Stress, Anxiety, and Depression: Prevalence and Associations to Electroencephalography and Cognitive Performance in Healthcare Professionals

Shamona Maharaj

BSc (Hons)

September 2020

Principal Supervisor: Associate Professor Sara Lal (UTS) Co-Supervisors: Associate Professor Chris Zaslawski (UTS)

Submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy (Science) at the University of Technology Sydney.

I. Declaration

I declare that this thesis is submitted in fulfilment of the requirements for the award of Doctor of Philosophy (Science) in the School of Life Sciences at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution.

This research was supported by the Australian Government Research Training Program.

	Production Note:			
	Signature removed			
Signature of candidate: _	prior to publication.	_ Date:	31.08.20	

II. Acknowledgements

Foremost, I would like to thank my principal supervisor A/Prof Sara Lal for providing me with the opportunity to complete this doctoral research. Your knowledge and guidance over the past few years have been invaluable, and I cannot thank you enough for the opportunities that you have presented me with. Your dedication to my academic career has been admirable. I would also like to thank my co-supervisor Dr Chris Zaslawski, in addition to Dr David Van Reyk for dedicating time to provide additional support towards the end stage of my candidature.

To everyone at the Neuroscience Research Unit, both past and present – you have made this journey all-the-more interesting and incredibly enjoyable. I will always appreciate the long lunches, drinks, and lab hangs that helped keep me sane. I would particularly like to thank Ty Lees for his guidance and assistance over the years and for data sharing.

My utmost gratitude must also go to my participants. Their time and interest in my work have provided me with the means to complete this project. Without them, this study would not have been possible.

Finally, I would like to thank my friends and family for their unconditional love and support which has helped me get through the toughest of times. Thank you to those who kept me company, those who participated in my study and/or helped me recruit, those who listened to me practice my seminar presentations over and over, and those who helped me see the light at the end of the tunnel.

III. Publications and Presentations

Publications

- <u>Maharaj, S.,</u> Lees, T., & Lal, S. (2018). Negative mental states and their association to the cognitive function of nurses. *Journal of Psychophysiology*, 33(3), 207–218. https://doi.org/10.1027/0269-8803/a000223
- <u>Maharaj, S.</u>, Lees, T., & Lal, S. (2019). Prevalence and Risk Factors of Depression, Anxiety, and Stress in a Cohort of Australian Nurses. *International Journal of Environmental Research and Public Health*, 16(1), 61. https://doi.org/10.3390/ijerph16010061
- Chalmers, T., <u>Maharaj, S.,</u> Lees, T., Lin, C. T., Newton, P., Clifton-Bligh, R., McLachlan, C. S., Gustin, S. M., & Lal, S. (2020). Impact of acute stress on cortical electrical activity and cardiac autonomic coupling. *Journal of Integrative Neuroscience*, 19(2), 239–248. https://doi.org/10.31083/j.jin.2020.02.74
- Ferreira, B., <u>Maharaj, S.</u>, Simpson, A., Nassif, N., & Lal, S., (2020), The metabolic role of depression and burnout in nurses. *Translational Metabolic Syndrome Research*, 3, 9-11. https://doi.org/10.1016/j.tmsr.2020.03.002
- Beehan-Quirk, C., Jarman, L., <u>Maharaj, S.</u>, Simpson, A., Nassif, N., & Lal, S., (2020), Investigating the effects of fatigue on blood glucose levels – Implications for diabetes. *Translational Metabolic Syndrome Research*, 3, 17-20. https://doi.org/10.1016/j.tmsr.2020.03.001
- Lees. T., <u>Maharaj, S.</u>, Kalatzis, G., Nassif, N., Newton, P., & Lal, S. (2020) Electroencephalographic prediction of global and domain specific cognitive performance of clinically active Australian Nurses (*Accepted for publication*, *Journal: Physiological Measurement*)

Published abstracts

 Lees, T, <u>Maharaj, S</u> and Lal, S. (2015). Electroencephalographic markers of subjective cognitive performance: implications towards electrophysiological prediction of early cognitive decline. Frontiers in Human Neuroscience Conference Abstract: ASP2015 - 25th Annual Conference of the Australasian Society for Psychophysiology <u>Maharaj, S</u>, T, Lees, C, Zaslawski, K, Fatima-Shad, Lal, S. (2017), 'Assessing the link between negative mental states and cognitive performance in health professionals.' Conference Abstract: The 4th Annual Conference of the Australasian Cognitive Neuroscience Society

Conference proceedings

- <u>Maharaj, S,</u> Lees, T, Lal, S. (2015), 'Cognitive function associations to mental states in nurses', The combined health science conference - New Horizons 2015 [poster], Sydney, 23-25 November
- Lees, T, <u>Maharaj, S</u>, Lal, S. (2015), 'Electroencephalographic markers of subjective cognitive performance: implications towards electrophysiological prediction of early cognitive decline' ASP2015 - 25th Annual Conference of the Australasian Society for Psychophysiology, University of Newcastle, Sydney, December, 2-4
- Maharaj, S, Lees, T, Lal, S. (2016), 'Electroencephalographic changes in beta & gamma reactivity associated with cognitive performance' [poster], The Inter-University Neuroscience and Mental Health Conference, Sydney, September, 20-21
- Maharaj, S, Lees, T, Lal, S. (2016), 'Negative mental states and their association to cognition & brain function in nurses.' [poster], The Society for Mental Health Research Conference, Sydney, December 07-09
- <u>Maharaj, S,</u> T, Lees, C, Zaslawski, K, Fatima-Shad, Lal, S. (2017), 'The Prevalence of depression in a cohort of Australian Nurses.' [poster], The Inter-University Neuroscience and Mental Health Conference, Sydney, September 14-15
- <u>Maharaj, S,</u> T, Lees, C, Zaslawski, K, Fatima-Shad, Lal, S. (2017), 'Assessing the link between negative mental states and cognitive performance in health professionals.' [poster], The 4th Annual Conference of the Australasian Cognitive Neuroscience Society, Adelaide, November 23-26
- 11. Lees, T, <u>Maharaj, S</u>, Kalatzis, G, Nassif, N, Newton P, Lal, S., (2018), The neurocognitive relationship between stress and anxiety, and memory and decision-making performance of Australian Nurses. 58th Annual Meeting of the Society for Psychophysiological Research (SPR), Quebec, October 3-7

- Ferreira B, <u>Maharaj, S</u>, Simpson, A, Nassif, N, Lal, S., (2019), Investigating the metabolic effects of depression and burnout in nurses. The 36th Combined Health Science Conference - New Horizons 2019, Sydney, November 14-15
- Beehan-Quirk, C, Jarman, L, <u>Maharaj, S</u>, Simpson, A, Nassif, N, Lal, S., (2019), The effects of fatigue on blood glucose levels – implications for diabetes. The 36th Combined Health Science Conference - New Horizons 2019, Sydney, November 14-15

Other (manuscripts currently submitted for publication)

- <u>Maharaj S</u>, Lees T, Lin CT, Newton P, Clifton-Bligh R, McLachlan C, Gustin S, Lal S., The relationship between neurocognitive performance, psychometrics, demographics, and HRV parameters in nurses and non-healthcare participants
- 2. Lees T, <u>Maharaj S</u>, Kalatzis G, Nassif N, Newton P, Lal S., Anxiety and its relationship to the neurocognitive performance of Australian Nurses
- Leong D, Akella A, Kumar Singh A, Lal S, Newton P, Clifton-Bligh R, McLachlan C, Gustin S, <u>Maharaj S</u>, Lees T, Cao J, Lin CT., Classifying the Level of Lab-induced Stress in a combined sample of nurses and non-health professionals using Auto-Encoder
- 4. Chalmers T, <u>Maharaj S</u>, Lal S., Assessing associations between workplace factors and Depression and Anxiety in Australian heavy vehicle truck drivers

IV. Table of Contents

I. Declaration	I
II. Acknowledgements	II
III. Publications and Presentations	III
IV. Table of Contents	VI
V. List of Figures	IX
VI. List of Tables	XI
VII. Abbreviations	XII
VIII. Abstract	XV
Chapter 1 – Introduction	1
1.1 The Australian Healthcare Network	1
1.2 Mental Health in Healthcare Professionals	4
1.3 Cognition	7
1.3.1 Psychometric Measures of Cognition	10
1.3.2 Psychometrics and Cognitive Performance	11
1.3.3 Physiological Measures of Cognition	13
1.3.4 EEG and Cognitive Performance	16
1.4 Negative Mental States and Cognition	23
1.4.1 Stress	23
1.4.2 Stress and Cognitive Performance	26
1.4.3 Anxiety	29
1.4.4 Anxiety and Cognitive Performance	29
1.4.5 Depression	32
1.4.6 Depression and Cognitive Performance	33
1.5 Cortisol	35
1.5.1 Cortisol and Cognitive Performance	
1.6 Relevance of the Current Study	
1.7 Aims & Hypotheses	
Chapter 2 – Methodology, Data Processing, & Statistical Analysis	
2.1 Participant Recruitment	
2.2 Ethics approval	
2.3 Inclusion/Exclusion Guidelines	

2.4 Protocol	44
2.4.1 Consent	44
2.4.2 Blood Pressure	44
2.4.3 Cortisol	46
2.4.4 Questionnaire Battery	47
2.4.5 Electroencephalography	49
2.4.6 Psychometrics	54
2.4.7 Conclusion of Protocol	56
2.5 Cortisol Analysis	58
2.6 Data Processing - Electroencephalography	58
2.7 Statistical Analysis	60
Chapter 3 – Demographics, work characteristics, and blood pressure data	64
3.1 Results	64
3.2 Discussion	66
Chapter 4 – Prevalence of mental health symptoms and risk factor analys	is .68
4.1 Results	68
4.2 Discussion	71
Chapter 5 – Cognitive performance comparisons between groups	77
5.1 Results	77
5.2 Discussion	80
Chapter 6 – Associations between Negative Mental States and Cognitive Performance (MMSE & Cognistat)	02
6.1 Results	83
6.2 Discussion	05
Chanter 7 – Associations between Negative Mental States and	
electroencephalography (EEG)	95
7.1 Results	95
7.2 Discussion	. 100
Chapter 8 – Associations between cortisol to negative mental states and	107
Q 1 Deculte	107
0.1 Intoution	107
0.2. Discussion	.10/
01 Limitations	111

9.2 Future Directions	
Chapter 10 – Conclusion	
Referenes	
Appendices	

V. List of Figures

Figure 1.1: The distribution of registered health professionals in Australia in 2014-2015
Figure 1.2: The four lobes of the cerebrum and their associated functions9
Figure 1.3: A comparison between Electroencephalography, Magnetic Resonance Imaging, and Functional Magnetic Resonance Imaging
Figure 1.4: The five major brain rhythms measured by electroencephalography16
Figure 1.5: The physiological stress response involving the Hypothalamic-Pituitary- Adrenal axis
Figure 1.6: Regulation of the Hypothalamic-Pituitary-Adrenal axis
Figure 1.7: The stress vulnerability model
Figure 1.8: Circadian variation in cortisol levels
Figure 2.1: Blood pressure inclusion/exclusion guidelines
Figure 2.2: Automated blood pressure monitor (Omron IA1B, Japan) used in the present study
Figure 2.3: Recording blood pressure with an automated blood pressure monitor45
Figure 2.4: Directions for collecting salivary samples with a Salivette
Figure 2.5: The 32 electrode sites used in the current protocol
Figure 2.6: Conductive Signa gel and blunt tip needle52
Figure 2.7: Raw EEG Tracing
Figure 2.8 The experimental set up used in the present study53
Figure 2.9: The Stroop task54
Figure 2.10: An example of a participant completing a Cognistat task

Figure 2.11: Overview of the experimental protocol for the current study
Figure 5.1: Graphical comparison of the MMSE scores between groups
Figure 5.2: Graphical comparison of the Cognistat scores between groups
Figure 5.3: The relationship between cognitive remediation and cognitive reserve81
Figure 6.1: Correlation graphs for mental health and cognitive performance variables
Figure 7.1: Correlation graphs for mental health and EEG variables
Figure 8.1: Individual cortisol measures before and after testing
Figure 9.1: qEEG brain mapping114
Figure 9.2: Examples of portable, wireless EEG devices

VI. List of Tables

Table 1.1: Comparison of four commonly utilised psychometric tools 11
Table 1.2: Summary of the EEG findings reviewed 22
Table 3.1: Comparison of demographic and work data between groups (n=154)65
Table 3.2: Comparison of blood pressure data between groups (n=154) 66
Table 4.1: Prevalence and mean scores for Stress, Anxiety, Depression and GeneralPsychological Wellbeing (n=154)
Table 5.1: Comparison of cognitive performance in each of the neurocognitive assessment measures 78
Table 6.1: Correlations between mental health (DASS & GHQ) measures and cognitive performance
Table 6.2: Regression analysis for stress in doctors 85
Table 7.1: Associations between negative mental states and EEG variables

VII. Abbreviations

ABS	= Australian Bureau of Statistics
ACTH	= Adrenocorticotropic Hormone
AIHW	= Australian Institute of Health and Welfare
AIN	= Assistant in Nursing
ANOVA	= Analysis of Variance
ANS	= Autonomic Nervous System
β	= Beta
В	= Regression Coefficient
BMI	= Body Mass Index
BP	= Blood Pressure
Bpm	= beats per minute
CANTAB	= Cambridge Neuropsychological Test Automated Battery
СВТ	= Cognitive Behavioural Therapy
CRH	= Corticotropin Releasing Hormone
°C	= Degrees Celsius
DASS	= Depression Anxiety Stress Scale
DC	= Direct Current Value
EEG	= Electroencephalography
ELISA	= Enzyme-linked Immunosorbent Assay
EOG	= Electro-oculogram

ESS	= Epworth Sleepiness Scale
fMRI	= Functional Magnetic Resonance Imaging
g('s)	= Relative Centrifugal Force (RCF)
GHQ	= General Health Questionnaire
GP	= General Practitioner
HPA axis	= Hypothalamic Pituitary Adrenal Axis
HR	= Heart Rate
HREC	= Human Research Ethics Committee
Hz	= Hertz
IQ	= Intelligence Quotient
LC-MS/MS	= Liquid Chromatography Tandem Mass Spectrometry
MANCOVA	= Multiple Analysis of Covariance
MCI	= Mild Cognitive Impairment
MEG	= Magnetoencephalography
mmHg	= Millimetres Mercury
MMSE	= Mini Mental State Examination
MRI	= Magnetic Resonance Imaging
NC	= No Change
NHC	= Non-Healthcare comparative group
NS	= Non-Significant
NSW	= New South Wales
OMS	= Ohms

PET	= Positron Emission Tomography
qEEG	= Quantitative Electroencephalography
R	= Correlation Coefficient
r	= Rho value
R ²	= Coefficient of determination
RN	= Registered Nurse
SD	= Standard Deviation
SE	= Standard Error
μV	= Microvolts
ug/dL	= Micrograms per Decilitre
USA	= United States of America
UTS	= University of Technology Sydney
WAIS	= Wechsler Adult Intelligence Scale
μV/s²	= Microvolts per second squared

VIII. Abstract

Healthcare remains one of the most demanding careers available. Psychological distress is widespread among healthcare professionals. However, few studies have investigated the prevalence of stress and common mental health issues such as anxiety, and depression in Australian healthcare professionals, and their associations with electroencephalography (EEG) and cognitive performance. The present study assessed the prevalence of stress, anxiety and depression, and the relationships between these mental states and cognitive performance in healthcare professionals. It also investigated associations between cortisol and mental health/cognitive performance measures.

Data was obtained from 154 participants divided into four groups: nurses (n=81), allied health professionals (n=31), doctors (n=20), and non-healthcare professionals (n=22). The experimental protocol involved pre-study and post-study blood pressure measurements and the collection of salivary cortisol. A questionnaire battery obtained lifestyle, demographic, and work-related data. Mental health data was obtained using the Depression, Anxiety, Stress Scale, and the General Health Questionnaire. A 32-lead monopolar EEG was recorded over two five-minute phases (a resting baseline phase followed by an active phase involving the Stroop task). Finally, cognitive performance was assessed using the Mini-Mental State Examination and the Cognistat.

Prevalence rates in healthcare providers ranged between 26-60% for depression, 26-44% for anxiety, and 29-60% for stress. Stress was associated with decreases in repetition (r=-0.46, p=0.039), memory (r=-0.49, p=0.029), and attention (r=-0.51, p=0.021) in doctors, while anxiety was linked to decreased memory (r=-0.23, p=0.047) in nurses and global cognition (r=-0.36, p=0.049) in allied health professionals. Depression was also related to declines in memory (r=-0.27, p=0.019) in nurses. Conversely, stress was associated with better judgement (r=0.61, p=0.004) in doctors. Stress, anxiety, and depression were also associated with mixed findings in both high and low-frequency brain activities (decreased theta, increased delta, decreased alpha, increased beta, decreased gamma). No associations were found between cortisol and mental health/cognitive performance measures.

These findings provide insight into the prevalence of mental health symptomology in Australian health professionals and suggest that negative mental states are associated with both improvements and impairments in cognitive performance. Unique variations in electroencephalographic changes were also linked to stress, anxiety, and depression; giving insight into what brain rhythms may underlie stress, anxiety, and depression, and how they may relate to various cognitive processes. Further research exploring the effects of negative mental states on personal wellbeing and cognition could enable the development of industry-specific management, monitoring, and/or intervention strategies aimed at preserving the health and performance of health professionals.