

Multi-photon Nonlinear Fluorescence Emission in Upconversion Nanoparticles for Super-Resolution Imaging

by Chaohao CHEN

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Dr. Fan Wang, Prof. Dayong Jin, Dr. Qian Peter Su, Dr. Peter Reece

University of Technology Sydney Faculty of Science

04/09/2020

Certificate of Original Authorship

I, Chaohao CHEN declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mathematical and Physical Sciences, Faculty of Science, at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 04/09/2020

'For my lover Rui Zhao

Acknowledgements

First and foremost, I would like to express my deep and sincere gratitude to my supervisors. I am particularly grateful to Prof. Jin for offering the opportunity to pursue a PhD in such a great research platform, to Dr Wang for the patient advises and guidances in the experiment designs and modelling simulations, to Dr Su for mentoring the knowledge in biological engineering and Dr Peter Reece in the optical engineering. I would like to thank each of them for their constructive criticisms and helpful discussions on my PhD thesis. Their research attitudes always inspire me to work happily and professionally.

I would like to address a special thanks to Mr Baolei Liu for help developing the image process algorithm, Mr Xuchen Shan for the Labview code and Mr Yongtao Liu for the help of energy level simulations. I would like to acknowledge to Mrs Xiangjun Di, Mr Dejiang Wang and Mr Baoming Wang for their help with cell culture that involved in this thesis. I would also like to thank Dr Jiayan Liao and Dr Shihui Wen for the high-quality upconversion nanoparticle synthesis.

I would like to mention all the member of the IBMD (past and present), who has provided technical supports or experiments suggestions and assistance. I enjoy working with these lovely people and appreciate their help whenever I get any experimental difficulties. I would like to thank all of the friends I have who exist outside the realm of research during the three years in Sydney. Thanks for being so understanding and always keeping my feet on the ground.

I would like to thank my supportive family for their continuous supports and love throughout my whole life. Specially thanks to my wife Rui Zhao, for her understanding and incalculable contribution to our little family.

Finally, I would like to acknowledge the Australian Government Research Training Program and the China Scholarship Council Scholarship for providing the scholarship and research opportunities.

Format of Thesis

This thesis consists of five chapters. Chapter 1 is the introduction and in Chapters 2-4 the research results are the focus on applying optical nonlinear response curves of upconversion nanoparticles. The objective is to implement new modalities of super-resolution microscopies. Chapter 5 concludes this thesis with a summation of the main themes covered in this investigation. This thesis flowchart is illustrated below.

This thesis summarizes the key results from my PhD research program, in which the topic covered is super-resolution microscopy and nanoparticle-based super-resolution microscopy. My PhD sets out to develop new super-resolution microscopy methods using advanced nanomaterials. The main bulk of the framework developed for this thesis consists of three results chapters. The first chapter describes the use of a near-infrared nonlinear response curve from a single nanoparticle to develop a deep tissue super-resolution imaging method. The second results chapter takes advantages of the two response curves from two emission bands of a single nanoparticle, which yields two

things: the overall improved image quality; and increased imaging speed. In the third chapter concerning the results, I explore the multiple emission curves derived from different nanoparticles for robust optical multiplexing detection. Lastly, the conclusion and discussions for future research are provided.

List of Publications

- > <u>Articles</u>
- 1. Chen, C., Liu, B., Liu, Y., Liao, J., Wang, F. & Jin, D. Fourier domain heterochromatic fusion for single beam scanning super-resolution microscopy. (Under revision)
- Chen, C.[†], Wang, F.[†], ... & Jin, D. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. <u>Nature Communications (2018)</u>, 9:3290.
- 3. Chen, C., Liu, Z. & Jin, D. Bypassing the limit in volumetric imaging of mesoscale specimens. *Advanced Photonics (2019)* 1.2 : 020502.
- 4. Liu, B., Chen, C., Di, X., Wang, F. & Jin, D. Upconversion nonlinear structured illumination microscopy. *Nano Letter (2020)* 20, 7, 4775-4781.
- Liao, J., Jin, D, Chen, C., Li, Y. & Zhou, J. Helix shape power-dependent properties of single upconversion nanoparticles. *Journal of Physical Chemistry Letters (2020)* 11, 8, 2883-2890.
- Liu, Y., Wang, F., Liu, H., Fang, G., Wen., Chen, C. ... & Jin, D. Super-Resolution Mapping of Single Nanoparticles inside Tumor Spheroids. <u>Small (2020)</u> 10.1002. 201905572.
- Clarke, C., Liu, D., Wang, F., Liu, Y., Chen, C., ... & Jin, D. Large-scale dewetting assembly of gold nanoparticles for plasmonic enhanced upconversion nanoparticles. <u>Nanoscale (2018)</u> 10 (14), 6270-6276.
- Publication in the conference proceeding
- Chen, C., Wang, F.... & Jin, D. Upconversion nanoparticles assisted multi-photon fluorescence saturation microscopy. In Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI (Vol. 10891, p. 108910S). International Society for Optics and Photonics. SPIE 2019
- Patents
- 9. Wang, F., Jin, D. & Chen, C. A super-resolution imaging method, a plurality of upconversion nanoparticle fluorophores, and a super-resolution scanning microscope. WO2020028942A1, 2020-02-13. WIPO (PCT)
- Chen, C., Jin, D. & Wang, F. A super-resolution imaging method, a plurality of upconversion nanoparticle fluorophores, and a super-resolution scanning microscope. AU2018902855A0, 2018-08-16, (Australian Patent)

([1,2,8,9,10] are closely related to my PhD program)

λ	Acoustic radiation force	α	Objective aperture angle
n	Refractive index	I _{max}	Maximum STED beam power
I _{sat}	Saturation intensity	hυ	Photon energy
σ	Cross-section of excitation	$ au_{fl}$	Fluorescence lifetime
<i>T</i> ₁	The metastable dark triplet state	N	Total captured number of photons
S	The standard deviation of Gaussian function	b	The standard deviation of the background noise
I_{FED}	Image of FED	I _{Gau}	Image of a Gaussian beam
I _{Dou}	Image of a doughnut beam	r	A normalising coefficient
R _{tr}	The transmission ratio	Р	The beam power
r_o	The loss rate of the objective lens	$t_{ au}$	The exposure time
A	The area of the focused laser spot	f	The pulse frequency
t_p	The pulse duration	$lpha_{\lambda}$	The attenuation coefficient
l	The path length	h_o	The FWHM of confocal PSF
ς	The saturation factor	k_{BA}	The carrier transition rate
σ_{TPA}	The molecular cross-section	$h_{em}(x)$	PSF of emission
$h_{exc}(x)$	PSF of the excitation beam	η	Emission response curve
$h_c(x)$	PSF of the confocal system	PSF _{Gau}	Gaussian PSF
PSF _{Dou}	Doughnut PSF	OTF _{eff}	Processed effective OTF
I _{eff}	Processed effective image	OTF _{Gau}	Gaussian OTF
OTF _{Dou}	Doughnut OTF		

Table of Symbols

Abbreviations

UCNPs	upconversion nanoparticles
NIRES	near-infrared emission saturation
PSFs	point speared functions
FWHM	full width at half maximum
SEM	scanning electron microscopy
TEM	transmission electron microscopy
TIRF	total internal reflection fluorescence
SNOM	scanning near-field optical microscopy
RESOLFT	reversible saturable or switchable optical fluorescence transitions
STED	stimulated emission depletion
GSD	ground-state depletion
SIM	structured illumination microscopy
PALM	photoactivated localisation microscopy
STORM	stochastic optical reconstruction microscopy
OTF	optical transfer functions
SPEM	saturated pattern excitation microscopy
SMLM	single-molecule localisation microscopy
FRC	Fourier ring correlation
SOFI	super-resolution optical fluctuation imaging
PAINT	point accumulation for imaging in nanoscale topography
QDots	quantum dots
CDots	carbon dots
PDots	polymer dots
AIE	aggregation-induced emission

UV	ultraviolet
ACQ	aggregation caused quenching
FED	fluorescence emission difference
MPLSM	multi-photon laser scanning microscopy
NIR	near-infrared
CW	continuous-wave
SW	single wavelength
VPP	vortex phase plate
HWP	half-wave plate
PBS	polarised beam splitter
DM	dichroic mirror
QWP	quarter-wave plate
BPF	bandpass filters
MMF	multimode fibre
SPAD	single-photon counting avalanche photodiode
OA	oleic acid
PFA	Paraformaldehyde
DFT	discrete Fourier transform
FFT	fast Fourier transform
THF	tetrahydrofuran
BSA	bovine serum albumin
BSA	bovine serum albumin
ISM	imaging scanning microscopy
LLS	lattice light sheet

_

Table of Contents

Acknowledg	gementsi
Format of T	'hesisii
List of Publ	icationsiv
Table of Syr	nbolsv
Abbreviatio	nsvi
List of Figur	resxi
List of Tabl	es xvi
Abstract	xvii
Chapter 1	Introduction1
1.1 Diffr	action limit in microscopy2
1.2 Supe	r-resolution technology
1.2.1	Patterned excitation approach
1.2.2	Single-molecule localization
1.3 Nanc	particles in super-resolution techniques17
1.3.1	Quantum dots (QDots)17
1.3.2	Carbon dots (CDots)19
1.3.3	Polymer dots (PDots)
1.3.4	Aggregation-induced emission (AIE) dots23
1.3.5	Lanthanide-doped upconversion nanoparticles (UCNPs)
1.4 Aim	and outline
Chapter 2	Multi-photon near-infrared emission saturation nanoscopy for deep tissue
imaging by	using UCNPs
2.1 Back	ground
2.2 Adva	antage of UCNPs in deep tissue imaging
2.3 Princ	iple of NIRES nanoscopy
2.3.1	Photon transition system in UCNPs
2.3.2	Saturation effect with the doughnut-shaped beam

2.3.3	Emission saturation enabled sub-diffraction resolution	
2.4 Met	thods	43
2.4.1	Experimental setup	43
2.4.2	Materials	44
2.4.3	Biological samples	48
2.5 Res	ults and discussion	50
2.5.1	Optimal emission band	50
2.5.2	Resolution dependent on Tm-doped and excitation power	51
2.5.3	Resolution improved by Yb-doped and core-shell structure	54
2.5.4	Resolving single UCNPs inside HeLa cell	57
2.5.5	Deep tissue imaging by NIRES	58
2.5.6	Discussion	61
2.6 Cor	clusion	62
Chapter 3	Fourier domain heterochromatic fusion for super-resolution n	nicroscopy
by point-sp	oread-function engineering	63
3.1 Bac	kground	63
3.2 Spa	tial frequency domain	65
3.2.1	Image spatial frequency and spectrum	65
3.2.2	Fourier transform	67
3.2.3	Fast Fourier transform	69
3.2.4	Convolution and deconvolution	70
3.2.5	Image filtering	72
3.3 The	multicolour PSF engineering super-resolution microscopy	75
3.3.1	Image subtraction	76
3.3.2	Fourier fusion	80
3.4 Met	thods	86
3.4.1	Experimental setup	86
3.4.2	Materials	
3.4.3	Cellular immunofluorescence	

3.5 Resu	Its and discussion
3.5.1	Multicolour emission in UCNPs
3.5.2	Fourier fusion on single nanoparticles
3.5.3	Comparison of different algorithms
3.5.4	Fourier fusion on continuous specimens
3.5.5	Evaluating image resolution
3.5.6	Discussion
3.6 Conc	elusion
Chapter 4	Distinct nonlinear optical response encoded single nanoparticle for
multiplexed	detection
4.1 Back	ground108
4.2 The	principle of PSF engineering for imaging recognition110
4.2.1	Adjusting the excitation power by polarization110
4.2.2	Nonlinear response in UCNPs
4.2.3	PSF engineering encoding the nonlinear response curves
4.3 Resu	Its and discussion
4.3.1	Verifying the PSF engineering by filters115
4.3.2	Classifying multiple UCNPs at the same intensity with the same colour117
4.3.3	Multiplexing detection of the biomarkers
4.3.4	Discussion
4.4 Conc	elusion
Chapter 5	Conclusion and Future work120
5.1 Cond	elusion
5.2 Futu	re work
5.2.1	Doughnut beam with rare-earth nanocrystals
5.2.2	Doughnut beam with other fluorescent materials124
Appendix I	
Appendix II	131
References.	

List of Figures

Figure 1-1 The principle of a STED microscope
Figure 1-2 The principle of a GSD microscope. (a) A simplified energy level of
stimulated emission. (b) An energy level illustration of a GSD. S_0 is the ground state, S_1
is the excited state, T ₁ is a metastable triplet state
Figure 1-3 The principle of a SIM microscope9
Figure 1-4 The principle of an SMLM microscope
Figure 1-5 The principle of a PAINT microscope
Figure 1-6 Immunofluorescence imaging results of with QDots
Figure 1-7 Super-resolution imaging of CDots-labelled structures inside a cell20
Figure 1-8 Super-resolution nanoscopy of subcellular structures labelled with small
photoblinking PDots
Figure 1-9 Super-resolution imaging of the subcellular structures labelled using AIE dots.
Figure 1-10 Subdiffraction imaging with UCNPs

Figure 2-1 Diagram of the conventional two-photon emission
Figure 2-2 Diagram of upconversion emission in UCNPs
Figure 2-3 Summary of the minimum energy densities required by a range of optical
probes for deep tissue super-resolution imaging
Figure 2-4 Rate transition system of UNCPs
Figure 2-5 Simulated excitation power-dependent emission intensity
Figure 2-6 Theoretical simulation of the image of single UCNP by NIRES40
Figure 2-7 The simplified energy levels and 800 nm emission power dependence of Yb^{3+}
and Tm ³⁺ co-doped UCNPs
Figure 2-8 The principle of NIRES nanoscopy using UCNP as a multi-photon probe for
deep tissue imaging41

Figure 2-9 Experimental setup for NIRES nanoscopy43
Figure 2-10 TEM images (left) and size distribution histograms (right) of the nanoparticles
Figure 2-11 The upconversion emission spectra from UCNPs47
Figure 2-12 The saturation intensity curve of the 800 nm emissions from UCNPs48
Figure 2-13 Photographs of different mouse tissue slices on glass slides
Figure 2-14 UV–vis absorption spectra of the 50 µm and 100 µm live, brain, and kidney tissue slice samples, respectively
Figure 2-15 Optimal emission band to achieve high resolution under the same excitation power
Figure 2-16 The acquired images of different Tm^{3+} doping concentration of UCNP (NaYF4: 20% Yb ³⁺ , x% Tm ³⁺ , ~40 nm in diameter) under different excitation power51
Figure 2-17 Super-resolution scaling Δr of UCNPs (NaYF4: 20% Yb ³⁺ , x% Tm ³⁺ , ~40 nm in diameter; $x = 2, 3, 4, 6$ and 8) as a function of the excitation power (intensity)52
Figure 2-18 Two cross-section line profiles with negative-shaped PSF overlapping with different centre distance from 10 nm to 50 nm
Figure 2-19 The resolution can be improved by increasing sensitizer concentration54
Figure 2-20 The resolution can be improved by adding an inert shell
Figure 2-21 800 nm emission saturation curves of UCNPs with different size
Figure 2-22 NIRES super-resolution imaging of single UCNPs inside the HeLa cell. 57
Figure 2-23 Resolved two particles with distance below the diffraction limit
Figure 2-24 The penetration depth of different emission bands and optical resolution of different imaging modalities at different depth of a liver tissue slice
Figure 2-25 NIRES nanoscopy for super-resolution imaging of single UCNPs through deep mouse liver tissue
Figure 2-26 NIRES images in the deep mouse brain and kidney tissue

Figure 3-1 The line pairs in an image plane
Figure 3-2 The process of image convolution71
Figure 3-3 Image filtering in the spatial domain72
Figure 3-4 The ideal image filter74
Figure 3-5 The Gaussian image filter75
Figure 3-6 The Butterworth image filter75
Figure 3-7 The concept of multicolour PSF engineering super-resolution microscopy.
Figure 3-8 The principle of the FED image subtraction
Figure 3-9 A series of patterns consisted of emitters with varying distances for simulation.
Figure 3-10 Simulation result by FED image subtraction
Figure 3-11 The OTF profiled of the FED image subtraction
Figure 3-12 Schematics of Fourier fusion for super-resolution microscopy80
Figure 3-13 Schematics of binary masks for Fourier fusion
Figure 3-14 Effective PSF for the fusion process by using the Gaussian and doughnut PSF
Figure 3-15 The flow chart of the Fourier domain heterochromatic fusion method83
Figure 3-16 A numerical study using the heterochromatic Fourier spectrum fusion algorithm to overcome the issues associated with frequency deficiency and imaging distortion
Figure 3-17 The magnified images for the Gaussian, doughnut and Fourier fusion comparison
Figure 3-18 The OTF for the Gaussian, doughnut and Fourier fusion comparison85
Figure 3-19 Schematic of the single beam Fourier fusion super-resolution nanoscopy.
Figure 3-20 The upconversion emission spectra from UCNPs

Figure 3-21 Heterochromatic emission saturation contrast produced by UCNPs and
power-dependent emission PSF patterns under a tightly focused doughnut beam
illumination90
Figure 3-22 The experimental and theoretical simulation of the process for generating
Gaussian PSF under a doughnut beam91
Figure 3-23 The cross-section profiles of the simulated PSF at 800 nm emission band
under different excitation power
Figure 3-24 The standard confocal images of UCNPs by scanning a standard Gaussian beam
Figure 3-25 The multicolour images of UCNPs by scanning a doughnut-shaped beam
Figure 3-26 Super-resolution imaging of single UCNPs using Fourier fusion94
Figure 3-27 The statistic size distribution of the nanoparticles NaYF4: 40% Yb ³⁺ , 4%
Tm ³⁺ in TEM and Fourier domain fusion super-resolution imaging95
Figure 3-28 Photo-stability tests of UCNPs used in super-resolution microscopy95
Figure 3-29 Heterochromatic emission saturation contrast for the low lanthanide-doped UCNPs
Figure 3-30 The sub-diffraction imaging of the lower activator doped UCNPs (2% Tm ³⁺ and 40% Yb ³⁺)
Figure 3-31 Comparison of different algorithms
Figure 3-32 Simulated images of the microtubule network
Figure 3-33 Simulation of Fourier domain heterochromatic fusion imaging of cell microtubules
Figure 3-34 Numerical study from Fourier domain heterochromatic fusion imaging of cell microtubules
Figure 3-35 FRC analysis on the imaging quality of Gaussian, doughnut and Fourier
fusion PSFs.in Figure 3-33a-c101

Figure 3-36 Large-scale super resolution imaging results of the patterned structure using
Fourier domain heterochromatic fusion102
Figure 3-37 The decorrelation analysis for the image processed by different methods.
Figure 3-38 Schematics and optical properties of upconversion nanoparticles for hyper-

Figure 4-1 The working principle by employing polarization to control the excitation
power change
Figure 4-2 Multiplexed detection strategy for imaging two types of UCNPs at the same
emission colour band111
Figure 4-3 Confocal microscopy images and statistical intensities of UCNPs112
Figure 4-4 The emission response curves of Tm and Er doped UCNPs112
Figure 4-5 The concept of PSF engineering encoding the nonlinear response curves for
nanoparticles recognition
Figure 4-6 The emission features of Tm^{3+} and Er^{3+} doped UCNPs114
Figure 4-7 Verifying the PSF engineering to classify the single nanoparticles by filters.
Figure 4-8 Classifying multiple UCNPs at the same intensity with the same colour. 116
Figure 4-9 Multiplexing detection of the biomarkers
Figure 4-10 The parameters in the emission pattern help to classify different particles
accurately

Figure 5-1	Reducing	the	excitation	power	for	NIRES	microscopy	using	а	mirror
substrate	•••••									123

List of Tables

Table 2-1 Key parameters of various imaging modalities for deep tissue using
nanoparticles
Table 2-2 The values of key constants and rate parameters used in the simulations38
Table 2-3 FWHM of 455 nm, 800 nm confocal and NIRES at different depth of a tissue
slice

Abstract

Due to the unique optical properties gained by converting near-infrared light to shorter wavelength emissions, upconversion nanoparticles (UCNPs) have attracted considerable interest. Their superior features, including their multi-wavelength emissions, optical uniformity, background suppression, photostability and deep penetration depth through the tissue, make them extremely suitable for biological and biomedical applications. By taking advantage of their multi-photon nonlinear emissions in UNCPs, the goal of this thesis is to develop UCNPs-based super-resolution microscopy methods to address the challenges currently facing nanoscopy, for instance complexity, stability, limited penetration through the tissue and low throughput. The methods being investigated in this thesis make concrete the specific advantages in terms of image depth, speed, overall quality, and multiplexing potentials. To unlock a new mode of deep tissue superresolution imaging, I first developed the near-infrared emission saturation (NIRES) nanoscopy by taking advantage of near-infrared-in and near-infrared-out optical nonlinear response curve from a single upconversion nanoparticle. This approach only requires two orders of magnitude that are lower than the excitation intensity, which is generally required for conventional multi-photon dyes. This work achieves a superresolution of sub 50 nm, less than 1/20th of the excitation wavelength, and can image single UCNP through a 93 µm thick liver tissue.

To improve the overall imaging quality and simplify the system setups, I further exploited the distinct nonlinear photon response curves from the two emission bands in UCNP, and explored an opportunity for a tightly focused doughnut excitation to generate distinct spectral dependent point speared functions (PSFs). With controllable PSFs from multichannel emissions by the excitation power density, this work presents the possibility of achieving super-resolution imaging under saturated fluorescence excitation via PSF engineering. Moreover, I developed a multicolour Fourier fusion algorithm to enlarge the optical system's frequency shifting ability, and yield an enhanced imaging quality at a higher imaging speed. By realising the uniform and distinct nonlinear emission curves from different nanoparticles, this work posits a new optical encoding dimension for multiplexing imaging. Proposed here is a robust PSF engineering strategy to extract emitter properties. This work extends the multiplexing capacity of UCNPs and offers new opportunities for their applications. These methods are my contributions to the search for a stable, viable, and multifunctional optical imaging modality for the nanoscale context.