two sub-steps in their work, i.e., using a multi-scale FCN

to detect text blocks from input image, and segmenting text lines by predicting

text centre lines via instance segmentation. Pixel-Anchor network proposed by Li

et al. [61] took ResNet-50 as its backbone, and performed both pixel-level segmen-

tation and anchor-based detection upon feature maps extracted by the ResNet-50.

Apart from rotated boxes, the segmentation module also produced some heat maps,

which were regarded as attentions and were fed into subsequent anchor module to

generated more accurate predictions. The anchor module was modified from SSD,

and to adapt to long text regions, it was equipped with some adaptive predictor

layers. Yang et al. [141] also employed ResNet-50 as their backbone, but, differ-

ent from [61], ResNet-50 used in Yang’s work was assembled with the effective

deformable convolution layer [22] and deformable PSROI pooling layer [22].
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1.3.3 Text Recognition

Since scene texts and handwritten texts have their unique characteristics, cor-

responding traditional recognisers have been developed under different pipelines.

In particular, scene text recognisers can be broken into text segmentation, single

character recognition and lexicon-based or language model-based word rectifica-

tion. Especially, text segmentation, i.e., discriminating foreground text pixels

from background pixels with binarization or graph models, is the bottleneck of

such recognisers [1] because of the complicated backgrounds and unconstrained

imaging conditions of scene images. On the other hand, to handle the intractable

touching characters, handwritten text recognisers usually over-segment text images

into components, i.e., characters or portion of characters, and then combine these

components to form a candidate lattice. Subsequently, nodes in the lattice are

recognized as single characters and individual paths of the lattice are evaluated

by considering multiple information like classification scores, geometric contexts,

linguistic contexts, etc. Finally, based on the evaluation results, the sequential

outputs are inferred from the optimal path searched from the lattice.

Recently, with the introduction of deep learning techniques, scene/handwritten

text recognition is widely treated as a sequence-to-sequence prediction problem,

and to avoid the troublesome segmentation prerequisite, segmentation-free frame-

work is studied intensively. Inspired by speech recognition and machine trans-

lation, LSTM has been playing a critical role in the most recent recognisers.

According to their decoder modules, these recognisers can be grouped into the

Connectionist Temporal Classification-based (CTC-based) [35] ones and the atten-

tion mechanism-based [3] ones. Note that, for models from both groups, LSTM

is mainly used for the following three purposes, i.e., feature encoding (models

in both categories), frame-level prediction (CTC-based models) and sequential

translation (attention mechanism-based models). Though the performance of the

LSTM-based recognisers has surpassed that of traditional recognisers significantly,

some researchers [65, 127] claimed that LSTM-based recognisers could only achieve

promising performances on horizontal or near horizontal texts because LSTM takes
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1-D feature vectors as inputs, and thus could not fully leverage the spatial infor-

mation of 2-D text images. Therefore, in literature, some LSTM-free recognisers

were also explored.

1.3.3.1 Traditional Segmentation-based Recognisers

Recognisers for Scene Text. Phan et al. [96] proposed a character seg-

mentation method based on gradient vector flow. They cast character segmenta-

tion as a minimum cost path searching problem. Nomura et al. [95] designed an

adaptive morphological model for degraded scene text segmentation. Sheshadri et

al. [105] utilized exemplar SVM for scene character recognition. Tian et al. [120]

proposed Co-HOG and ConvCo-HOG for the recognition of segmented single char-

acters by utilizing the co-occurrence of orientation pairs of neighbouring pixels.

Shi et al. [111] designed a tree-structured model to detect locations of individual

characters, and then utilized CRF to infer character classes of individual locations.

Considering difficulties of text segmentation, Mishra et al. [89] leveraged sliding

windows to roughly segment scene text images into patches, and then employed

the bottom-up and top-down cues for subsequent text recognition. Ye et al. [145]

proved a comprehensive survey on methods following this pipeline.

Recognisers for Handwritten Text. Wang et al. [130] proposed an effective

Chinese HTR system under the over-segmentation framework. Firstly, a CC-based

segmentation method [68] was used to segment input text images into primitive

segments, which were then formed into a candidate lattice. Afterwords, character

classification scores, geometric contexts and linguistic contexts were combined from

the Bayesian decision perspective to calculate the overall score of each potential

path. Finally, a refined beam search strategy was designed to infer the optimal

paths and produce final recognition results. Wang et al. [122] designed a real-time

Chinese HTR system by performing dynamic text line segmentation and character

over-segmentation. In this work, linguistic contexts and geometric contexts were re-

computed when a new character candidate was generated. Lee et al. [58] presented

a binary segmentation algorithm for cursive English handwriting recognition. In

this work, word images were iteratively cut into sub-images until pre-defined con-
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ditions were satisfied. Zhou et al. [154] built a semi-Markov Conditional Random

Fields (semi-CRFs) upon the candidate lattice for Chinese/Japanese HTR, and

designed a negative log-likelihood loss to optimize related parameters. As claimed

in [122], language model with higher order than bi-gram was hard to integrate into

CRF, but in [154], a trigram language model was successfully applied. To ease the

computation burden introduced by language model, a forward-backward pruning

algorithm was further proposed in this work. On the basis of [154], Zhou et al. [155]

proposed an alternative minimum-risk training strategy for optimizing their semi-

CRF. From the comparison with other three non-uniform cost functions, effective-

ness of their proposed training strategy was proved. Wang et al. [129] evaluated

performances of various language models under the over-segmentation framework,

including character-level n-gram models, word-level n-gram models and hybrid n-

gram models. As mentioned before, n-gram statistic language models played im-

portant roles in HTR, but because of the problem of data sparseness, high order

language models were hard to use. To address this issue, Wu et al. [135] proposed

a Feedforward Neural Network Language Model (FNNLM) to project history char-

acters into a continuous space and produce sequence probabilities for input images.

Keysers et al. [54] gave an brief introduction to Google’s fast and high-accuracy

HTR system, by which 22 scripts and 97 languages were supported. Thanks to the

speed accelerating techniques used in this work, such as segment pruning, lattice

edge pruning, edge factor pruning, beam search pruning, etc., the proposed sys-

tem was able to run in mobile devices or cloud. Specifically, 5 percent of writing

areas were re-sampled in the pre-processing stage to generate inputs for the follow-

ing steps. Then, a slope correction step was performed to handle skew text lines.

In the character classification module, a heuristic classifier and an NN classifier

were utilized to obtain a set of high recall character hypotheses, which were then

formed into a segmentation lattice according to their time order and spatial or-

der. Afterwards, to decode the lattice, a 9-gram character language model pruned

by a stupid-backoff [9] entropy was built upon a large corpus and a word-based

probabilistic finite automaton was employed carefully.
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1.3.3.2 Segmentation-free Recognisers Based on CNN and LSTM

CTC-based Recognisers. CTC was proposed by Graves et al. [35]. Given

the frame-level prediction Y = {y1, y2, ..., yn} of input images, CTC calculates the

probability P (L|Y ) of a label sequence L via a forward-backward algorithm with

considering all of the possible paths. Here, the frame-level prediction is usually

generated by RNN or its variant LSTM. In Graves’s work [35, 36, 79], CTC was

proved to be effective and efficient in speech recognition and text recognition. From

their experimental comparison, recognisers applying CTC achieved superior per-

formance over traditional HMM-based ones. CRNN proposed by Shi et al. [107]

was the first to successfully integrate CNN, LSTM and CTC into one unified net-

work in the field of scene text recognition. It freed recognisers from character-level

annotations by casting the recognition problem to a sequence-to-sequence problem.

Before that, CNN was only used for single character classification in DCNN models

and LSTM took raw images or hand-crafted features like HOG as inputs [2, 37].

In CRNN, convolutional layers were employed to extract deep features from input

images, the followed bi-LSTM layers were responsible for encoding frame-level fea-

tures and producing frame-level predictions, and CTC was embedded at the end of

the network to conduct sequential transcription. START-NET proposed in [75] also

followed the CNN-LSTM-CTC architecture, but different from RCNN, it utilized

the well-known residue convolutional blocks for feature extraction. In addition, to

deal with images with distortion, Spatial Transformer Network (STN) was assem-

bled at the beginning of START-NET to rectify distorted texts into ones with more

canonical appearances. As mentioned before, scene texts were usually surrounded

by complicated backgrounds, which posed huge challenges to the recognition task.

To help models focus on foreground areas, Gao et al. [32] proposed an attention-

boosted dense chain network. They also claimed that RNN produced prediction

results frame-by-frame, and this was not suitable for parallel computation. There-

fore, in [31], the RNN module was replaced by a convolutional module. According

to their comparison results, CNN-based sequence modelling seemed more efficient,

but the RNN-based one was able to achieve better accuracy. Yin et al. [147] also
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kept the view that RNN/LSTM-based models were harder to be trained because

of the gradient vanishing problem, and CNN-based frame-level prediction was a

better choice. Therefore, before CTC, a sling window layer was designed in their

recogniser to extract deep features and perform prediction.

Messina et al. [88] took advantages of three Multi-Dimensional Long-Short Term

Memory (MDLSTM) layers when extracting features from input raw images. Dif-

ferent from bi-LSTM used in [36, 79], MDLSTM took features from four directions

into consideration so that more accurate predictions could be produced. More-

over, to generate frame-level predictions required by CTC, some fully connected

layers and a softmax classifier were assembled between MDLSTM and CTC in this

work. Xie et al. [138] proposed a Fully Convolutional Recurrent Network (FCRN)

for online Chinese HTR. Bi-LSTM and CTC were also employed in this work for

frame-level prediction and sequential transcription, just as [36, 79] did. But instead

of still images, FCRN took pen-tip trajectory as inputs. To convert variable-length

trajectory into signature feature maps while preserving the analytic and geometric

characteristics of online paths, a path-signature layer and a fully convolutional net-

work were designed before bi-LSTM. FCRN was then extended to a more powerful

version, i.e., MC-FCRN, by learning multi-spatial-context information via FCN

and designing an implicit language model. Sun et al. [117] utilized a deep RNN to

learn an mapping function that was able to project input trajectories to strings.

Attention Mechanism-based Recognisers. The idea of attention mecha-

nism is borrowed from speech recognition [20] and machine translation [3], and it

is usually combined with Gated Recurrent Unit (GRU) [19] or LSTM to map in-

put deep features to expected sequential outputs. An attention mechanism-based

sequential transcription module is auto-regressive and does not require frame-

level predictions. Therefore, compared with CTC-based recognition, attention

mechanism-based ones are more popular in recent works and achieve better recog-

nition performance. For example, Lee et al. [57] employed attention-equipped RNN

for sequential transcription in their R2AM, where a recursive recurrent network was

designed for more effective and efficient feature extraction. The same as START-
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NET [75], RARE proposed in [108] also employed STN to rectify skewed text

images, but instead of CTC, they combined attention mechanism and GRU to

directly infer sequential outputs from input feature maps. As clarified in [6], irreg-

ularly shaped art texts presented frequently in our daily life, especially perspective

texts and curved texts, which had posed huge challenges to scene text recognition.

To tackle this problem, Cheng et al. [16] combined the attention mechanism with a

specially designed CNN in their recogniser, i.e., AON, where a sibling CNN branch

and a shared CNN branch were designed to extract character placement features

and features from both horizontal and vertical directions, respectively. Afterwords,

these features were combined and filtered with a filter gate before being fed into the

subsequent attention module. Recogniser proposed by Yang et al. [142] was aimed

to handle distorted and curved texts. It consisted of three components, i.e., a basic

feature extraction network, a pixel-wise character mask prediction network and an

attention-equipped RNN sequential transcription network. The predicted charac-

ter masks were expected to suppress noise and help to learn text specific patterns

by capturing contextual information. In addition, an attention alignment loss was

designed in this work to help find proper attention areas at the early training stage

because network’s parameters were randomly initialized and thus the attention-

based model might be ineffective at the beginning. Since most existing datasets

did not provide ground truth for attentions, a novel attention construction algo-

rithm was presented in this work. Char-Net [74] was short for Character-Aware

Neural Network, where a Hierarchical Attention Mechanism (HAM) was designed

to detect and rectify individual characters. HAM had two layers, i.e., a RoIWarp

layer used to recurrently extract character regions and a character-level attention

layer used to remove distortion and further encode character regions. ASTER [109]

was an enhanced version of RARE [108]. It also consisted of a STN-based recti-

fication network and an attention mechanism-based standard recogniser. ASTER

achieved a significant improvement over RARE regarding rectification performance

because a more effective Thin-Plate-Spline (TPS)-based STN was adopted to han-

dle various distortions in this work. Besides, ASTER utilized non-linear activation

in the localization network to keep the model from gradient vanishing and speed
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up the training convergence, and it also took advantage of dependencies from both

directions by replacing attention-GRU with attention-LSTM.

Sueiras et al. [116] employed a similar recogniser as ASTER [109] to read hand-

written texts from IAM (English) and RIMES (French) datasets. In their model,

input word images were firstly cut into patches and converted into feature vec-

tors by a LeNet-5 network. Then, an LSTM encoder and an attention-LSTM

decoder were applied to further encode features and perform sequential transcrip-

tion. Bluche et al. [8] designed a handwritten paragraph recogniser, where multiple

standard MDLSTM layers were leveraged to extract feature maps from raw images,

and an attention-equipped MDLSTM layer was set before LSTM and the softmax

predictor.

Though attention mechanism has been widely adopted in the existing state-

of-the-art recognisers, it has some inherent shortcomings. For example, Bai et

al. [5] pointed out that exiting attention-based recognisers failed to align ground

truth strings with attention�s probability outputs, and this confused and misled

the training process of related networks. To tackle this problem, they proposed

Edit Probability (EP), which took possible occurrences of missing characters and

superfluous characters into consideration when estimating the probability of gen-

erating a string from network�s outputs. In particular, given an input image I

and network’s parameters Θ, EP calculated probability EP (T |I; Θ) for string T

by summing probabilities of all potential edit paths. Cheng et al. [15] proposed

the ‘attention drift’ problem of current attention mechanism, i.e., misalignment

of predicted characters and right feature areas. To address this issue, a focusing

network was assembled in their FAN to assist the attention network. Recently, Li

et al. [59] claimed that traditional attention mechanism was not able to produce

accurate attention predictions, thus the recognition performance on irregular text

images was largely compromised. To ease this problem, they designed a 2-D atten-

tion module, where one LSTM was used to produce holistic features by encoding

feature maps column-by-column, and another LSTM was employed as usual to

general sequential outputs.
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Recognisers from Other Perspectives. Considering drawbacks of CTC-

based and attention mechanism-based recognisers, such as slow convergence dur-

ing training procedure, neglect of spatial information, etc., researchers have also

explored other solutions to scene text recognition from other perspectives. For

example, SqueezedText proposed by Liu et al. [78] utilized an efficient binary con-

volutional encoder-decoder convolution network (B-CEDNet) to generate silence

maps with respect to individual character classes. Then, a Bi-RNN back-end was

followed to correct detection errors and conduct classification. LSTM connected

input features in a fully connected way, so 2-D feature maps have to be flattened

or pooled into 1-D space before proceeding to LSTM. This would result in neglect

of spatial information of scene images. To tackle this problem, Liao et al. [65]

proposed to recognize scene text from 2-D perspective. Concretely, they exploited

an encoder-decoder FCN, which was equipped with some deformable convolutional

layers, to map input images to character confidence maps, and then employed a

word formation module to infer sequential outputs from these maps. Masks of

character centres were generated at the encoder stage of FCN and, and during de-

coder stage, these masks were combined with feature maps to suppress irrelevant

background pixels and highlight foreground pixels.

Su et al. [115] proposed an HMM-based handwritten text recognition sys-

tem in their work, where an embedded Baum-Welch algorithm was used to train

their HMM by combining with observation sequences obtained from input im-

ages. Choudhury et al. [21] designed a set of sinusoidal parameter-based features

in their HTR model. These features were sent to a GMM-HMM classifier for

inference, and in the prediction stage, likelihood of each lexicon word was calcu-

lated by a Viterbi algorithm. Though HMM achieved promising performance in

sequence prediction, Schenk et al. [104] pointed out that training of HMM was

discriminative. Therefore, to tackle this problem, they proposed two NN-HMM

hybrid recognisers. Particularly, an NN classifier was employed in the first recog-

niser to generate probability outputs, which were then fed into a subsequent HMM

module for sequential transcription. In contrast, the second recogniser extracted
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deep features with NN, and exploited a Principal Components Analysis (PCA) to

reduce dimensions of extracted features. Afterwards, the reduced features were

sent to a GMM-HMM classifier for inference. Wang et al. [132] also designed a

hybrid NN-HMM HTR system under the Bayesian framework. In their work, lan-

guage model was combined with GMM-HMM, DNN-HMM and DCNN-HMM via

a Weighted Finite-State Transducer (WFST)-based decoder to produce sequential

outputs. Wang et al. [128] proposed a complete CNN model for HTR, and achieved

promising performance on realistic digital string images, which were obtained from

real-world bank cheques. Images used to train their network were with arbitrary-

sizes, even for those from same batch. To resolve conflicts between arbitrary image

sizes and fully connected layers, SPP was adopted and modified in this work to

convert feature maps to fixed-length vectors.

1.4 Evaluation Metrics

There are some popular evaluation metrics in the field of text detection and

text recognition. To better understand works presented in this thesis, we will give

a brief introduction to these widely used metrics below.

1.4.1 Text Detection

Recall (R), Precision (P), F-measure (F) and Average Precision (AP) are the

four most well-known scene text detection metrics, as formulated in Eq. 1.4, where

Ncorr det, Ndet and Ngt denote the number of correctly detected regions, total

number of detected regions and total number of ground truth regions, respec-

tively. A region M is regarded as correctly detected when a target region M̂

satisfying IoU(M, M̂) > Thred can be found from the ground truth set. Here,

Thred is a pre-defined threshold. The calculation methods of R, P and F are

proposed by Wolf et al. [134] for ICDAR scene text reading competitions held

before 2015. According to [134], an evaluation tool built upon these three met-

rics, i.e., DetEval ( https://perso.liris.cnrs.fr/christian.wolf/softwar

e/deteval/index.html), is made publicly available by the ICDAR community

to benefit researchers working on this area. Note that submissions to ICDAR
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competitions are usually ranked according to the F-measure.

R =
Ncorr det

Ngt

,

P =
Ncorr det

Ndet

,

F = 2
R · P
R + P

,

AP =
1

11

∑
r∈0,0.1,...,1

Pinterp(r),

P interp(r) = max
r̃:r̃≥r

p(r̃).

(1.4)

From 2015 onwards, following the standard practice in general object detection,

AP proposed in [28] is used as the basic metric to rank submissions. As defined

in Eq. 1.4, if we equally divide the recall value from 0 to 1 into 11 levels, AP

equals to the mean precision value of all recall levels. Note that p(r̃) represents

the measured precision at recall r̃. Therefore, AP can be regarded as a summary

of the precision/recall curve.

1.4.2 Text Recognition

For text recognition, mean edit distance (soft metric) and word-level precision

(hard metric) are the two most popular metrics in literature. Especially, edit dis-

tance with equally weighted operations (insertion, deletion and replacement) and

case-insensitive word accuracy are used as ranking metrics in ICDAR 2015 inci-

dental scene text recognition competition and ICDAR 2017 COCO-text recogni-

tion competition, respectively. Mean edit distance (MED) and word-level precision

(WR) can be formulated as Eq. 1.5, where Ncorr reg and Nstr are the number of cor-

rectly recognized strings and the total number of strings to be predicted, and ED is

the edit distance between ith ground truth string sigt and corresponding predicted
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string sipr.

WR =
Ncorr reg

Nstr

,

MED =

∑Nstr

i=1 ED(sigt, s
i
pr)

Nstr

. (1.5)

1.5 Contributions and Thesis Organisation

In this thesis, we research text detection and recognition based on CNN and

LSTM. Our main contributions are presented below.

� We propose a multi-ASPP assembled DeepText network to detect multi-

oriented texts from the perspective of image segmentation. The existing de-

tectors usually utilize VGG and ResNet as their backbones, but some other

powerful network structures like Xception proposed in DeepLab V3+ [14]

have not been explored. Therefore, in this work, we take DeepLab V3+ as

our base model and perform pixel-level predictions regarding text scores and

geometry information of related bounding boxes. In addition, to improve the

recall rate of small text areas, we propose to insert multiple Atrous Spatial

Pyramid Pooling (ASPP) layers to the network after feature maps with dif-

ferent resolutions. Moreover, we also employ multiple auxiliary Intersection-

over-Union (IoU) losses and auxiliary connections to assist the network train-

ing and enhance the discrimination ability of lower encoding layers.

� We propose GMask R-CNN, i.e., Mask R-CNN [40] with global text con-

text, for multi-lingual multi-oriented text detection by following the practice

in general object detection. In particular, we conduct score prediction and

geometry regression on a large number of anchors, i.e., text proposals, gen-

erated by RPN. As we all know, RoIAlign used for extracting fixed-length

feature vectors from arbitrary-size proposals is the grantee of efficiency when

handling thousands of potential text areas. However, as pointed out in [137],

this strategy suffers from false positives and inaccurate segmentation results
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caused by the lack of context information clues. To tackle this problem, in this

work, we design a global mask module between FPN and RPN to perform

text predictions with considered global text context, and enhance feature

maps with the predicted results before forwarding them to the subsequent

steps.

� We propose ReELFA, i.e., Recogniser with Encoded Location and Focused

Attention, for scene text recognition by analysing drawbacks of the widely

used LSTM and attention mechanism. Scene text recognition has recently

been widely treated as a sequence-to-sequence prediction problem, where tra-

ditional fully-connected-LSTM (FC-LSTM) and attention mechanism play

critical roles. However, FC-LSTM takes 1-D feature vectors as inputs, re-

sulting in severe damage of the valuable spatial and structural information

of 2-D text images, and the attention mechanism suffers from the ‘attention

drift’ problem, i.e., networks fail to align attentions on proper feature areas.

To ease these problems, in ReELFA, we design an encoded location module

to indicate spatial relationships of pixels and a focused attention module to

help align attentions on proper feature areas.

� We cast scene text recognition to a spatio-temporal prediction problem and

propose FACLSTM, i.e., ConvLSTM with Focused Attention, to address this

issue. In FACLSTM, we retain the spatial information of text images by uti-

lizing convolution LSTM (ConvLSTM), where all of the input-to-state and

state-to-state transitions are conducted on 2-D feature maps. Furthermore,

to take advantage of the attention mechanism, we propose a strategy to har-

moniously incorporate it into ConvLSTM via the convolutional operations.

� We propose a sequence labelling convolutional network named CFASPP and

apply it to handwritten text recognition. Touching characters are always the

bottleneck of handwritten text recognition. To handle such characters, the

existing recognisers developed under the over-segmentation framework and

segmentation-free framework often conduct patch-level predictions by com-

bining over-segmented components and applying LSTM to sliding windows.
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However, patch-level predictions suffer from limited network views, and thus

cannot achieve precise predictions. On the other hand, Convolutional Neural

Networks (CNNs) with fully connected layers have shown great potentials in

various computer vision tasks, but they are not suitable for arbitrary-length

string recognition because both the inputs and outputs of the fully connected

layers are required to have fixed sizes. In this work, we design a flexible

Spatial Pyramid Pooling (FSPP) mediate layer to convert arbitrary-size fea-

ture maps to fixed-length feature vectors so that CNN without LSTM can

directly transcribe strings from the whole text images. Moreover, by combin-

ing with our newly designed connection method, the proposed FSPP layer

is able to extract more adaptive features for text images according to their

aspect ratios.

This thesis is organised as follows. Firstly, we present our two text detectors,

i.e., DeepText and GMask R-CNN, in Chapter 2 and Chapter 3, respectively.

Then, details of our scene text recognisers, i.e., ReELFA and FACLSTM, are de-

scribed in Chapter 4 and Chapter 5, respectively. Afterwards, Chapter 6 shows

our sequence labelling network named CFAPP and how we apply it to handwritten

text recognition. Finally, a brief summary of this thesis and our recommendation

for future works are drawn in chapter 7.
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Chapter 2

Multi-ASPP Assembled DeepLab for

Multi-oriented Text Detection

Text detection is the first step of a scene text reading system, and its performance

has a great impact on the subsequent recognition steps. Therefore, in this chapter,

we investigate how to detect texts from scene images. As mentioned previously,

in the deep learning era, the issue of text detection can be addressed from the

perspective of image segmentation by performing pixel-level predictions, and de-

tectors following this pipeline are more robust to long texts. Given this, in this

work, we design our network named DeepText [126] based on DeepLab V3+, which

is one of the most well-known image segmentation models. Here, our target is the

multi-oriented texts as they present frequently in our daily life.

2.1 Introduction

According to literature, VGG [113] and ResNet [42] are the most widely used

backbones in current state-of-the-art text detectors, such as EAST [156], Mask

Textspotter [83], SegLink [106], TextBoxes [64], Pixel-Anchor [61], SPCNET [137],

etc. As shown in Fig. 2.1, VGG breaks convolutional layers with large receptive

fields (e.g., 5 × 5 or 7 × 7) into a stack of 3 × 3 ones to make the network more

discriminative and more lightweight, while ResNet utilizes shortcut connections to

perform residual learning and ease the gradient vanishing problem. Notably, by

introducing shortcut connections, depth of networks has increased remarkably from

19 layers to 152 layers or deeper, leading to a significant performance improvement.

Xception proposed in DeepLab V3+ [14] is developed based on VGG and

ResNet. Therefore, apart from the advanced techniques used in VGG and ResNet,

Xception also employs other sophisticated techniques to boost its performance, in-
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cluding atrous convolution used to expand the receptive fields without shrinking

feature maps’ resolution, depthwise separable convolution designed to decrease the

number of parameters and ASPP module proposed to combine richer information

from multiple levels, as shown in Fig. 2.1. Though Xception-based networks have

achieved champion in semantic segmentation, their potential has not been explored

in the field of text detection. Motivated by this, in this work, for the first time, we

adapt DeepLab V3+ to the task of scene text detection, and improve the detection

performance by introducing a series of modifications.

Particularly, in our experiments, we find that the recall rate of our text detector

is seriously influenced by the miss detection of small text areas. In DeepLab v3+,

an Atrous Spatial Pyramid Pooling (ASPP) module is assembled after the Xcep-

tion backbone so that richer information can be extracted with various receptive

fields. However, features of small text areas have already disappeared from feature

maps extracted by the intermediate layers of Xception, so ASPP can do nothing

for detecting these text areas. To tackle this problem, in this work, we propose

to modify DeepLab v3+ by inserting multiple ASPP modules to it after feature

maps with different resolutions so that more detailed and richer information can be

extracted for both large text areas and small text areas. Moreover, we also propose

to utilize multiple auxiliary Intersection-over-Union (IoU) losses and auxiliary con-

nections to accelerate the training process and enhance the discrimination ability

of lower encoder layers.

2.2 Proposed Method

Overview of our proposed DeepText is shown in Fig. 2.2. As we can see, it is

an encoder-decoder structure that takes DeepLab v3+ [14] as its base model. The

network structure and configuration have been properly modified in this work to

adapt DeepLab V3+ to text detection. More details are presented below.
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Figure 2.1 : Structure comparison of VGG, ResNet and Xception.
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Figure 2.2 : The structure of proposed DeepText network (from [126]), where

a@b#c means current block is with kernel size a× a and output channel b, and is

repeated for c times. S = 2 means the stride is set to 2 at a specific layer or the

last layer of a specific block.

2.2.1 Backbone of Proposed DeepText

DeepLab v3+ [14] is an efficient semantic segmentation model developed on

the base of DeepLab v1 [11], DeepLab v2 [12], and DeepLab v3 [13]. Advanced

techniques such as atrous convolution, depthwise separable convolution, ASPP, etc.,

are exploited in its Xception backbone to generate accurate pixel-level predictions.

As shown in Fig. 2.3, atrous convolution adjusts filters’ receptive fields and controls

feature maps’ resolutions by inserting zeros into filters according to pre-defined

atrous rates. Note that atrous covolution with rate=1 is equivalent to the standard

convolution. ASPP employs multiple atrous convolutional layers in parallel to

capture context from multiple scales with different atrous rates, and depthwise

separable convolution breaks standard convolution into depthwise convolution and

pointwise convolution so that the computation burden can be alleviated. Therefore,

to take advantages of these advanced techniques, in this work, we utilize Xception

as our backbone.
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Figure 2.3 : Atrous convolution, ASPP and depthwise separable convolution

(from [13, 14]).

Compared with Xception used in [14], we have modified the network structure

and configuration as shown in Fig.2.2, where the smallest resolution at the encoder

stage is 32, and the recovered resolution at the decoder stage is 2. Moreover, a@b#c

means the current block (each block has 3 depthwise separable convolution layers)

is repeated for c times, the kernel size of this block is a×a and there are b channels

at each layer of this block. S = 2 means the stride is 2 at a specific layer or the last

layer of specific block. Note that, due to the limited GPU resource, denser output

feature maps are not considered in our DeepText network, and the channel setting

is also much smaller compared to that of [14].

In addition, the features are bilinearly up-sampled with a factor of 16 in the
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decoder stage of [13], which is claimed [14] to have failed when recovering seg-

mentation details. Therefore, in DeepLab v3+ [14], the up-sampling operation is

performed with a factor of 4. In our case, detecting small text areas requires more

detailed information and more refined features recovered, so we up-sample feature

maps with a smaller factor of 2 at the decoder stage, and then concatenate them

with the low-level features from the encoder stage.

2.2.2 Output Layer

The DeepLab v3+ [14] originally proposed for semantic segmentation has a

pixel-level prediction module in its output layer, where confidence maps with re-

spect to individual object classes are produced. This prediction layer works well

for the semantic segmentation purpose, but is not suitable for our scene text de-

tection task. In order to locate text in images, we also need to predict offsets from

individual pixels to the related bounding boxes. Therefore, in this work, we replace

the original output layer with a classification module and a regression module.

Concretely, a score map is generated to evaluate pixels’ confidence of being

text, and five RBOX geometry maps are generated to perform a direct regression,

as shown in Fig. 2.4. For an individual location (X, Y ), the values at the five RBOX

geometry maps represent the distances to the four boundaries of the corresponding

rotated box and the rotation angle of the corresponding box, respectively. During

the testing stage, we restore the corresponding bounding box according to the

prediction results, and eliminate the redundant boxes with the NMS algorithm.

2.2.3 Multiple ASPP Layers

Small texts are present frequently in scene images and detection accuracy of such

texts has a great impact on the overall performance. To better deal with these text

objects, we further improve the network architecture by inserting multiple ASPP

layers to our DeepText network after the feature maps with different resolutions.

The original DeepLab v3+ [14] assembles only one ASPP layer after the feature

maps with the smallest resolution (at the end of the encoder). As shown in Fig. 2.5,
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boundaries

Figure 2.4 : Output feature maps of proposed network (from [126]).

this operation is helpful for extracting wide range contextual information for large

texts. However, when it comes to small texts, the extracted features become too

coarse, and much detailed information is missed. By contrast, if an ASPP layer

with the same atrous rates is applied on the feature maps with a large resolution,

the extracted features would be more refined for small texts, but the contextual

information contained might be too little for large texts. To take both small texts

and large texts into consideration, we propose to insert multiple ASPP layers to the

DeepLab after the feature maps with different resolutions. As shown in Fig. 2.2,

we assemble three ASPP layers after the feature maps with resolutions of 4, 8,

16, respectively. In an individual ASPP layer, a traditional convolution layer with

1 × 1 kernel and three atrous convolutional layers with atrous rates of 6, 12 and

18 are assembled in parallel. Then, outputs of these four layers are concatenated,

followed by a 1×1 traditional convolutional layer that is used to reduce the overall

channels of feature maps.

2.2.4 Multiple Auxiliary Losses and Connections

To optimize our proposed network, the IoU loss [150], as defined in Eq. 2.1, is

employed in our work. The IoU loss is originally proposed for object detection.

Score map Distance to the Angle
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Figure 2.5 : Feature extraction by ASPP with the same atrous rates for text with

various scales (from [126]).

Compared with the widely used L2 loss that optimizes the four values of distance

independently, the IoU loss is invariant against different scales of objects. Given

the predicted bounding boxes R∗ and the ground truth bounding boxes R (their

related orientations are denoted by θ∗ and θ respectively), the IoU loss minimizes

the difference between their intersection area and their union area. In our case, the

IoU loss is calculated for individual pixels, and the predicted bounding box R∗ is

derived from the five geometry maps produced by the output layer.

LossIoU = Lossarea + Lossangle,

Lossarea = −logIoU(R,R∗) = −log |R∩R
∗|

|R∪R∗| ,

Lossangle = λ ∗ (1− cos(θ − θ∗)).

(2.1)

where

|R ∪R∗| = |R|+ |R∗| − |R ∩R∗|. (2.2)

Subsequently, to assist the training of the proposed network and promote the

convergence speed, we propose to employ multiple auxiliary IoU losses and connec-

tions at the decoder module, which is expected to be able to enhance the gradient

signals during the back propagation procedure. The existing scene text detectors

usually calculate the loss once on the final decoded feature maps. For example,
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Figure 2.6 : Back propagation after using auxiliary losses and connections. The

yellow arrows indicate back propagation paths without auxiliary losses and connec-

tions, while the green arrows represent additional paths after using auxiliary losses

and connections (from [126]).

EAST [156] calculated the loss on the feature maps with 1/4 resolution and Pix-

elLink [24] did on the feature maps with 1/2 resolution. Moreover, in these mod-

els, up-sampled features of the decoder module are often concatenated with the

low level feature maps that have the same resolution from only one layer. These

strategies make the learning of low level weights slow and the learned features less

discriminative. In this work, to enhance the discrimination power of low encoder

layers and speed up the convergence, we calculate the IoU loss three times on the

feature maps with resolution 1/2, 1/4 and 1/8, respectively, and make auxiliary

connections from multiple intermediate encoder layers, as shown in Fig. 2.2. Note

that, in the inference stage, we only perform prediction at the feature maps of 1/4

resolution to save time. Fig. 2.6 describes the back propagation details. As we can

see, the gradients are enhanced by the auxiliary losses and connections.

2.3 Experiments

To demonstrate the effectiveness of our proposed detector, we test our DeepText

on the benchmark dataset ICDAR2015 and compare it with the state-of-the-art

approaches.
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2.3.1 Datasets

The ICDAR2015 dataset was proposed for the Incidental Scene Text Reading

Competition of ICDAR 2015 [52]. Images in this dataset are taken by Google

Glasses without limitation on text position, image quality and view point. This

dataset is very challenging because text instances could be small, blur and multi-

oriented. There are 1000 training images and 500 test images in this dataset, and

all of the text regions are labeled with word level quadrangles. We also include 229

training images from the ICDAR2013 dataset in our training set. Therefore, in our

experiments, we totally have 1229 training images. Performance of the proposed

method is evaluated on the 500 ICDAR2015 test samples.

2.3.2 Implementation Details

To optimize the proposed DeepText network, the Adam optimizer with an initial

learning rate of 1e-4 is used. The learning rate is decayed exponentially with a decay

rate of 0.94 and a decay step of 10000. The proposed model is implemented with

the Tensorflow framework, and our batch size is set to 4 due to the limitation of

GPU memory, instead of 8 used in some other literatures.

2.3.3 Evaluation of the Proposed Detector

To demonstrate the effectiveness of our proposed detector, we compare the

performance with those of state-of-the-art approaches. Table 2.1 gives details of

the comparison results.

As we all know, training data has a great impact on detection performance, so

we include additional training sets when other training samples in the datasets are

used in addition to the ICDAR2013 and ICDAR2015 datasets. The results tested on

multiple scales can always be better than those tested on a single scale. Since many

methods only report their results on a single scale, to be fair, we only list single

scale results for all of the methods in Table 2.1. When multiple settings are tested

for certain models, we report their best ones. For example, the model named EAST

tests seven settings in [156], but we only take their best performance achieved by
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Table 2.1 : Comparison with prior arts on ICDAR2015 (from [126]).

Methods Additional data Recall Precision F-measure

EAST [156] ImageNet 73.47 83.57 78.20

SegLink [106] SynthText 76.80 73.10 75.00

RRPN [85] ImageNet, SVT 73.23 82.17 77.44

R2CNN [49] ImageNet 74.29 76.42 75.34

TextBoxes++ [63] SynthText 76.70 87.20 81.70

PixelLink [24] No 82.00 85.50 83.70

TextSpotter [83] SynthText 81.20 85.80 83.40

DeepLab small No 77.03 86.21 81.36

DeepLab No 77.80 87.49 82.36

DeepLab MASPP No 81.08 87.57 84.20

Proposed DeepText No 81.13 88.27 84.55

PVANET2x on a single scale. Additionally, if the compared method is an end-to-

end method, we take their detection-branch-only results in Table 2.1, such as Mask

TextSpotter. ICDAR 2015 does not provide any offline evaluation tool or ground

truth for the test set. Therefore, we directly submit our prediction results to the

online platform (http://rrc.cvc.uab.es/?ch=4&com=evaluation&task=1) and take

the platform’s evaluation results.

From Table 2.1, we can see that the proposed DeepText achieves the best per-

formance among all of the listed detectors with a F-measure of 84.55%. Notably,

all of the listed detectors pre-train their models using additional datasets such as

ImageNet, SynthText, etc., except for PixelLink and ours. To demonstrate the

effectiveness of our modification, we also carry out experiments with the original

DeepLapv3+ [14] structure, indicated by DeepLab in Table 2.1. DeepLab small

has the same structure and layer setting as DeepLab, but the channels in each

layer is shrunk from 256 to 128 (layers with 256 channels in Fig. 2.2) and from

512 to 256 (layers with 512 channels in Fig. 2.2). DeepLab and DeepLab small

use the same loss function, data pre-processing strategies, learning rate and op-

timizer as EAST. The only difference is that EAST uses VGG as the backbone.

Clearly, DeepLabv3+ is a better backbone than VGG because the performance is

elevated from 78.20% to 82.36% (for DeepLab). Even we use a smaller setting for
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DeepLab small, the F-measure is 3.16% higher. Furthermore, the performance of

DeepLab small is 1% lower than that of DeepLab, so we can conclude that greater

setting is good for the improvement of model’s performance. Therefore, when com-

paring the performances of different models, both of the structure and the network

scale should be taken into consideration. Unfortunately, due to the limitation of

our GPU memory, we cannot implement our model with a bigger setting and com-

pare the performance with the methods like IncepText, which has 1024, 2048 and

1024 channels in convolution stage-4, convolution stage-5 and the decoder stage,

respectively, and achieves a performance of 85.3% when a single scale is used.

The method named as DeepLab MASPP in Table 2.1 has the same settings

(number of layers and channels in each layer) as the one named as DeepLab, except

that DeepLab MASPP utilizes multiple ASPP layers in the encoder stage and

up-samples feature maps with a factor of 2 at the decoder stage. Apparently,

when MASPP and smaller up-sample factors are used, the performance can be

significantly improved because more smaller text regions are recalled (the recall

is improved from 77.80% to 81.08%). Finally, after employing multiple auxiliary

IoU losses and auxiliary connections, we obtain a detection performance of 84.55%,

which is slight better than that of DeepLab MASPP. However, DeepLab MASPP

gets the best results of 84.20% at the iteration of 1154k (with the batch size set to

4), while after using auxiliary losses and connections, the best results of 84.55% is

obtained at the iteration of 734k (with the batch size also set to 4). It is evidenced

that auxiliary losses and connections are able to greatly assist the training of deep

networks in the text detection task, and the discrimination of lower encoding layers

can also be enhanced.

2.4 Conclusion

A powerful backbone is essential to deep networks in the field of computer vi-

sion. In this paper, we have firstly introduced the well-known DeepLab structure

for the scene text detection task, and achieved promising performance. When de-

tecting text from scene images, encoding the wider range contextual information
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and detailed information from different scales is able to improve models� robust-

ness to arbitrary text sizes and orientations. Toward this end, we have modified

the original DeepLab structure by inserting multiple ASPP layers to the network

after feature maps with different resolutions. Additionally, multiple auxiliary IoU

losses and connections have been employed to assist the network training and en-

hance the discrimination ability of lower encoder layers. Experimental results on

ICDAR2015 have shown that the performance has been significantly improved by

applying the proposed modifications.



50

Chapter 3

Mask R-CNN with Global Text Context for

Multi-lingual Multi-oriented Text Detection

It is a common sense that in modern cities, multiple cultures live and communi-

cate together. Therefore, text detection is not only struggling with the arbitrary

orientation problem but also facing challenges posed by multiple scripts and lan-

guages. On the other hand, as previously introduced, texts can be regarded as a

kind of particular objects in scene images, so it is a natural thought to detect text

with general object detection framework. Given above observations, in this chap-

ter, we propose a multi-lingual multi-oriented text detector on the base of Mask

R-CNN [40], which is a well-known two-stage object detector.

3.1 Introduction

According to literature, general object detectors can be classified into two sub-

groups, i.e., one-stage detectors (e.g., SSD [73] and YOLO [97]) and two-stage

detectors (e.g., Fast/Faster R-CNN [98, 33] and Mask R-CNN [40]). The former

have the advantage of speed since they only perform classification and regression

once for individual default boxes, while the latter achieve higher detection accu-

racies because default boxes are classified and refined twice in a cascade way. For

an intuitive comparison of above two frameworks, we presents structures of SSD

and Faster R-CNN in Fig. 3.1, where Conv 3× 3× (M × (C + 4)) means a 3 × 3

convolutional layer with M×(classes+4) output channels is used for classification

and regression. Here, M , C and 4 denote the number of default boxes at each

location, the total number of object categories and the number of regression offsets

for each default box, respectively.

As mentioned previously, many state-of-the-art text detectors follow the prac-
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Figure 3.1 : Overview of one-stage object detector and two-stage object detector.

tice in general object detection. They can be motivated by either one-stage de-

tectors [43, 64, 63, 106, 66, 100] or two-stage detectors [77, 85, 152, 121, 23, 158].

Currently, those based on Mask R-CNN [71, 46, 70] achieve the highest perfor-

mances on the challenging multi-lingual multi-oriented text dataset, i.e., MLT.

Therefore, in this work, we follow the same trend and design our text detector

based on Mask R-CNN. Mask R-CNN is an enhanced version of Faster R-CNN, so

it is developed under the two-stage framework. But, unlike Faster R-CNN, Mask

R-CNN utilizes RoIAlign to extract feature vectors from arbitrary-size text pro-

posals, instead of RoIPool. Moreover, in the second classification and regression

stage, an additional mask prediction branch is assembled in Mask R-CNN to per-

form pixel-level predictions inside preserved text proposals so that contours and

minimum bounding rectangle of target text areas can be inferred.

Though detectors derived from Mask R-CNN have achieved champion in text

detection, their performance is still limited by the data augmentation strategies.
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Following the standard data augmentation routine in general object detection, hori-

zontal flipping, randomly resizing and normalization are performed on input images

in [137, 46]. However, as proved in [70], image cropping used in other tasks also

works well for text detection. Therefore, in this work, we follow [70] to design our

data augmentation strategies.

RoIAlign plays a critical role in Mask R-CNN. It extracts fixed-size feature

maps from arbitrary-size text proposals so that network’s efficiency can be re-

tained when dealing with thousands of text proposals. However, as pointed out

in [137], RoIAlign extracts information from only local RoI regions, so it suffers

from false positives and inaccurate classification scores caused by the lack of context

information clues. To address this issue, Xie et al. [137] proposed a Text Context

Module (TCM) and a re-score mechanism in their SPCNET, but, unfortunately,

their model’s efficiency seems to be compromised significantly because of the newly

added modules. To efficiently make use of the global text context, in this work,

we propose to conduct semantic segmentation from a global view on feature maps

generated by FPN, and guide the subsequent classification, regression and mask

prediction modules with the segmentation results. Details of our proposed GMask

R-CNN, i.e., Mask R-CNN with Global Text Context, can be found below.

3.2 Proposed Method

Structure of our proposed GMask R-CNN is depicted in Fig. 3.2. As we can

see, it takes Mask R-CNN as its base model and is equipped with a newly designed

global mask module, as indicated in the red dotted rectangle. Besides, feature

maps produced by FPN are enhanced by the predicted text masks before being fed

into the subsequent two-stage classification and regression modules. According to

our experiments, the speed of the calculation is not affected obviously since only

three layers are added for each scale of the feature pyramid.
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Figure 3.2 : Network structure of proposed GMask R-CNN.

3.2.1 Mask R-CNN

As illustrated in Fig. 3.2, Mask R-CNN employs ResNet to extract features from

input images, followed by a top-down architecture named FPN [67], which is uti-

lized to fuse feature maps from multiple scales. Then, according to the pre-defined

parameters, i.e., number of scales, aspect ratios, base sizes, number of sampling

points, etc., millions of anchors are produced, refined and filtered out by the sub-

sequent RPN module. Fig 3.3 presents anchors generated for position p at image

scale l. Assuming there are k anchors for each position, RPN exploits two parallel

convolutional branches with 2K (for text/non-text scores) and 4K (4 predicted

offsets for each anchor) output channels to perform classification and regression,

respectively. Afterwards, NMS is set at the end of RPN to select thousands of

refined anchors with considering their text/non-text classification scores. The se-

lected anchors are with the highest probabilities to be texts and thus are called

text proposals in the second stage.
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At the beginning of the second stage, RoIAlign proposed in [40] is exploited to

extract fixed-size feature maps from arbitrary-size text proposals. As illustrated

in Fig 3.3, each text proposal is evenly divided into M bins, and each bin has N

sampling points. RoIAlign calculates values for individual sampling points from

their nearby grid points via the widely used bilinear interpolation algorithm. Then,

after being further encoded, the extracted feature maps are converted into feature

vectors and fed into two parallel fully connected layers for the second-stage regres-

sion and classification. Finally, according to the prediction results, text proposals

are further refined and selected by NMS to generate expected output detections.

Note that a mask generation branch is also designed in the second stage to per-

form pixel-level predictions inside individual text proposals so that contours and

minimum bounding rectangular of our targets, i.e., multi-oriented texts, can be

inferred.

In the mask prediction branch, Mask R-CNN exploits a deconvolution layer to

upsample feature maps. As claimed in [71], deconvolution suffers from the checker-

board problem, which is harmful to the following pixel-level prediction. Therefore,

inspired by [71], we replace the deconvolution layer with a bilinear interpolation

layer and a 1× 1 convolutional layer.

3.2.2 Global Mask Module

The newly added global mask module is constructed by multiple groups of 3×3

convolutional layers, 1 × 1 convolutional layer and bilinear up-sampling layer. At

each scale of the feature pyramid, the 1× 1 convolutional layer is firstly employed

to produce a single channel text mask with the same size as feature maps of current

scale. Then, to calculate the global mask prediction loss, we employ an up-sampling

layer to rescale the predicted text mask to the same size as input images. In

addition, at individual scales, we concatenate the predicted text masks, i.e., outputs

of the 1× 1 convolutional layers, with feature maps produced by FPN so that the

subsequent second-stage classification and regression modules can take advantage

of the global text context.
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Figure 3.3 : Default anchors generated for position p at image scale l and RoIAlign

for text proposals.

Benefits of the proposed global mask module are twofold. Firstly, by introduc-

ing additional global mask prediction losses, optimization of previous ResNet-50

and FPN will be boosted. Therefore, feature maps generated by FPN will be more

discriminative. Secondly, these global masks are predicted with considering con-

textual information, so the classification and regression accuracies of anchors and

text proposals can be improved by enhancing feature maps of FPN with the pre-

dicted global masks. Experimental results presented below will demonstrate the

effectiveness of our proposed global mask module.

3.2.3 Loss Function of Proposed GMask R-CNN

Loss function of the proposed GMask R-CNN consists of multiple components,

as formulated in Eq. 3.1, where Lgm, Lrpn and LRoI denote global mask prediction

loss, first stage RPN loss and second stage RoI prediction loss, respectively. As

indicated in Fig. 3.2, Lgm, Lrpn and LRoI can be calculated with the way shown in

Eq. 3.2, where N is the number of FPN scales and λ1, λ2, · · · , λ6 are coefficients

used to balance individual losses. Here, we compute the average mask prediction

loss of individual scales for the newly added global mask module. In addition, in

this work, we calculate Lgm i, Lcls 1 and Lm 2 with the binary cross entropy loss,
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Lcls 2 with the cross entropy loss, and Lreg 1 as well as Lreg 2 with the smooth L1

loss.

Loss = Lgm + Lrpn + LRoI . (3.1)

Lgm = λ1
N
∗
∑N

i=1 Lgm i,

Lrpn = λ2 ∗ Lcls 1 + λ3 ∗ Lreg 1,

LRoI = λ4 ∗ Lcls 2 + λ5 ∗ Lreg 2 + λ6 ∗ Lm 2.

(3.2)

3.2.4 Data Augmentation and Configurations

In our experiments, we have conducted some data augmentation operations to

improve the detection performance. Firstly, we randomly flip training images in the

horizontal direction with a probability of 0.5, and randomly resize height and width

of input images to a range of [768, 2560], without keeping their aspect ratios. Then,

image pixels are normalized to [0, 1] with the mean value and standard deviation

value learned from the ImageNet dataset. Besides, we also randomly crop training

images to a size of 768 × 768 since the cropping operation is able to improve the

detection performance significantly. By contrast, in general object detection, Mask

R-CNN resizes training images to a minimal size of 800 and maximal size of 1333

while keeping their aspect ratios and does not adopt the cropping operation. Note

that in the prediction stage, we resize test images to a maximal size of 1600 or

1920 while keeping their aspect ratios, and all the test results are evaluated on the

single scale.

On the other hand, though texts can be regarded as a kind of particular

objects, they still have some unique characteristics such as larger aspect ratios,

longer text lengths, etc. Therefore, to adapt GMask R-CNN to text detection,

we change the base sizes and aspect ratios of anchors to (16, 32, 64, 128, 256) and

(0.17, 0.44, 1.13, 2.90, 7.46), respectively. Moreover, Mask R-CNN and PMTD [71]

are claimed to have achieved their best performance at a small score threshold of

0.05 in the NMS module of the second stage. However, in our experiments, we find
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that a score threshold of 0.85 is more appropriate.

3.3 Experiments

The proposed text detector has achieved promising performance on IC15 and

MLT datasets, details and comparison results are presented in this section.

3.3.1 Datasets

We evaluate performance of our proposed GMask R-CNN on the ICDAR 2015

and ICDAR 2017 robust text reading competition datasets, i.e., IC15 and MLT.

IC15 is an English multi-oriented dataset, which has been used in our work pre-

viously, and MLT is a multi-lingual multi-oriented dataset, where 9 languages are

involved, including English, Chinese, Japanese, Korean, etc. MLT consists of 7200

training images, 1800 validation images and 9000 test images. Following the prac-

tice in other works, we employ all of the training and validation images to optimize

our network and evaluate the performance on the test set.

3.3.2 Implementation Details

We pre-train the ResNet-50 backbone on ImageNet [25], a large-scale image

classification dataset, and fine-tune the whole network on IC15 and MLT. In par-

ticular, the pre-trained network is firstly trained on MLT for 168 epochs with the

widely used SGD optimizer. Our experiments are conducted on two 16G GPUs,

so the batch size is set to 10. Accordingly, the learning rate is warmed up expo-

nentially from 0.00125 to 0.0125 in the first 5000 iterations and decays to 0.00125

and 0.000125 at the 88th epoch and 128th epoch, respectively. The training proce-

dure on MLT is terminated at 168th epoch. Afterwards, the network is continually

fine-tuned on IC15 for another 40 epochs with a fixed learning rate of 0.000125.

3.3.3 Comparison Results

We compare performance of our proposed GMask R-CNN with that of the

existing state-of-the-art text detectors in Table 3.1 and Table 3.2. Note that on

both MLT and IC15, the performance of the proposed detector is evaluated on
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Table 3.1 : Comparison with state-of-the-art approaches on MLT dataset. Our

proposed GMask R-CNN is tested with size 1600 and 1920, indicated by * 1600

and * 1920, respectively.

Methods Recall Precision F-measure

FOTS [76] 57.51 80.95 67.25

Lyu et al. [84] 55.60 83.80 66.80

PSENet [60] 68.40 77.01 72.45

Pixel-Anchor [61] 59.54 79.54 68.10

SPCNET [137] 73.40 66.90 70.00

Huang et al. [46] 69.80 80.00 74.30

Baseline 1600 69.21 84.00 75.89

Proposed GMask R-CNN 1600 71.45 82.32 76.50

Proposed GMask R-CNN 1920 73.48 81.50 77.29

Table 3.2 : Comparison with state-of-the-art approaches on ICDAR2015.

Methods Recall Precision F-measure

EAST [156] 73.47 83.57 78.20

SegLink [106] 76.80 73.10 75.00

RRPN [85] 73.23 82.17 77.44

R2CNN [49] 74.29 76.42 75.34

TextBoxes++ [63] 76.70 87.20 81.70

PixelLink [24] 82.00 85.50 83.70

TextSpotter [83] 81.20 85.80 83.40

DeepText [126] 81.13 88.27 84.55

FTSN [76] 80.00 88.60 84.10

TextSnake [82] 80.40 84.90 82.60

SPCNET [137] 85.80 88.70 87.20

PSENet [60] 85.22 89.30 87.21

FOTS [76] 85.17 91.00 87.99

Proposed GMask R-CNN 87.48 90.31 88.87

single scale, where the long side of input images is resized to 1600 or 1920, indicated

by ∗ 1600 and ∗ 1920, respectively.

As shown in Table 3.1 and Table 3.2, our proposed detector outperforms the

existing state-of-the-art approaches on both MLT and IC15 datasets. We attribute

most of this success to the powerful Mask R-CNN-based model and the effective

data augmentation strategies, especially the cropping operation. Among the listed
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Figure 3.4 : Qualitative results of proposed detector.

methods, SPCNET [137] is also on the base of Mask R-CNN, but its baseline

model only achieves an F-measure of 65.50%, which is about 10% lower than ours

because of the differences in data augmentation strategies. In addition, from the

comparison of the baseline model and our proposed GMask R-CNN, when the

proposed global mask module is embedded, performance of our detector is further

elevated from 75.89% to 76.50%, and according to our experiments, the value of

F-measure also becomes much more stable as the score threshold used before NMS

varying. Experimental results also show that when a larger image size of 1920 is



60

used for evaluation, F-measure of our detector can be further improved to 77.29%,

so there is a trade off between accuracy and efficiency during the evaluation.

To intuitively illustrate detection performance of our detector, we have shown

some qualitative results in Fig. 3.4. As we can see, the proposed text detector work

well in very complicated scenarios and is robust to languages and text directions.

3.4 Conclusion

Text can be regarded as a kind of specific objects presenting in scene images,

so it is a natural thought to handle text detection from the perspective of object

detection. In this work, we have adopted Mask R-CNN, one of the most well-known

object detector, as our base model, and have combined it with a newly designed

global mask module. Experimental results on MLT and IC15 have demonstrated

that the proposed network works well in handling multi-lingual multi-oriented scene

text detection, and proper data augmentation strategies play a key role in this

procedure. Moreover, ablation study has shown that the proposed global mask

module is able to improve detection performance to some extent.
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Chapter 4

ConvLSTM-based Neural Network for Scene

Text Recognition

Scene text recognition, i.e., transcribing detected text areas into human readable

ASCII characters, is a subsequent step of scene text detection in text reading

systems. It has received considerable attentions from the community of computer

vision and document analysis in past decades. However, because of the challenges

posed by poor image qualities (e.g., low resolution, blur, uneven illumination, etc.)

and various text appearances (e.g., size, fonts, colours, directions, perspective view,

complex background, etc.), as shown in Fig. 4.1, though many efforts have been

made, scene text recognition is still an unsolved and challenging task. Therefore,

in this chapter, we explore how to recognize texts from scene images by proposing

a novel recogniser named FACLSTM [127].

Figure 4.1 : Challenging samples of scene text recognition (from [127]).

4.1 Introduction

Inspired by speech recognition and machine translation, most of recent state-

of-the-art approaches regard scene text recognition as a sequence-to-sequence pre-
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diction problem and widely adopt techniques like LSTM [45] and attention mech-

anism [3] in their sequential transcription module. However, LSTM used in these

recognisers is the fully-connected-LSTM (FC-LSTM) that only takes stream signals

like sentences or audio as inputs and connects them in a fully connected way, while

scene text recognition generates sequential outputs from 2-D images. To adapt

FC-LSTM to scene text recognition, the most straightforward way is pooling 2-D

feature maps to a height of one or flattening them into 1-D sequential feature vec-

tors [32, 15, 17, 107, 108], as shown in Fig. 4.2(a). Unfortunately, such operations

could severely disrupt the valuable spatial correlation relationships among pixels,

which is essential to computer vision tasks, especially to scene text recognition,

where the structures of strokes are the key factors to discriminate characters. To

retain such important spatial and structural information, researchers have also ex-

plored other alternative solutions. For example, STN-OCR [7] directly performed

sequential prediction on 2-D feature maps with a fixed number of softmax clas-

sifiers, and CA-FCN [65] generated character-level confidence maps with a fully

convolutional network, as shown in Fig. 4.2(b). However, compared with LSTM,

these solutions often introduce additional parameters or post processing steps.

In this work, we argue that scene text recognition is essentially a spatio-temporal

prediction problem for its 2-D image inputs, and propose a convolution LSTM

(ConvLSTM)-based scene text recogniser, namely, FACLSTM, i.e., Focused At-

tention ConvLSTM, where the spatial correlation of pixels is fully leveraged when

performing sequential prediction with LSTM. ConvLSTM is proposed by Shi et

al. [112] for precipitation nowcasting. In ConvLSTM, all of the fully connected op-

erations are replaced by the convolutional ones, so input feature maps are allowed

to keep their 2-D shapes when being fed into the ConvLSTM-based modules. Given

this advantage, for the first time, we introduce ConvLSTM to scene text recognition

and apply it in the sequential transcription module of our proposed recogniser.

On the other hand, in the existing models, LSTM is only used for frame-level

prediction and is incapable of producing sequential outputs from one single in-

put image unless the CTC or attention mechanism is incorporated. To perform
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(b) solutions without LSTM

Figure 4.2 : Current solutions for scene text recognition (from [127]). When using

LSTM, 2-D feature maps are usually converted to 1-D space by pooling or flattening

operations. When the LSTM is not used, additional parameters or post-processing

steps are involved.

sequential prediction and, meanwhile, provide the model spatial awareness, we fur-

ther improve ConvLSTM by embedding the attention mechanism into the struc-

ture. Notably, different from the existing attention-LSTM-based recognisers, where

the attention mechanism and FC-LSTM are combined in a fully connected way,

we properly integrate the attention mechanism into ConvLSTM with the convolu-

tional operations. Moreover, as ConvLSTM extends 2-D operations into 3-D, the

costs of computation and memory increase significantly. To achieve high efficiency,

inspired by Liu et al. [72], we propose to assemble a bottleneck gate at the begin-

ning of the proposed attention-equipped ConvLSTM, so that the internal feature

map channels can be reduced.
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Last but not the least, since the existing attention-based recognisers often suffer

from the ‘attention drift’ problem [15], i.e., they fail to align target outputs to

proper feature areas, we propose to learn additional character centre masks with

a second decoder branch in the encoder-decoder feature extraction stage to assist

the proposed network to focus attention on right feature areas.

The experimental results conducted on benchmark datasets demonstrate that

our proposed recogniser is able to achieve comparable performance with the state-

of-the-art approaches on regular, low-resolution and noisy text and outperforms

other methods significantly on the more challenging curved text.

The contributions made in this work are summarized as follows. (1) We propose

to handle the scene text recognition problem from a spatio-temporal prediction per-

spective and for the first time introduce ConvLSTM to this application. (2) We

design a ConvLSTM-based sequential transcription module, where the attention

mechanism is harmoniously embedded into ConvLSTM with convolutional oper-

ations, and the bottleneck gate is assembled at the beginning of ConvLSTM to

retain its efficiency. (3) We propose to learn additional character centre masks to

help the proposed network focus attention on the centre of characters.

4.2 Proposed Method

In this work, aiming to better consider the spatial and structural information

of input images when performing sequential prediction with LSTM, for the first

time, we propose an attention-equipped ConvLSTM structure in the sequential

transcription module, and further design a focused attention module to help learn

more accurate alignment between predicted characters and corresponding feature

areas.

As illustrated in Fig. 4.3, our proposed FACLSTM, i.e., Focused Attention

ConvLSTM, consists of two components, i.e., the CNN-based feature extraction

module and the ConvLSTM-based sequential transcription module. The feature

extraction module is an encoder-decoder structure that takes VGG-16 as the back-

bone, while the sequential transcription module is a combination of ConvLSTM
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Figure 4.3 : Overview of proposed FACLSTM (from [127]). F and M denote the

extracted feature maps and character centre masks. T groups of feature maps are

produced by the proposed attention-equipped ConvLSTM, where T is the maxi-

mal string length, and the followed softmax classifier is responsible for producing

T groups of feature maps from extracted feature maps. Note that, the softmax

classifier and previous fully connected layer are shared by the T groups of feature

maps.

and attention mechanism. More details are presented as follows.

4.2.1 CNN-based Feature Extraction

Backbone: Similar to Liao’s work [65], we take VGG-16 as the encoder of our

feature extraction module, and remove the fully connected layers and pooling layers

from the last two encoding stages. We also assemble two deformable convolutional

layers [22] at stage-4 and stage-5 of the decoder given their flexible receptive fields.

However, compared with Liao’s network [65], the resolution of final feature maps

is restored to a smaller size of W
4
× H

4
× C in our FACLSTM, instead of the W

2
×

H
2
× C used in [65], considering the memory and computation cost. Here, W , H
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and C denote the width, height and channels of feature maps, respectively. In

addition, we remove their character attention module set in the encoder stage, and

meanwhile, design a focused attention module in the higher-level decoder stage so

that more abstract and powerful character centre masks can be extracted. The

extracted masks are sent to the followed sequential transcription module together

with features produced by another decoder branch. By contrast, character centre

masks produced in [65] are used to enhance features generated at the encoder stage.

Sampling points of 
standard 3x3 convolution

Sampling points of deformable 3x3 convolution 
(examples of three different cases)

Figure 4.4 : Sampling points in standard convolution and deformable convolu-

tion. Blue points are the sampling points and arrows indicate offsets of sampling

locations.

Deformable Convolution: Objects including characters in texts are usually

with arbitrary geometric shapes. However, standard convolution employs fixed

geometric structures, resulting in a limited geometric transformation ability. Dai

et al. [22] proposed deformable convolution to learn offsets for sampling points so

that tasks with unknown geometric transformations could be handled. As shown in

Fig. 4.4, deformable convolution can deal with various transformations in terms of

scale, rotation, etc., and its offsets of sampled locations are automatically learned

according to specific tasks with the way shown in Fig. 4.5. In our application, as

clarified in [65], the 3×1 deformable convolution is used for more precise boundary

prediction between texts and backgrounds because of its transformable and flexible

receptive fields.

Focused Attention Module: As pointed out in [15], current attention-based
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Figure 4.5 : Illustration of deformable convolution.

models suffer from the ‘attention drift’ problem, i.e., they fail to obtain an accu-

rate alignment between target characters and related feature areas, especially in

complicated and low-quality images. To tackle this problem, in the feature ex-

traction module of the proposed FACLSTM, we assemble two decoder branches,

of which one is used as normal for feature extraction and another is designed to

learn additional character centre masks. These masks are expected to guide the

subsequent attention module regarding where to focus. Obviously, for each time

step, the attention should be focused on the centre of certain character. Moreover,

these masks can also help to enhance foreground pixels and suppress background

pixels.

In other works [31, 32, 65], the feature maps F and attention maps A are

always combined with the element-wise multiplication ⊗ in the way of Fout =

F ⊗ (1 + A). However, in our experiments, we find that directly concatenating

feature maps F and character centre masks M can achieve better performance,

since the subsequent attention-based module prefers to learn patterns from F and

M directly, rather than from their fused results. Therefore, direct concatenation is

used in our FACLSTM.
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4.2.2 Sequential Transcription Module

As shown in Fig. 4.3, our sequential transcription module starts with an attention-

equipped ConvLSTM, by which T groups of feature maps with the size of W
4
×H

4
×C

are generated. Here, T is the predefined maximal string length. Afterwards, a 1×1

convolutional layer is applied to reduce the feature map channels, followed by a fully

connected layer and a softmax classifier that are employed to sequentially predict

T characters. Details of proposed sequential transcription module are presented

below.

ConvLSTM: As explained in [112], the main drawback of traditional FC-

LSTM is its usage of full connections in the input-to-state and state-to-state tran-

sitions, which results in the neglect of spatial information. To retain such im-

portant information, ConvLSTM replaces all of the full connections of traditional

FC-LSTM with the convolutional operations, and extends the 2-D features and

states into 3-D, as shown in Fig. 4.6. Superiority of ConvLSTM over traditional

FC-LSTM has been proved in [112]. Thereafter, variants of ConvLSTM have been

developed for action recognition [62], object detection in video [72], gesture recog-

nition [157, 151], etc. For example, Zhu et al. [157] combined ConvLSTM with the

3-D convolution in a multimodal model, and achieved promising gesture recogni-

tion performance. Li et al. [62] designed a motion-based attention mechanism and

combined it with ConvLSTM in their VideoLSTM, which was proposed for action

recognition in videos.

Key formulations of FC-LSTM can be expressed as Eq. 4.1, where ◦ is the

Hadamard product (i.e., element-wise multiplication), f denotes the activation

function of input gate it, output gate ot and forget gate ft, and xt, ct and ht

represent input features, cell states and cell outputs, respectively.

it = f(wxixt + whiht−1 + wci ◦ ct−1),

ft = f(wxfxt + whfht−1 + wcf ◦ ct−1),

ct = ft ◦ ct−1 + it ◦ tanh(wxcxt + whcht−1),

ot = f(wxoxt + whoht−1 + wco ◦ ct),

ht = ot ◦ tanh(ct).

(4.1)
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Figure 4.6 : Illustration of the FC-LSTM (left) and the ConvLSTM (right)

(from [127]). The FC-LSTM is performed in 1-D space, while the ConvLSTM

is performed in 2-D space.

As we can see, FC-LSTM takes 1-D sequential feature vectors as input, and cal-

culates both the input-to-state and state-to-state transactions in a fully connected

manner. Therefore, when applying it to computer vision tasks, the 2-D feature

maps have to be mapped into 1-D space, during which the spatial correlation re-

lationships among pixels are badly damaged. To take advantages of such valuable

spatial and structural information in computer vision tasks, Shi et al. [112] pro-

posed ConvLSTM by incorporating convolutional structures into LSTM. As shown

in Fig. 4.3(right), all input features, gates, cell states and cell outputs are 3-D

in ConvLSTM, and all of the input-to-state and state-to-state transactions are

performed with the convolutional operations, instead of the fully connected ones.

Thus, the key formulations of ConvLSTM can be written as Eq. 4.2, where ∗ de-
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notes the convolutional operation.

it = f(wxi ∗ xt + whi ∗ ht−1 + wci ◦ ct−1),

ft = f(wxf ∗ xt + whf ∗ ht−1 + wcf ◦ ct−1),

ct = ft ◦ ct−1 + it ◦ tanh(wxc ∗ xt + whc ∗ ht−1),

ot = f(wxo ∗ xt + who ∗ ht−1 + wco ◦ ct),

ht = ot ◦ tanh(ct).

(4.2)

Proposed Attention-equipped ConvLSTM: The attention mechanism has

achieved excellent performance in sequential prediction tasks, such as machine

translation [3], speech recognition [20], as well as scene text recognition [15, 17,

133, 109, 57]. Especially, in the field of scene text recognition, it has been widely

combined with FC-LSTM or GRU to produce more accurate predictions. On the

other hand, LSTM is used only for frame-level prediction in the existing works and

is seldom utilized for producing sequential outputs from one single input image

unless when combined with the CTC or attention mechanism.

Therefore, in this work, to adapt ConvLSTM to scene text recognition and,

meanwhile, provide the proposed network location awareness, we incorporate the

attention mechanism into ConvLSTM by weighting the input feature maps with

attention scores derived from the cell states and cell outputs obtained at the previ-

ous time step, as illustrated in Fig. 4.7. In addition, to retain the efficiency of the

proposed network, an additional bottleneck gate is assembled before the original

input gate, forget gate and output gate to reduce the internal feature map channels.

Eqs. 4.3 and 4.4 provide more details on how the cell outputs and the attention

scores are calculated. Here, [·, ·] is the channel-wise concatenation, R(·) and S(·)

denote the ReLU activation function and the Sigmoid function, respectively, and x̂t

represents the weighted inputs computed by Eq. 4.4. Keep it in mind that all of the

gates {b, i, o, f}t, inputs x̂t, cell states c{t,t−1} and cell outputs h{t,t−1} in Eqs. 4.3

and 4.4 are in 3-D. Moreover, w{b,i,f,o,b2,h,x} and bias{b,i,f,o,f2,b2,y} are the involved

network weights and biases, and xt is the concatenation of feature maps F and

character centre masks M produced by aforementioned encoder-decoder feature
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Figure 4.7 : Illustration of our proposed attention-equipped ConvLSTM

(from [127]), where the inputs are weighted by attention scores derived from pre-

vious cell state and cell output.

extraction module.

bt = R(wb ∗ ([x̂t, ht−1]) + biasb),

it = wi ∗ bt + biasi,

ft = wf ∗ bt + biasf ,

ot = wo ∗ bt + biaso,

ct = S(ft + biasf2) ◦ ct−1 + S(it) ◦R(wb2 ∗ bt + biasb2),

ht = R(ct) ◦ S(ot).

(4.3)

hyt = [wh ∗ [ct−1, ht−1], (wx ∗ x)] + biasy,

zt = wz ∗ tanh(hyt),

attnt = softmax(zt),

x̂t = attnt ◦ x.

(4.4)

Once the cell outputs H = {h1, h2, ..., hT}, hi ∈ RM×N×C are obtained from the
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proposed attention-equipped ConvLSTM, a 1× 1 convolutional layer is applied to

map them to H̃ = {h̃1, h̃2, ..., h̃T}, h̃i ∈ RM×N×C̃ and C̃ < C, which is also used to

improve model’s efficiency, just like the bottleneck gate does. Afterwards, a fully

connected layer and a softmax classifier are designed to generate the final sequen-

tial outputs S = {c1, c2, ..., cT} from H̃, where ci is from the predefined charset.

Compared with STN-OCR [7], where multiple fully connected layers and multiple

softmax classifiers are assembled for sequential transcription, in our FACLSTM,

only one single fully connected layer and one softmax classifier are employed and

shared by T groups of feature maps.

4.2.3 Training

Loss function: The objective function L of our proposed FACLSTM consists of

two parts, i.e., the sequential prediction loss Ls and the mask loss Lm, as formulated

in Eq. 4.5, where m, m̃, ŷ and ỹ are the ground truth masks, predicted masks,

smoothed ground truth strings and predicted sequential outputs, respectively. λ

is the coefficient used to balance the importance of the sequential prediction loss

and the mask loss, and is set to 1 in our experiments. Additionally, the label

smoothing method proposed by Szegedy et al. [119] is able to help regularize the

proposed model. Therefore, given the one-hot encoded ground truth yOneHot, we

convert it to the smoothed version ŷ with Eq. 4.6. Moreover, for the ground truth

masks m, we set the value of their foreground pixels (centre of characters) and

background pixels to 1 and 0, respectively. Thus, the mask loss Lm is calculated

in the way of Eq. 4.7.

L = Ls(ŷ, ỹ) + λLm(m, m̃). (4.5)

ŷ = (1.0− ε) ∗ yOneHot + ε ∗ (
1

Nclass

). (4.6)

Lm = 0.01 ∗ {1− 2 ∗ [

∑
(m⊗ m̃)∑
m+

∑
m̃

]}. (4.7)

Generation of Ground Truth: Ground truth of character centre masks is

required to optimize the proposed network. Assuming b = (xmin, ymin, xmax, ymax) is

the bounding box of individual characters, we use the same method as that in [65] to
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calculate the ground truth of the corresponding mask g = (xgmin, y
g
min, x

g
max, y

g
max),

as shown in Eq. 4.8.

w = xmax − xmin,

h = ymax − ymin,

xgmin = (xmin+ xmax− w ∗ r)/2,

xgmax = (xmin+ xmax+ w ∗ r)/2,

ygmin = (ymin+ ymax− h ∗ r)/2,

ygmax = (ymin+ ymax+ h ∗ r)/2.

(4.8)

Note that, the shrink ratio r is set to 0.25 in our experiments, instead of 0.5 used

in [65].

4.3 Experiments

4.3.1 Datasets

We train the proposed FACLSTM network with 7 million synthetic images from

SynthText dataset [38] (available at http://www.robots.ox.ac.uk/~vgg/data/

scenetext/) without fine-tuning on individual real-word datasets, and evaluate the

corresponding performance on three widely used benchmarks, including the regular

text dataset IIIT5K, low-resolution and noisy text dataset SVT, and curved text

dataset CUTE.

� SynthText is proposed by Gupta et al. [38] for scene text detection. The

original dataset is composed of 800,000 scene text images, each with multiple

word instances. Texts in this dataset are rendered in different styles, and

annotated with character-level bounding boxes. Overall, about 7 million text

images are cropped for scene text recognition.

� IIIT5K is built by Mishra et al. [90]. This dataset consists of 3000 text

images obtained from the web. Most of these images are regular, and for

individual images, two lexicons are provided, including one 50-word lexicon

and one 1000-word lexicon.
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� SVT is a very challenging dataset collected by Wang et al. [124] from the

Google Street View. Totally, 647 text images with low-resolution and noise

are included.

� CUTE is released by Risnumawan et al. [99]. There are only 288 word images

in this dataset, but most of them are seriously curved. Therefore, compared

with other datasets, CUTE is more challenging.

4.3.2 Implementation Details

In our experiments, all of the input images are scaled to a size of 64 × 256

with aspect ratio preserved. The maximal string length is set to 20, including

one START token and one EOF token. This means up to 18 real characters are

allowed within individual words. Our charset is composed of 39 characters, i.e.,

26 alphabet letters, 10 digits, 1 START token, 1 EOS token and 1 special token

for any other symbols. The Adam optimizer with an initial learning rate of 1e-4

is employed in our work to optimize the proposed network. Totally, the proposed

FACLSTM is trained for five epochs, with learning rates of 1e-4, 1e-4, 5e-5, 1e-5

and 1e-6, respectively. Moreover, the kernel size and channels (N in Fig. 4.7) of the

convolutional operations in Eqs. 4.3 and 4.4 are set to 3× 3 and 256, respectively.

Finally, the proposed network is implemented using the Tensorflow framework.

4.3.3 Experimental Results

We evaluate the performance of our proposed FACLSTM on the aforemen-

tioned three benchmark datasets, and compare it with those of the state-of-the-art

approaches. Table 4.1 presents the details of the comparison results. Note that,

in this table, CA-FCN [65], ScRN [140] and SqueezedText [78] are the three latest

recognisers recently published in AAAI2019, ICCV2019 and AAAI2018.

4.3.3.1 Comparison with Methods based on the Traditional FC-LSTM

As previously introduced, traditional FC-LSTM is widely used in the exist-

ing recognisers. Among methods listed in Table 4.1, RARE [108], AON [17] and
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Table 4.1 : Result comparison across different methods and datasets (from [127]).

Word-level recognition rate is used here. IIIT5K No, IIIT5K 50 and IIIT5K 1k

denote that no lexicon, 50-word lexicon and 1k-word lexicon are used, respectively.

Smps: the number of samples used for training individual models, where * means

that datasets derived from SVT are used.

Method LSTM Smps IIIT5K No IIIT5K 50 IIIT5K 1k SVT CUTE

FAN [15] FC-LSTM 12M* 87.4 99.3 97.5 85.9 63.9

AON [17] FC-LSTM 12M* 87.0 99.6 98.1 82.8 76.8

CRNN [107] FC-LSTM 8M* 78.2 97.6 94.4 80.8 -

(Gao et al.)* [32] FC-LSTM 8M* 83.6 99.1 97.2 83.9 -

RARE [108] FC-LSTM 8M* 81.9 96.2 93.8 81.9 59.2

R2AM [57] FC-LSTM 7M* 78.4 96.8 94.4 80.7 -

SqueezedText [78] FC-LSTM 1M 87.0 97.0 94.1 - -

ScRN [140] FC-LSTM 7M 88.5 - - 81.3 81.9

CA-FCN [65] No 7M 92.0 99.8 98.9 82.1 78.1

(Gao et al.)* [31] No 8M* 81.8 99.1 97.9 82.7 -

STN-OCR* [7] No 86.0 - - - 79.8 -

FLSTM base1 FC-LSTM 7M 73.7 99.0 97.4 58.7 67.4

FAFLSTM base2 FC-LSTM 7M 87.8 99.3 98.1 78.2 75.7

FACLSTM (Our) ConvLSTM 7M 90.5 99.5 98.6 82.2 83.3

FAN [15] combined FC-LSTM with the attention mechanism in the fully connected

way when performing sequential transcription, while CRNN [107], R2AM [57],

Gao’s model [32] and SqueezedText [78] utilized FC-LSTM for frame-level pre-

diction, sequential feature encoding or other purposes. As shown in Table 4.1, our

proposed FACLSTM outperforms these FC-LSTM-based methods by large margins

on both regular text dataset IIIT5K (90.5% vs 87.4%) and curved text dataset

CUTE (83.33% and 76.8%) when no lexicon is used. It also achieves competi-

tive performance on IIIT5K when 1k-word lexicon and 50-word lexicon are used.

Apparently, handling the text recognition task from the spatio-temporal perspec-

tive with our ConvLSTM-based FACLSTM is more e�ective than casting it to a

sequence-to-sequence prediction problem via FC-LSTM, no matter for regular or

irregular text images. Note that our FACLSTM is optimized with less training

samples than most of the listed FC-LSTM-based recognisers, except for R2AM [57]
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and SqueezedText [78], and though AON [17] is specially designed for irregular text

recognition, its recognition performance on CUTE is still 6.5% lower than that of

our FACLSTM.

Readers should keep in mind that apart from the 4 million training images

from SynthText, the recognisers named AON [17] and FAN [15] also employed

additional 8 million images provided by Jaderberg et al. [48] for their training.

Jaderberg�s synthetic images are generated with a 50k-word lexicon that covers

all the test words of ICDAR and SVT datasets, and blended with word images

randomly-sampled from these two datasets. Thus, the recognition performance

on SVT would bene�t largely from the usage of Jaderberg�s images because of

this strong correlation. This is also proved by Liao�s work [65], where a 4.3%

accuracy improvement on SVT was achieved by their CA-FCN when additional

4 million images generated with Jaderberg�s strategy were used. In this work,

to demonstrate the generalizability and robustness of proposed FACLSTM, we

only employ the SynthText dataset to train our network. Therefore, to give a

fair comparison, we only compare FACLSTM with recognisers not utilizing SVT-

derived training images, such as CA-FCN [65] and STN-OCR [7].

4.3.3.2 Comparison with Non-LSTM based Methods

Considering the limitations of the traditional FC-LSTM on neglecting spatial

and structural information and slow training convergence, CA-FCN [65], Gao’s

model [31] and STN-OCR [7] have also explored other non-LSTM solutions. Espe-

cially, CA-FCN [65] also addressed the recognition issue from the 2-D perspective

by utilizing an FCN structure, and moreover, it used the same VGG-16 backbone

and 7-million training images as our FACLSTM.

From Table 4.1, we can see that the accuracy of our proposed FACLSTM is

1.5% lower than that of the best recogniser, i.e., CA-FCN [65], on the regular text

dataset IIIT5K. However, on the more challenging curved text dataset CUTE, we

achieve an accuracy of 83.3%, which is 5.2% higher than that of CA-FCN [65].

As for the low-resolution and noisy dataset SVT, our FACLSTM performs slightly
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better than CA-FCN [65] with an accuracy of 82.2% (vs. 82.1% of CA-FCN [65]).

Note that, CA-FCN [65] is not an end-to-end trainable system because in order

to infer the final sequential outputs from the pixel-level predictions generated by

their network, an empirical rule-based word formation module is required. By

contrast, our FACLSTM is able to directly produce the final sequential outputs

via the proposed ConvLSTM-based sequential transcription module. Admittedly,

replacing FC-LSTM with Conv-LSTM will increase GPU memory cost. Therefore,

to retain the e�ciency, we up-sample feature maps to a small resolution of 1/4

in the decoder branches, instead of 1/2 used in CA-FCN. Undoubtedly, this small

resolution will compromise the recognition accuracy to some extent, especially for

small-size and low-resolution images from the IIIT5K and SVT datasets.

4.3.3.3 Ablation Study

Furthermore, to highlight the effectiveness of our proposed focused attention

module and ConvLSTM-based sequential transcription module, we compare the

performance of our proposed FACLSTM with that of the following two baseline

models:

� FLSTM base1, which shares the same feature extraction module with our pro-

posed FACLSTM, but removes the focused attention module. Besides, the se-

quential transcription module used in this model is the traditional attention-

based FC-LSTM network, just as the one used in AON [17], FAN [15] and

both Gao’s models [32, 31].

� FAFLSTM base2, which is built upon FLSTM base1, but with the proposed

focused attention module applied.

Apparently, from the comparison of FLSTM base1, FAFLSTM base2, we can

see that the recognition accuracies on IIIT5K, SVT and CUTE datasets are ele-

vated by 14.1%, 19.5% and 8.4%, respectively when the proposed focused atten-

tion module is assembled. As illustrated in Fig. 4.8, the focused attention module

is able to accurately predict the character centre masks since it is performed in
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the high-level decoder branch. The signi�cant performance improvement demon-

strates that these masks are e�ective to help the sequential transcription module

focus attention on the right character areas and suppress irrelevant background

pixels. In addition, the image resolution of CUTE in much higher than that of

SVT and IIIT5K and SVT is much noisier than the other two datasets. As claimed

in [15, 65], the attention-based recognisers perform poorly on low-quality images

because of the ‘attention drift’ problem, and the scene text images su�er from

noisy background badly, so the accuracy improvement is more on SVT and less on

CUTE when the proposed focused attention module is utilized.

Moreover, from the comparison of FAFLSTM base2 and FACLSTM, we can

see that when the traditional attention-based FC-LSTM module is replaced by

our proposed attention-ConvLSTM-based sequential transcription module, further

2.7%, 3.6% and 7.6% improvements are achieved on IIIT5K, SVT and CUTE,

respectively. This means that our FACLSTM is able to boost the recognition

performance significantly by utilizing the proposed attention-ConvLSTM module

to take bene�ts from the valuable spatial and structural information of text im-

ages. As clari�ed in [65], FC-LSTM only achieves good performance on hori-

zontal or nearly horizontal text, and its performance on curved text is seriously

limited because of the neglect of pixels’ spatial correlation relationships. The huge

performance improvement achieved by FACLSTM on CUTE evidences that our

attention-ConvLSTM module is a good solution to this problem.

Therefore, we can say that both of the proposed focused attention module

and attention-ConvLSTM module are e�ective. Note that the focused attention

module can be removed from the network when datasets without character-level

bounding box annotations are used for the training.

In summary, on the regular text dataset, our proposed FACLSTM outperforms

all of listed FC-LSTM-based and non-LSTM-based recognisers, except CA-FCN,

but on the more challenging curved text dataset, our FACLSTM surpasses all of

the listed methods signi�cantly with an accuracy of 83.3%, including CA-FCN

(78.1%). Moreover, the comparisons with other two baseline models demonstrate
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the e ectiveness of our proposed focused attention module and ConvLSTM-based

sequential transcription module. Finally, we also give the visualization results of

the predicted masks and the attention shift procedure, as shown in Fig. 4.8. The

comparison results of attention predicted by FACLSTM and FLSTM base1 are

shown in Fig. 4.9. Note that FACLSTM directly produces 2-D attention maps via

the convolutional operations, while FLSTM base1 generates 1-D attention vectors

with the fully connected layers, just as other existing FC-LSTM-based recognisers

did. These 1-D attention vectors are reshaped to 2-D maps in Fig. 4.9 for an

intuitional visualization. As we can see, the attention areas of FACLSTM is larger

and more accurate, and the ‘attention drift’ problem is alleviated to some extent

in our proposed FACLSTM.

Figure 4.8 : Visualization results of predicted mask and attention shift procedure

(from [127]).

4.4 Conclusion

Scene text recognition has been treated as a sequence-to-sequence prediction

problem for quite a long time, and traditional FC-LSTM is widely used in current

state-of-the-art recognisers. In this work, we have demonstrated that scene text

recognition is actually a spatio-temporal prediction problem and we have proposed
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FACLSTM FLSTM_base1 FACLSTM FACLSTMFLSTM_base1 FLSTM_base1

Figure 4.9 : Visualization results of attention predicted by FACLSTM and

FLSTM base1 (from [127]). Values of the attention maps are normalized and

truncated for a better visualization. Note that FACLSTM directly produces 2-

D attention maps, while FLSTM base1 generates 1-D attention vectors, which are

then reshaped to 2-D space.

to tackle this problem from the spatio-temporal perspective. Toward this end, we

have presented an effective scene text recogniser named FACLSTM, where Con-

vLSTM has been applied and improved by integrating the attention mechanism in

the sequential transcription module, and a focused attention module has been de-

signed at the encoder-decoder feature extraction stage. Experimental results have

revealed that, our proposed FACLSTM is able to handle both regular and irreg-

ular (low-resolution, noisy and curved) text well. Especially for the curved text,

our proposed FACLSTM has outperformed other advanced approaches by large

margins. Thus, we can conclude that ConvLSTM is more effective in scene text

recognition than the widely used FC-LSTM since the valuable spatial and struc-

tural information can be better leveraged when performing sequential prediction

with ConvLSTM.
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Chapter 5

FC-LSTM-based Neural Network for Scene Text

Recognition

As previously introduced, FC-LSTM has been widely used in the existing state-

of-the-art text recognisers, but it cannot fully leverage the valuable spatial and

structural information of 2-D images, putting an negative impact on the recog-

nition performance. In this chapter, we propose another scene text recogniser

named ReELFA, i.e., Recogniser with Encoded Location and Focused Attention,

to address this issue and improve the recognition performance of the existing FC-

LSTM-based recognisers.

5.1 Introduction

FC-LSTM is an idea borrowed from speech recognition and machine transla-

tion, where the inputs are 1-D vectors, rather than 2-D feature maps. Therefore, to

adapt FC-LSTM to scene text recognition, the most straightforward way is pooling

or flattening 2-D feature maps into 1-D space, as shown in Fig. 5.1. However, the

pooling operation will result in a loss of vertical information and the flattening op-

eration will disturb spatial relationships of pixels. Therefore, as claimed in [65], the

existing FC-LSTM-based models can only achieve good performance on horizontal

or nearly horizontal texts. As for curved or skewed text, the performance is far

from satisfactory.

Though ConvLSTM can better utilize the spatial information of images in com-

puter vision tasks, it requires more GPU memory. Therefore, in our last recogniser,

i.e., FACLSTM, feature maps are down-sampled to a smaller resolution to retain

models’ efficiency. This strategy works well for text images with high resolution

and achieves promising performance on shape curved text images, but, for low-



82

......
flatten

Compress 2D feature maps 
to a height of 1 by pooling

Flatten 2D 
feature maps into 

1D space

Figure 5.1 : Converting 2D feature maps into 1D space to adapt FC-LSTM to

scene text recognition (from [125]).

resolution images, the down-sampling operation has affected the recognition per-

formance to some extent.

On the other hand, most of the existing state-of-the-art text recognisers are

on the base of FC-LSTM. Therefore, an efficient strategy to exploit the spatial

information in FC-LSTM-based recognisers is meaningful. Toward this end, in this

work, we propose to utilize the one-hot encoded location to indicate the spatial

relationships of individual pixels. This idea is motivated by Wojna’s work [133],

where the location information of pixels is utilized to tackle the permutation in-

variant problem of the widely used spatial attention mechanism. The proposed

idea is efficient and effective, and can be easily incorporated into any other existing

FC-LSTM-based recognisers. Details of our newly designed scene text recogniser,

i.e., ReELFA, are presented below.

5.2 Proposed Method

As illustrated in Fig. 5.2, our proposed ReELFA consists of two modules, i.e.,

an encoder-decoder feature extraction module, which is the same as the one used in

FACLSTM (see Sec. 4.2.1 for more details), and an attention-LSTM-based sequence

transcription module. The differences between ReELFA and aforementioned FA-



83

Convolution
Max pooling

(stride=2)
Deformable 
convolution

Up-sampling 
(ratio=2)

Encode
Coordinates

Mask 
Loss

Sequence 
Loss

+ + + +

+ + +

‘Fresh’
A

C

F

M

Figure 5.2 : The structure of our proposed ReELFA network (from [125]).

CLSTM are three-folds. Firstly, feature maps extracted by the VGG-16 backbone

are up-sampled to a larger resolution of 1
2

in ReELFA, instead of 1
4

used in FA-

CLSTM. Secondly, extra one-hot encoded locations are attached after the feature

maps extracted by VGG-16 and the character centre masks generated by the fo-

cused attention module to take advantage of pixels’ spatial relationships. Finally,

the attention-equipped FC-LSTM, rather than ConvLSTM, is used for the sequence

transcription.

5.2.1 One-hot Encoded Location

As mentioned previously, pooling and flattening are the two most popular ways

to project 2-D feature maps into 1-D space. The pooling operation results in un-

recoverable loss of spatial information, while the flattening operation just disrupts

orders of pixels. Therefore, in this work, the flattening operation is adopted.

To indicate the spatial relationships of pixels in feature maps, inspired by Wo-

jna’s work [133], we propose to utilize the one-hot encoded coordinates to make the

FC-LSTM ‘location aware’. As shown in Fig. 5.3, we attach the predicted character

centre masks mk and one-hot encoded coordinates ck after the extracted feature

maps fk in the channel dimension. In addition, given pixels P1 and P4, and P1’s
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Figure 5.3 : Illustration of the proposed one-hot encoded location (from [125]).

adjacent pixels P2 and P3, we can see that the encoded coordinates ck of pixel P1

is much closer to that of its adjacent pixels P2 and P3 when comparing with P4,

which has longer distance to P1 than other pixels.

5.2.2 Attention-LSTM-based Sequence Transcription

At the end of proposed ReELFA, an attention-LSTM-based sequence transcrip-

tion model is exploited to generate target sequential outputs (y1, y2, ..., yN) from

the input feature vectors [f1, f2, ..., fK ], the centre masks [m1,m2, ...,mK ] and the

encoded coordinates [c1, c2, ..., cK ], where fk ∈ RL, mk ∈ RH and ck ∈ RT , and

K is the length of sequential feature vectors. The procedure can be formulated

in Eq. 5.1, where ut and ỹt are the weighted features and the expected prediction

results at time t, and xt, ot and st denote the inputs, outputs and states of the

FC-LSTM at time t, respectively. Moreover, yt−1 represents the ground truth yt−1

at the training stage, and equals to the prediction result ỹt−1 at the inference stage.

Additionally, the attentions of the kth feature vector at time t are denoted by αt,k,

and can be derived from Eq. 5.2. Here, Va is a vector and outputs of tanh is applied
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element-wise to Va.

ut =
K∑
k=1

αt,k(fk + ck +mk),

xt = Wyyt−1 +Wu1ut−1,

(ot, st) = LSTM(xt, st−1),

õt = softmax(Woot +Wu2ut),

ỹt = arg max
y

õt(y).

(5.1)

at,k = V T
a tanh(Wsst +Wffk +Wcck +Wmmk),

αt = softmaxk(at,k).
(5.2)

5.3 Experiments

5.3.1 Comparison with Other Scene Text Recognisers

The same loss configuration and training protocol as FACLSTM are used in

this work to optimize the proposed ReELFA. Note that apart from aforementioned

IIIT5K, SVT and CUTE, an additional dataset named IC15, short for ICDAR 2015,

is used in this section to evaluate the performance of ReELFA on low-resolution

images. IC15 proposed in [52] consists of about 2,077 scene text images, including

200 irregular ones (arbitrary-oriented, curved or perspective). Comparison results

are presented in Table 5.1.

Comparison with Attention-LSTM-based Models: Among the methods

listed in Table 5.1, RARE [108], AON [17] and FAN [15] use the combination of

bi-LSTM and attention mechanism in the sequence transcription module. FAN

and AON are more recent works than RARE, while RARE and AON are specially

designed for irregular text recognition. Additionally, a focusing network is designed

in FAN to tackle the problem of ‘attention drift’. Moreover, our ReELFA and

RARE [108] are trained with only SynthText dataset, while FAN and AON are

trained with both SynthText dataset and Jaderberg’s dataset [48].



86

Table 5.1 : Results obtained by different methods. ‘IIIT5K *’ indicates the lexicon

type used for the evaluation of the IIIT5K dataset. ‘Ours noEL’ and ‘Ours noFA’

represent our model without the encoded location and focused attention respec-

tively. ‘*’ means that the word images containing non-alphanumeric characters are

removed from the test dataset. * bi means binary network setting.

Methods IIIT5K No IIIT5K 50 IIIT5K 1k SVT CUTE IC15

FAN [15] 87.4 99.3 97.5 85.9 63.9 66.2

AON [17] 87.0 99.6 98.1 82.8 76.8 68.2

CRNN [107] 78.2 97.6 94.4 80.8 - -

(Gao et al.)* [32] 83.6 99.1 97.2 83.9 - -

(Gao et al.)* [31] 81.8 99.1 97.9 82.7 - -

RARE [108] 81.9 96.2 93.8 81.9 59.2 -

STN-OCR* [7] 86.0 - - 79.8 - -

SqueezedText bi [78] 86.6 96.9 94.3 - - -

SqueezedText(full-precision) [78] 87.0 97.0 94.1 - - -

R2AM [57] 78.4 96.8 94.4 80.7 - -

CA-FCN [65] 92.0 99.8 98.9 82.1 78.1 -

ScRN [140] 88.5 - - 81.3 81.9 -

FACLSTM [127] 90.5 99.5 98.6 82.2 83.3 -

Ours noEL 87.8 99.3 98.1 78.2 75.7 66.6

Ours noFA 89.8 99.2 97.9 79.8 81.6 66.9

ReELFA (proposed) 90.9 99.2 98.1 82.7 82.3 68.5

From Table 5.1, we can see that RARE [108] is significantly surpassed by

FAN [15], AON [17] and our proposed ReELFA on all datasets, and FAN [15]

achieves the best performance on the SVT dataset. However, on the regular and

curved text datasets IIIT5K and CUTE, our proposed ReELFA achieves the best

performance, even without assistance from Jaderberg’s dataset [48]. Especially, on

the CUTE dataset, we get an accuracy of 82.3%, which is 17.4% and 5.5% higher

than FAN and AON, respectively. Therefore, our proposed ReELFA is more robust

to curved text recognition. As for the IC15 dataset, our proposed model obtains

the best performance of 68.5%, which is slightly better than AON’s [17] 68.2%. It

is notable that FAN and AON take advantages of the prior knowledge of ICDAR

and SVT datasets by leveraging Jaderberg’s 4 million samples [48].

Comparison with Other Models: Methods without using attention-LSTM
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also achieve promising performance in the field of scene text recognition, as shown

in Table 5.1. In these methods, R2AM [57], CRNN [107], CA-FCN [65] and both

Gao’s methods [32, 31] are trained with SynthText dataset, while SqueezedText [78]

and STN-OCR [7] are trained with text images generated by new rending engines.

Apparently, CA-FCN [65] and our proposed ReELFA are on the first and sec-

ond places on the IIIT5K dataset with accuracies of 92.0% and 90.9%, respectively,

which outperform other methods significantly. For the low-resolution and noisy

dataset SVT, even though Gao et al. [32] reported a higher accuracy of 83.9%,

we cannot say their model is more robust than CA-FCN [65] and ours because

their model is evaluated on an incomplete dataset, where word images containing

non-alphanumeric characters or with less than three characters are removed. Fi-

nally, on the challenging curved text dataset CUTE, our ReELFA achieves the best

performance of 82.3%, which is 4.2% higher than CA-FCN [65].

Compared with our previously proposed ConvLSTM-based scene text recog-

nizer, i.e., FACLSTM, we can find that our FC-LSTM-based recognizer and ConvLSTM-

based recognizer can achieve similar performances on regular texts and noisy texts,

but on curved texts, the ConvLSTM-based recognizer outperforms the FC-LSTM-

based recognizer obviously, which means ConvLSTM can leverage spatial and struc-

tural information better than FC-LSTM. However, according to our experiments,

ReELFA can achieve faster convergence speed and inference speed than FACLSTM,

which demonstrates the efficiency of FC-LSTM.

The Importance of EL&FA: To highlight the importance of proposed en-

coded location and focused attention modules, we also conduct ablation experi-

ments on two baseline models. The first one named ‘Ours noEL’ in Table 5.1 is the

version without encoded location module and the second one named ‘Ours noFA’

is the version without focused attention module. The rest of these two baseline

models’ configurations are just the same as our ReELFA.

From Table 5.1, we can see that when the one-hot encoded location module is

dropped, the accuracies on IIIT5K, SVT, CUTE and IC15 datasets are decreased

by 3.1% (from 90.9% to 87.8%), 4.5% (from 82.7% to 78.2%), 6.6% (from 82.3% to
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75.7%) and 1.9% (from 68.5% to 66.6%), respectively. The significant performance

degradation evidences the importance of spatial correlation information to scene

text recognition, especially to curved text recognition, and the effectiveness of

proposed strategy.

Additionally, when the attention focusing module is removed, the performance

on IIIT5K, SVT, CUTE and IC15 datasets dropped by 1.1% (from 90.9% to 89.8%),

2.9% (from 82.7% to 79.8%), 0.7% (from 82.3% to 81.6%) and 1.6% (from 68.5%

to 66.9), respectively. Though the performance gap between ‘Ours noFA’ and our

proposed ReELFA is not as large as that between ‘Ours noEL’ and ReELFA, the

recognition accuracies on both regular and irregular texts are improved in certain

degrees when the focused attention module is deployed. Therefore, the current

attention-based models do suffer from the ‘attention drift’ problem, which can be

alleviated by focusing attentions on the centres of characters.

5.3.2 End-to-End Scene Text Reading System

We combine ReELFA with aforementioned scene text detector named DeepText

to form an end-to-end trainable scene text reading system, and apply this system

to licence plate recognition. Fig. 5.4 shows the framework of the proposed system.

As we can see, the detected text areas are cropped as the inputs of the followed

recogniser directly, and the detector and the recogniser are trained simultaneously

with the same optimizer and learning rate.

The proposed system is trained with 1,000 labelled images collected from West-

field car park and tested on 3,000 images. Its recognition performance is 93.4%,

which is comparable with the recognition performance (93.2%) of the commercial

OCR software of Westfield company.

5.4 Conclusion

In this work, we have proposed another scene text recogniser named ReELFA

to take advantage of the spatial correlation information of pixels via the one-hot

encoded location. The proposed strategy is efficient and effective, and can be in-
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Detector: 
DeepText

Recogniser: 
ReELFA

Location: ‘954, 64, 1052, 64, 

1052, 96, 954, 96’

Content: ‘MA11AA’

Figure 5.4 : End-to-end trainable scene text reading system and related results on

licence plate recognition.

tegrated into any other existing FC-LSTM-based recognisers easily. Experimental

results conducted on IIIT5K, SVT, IC15 and CUTE datasets have demonstrated

that the proposed ReELFA is able to achieve comparable performance on the reg-

ular, low-resolution and noisy text datasets, and outperforms the existing state-

of-the-art approaches on the more challenging curved text dataset. In addition,

the ablation study has shown that, with the assistance of proposed focused at-

tention module and one-hot encoded location module, performance of the popular

FC-LSTM-based recogniser is significantly improved.
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Chapter 6

Flexible SPP for CNN-based LSTM-free

Handwritten Text Recognition

The same as scene text recognition, handwritten text recognition has also attracted

intensive attentions in recent years because of its vast applications in both indus-

trial projects and financial transactions, such as mail sorting system, bank cheque

processing, etc. Unlike scene texts, handwritten texts are usually with uniform

appearances and captured under controlled conditions, and their backgrounds are

not as complicated as those of scene texts. However, because of the intractable con-

nected characters and various writing styles, handwritten text recognition is still

a challenging task. Especially, handwritten text recognition has been struggling

with connected patterns fiercely in last decades.

In literature, over-segmentation and segmentation-free frameworks are com-

monly applied to handle the handwritten text recognition task. For the past years,

RNN/LSTM combining with CTC has occupied the domain of segmentation-free

handwritten text recognition, while CNN is just employed as a single character

recogniser in the over-segmentation framework. The main challenges for CNN to

directly recognize handwritten texts are the appropriate processing of arbitrary in-

put string length, which implies arbitrary input image size, and reasonable design

of the output layer. In this work, we propose a sequence labelling convolutional

network [128], i.e., CFSPP, for the recognition of handwritten texts, especially, the

connected patterns. We properly design the structure of the network to predict

how many characters present in the input images and what exactly they are at

every position. Moreover, Spatial pyramid pooling (SPP) is utilized in our network

with a new implementation to handle arbitrary string length, and we also propose

a more flexible pooling strategy called FSPP to adapt the network to the straight-
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forward recognition of long strings better. To demonstrate the superiority of our

proposed CFSPP, we conduct experiments on two benchmark handwritten digital

string datasets and our own cell-phone number dataset named PhPAIS.

6.1 Introduction

Because of our writing habits, strokes of adjacent written characters are usually

connected to each other, introducing huge challenges to the task of handwritten

text recognition. A straightforward solution is to segment text images into compo-

nents corresponding to single characters or part of characters, followed by analysing

the recognition results of each component or their combination to infer the optimal

integrated results. In literature, this pipeline is called over-segmentation frame-

work. For methods developed under this framework, classifiers are trained only for

single character classification. Therefore, at the initial stages, it is expected to form

intact single characters by over segmenting strokes and combing the consecutive

ones. At the beginning of deep learning era, to take advantage of deep networks,

CNN is usually employed as single character classifiers. Though the recognition

accuracy has been improved significantly, performance of the entire system is still

far from satisfactory because of limitations of other components.

The alternative solution resorts to segmentation-free framework, which directly

produces sequential character predictions from the entire input text images via end-

to-end trainable networks without segmentation. For example, some researchers try

to obviate segmenting by utilizing RNN/LSTM combining with CTC in the task of

handwritten text recognition. This strategy has been flourishing since the revival

of deep learning and has achieved promising performance in the ICFHR2014 HDSR

competition [26]. In addition, handwritten text recognisers with segmentation-free

framework have been widely applied in various languages such as English [36], Ara-

bic [36], Chinese [88], etc. It is remarkable that, on the ICFHR2016 handwritten

text recognition competition [101], all of the six submissions are RNN/LSTM/CTC-

based. In these recognisers, RNN maps inputs of current time step to correspond-

ing outputs with considering its historical information, i.e., outputs of previous
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time step, and CTC is assembled at the end of the networks to perform sequence

labelling without requirement of pre-segmenting inputs and post-processing net-

work�s outputs. Moreover, to cope with the gradient vanishing problem, LSTM

is proposed as an improvement of RNN and has replaced RNN in all of the subse-

quent recognisers. In summary, according to literature, over-segmentation recog-

nisers usually require sophisticated techniques on over segmenting, touch split-

ting, single character recognizing and best path searching, while segmentation-free

recognisers are with more convenient end-to-end trainable structures. Currently,

recognisers with segmentation-free framework have surpassed the traditional over-

segmentation-based ones and become the dominated solutions to handwritten text

recognition.

CNN is a popular network structure in the field of computer vision and has

played critical roles in many tasks. Numerous sophisticated techniques are studied

to promote its expression ability and recognition accuracy. However, few strategies

are proposed for sequence labelling with CNN except the one proposed by Goodfel-

low et al. [34]. The main difficulties are posed by the arbitrary input size and the

reasonable structure design. Goodfellow et al. [34] recognized Street View House

Number (SVHN) with CNN by assembling multiple softmax classifiers at the out-

put layer. The first one was employed to predict string length and its prediction

result determined how many following classifiers should be taken to figure out tar-

get string. But this method separately trained individual classifiers, and saved a

separate weight matrix for each separate digit classifier. As discussed in [34], for

long sequences this could incur too high of a memory cost. Moreover, this method

resized input images into a fixed size and alleviated deformation caused by resizing

with additional background pixels. This operation also limited the capability of

this method. As pointed out by Goodfellow et al. [34], for large maximum length,

their method was unlikely to scale well. Besides, the resizing operation is not suit-

able for handwritten string recognition since the lengths of handwritten strings are

significantly different, and any resizing operation can cause serious deformation

of characters. In this case, easing deformation by padding additional background



93

pixels will result in heavy computation burden. SPP proposed by He et al. [41]

has the capability to handle the arbitrary input sizes without resizing operation.

Unfortunately, in order to take advantage of the existing GPU implementations

(such as cuda-covnet and caffe), He et al. [41] implemented their SPP network by

two fixed-size networks sharing parameters and preserved the SPP behaviours by

multiple conventional sliding window pooling layers with different pooling sizes and

strides. Hence, during the training procedure, training samples still needed to be

resized into fixed sizes.

In this work, we carefully design a sequence labelling convolutional network,

i.e., CFSPP, to recognize handwritten texts, specially, the intractable connected

patterns. SPP is employed in our network with a new implementation so that

training samples even in the same batch can own different sizes. For the original

SPP, images with different aspect ratios, which indicate different string lengths,

share the same scale setting. Intuitively, more features should be extracted for

images containing more characters, while fewer features are enough for those with

fewer characters. Towards this end, we propose a more flexible pooling strategy

called FSPP, which fixes the vertical scale setting and designs different horizon

scale setting to images according to their aspect ratios.

To demonstrate the effectiveness of the proposed network, we conduct experi-

ments on handwritten digit strings from CVL and ORAND-CAR datasets. Com-

parison with all the participating methods of ICFHR2014 competition shows the

superiority of our proposed network. Furthermore, we collect a cell-phone num-

ber dataset named PhPAIS (cell-phone number dataset collected by Lab of Pattern

Analysis and Intelligence System) from the real China post images to further verify

the practicability of our proposed CFSPP.

6.2 Proposed Method

The architecture of our proposed recogniser is depicted in Fig. 6.1. As we

can see, it is a CNN-based LSTM-free network that is composed of three compo-

nents, i.e., CNN-based feature extractor, SPP-based feature converter and model
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Conv: 
128@3x3

Conv:
 128@3x3

Pooling: 
2x2+2
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 256@1x1

Conv: 
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Pooling:
 2x2+1

Pooling:
 2x2+1
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Conv: 
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Middle: 96@1x1
Down: 32@1x1

Conv: 
Up: 96@3x3

Middle: 64@5x5
Down: 32@1x1

Figure 6.1 : Structure of proposed method (from [128]).

predictor. In particular, we firstly design four convolutional layers and two mean

pooling layers before an Inception module to extract expressive features from input

text images. Then, an SPP layer or a Flexible SPP (FSPP) layer is embedded to

convert feature maps with arbitrary sizes to feature vector with fixed lengths so

that they can be fed into subsequent fully-connected layers. If we regard SPP or

FSPP layer as extracting global features at multiple scales, and Inception mod-

ule as extracting local features at multiple scales, setting a SPP or FSPP layer

after an Inception module [118] will be beneficial for the model to extract richer

information. Afterwards, outputs of the fully connected layer are fed into the final

task-specific module to produce the expected sequential characters. Intuitively,

information from two aspects needs to be extracted: (1) how many characters are

contained in the input images, and (2) what exactly it is at each position. There-

fore, we equip the proposed network with two modules named CM, which is short

for ‘counting module’, and PM, which is short for ‘prediction module’, to predict

the corresponding information. Apparently, the proposed network is supposed to

have a cluster of classifiers rather than a single one. Therefore, we need to blend

prediction errors of these classifiers into one structure when we design the cost

function for the network.
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6.2.1 CNN-based Feature Extraction

The existing recognisers usually rescale input text images to a fixed size to

fit the requirement of computation and network structures. Moreover, to avoid

deformation caused by resizing, additional background pixels are usually padded

around text images. As shown in Fig. 6.2, when the padding operation is not

applied, huge deformation will be introduced because of the large differences in

string lengths, while when additional pixels are padded, the computation burden

will increase significantly since all of the pixels are treated equally. To tackle this

problem, in our work, we firstly pad images to the maximal image size of current

batch, and then flow the original heights and widths of individual text images

to GPUs together with the padded images. According to the original heights

and widths of input images, GPUs do not perform any calculation for padded

background pixels so that extra computation can be saved.

In Fig. 6.1, a@b × c means that there are a filters with size b × c in current

convolution layer and d × e + f means that current average pooling layer is with

a pooling window size of d × e and a step of f . As seen, in our recogniser, text

images are firstly sent to four convolutional layers and two pooling layers, and then

an Inception module is employed to extract features from multiple scales. The

Inception module is a carefully hand-crafted structure proposed in GoogleNet [118]

and consists of multiple parallel branches with various receptive fields. As clarified

in [118], this module is used to approximate an optimal local sparse structure with

Input text 
images

Resize without 
padding

Resize with 
padding

Figure 6.2 : Resize text images with/without padding.
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readily available dense components.

6.2.2 Reimplementation of SPP

SPP is proposed by He et al. [41] to handle objects with arbitrary sizes in the

object detection task. Expectedly, it can be applied on images with any sizes. How-

ever, to alleviate the existing GPU implementations (e.g., cuda-convnet and caffe)

that run on images with fixed sizes, in [41], SPP is implemented with two fixed-size

networks that share parameters among layers with different configurations. Fur-

thermore, to adapt to this implementation, He et al. [41] specially designed two

training strategies in their work, i.e., single-size training and multi-size training,

where input images still needed to be rescaled into fixed sizes. Apparently, as

explained above, this implementation is not suitable for handwritten text recogni-

tion. Therefore, in this work, we reimplement SPP in a more straightforward way

as presented below.

The input of the SPP layer is a serial of feature maps, each of which needs

to be pooled into fixed-length representations at this layer in the way depicted in

Fig. 6.3(a). Assuming the total number of pre-defined scales is T , an input feature

map is divided into different bins evenly at each scale, and for the tth scale, there

will be t × t = t2 bins. Then, for each bin, we calculate the mean value or max

value (mean value is chosen in our experiments) as its representation. Obviously,

if we set the overall scale number to be T , 1 + 22 + ...+ T 2 = T (T+1)(2T+1)
6

features

will be obtained for each feature map. We denote the size of an input feature map

as a× b. For the tth scale, if a or b cannot be exactly divided by t, bins of the last

column or row will share pixels with the previous ones.
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(a) Procedure of forward propagation (under the setting T=3)

(b) Procedure of backward propagation (under the setting T=3)

(c) Error term contribution of Γ3to point p
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p

3_ p

row1
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Figure 6.3 : Implementation of spatial pyramid pooling (from [128]).

The procedure of back propagating error terms is described in Figure 6.3(b).

Firstly, elements of error term vector are mapped into corresponding spatial bins

of each scale. Then, error terms of proceeding layer are calculated from values of

bins at different scales. For the tth scale, we denote error term of bin at position

(i, j) as δt ij, and the error term map of this scale as Γt. δt p means the total error

term contribution of bins at tth scale to pixel p of certain feature map in previous
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layer. The final error term of pixel p is calculated by Eq. 6.1.

δp =
T∑
i=1

δi p
ba/ic × bb/ic

. (6.1)

Note that in the forward procedure, several bins may share the same pixels. There-

fore, error terms are also shared by multiple pixels in the corresponding backward

procedure. Figure 6.3(c) demonstrates one of the sharing cases. In this situation,

δ3 p is computed by Eq. 6.2 since there are four bins sharing pixel p in the forward

procedure.

δ3 p = δ3 22 + δ3 33 + δ3 32 + δ3 23. (6.2)

With above implementation, our network can be trained with samples in ar-

bitrary sizes directly. In the experiments, samples within the same batch may

have different sizes, unlike the implementation in [41]. Theoretically, our imple-

mentation can be used to recognize handwritten strings with any length, while the

original training strategy proposed in [41] cannot since its resizing operation will

cause deformation of strings. The longer the string is, the severer the deformation

becomes.

6.2.3 Flexible SPP Layer

Intuitively, text images containing longer strings should be represented by more

features, while those with shorter strings only need fewer features. However, SPP

or any other existing networks treat all of the input images equally and extract

features with the same sizes for them. To address this issue, in this work, we modify

SPP to a more flexible version, i.e., Flexible SPP (FSPP), to extract features with

different sizes for text images containing different strings.

Flexible SPP (FSPP) is different from SPP in the following two aspects: (1)

in the vertical direction, the scale is fixed (set to 3 in our work), and (2) in the

horizontal direction, the setting of scale is dynamically changed according to the

aspect ratios of input images. The procedure of feature extraction is shown in

Fig. 6.4. As seen, in SPP, 30 features are extracted for both text images containing

‘78’ and ‘83920’ when the sale is set to 4. While in the FSPP strategy, 18 features



99

are extracted for the former and 45 features are extracted for the latter when the

scale is set to 3 and 5 for them, respectively.

(a) Images with different numbers of characters

Input 
image

Feature 
map Scale=1 Scale=2 Scale=3 Scale=4

(b) Converting feature map into fixed-length representation by standard SPP

Input 
image

Feature 
map

Scale=1 Scale=2 Scale=3 Scale=4

(c) Converting feature map into fixed-length representation by the proposed FSPP

Scale=5

Figure 6.4 : Feature extraction of the SPP layer and FSPP layer from feature maps

with arbitrary sizes (from [128]).

Then, we send the extracted features into the subsequent fully-connected layer

in the way shown in Fig. 6.5, where FMi represents the converted features of ith

feature map. In this figure, the scale is set to 2, 3 and 4 (or larger) for images

with aspect ratios (denoted by AR) within the interval (0, τ1], (τ1, τ2] and (τ2,∞),

respectively. Each node Nd in the next layer needs to connect with all of the

extracted features in the FSPP layer. For example, if the aspect ratio of certain

input image is within (τ1, τ2], the scale will be set to 3 in the FSPP layer, and

each node Nd will connect with 3 × (1 + 2 + 3) × M = 18M features totally.

In practice, we need the image sizes together with raw image pixels flow into the

network simultaneously so that GPUs can directly determine pooling scales for
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Figure 6.5 : Connection of the FSPP layer to the next fully-connected layer

(from [128]).

individual images at this layer.

6.2.4 Model Prediction

Considering an input image X containing N characters D = {d1, d2, ..., dN}, the

objective of the basic approach is to predict N and digit di at position pi correctly.

Suppose the maximal input sequence length is K, which is pre-determined, we de-

sign K nodes at CM and K softmax classifiers at PM. Let us denote the prediction

result of CM as L, L 6 K, and K prediction results of PM as S = {s1, ..., sK}, si ∈

Φ∪ {NAN}, where Φ represents the alphabet of characters needed to be predicted

and NAN means that there is no character showing at this position. In this archi-

tecture, we assume that characters are independent from each other. Therefore,

for a specific sequence with l characters G = {l, g1, ..., gl}, l ≤ K, its probability

output can be defined as Eq. 6.3, where p(·) is the probability output of softmax

classifiers. The optimal prediction result G′ = {l′, g′1, ..., g′l′} of the architecture is
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determined by Eq. 6.4.

P (G|X) = p(L = l|X)
l∏

i=1

p(si = gi|X)
K∏

j=l+1

p(sj = NAN|X). (6.3)

G′ = (l′, g′1, ..., g
′
l′) = argmax

l,g1,...,gl

logP (G|X). (6.4)

At the backward propagating stage, the gradients are back propagated with

Stochastic Gradient Descent (SGD) with momentum. We denote the batch size as

m, then the cost function of the proposed network can be formulated as Eq. 6.5,

where X(i) is the input image of the ith sample, which contains N (i) characters

{d(i)1 , ..., d
(i)

N(i)}, and s
(i)
k denotes the prediction result of the kth classifier in PM for

the ith sample. This cost function fuses prediction errors of CM and PM into one

structure, so we can train all of the softmax classifiers simultaneously by minimizing

this function. In order to prevent overfitting, we introduce a weight decay term and

rewrite the cost function to Eq. 6.6, where λ is the weight decay used to control

the relative importance of this item, and W denotes the set of weight coefficients of

the network. Parameters θ including weight coefficients W and bias b are updated

by θ = θ − α∇θJ , where α is the learning rate.

J =− 1

m
[
m∑
i=1

log(p(L = N (i)|X(i))
N(i)∏
k=1

p(s
(i)
k = d

(i)
k |X

(i))

K∏
k=N(i)+1

p(s
(i)
k = NAN|X (i)))].

(6.5)

J =− 1

m
[
m∑
i=1

log(p(L = N (i)|X(i))
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In our design, the possibilities of strings with length from 1 to K are calculated

and compared while considering all of the classifiers’ prediction results. While in
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Goodfellow’s design [34], if the prediction result of the first classifier is k, the pre-

diction results of the subsequent k classifiers are simply concatenated to obtain

the target string, and the prediction results of other classifiers are omitted. More-

over, as discussed in [34], given a maximal string length setting K, Goodfellow’s

model [34] employs K classifiers, each of which has its own weight matrix, to pre-

dict characters at individual locations, resulting in a dramatic increase of memory

cost. Therefore, their model is not applicable for text images with long strings.

By contrast, our model predicts characters at all locations with only one single

character classifier, so it does not suffer from the memory cost problem for any

maximal string length settings. In addition, unlike Goodfellow’s work [34], which

resizes input images into a fixed size, we utilize the re-implemented SPP or FSPP

to handle arbitrary input image sizes without any resizing operation.

6.3 Experiments

We conduct experiments on handwritten digit strings obtained from CVL and

ORAND-CAR datasets (provided by Diem et al. [26]) to demonstrate the effective-

ness of our proposed CFSPP network, and compare its performance with that of

all the participating methods of ICFHR2014 HDSR competition. To further verify

the practicability of the proposed network and the priority of the FSPP layer, we

also carry out experiments on our own cell-phone number dataset named PhPAIS.

6.3.1 Datasets

CVL is collected amongst 300 students from the Vienna University of Technol-

ogy. Images in this dataset are with no background noise, but texts presented in

these images are written with different colours.

ORAND-CAR is split into CAR-A and CAR-B since it is obtained from real

cheques provided by two different banks. Notably, text images from CAR-A and

CAR-B are with different background patterns and cheque layouts.

PhPAIS is our private dataset collected from the real China post mail images.

As shown in Fig. 6.6, we manually crop and label handwritten phone numbers from
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these images, and finally, 11477 handwritten text images are collected. In addition,

from the comparison with CVL and ORAND-CAR in Fig. 6.7, we can see that,

strings presented in PhPAIS are much longer, and thus the recognition task on

PhPAIS is much more challenging.

Figure 6.6 : China post mail images used to collect handwritten phone numbers

for PhPAIS dataset. Some contents are covered by masks for privacy protection.

Fig. 6.7 exhibits some samples from the datasets described above. Some digits

of strings from the PhPAIS dataset are covered for privacy protection. Apparently,

compared with scene texts, handwritten texts are with various handwriting styles

and suffer from connected characters. Distribution of the samples in each dataset

with respect to string length is shown in Table 6.1.

6.3.2 Implementation Details

We utilize Rectified Linear Units (ReLU) as our activation function and opti-

mize the proposed network via SGD with momentum. The learning rate is initial-

ized to 0.01 and reduced by half per epoch. The precision is defined as the number

of correctly recognized strings divided by the total number of strings, which is the

same as the hard metric defined in ICFHR2014 competition [26]. Additionally, our
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CVL CAR-A

CAR-B

PhPAIS

Figure 6.7 : Samples from CVL, ORAND-CAR and PhPAIS.

Table 6.1 : Distribution of the four different databases with respect to string length

Len
train test

CVL CAR-A CAR-B PhPAIS CVL CAR-A CAR-B PhPAIS

2 0 22 0 0 0 36 0 0

3 0 204 0 0 0 387 5 0

4 0 704 63 0 0 1425 69 0

5 125 903 1200 0 789 1475 1241 0

6 758 145 1599 828 4144 363 1452 912

7 379 29 137 244 1765 87 157 350

8 0 2 1 264 0 11 2 379

9 0 0 0 178 0 0 0 313

10 0 0 0 364 0 0 0 586

11 0 0 0 3122 0 0 0 3937

Total 1262 2009 3000 5000 6698 3784 2926 6477
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network is coded in Matlab, C++ and CUDA languages without using any other

open frameworks such as caffe, torch, tensorflow, etc.

6.3.3 Training Strategies

From Table 6.1, we can see that the length of digit strings ranges from 2 to

11. However, it does not mean all of the digits are totally connected (as shown in

Fig. 6.6). Actually, handwritten digit strings usually consist of single digits and

connect patterns with shorter length, and it is not hard to split these digit strings.

Therefore, our network only needs to deal with the single digits and the connected

patterns. According to our statistics, the dominant lengths of connected patterns

in CVL and CAR datasets are 1, 2 and 3, so it is reasonable to set the maximal

input sequence length K = 3 for the CVL and CAR datasets. The connection

situation of PhPAIS is more serious, so we set K = 5 for this dataset.

To train the proposed network, we generate new datasets croppedCVL, croppedCAR-

A, croppedCAR-B and croppedPhPAIS by manually cropping the digit images from

CVL, CAR-A, CAR-B and PhPAIS. The new datasets are composed of single digits

and strings with 1 to 5 digits. Corresponding distribution is presented in Table 6.2.

Table 6.2 : Distribution of the cropped datasets with respect to string length

Len
croppedCVL croppedCAR-A croppedCAR-B croppedPhPAIS

train test train test train test train test

1 7613 4714 8985 3667 15515 4386 48248 7133

2 6434 3977 6957 2886 13198 3599 42934 6368

3 5267 3206 4985 2088 10489 2802 37710 5630

4 0 0 0 0 0 0 33318 5211

5 0 0 0 0 0 0 28207 4425

total 19314 11897 20927 8641 39202 10787 190417 28767

Recognition accuracies of the proposed network with respect to different string

length on croppedCVL, croppedCAR-A and croppedCAR-B datasets are shown in

Table 6.3. Since the connection situation of these datasets are not very serious, we

just use SPP layer in this network and set the scale to 4 in this layer. As seen,
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though the background of ORAND-CAR is very complicated, our proposed network

is still capable of achieving the accuracies higher than 95% on both croppedCAR-A

and croppedCAR-B datasets. We attribute the success to the deep and properly de-

signed network structure and to the huge amount of training samples. Additionally,

though CAR-B is the most challenging dataset among CVL, CAR-A and CAR-B,

our network achieves the best performance on croppedCAR-B dataset as shown in

Table 6.3, especially for strings with length of three. The reason is implied in Table

6.3, where the amount of training samples in croppedCAR-B is about two times

of that in croppedCVL or croppedCAR-A. Therefore, we can figure out that more

samples are very helpful for improving the performance of the proposed network,

and it is very likely to improve the accuracies on croppedCVL and croppedCAR-A

by providing more training samples.

Table 6.3 : Recognition accuracies (%) on the cropped datasets

Len 1 2 3 Mean

croppedCVL 96.37 89.21 78.32 89.11

croppedCAR-A 98.06 95.29 89.61 95.09

croppedCAR-B 98.72 95.97 92.65 96.23

6.3.4 Performance of the Proposed Network

We compare our method with the submissions of ICFHR2014 HDSR competi-

tion under the same evaluation metrics. To recognize handwritten strings in CVL

and ORAND-CAR, we coarsely segment original images into single digits and con-

nected patterns by using horizontal projection and connected component analysis.

Then, the trained sequence labelling network is used to recognize each segment

and the final results are obtained by simply joining the recognition results of all

segments together.

Comparison results are shown in Table 6.4. Obviously, the proposed method

achieves the highest mean accuracy on the three datasets. Especially, the accuracies

on both challenging CAR-A and CAR-B datasets outperform the other methods by



107

a large margin. According to [26], Beijing along with Pernambuco outperformed

the other participating methods. The mean accuracies on CAR-A and CAR-B

datasets of the Beijing and Pernambuco are (80.73% + 70.13%)/2 = 75.43% and

(78.30% + 75.43%)/2 = 76.87%, respectively. Our method gets a mean accuracy

of (82.61% + 83.32%)/2 = 82.97%, which is 7.54% and 6.10% higher than the

Beijing and Pernambuco methods, respectively. Beijing is a well-designed over-

segmentation method and Pernambuco is a combination of multiple classifiers in-

cluding a hybrid classifier combining k-NN and SVM, and a hybrid classifier com-

bining SVM and MDRNN [37]. The combination of k-NN and SVM is supposed to

be an over-segmentation method while the combination of SVM and MDRNN is

a segmentation-free method. Besides that, Pernambuco takes real data extracted

from Brazilian bank cheques of last decades into account. Singapore combines

HOG feature and RNN to handle this task, but due to the small amount of train-

ing samples, it doesn’t perform well.

Table 6.4 : Recognition accuracies (%) of different methods

Method CAR-A CAR-B CVL Mean Framework

Tebessa I 37.05 26.62 59.30 40.99 over-segmentation

Tebessa II 39.72 27.72 61.23 42.89 over-segmentation

Singapore 52.30 59.60 50.40 54.10 segmentation free

Pernambuco 78.30 75.43 58.60 70.78 combined both

Beijing 80.73 70.13 85.29 78.72 over-segmentation

Proposed 82.61 83.32 79.23 81.72 —-

From Fig. 6.5, we can see that both CAR-A and CAR-B are disturbed by

background clutter and suffer from character connection problem. It seems there

is no difference between these two datasets. However, according to Table 6.3, the

dominant length of CAR-A is four and five, while it is five and six for CAR-B.

The little difference has caused a large margin in recognition accuracy. As shown

in Table 6.4, all the methods achieved higher accuracies in CAR-A than CAR-B

except Singapore. Apparently, these methods are very sensitive to string length.

However, our method achieves very similar accuracies on the two datasets, so the
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Table 6.5 : Recognition accuracies (%) on the croppedPhPAIS and PhPAIS

datasets

croppedPhPAIS PhPAIS

Set-ting Pooling &scale Len=1 Len=2 Len=3 Len=4 Len=5

1 SPP&4 99.45 98.79 97.10 95.30 91.82 84.47

2 SPP&3 99.36 98.38 97.26 94.53 89.99 82.49

3 FSPP &2,3,4 99.44 98.45 97.19 94.59 91.77 84.31

4 FSPP &3,4,5 99.48 98.74 97.39 95.16 92.45 84.72

proposed method is more robust to string length. We blame the low accuracy of

our method on CVL to the lack of diversity of this dataset since only 26 different

strings are included by its 7960 samples (only 1262 for training). Though it is 6%

lower than Beijing on CVL dataset, our method still achieves an accuracy that

is 20% higher than Pernanmbuco. Overall, our method outperforms all of the

participating methods of ICFHR2014 competition with a mean accuracy of 81.72%

on the three datasets.

6.3.5 Comparison of SPP and FSPP on PhPAIS Dataset

The superiority of the proposed FSPP is evaluated on the PhPAIS dataset.

Images in this dataset suffer from much longer string length (mostly 11) and more

serious connection situation (maximal string length of connected patterns is up

to 5). The proposed network is evaluated under four settings, which share the

same configuration except the SPP/FSPP layer. Details and recognition results

are shown in Table 6.5. Aspect ratio intervals of FSPP in setting 3 and 4 are

(0, 0.5), [0.5, 0.9) and [0.9,∞). Network trained on the croppedPhPAIS is used to

recognize the full-length strings of the PhPAIS dataset by cooperating with some

simple coarse segmentation strategies.

Comparing recognition results of the first two settings, we can figure out that,

reducing scales of the SPP layer will not cause significant performance degrada-

tion to the short strings, which means that too many features is redundant and
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unnecessary for short strings. In contrast, a larger performance degradation can

be observed on longer strings. Intuitively, longer strings need richer features to

discriminate characters at each position, so increasing scales is preferable to reduc-

ing them. Overall, scale reduction leads to a performance degradation of 2% on

the PhPAIS dataset. When the more flexible FSPP is employed, different scales

are set according to aspect ratios that related to string lengths. Obviously, the

performance degradation is alleviated in a large degree and only 0.16% accuracy

reduction is caused. Furthermore, we can reduce the scales for short strings and

increase the scales for long strings at the same time by using FSPP as the fourth

setting does. By this means, performance is slightly improved when comparing the

first and the last settings. In conclusion, the proposed FSPP is a better choice for

strings with longer string lengths and a more serious connection situation.

6.4 Conclusion

This work has presented a sequence labelling convolutional neural network for

handwritten text recognition. We have reimplemented the SPP layer to handle

the arbitrary string length problem, and designed an output layer with multiple

softmax classifiers to deal with sequence labelling issue. Additionally, we have

proposed a more flexible pooling strategy called FSPP on the basis of SPP to

promote the performance of the proposed network on long strings. The proposed

network directly recognize handwritten strings without segmenting them, so the

challenges posed by connected patterns are avoided. Experimental results have

shown that by combining with some simple coarse segmentation strategies, the

proposed network is able to process long handwritten strings.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Texts are priceless treasure inherited from our ancestors, and for thousands of

years, they have been playing critical roles in promoting human civilization, espe-

cially in the current age of information explosion. Reading texts, including scene

texts and handwritten texts, from images is becoming more and more important

with the dramatic development of techniques on image capturing, especially those

for mobile devices.

From our research, we can see that text detection and recognition have entered

a deep learning era. Deep network-based text detectors and recognisers have sur-

passed traditional ones by large margins in both structures and performances. At

present, the most state-of-the-art approaches are on the base of CNN and LSTM.

In this work, we have studied drawbacks of these approaches and proposed the

solutions as follows.

1. To improve the recall rate of small text areas in oriented text detection, we

propose to insert multiple ASPP modules into Xception after feature maps

with different resolutions. This strategy significantly improves the recall rate

of small text areas and F-measure. We also introduce auxiliary connections

and auxiliary losses to speed up convergence and boost the discrimination

ability of lower encoder layers.

2. To address the issue that the RoIAlign module of Mask R-CNN cannot fully

leverage global information when performing predictions, we design a global

mask module to perform semantic segmentation while considering global in-

formation and enhance features extracted by FPN with the predicted results.
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The proposed module is trained in a supervised way and is able to effectively

improve detection performance.

3. To tackle the problem that LSTM neglects the valuable spatial and struc-

tural information of 2-D text images, we propose a scene text recogniser that

exploits ConvLSTM to directly perform sequential transcription in a 2-D

space, and a scene text recogniser that utilizes one-hot encoded locations to

enhance features with pixels’ spatial information. Both recognisers achieve

promising performances on recognizing low-resolution texts, noisy texts and

curved texts.

4. To solve the problem that CNNs with fully connected layers are not suitable

for sequential prediction tasks, we propose a CNN-based sequential labelling

network and apply it to handwritten text recognition. The proposed net-

work embeds an SPP-based intermediate layer between convolutional layers

and fully connected layers to convert arbitrary-size feature maps into fea-

ture vectors with specific lengths, which are decided adaptively according to

the aspect ratios of input text images. The proposed network is able to ef-

fectively recognize handwritten digit strings on real-word bank cheques and

handwritten phone numbers.

7.2 Future Works

CNN and LSTM play critical roles in text detection and recognition. Thought

detectors and recognisers applying CNN and LSTM have achieved promising per-

formance, there are still many other interesting and challenging topics about text

reading, as presented below.

1. Generating synthetic handwritten text images. A large number of scene text

images have been produced via deep networks to improve the performance

of scene text detection and recognition, but techniques for handwritten text

generation have not been studied.

2. Improving performance with unlabelled data. Capturing text images is easy,
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but annotating them is exhausted and time-consuming. Therefore, utilizing

unlabelled or partially labelled data for text detection and text recognition

with unsupervised learning or semi-supervised learning methods is important.

3. Scene text visual question answering. Texts presenting in images convey im-

portant semantic information and help us to understand the man-made envi-

ronments better. Therefore, understanding images while considering texts is

attracting more and more attentions from the community of computer vision.

4. Searching better network architectures with Neural Network Search (NAS)

techniques. According to literature, networks searched by NAS have achieved

better efficiency and effectiveness than manually designed networks. There-

fore, seeking more powerful deep networks via NAS for text detection and

text recognition is supposed to be helpful.

5. Exploring solutions to data scarcity. Data scarcity is a common problem

in computer vision tasks, especially for text detection and text recognition.

Domain adaption and one/few-shot learning are the two most effective solu-

tions. Therefore, in our future work, we will also conduct researches in this

direction.
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