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Format of Thesis 

This thesis consists of five chapters. Chapter 1 is the introduction and in Chapters 2-4 the 

research results are the focus on applying optical nonlinear response curves of 

upconversion nanoparticles. The objective is to implement new modalities of super-

resolution microscopies. Chapter 5 concludes this thesis with a summation of the main 

themes covered in this investigation. This thesis flowchart is illustrated below.  

 

This thesis summarizes the key results from my PhD research program, in which the topic 

covered is super-resolution microscopy and nanoparticle-based super-resolution 

microscopy. My PhD sets out to develop new super-resolution microscopy methods using 

advanced nanomaterials. The main bulk of the framework developed for this thesis 

consists of three results chapters. The first chapter describes the use of a near-infrared 

nonlinear response curve from a single nanoparticle to develop a deep tissue super-

resolution imaging method. The second results chapter takes advantages of the two 

response curves from two emission bands of a single nanoparticle, which yields two 
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things: the overall improved image quality; and increased imaging speed. In the third 

chapter concerning the results, I explore the multiple emission curves derived from 

different nanoparticles for robust optical multiplexing detection. Lastly, the conclusion 

and discussions for future research are provided.   
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Abstract 

Due to the unique optical properties gained by converting near-infrared light to shorter 

wavelength emissions, upconversion nanoparticles (UCNPs) have attracted considerable 

interest. Their superior features, including their multi-wavelength emissions, optical 

uniformity, background suppression, photostability and deep penetration depth through 

the tissue, make them extremely suitable for biological and biomedical applications. By 

taking advantage of their multi-photon nonlinear emissions in UNCPs, the goal of this 

thesis is to develop UCNPs-based super-resolution microscopy methods to address the 

challenges currently facing nanoscopy, for instance complexity, stability, limited 

penetration through the tissue and low throughput. The methods being investigated in this 

thesis make concrete the specific advantages in terms of image depth, speed, overall 

quality, and multiplexing potentials. To unlock a new mode of deep tissue super-

resolution imaging, I first developed the near-infrared emission saturation (NIRES) 

nanoscopy by taking advantage of near-infrared-in and near-infrared-out optical 

nonlinear response curve from a single upconversion nanoparticle. This approach only 

requires two orders of magnitude that are lower than the excitation intensity, which is 

generally required for conventional multi-photon dyes. This work achieves a super-

resolution of sub 50 nm, less than 1/20th of the excitation wavelength, and can image 

single UCNP through a 93 µm thick liver tissue.  

To improve the overall imaging quality and simplify the system setups, I further exploited 

the distinct nonlinear photon response curves from the two emission bands in UCNP, and 

explored an opportunity for a tightly focused doughnut excitation to generate distinct 

spectral dependent point speared functions (PSFs). With controllable PSFs from multi-

channel emissions by the excitation power density, this work presents the possibility of 

achieving super-resolution imaging under saturated fluorescence excitation via PSF 

engineering. Moreover, I developed a multicolour Fourier fusion algorithm to enlarge the 

optical system's frequency shifting ability, and yield an enhanced imaging quality at a 

higher imaging speed. By realising the uniform and distinct nonlinear emission curves 

from different nanoparticles, this work posits a new optical encoding dimension for 

multiplexing imaging. Proposed here is a robust PSF engineering strategy to extract 

emitter properties. This work extends the multiplexing capacity of UCNPs and offers new 
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opportunities for their applications. These methods are my contributions to the search for 

a stable, viable, and multifunctional optical imaging modality for the nanoscale context.  
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