Advanced Design and Optimization Techniques for Electrical Machines

by Bo Ma

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Prof. Jianguo Zhu, and Dr. Gang Lei

University of Technology Sydney Faculty of Engineering and Information Technology

February, 2020

Ph.D. candidate:

Bo Ma

Email: @student.uts.edu.au

Supervisor:

Prof. Jianguo Zhu

Email: Jianguo.Zhu@uts.edu.au

Co-Supervisor:

Dr. Gang Lei

Email: Gang.Lei@uts.edu.au

Address:

School of Electrical and Data Engineering

University of Technology Sydney

15 Broadway, NSW 2007, Australia

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Bo Ma declare that this thesis, is submitted in fulfilment of the requirements for the award of doctor of philosophy, in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature of Student:

Production Note: Signature removed prior to publication.

Date: 24/02/2020

Acknowledgments

The author wishes to express his deep appreciation to his principal supervisor, Prof. Jianguo Zhu, for his patience and guidance throughout the development of this work. The author also wants to show his highest respect to Prof. Zhu for his attitude, enthusiasm, foresight, and sagacity on scientific research, and personality charm and regards him as the role model for the author's life.

The gratitude also goes to Dr. Gang Lei, the co-supervisor, for the expert guidance on the research of design optimization of electrical machines, and help on scientific writing. The author would also like to thank Prof. Youguang Guo for his valuable advice on the prototype experiment conduction, research direction, and revision of manuscripts for publication.

Acknowledgments go to staff and engineers of the faculty, Dr. Mike Zhong, Mr. Jiang Chen, Mr. Russel Nicolson, and Mr. Brett Lowder for the assistance on the technical support of the prototype testing,

The author would like to thank his friends at the Centre for Electrical Machines and Power Electronics (CEMPE) for their friendship and assistance in his research and life, including Dr. Chengcheng Liu, Dr. Weijie Xu, Dr. Shuo Wang, Dr. Tingting He, Dr. Jianwei Zhang, Dr. Linfeng Zheng, Dr. Xinchi Wei, Dr. Nian Li, Associate Professor Hongyun Jia, Dr. Wentao Huang, Associate Professor Ping Jin, and Dr. Hailin Li.

Special gratitude goes to China Scholarship Council and University of Technology Sydney for the financial support, which relieves the living burden and allows him to focus on his research work.

Most importantly, the author would like to thank his fiancée, Jing Zheng, for her love and encouragement, and guidance on the robust optimization and topology optimization methods. The same gratitude also goes to his parents for their understanding, support, and love.

Publications Based on the Thesis Project

Refereed international scientific journal articles (* corresponding author)

- [1] B. Ma, J. Zheng, G. Lei, J. Zhu, Y. Guo and J. Wu, "A robust design optimization method for electromagnetic devices with interval Uncertainties," *IEEE Transactions on Magnetics*, vol. 54, no. 11, Nov. 2018, Art no. 8107804.
- [2] B. Ma, G. Lei, J. Zhu, and Y. Guo, "Design optimization of a permanent magnet claw Pole Motor with Soft Magnetic Composite Cores," *IEEE Transactions on Magnetics*, vol. 54, no. 3, March 2018, Art no. 8102204.
- [3] B. Ma, G. Lei, C. Liu, J. Zhu, and Y. Guo, "Robust tolerance design optimization of a PM claw pole motor with soft magnetic composite cores," *IEEE Transactions* on Magnetics, vol. 54, no. 3, March 2018, Art no. 8102404.
- [4] B. Ma, G. Lei, J. Zhu, Y. Guo and C. Liu, "Application-oriented robust design optimization method for batch production of permanent-magnet motors," *IEEE Transactions on Industrial Electronics*, vol. 65, no. 2, pp. 1728-1739, Feb. 2018.
- [5] B. Ma, J. Zheng, G. Lei, J. Zhu, P. Jin, and Y. Guo, "Topology Optimization of Ferromagnetic Components in Electrical Machines," *IEEE Transactions on Energy Conversion*, Early Access, DOI: 10.1109/TEC.2019.2960519.
- [6] B. Ma, J. Zheng, G. Lei, J. Zhu, P. Jin, and Y. Guo, "Robust Design Optimization for Electromagnetic Devices Considering Stochastic and Interval Hybrid Uncertainties," *IEEE Transactions on Energy Conversion*, Early Access, DOI: 10.1109/TEC.2020.2996244.
- [7] G. Lei, J. Zhu, Y. Guo, C. Liu, and B. Ma, "A review of design optimization methods for electrical machines," *Energies*, vol. 10, no. 12, 2017.
- [8] G. Lei, G. Bramerdorfer, B. Ma*, Y. Guo and J. Zhu, "Robust design optimization of electrical machines: multi-objective approach," *IEEE Transactions on Energy Conversion*, Early Access, DOI: 10.1109/TEC.2020.3003050.

International scientific conference papers

B. Ma, G. Lei and J. Zhu, "Design, manufacturing and optimization of PM-SMC motors," the 7th International Electric Drives Production Conference (EDPC), Würzburg, 2017, pp. 1-6.

List of Figures

Figure 2-1 Popular optimization algorithms for the optimization of electrical machines.
Figure 2-2 Design flowchart for surrogate models16
Figure 2-3 Illustration of space reduction method in the SOM, (a) one step, (b) three steps.
Figure 2-4 Main flowchart for the multilevel optimization method20
Figure 2-5 Structure of the CPM (a) and its SMC stator prototype (b)21
Figure 2-6 Main dimensions of the CPM21
Figure 2-7 Framework of space mapping optimization method25
Figure 2-8 Diagram of the basic modules in the design and optimization of electrical machines
Figure 2-9 Schematic diagram of different optimization methods: (a) size, (b) shape, and (c) topology
Figure 2-10 Cantilever beam design problem
Figure 2-11 Shape variation in different iteration steps
Figure 2-12 Rotor shape variation v.s. iteration time
Figure 2-13 Schematic diagram of the RDO and RBDO with uncertainty32
Figure 2-14 Structure of a PM-SMC TFM (a) and a prototype of the SMC stator (b)37
Figure 2-15 Illustration of design optimization for 6σ manufacturing quality

Figure 1-1 Global electricity demand by sector and end-use......1

Figure 2-16 Compariso	n of current	density	between	deterministic	and	robust
optimizations						41
	0 1 1			1 10 1		
Figure 2-17 Framework c	f system-level	design op	otimization	i method for el	ectric	al drive
systems						44
Figure 2-18 Multilevel op	timization met	hod for ar	n electrical	drive system		45

Figure 3-1 Typical drive train topologies for EVs, (a) single motor drive with one central
motor, (b) four-wheel drive with four in-wheel motors
Figure 3-2 Structure and dimension parameter estimation of the 16 and 17-inch wheel
hubs
Figure 3-3 Magnetic circuit model
Figure 3-4 Three basic structures of the in-wheel PMSM (a) radial flux motors with inner
rotor, (a) radial flux motors with outer rotor, and (c) dual rotor axial flux motor
Figure 3-5 BH and permeability curves of the 27ZH100
Figure 3-6 Core loss versus variable frequencies
Figure 3-7 Motor structure (a) and topology parameters (b)
Figure 3-8 The mesh graph of the FEM model (a), and no-load magnetic field distribution of (b) rotor and (c) stator71
Figure 3-9 Per turn no-load flux of a phase winding71
Figure 3-10 Computed self and mutual inductance of three-phase winding73
Figure 3-11 Cogging torque73
Figure 3-12 No load core loss74
Figure 3-13 Simulated torque vs. advance angle curves of various currents74
Figure 3-14 Maximum torque envelope75

Figure 3-15 Efficiency map.	76
Figure 3-16 Map of the (a) copper loss, (b) core loss, (c) PM loss, (d) PM los	s and core
loss.	78

Figure 4-1 Mold of the stator sheet
Figure 4-2 Mold of the rotor sheet
Figure 4-3 Punching process of the silicon steel sheet
Figure 4-4 Punched (a) stator sheet and (b) rotor sheet
Figure 4-5 Stacking molds for stator and rotor cores
Figure 4-6 Stator core stacking by the mold and stacked core
Figure 4-7 Stator and rotor core after wire-electrode cutting
Figure 4-8 Stator tooth fixation plate, (a) side view and (b) front view85
Figure 4-9 Aluminum alloy rotor carrier
Figure 4-10 Connection hub
Figure 4-11 Shaft
Figure 4-12 Winding component
Figure 4-13 Radial bearing
Figure 4-14 Axial bearing
Figure 4-15 Permanent magnet
Figure 4-16 Insulation of the stator and winding components with insulation paper89
Figure 4-17 Stator assembly
Figure 4-18 Rotor assembly90

Figure 4-19 Final assembly90
Figure 4-20 Measured self and mutual inductances
Figure 4-21 Test platform
Figure 4-22 Measured no-load phase voltage waveform at 400rpm94
Figure 4-23 Measured no-load phase voltage waveform at 400rpm after the reassembly.
Figure 4-24 Output torque versus phase current
Figure 4-25 Efficiency comparison
Figure 4-26 Optimization results with different copper loss limits
Figure 4-27 Mass, maximum torque at 400 rpm and 1600 rpm of the optimal designs with
the maximum copper loss limit of (a) 1kW, (b) 1.5kW, (c) 2kW100
Figure 4-28 Rotor component shape of the selected optimal design101
Figure 4-29 Efficiency map of the optimal design102
Figure 4-30 Map of the loss (W) (a) copper loss, (b) core loss, (c) PM loss, (d) PM loss and core loss

Figure 5-1 Microstructure in [2].	107
Figure 5-2 Microstructure in reference [3]	108
Figure 5-3 Microstructure in [4].	108
Figure 5-4 Microstructure in [5].	109
Figure 5-5 Elements with different density	110
Figure 5-6 Optimization result in reference[8].	112
Figure 5-7 Level set function and domain separation on zero level set plane	114

Figure 5-9 Relative permeability variation with the density of design interpolation method
Figure 5-10 $1/\mu r_e$ variation with respect to the element density of different <i>p</i>
Figure 5-10 $1/\mu r_e$ variation with respect to the element density of different <i>p</i>
Figure 5-11 Flowchart of the topology optimization
Figure 5-12 Relative permeability v.s. density when $p = 1$ 149
Figure 5-13 Rotor design of (a) Toyota Prius 2010 drive motor, and (b) a servo motor.
Figure 5-14 (a) 1/4 model of the electrical machine, and (b) elements in the design domain.
Figure 5-15 Output torque and volume of the design domain iteration history153
Figure 5-16 Rotor configurations at different iteration steps154
Figure 5-17 Back EMF comparison154
Figure 5-18 Flux density maps of (a) Initial design, (b) optimized design, and (c)smooth design
Figure 5-19 Flux density maps of (a) Initial design, (b) Optimized design, and smooth design
Figure 5-20 Output torque comparison of the initial, optimized, and smooth design160
Figure 5-21 Output torque harmonic comparison of the initial, optimized and smooth design

Figure 6-3 Flowchart of the general robust optimizer
Figure 6-4 Topology of the brushless DC motor
Figure 6-5 Demagnetization current distribution of the (a) deterministic solution, and robust solutions obtained by the optimizer based on (b) DR (c) MCA and (d) PCE191
Figure 6-6 Total weight distribution of the (a) deterministic solution, and robust solutions obtained by the optimizer based on (b) DR method (c) MCA and (d) PCE
Figure 6-7 Pareto diagram of the deterministic and mean values of the objectives of the robust optimizations
Figure 6-8 Sigma level of the solutions
Figure 6-9 Demagnetization current distribution interval of the (a) deterministic solutions, and robust solutions obtained by the optimizer based on (b) DR (c) MCA and (d) PCE.
Figure 6-10 Pareto diagram of the deterministic optimization and nominal values of the robust optimization
Figure 6-11 Feasibility of the solutions
Figure 6-12 Demagnetization current distribution interval of the (a) deterministic solutions, and robust solutions obtained by the optimizer based on (b) scan method, and (c) CI method
Figure 6-13 Pareto diagram of the deterministic and robust optimizations204
Figure 6-14 Feasibility of the solutions
Figure 6-15 Demagnetization current distribution interval of the (a) deterministic solutions, and robust solutions obtained by the optimizer based on (b) SMCA method, and (c) PCCI method

List of Tables

Table 2-1 Comparison of RSM, RBF, and Kriging models	.15
Table 2-2 Main dimension and design parameters of the CPM prototype	.22
Table 2-3 Sensitivity analysis results for the CPM	.23
Table 2-4 Optimization results of the CPM	.24
Table 2-5 Defects per million opportunities regarding sigma level	.36
Table 2-6 Main dimensions and parameters for the TFM	.37
Table 2-7 Comparison of the motor performances and the POFs	41

Table 3-1 Design specifications of the in-wheel motor
Table 3-2 Grain-oriented silicon steel sheets of various grades
Table 3-3 Non-grain oriented silicon steel sheets of various grades
Table 3-4 Fundamental winding factors for different pole numbers of double-layer windings with 36 slots
Table 3-5 Design parameters of the in-wheel motor
Table 3-6 Material mass of the initial design

Table 4-1 Measured phase resistance	.91
Table 4-2 Selected design parameters for the optimization	.97
Table 4-3 Optimal solutions of similar weight with the initial design	.98
Table 4-4 Comparison between the selected optimal design and initial design	101

Table 5-1 Specification of the design example	152
Table 5-2 Specifications of the motor	157
Table 5-3 Torque profile comparison	158
Table 5-4 FEM of the examples	162
Table 5-5 Computation time of the optimization	162

Figure 6-1 Sigma level and its equivalent probability for a normal distribution170
Figure 6-2 Estimation process of extreme values of mean and standard deviation for a
problem with hybrid uncertainty
Figure 6-3 Flowchart of the general robust optimizer
Figure 6-4 Topology of the brushless DC motor187
Figure 6-5 Demagnetization current distribution of the (a) deterministic solution, and
robust solutions obtained by the optimizer based on (b) DR (c) MCA and (d) PCE191
Figure 6-6 Total weight distribution of the (a) deterministic solution, and robust solutions
obtained by the optimizer based on (b) DR method (c) MCA and (d) PCE192
Figure 6-7 Pareto diagram of the deterministic and mean values of the objectives of the
robust optimizations
Figure 6-8 Sigma level of the solutions
Figure 6-9 Demagnetization current distribution interval of the (a) deterministic solutions,
and robust solutions obtained by the optimizer based on (b) DR (c) MCA and (d) PCE.
Figure 6-10 Pareto diagram of the deterministic optimization and nominal values of the robust optimization

Figure 6-11 Feasibility of the solutions
Figure 6-12 Demagnetization current distribution interval of the (a) deterministic
solutions, and robust solutions obtained by the optimizer based on (b) scan method, and
(c) CI method
Figure 6-13 Pareto diagram of the deterministic and robust optimizations204
Figure 6-14 Feasibility of the solutions
Figure 6-15 Demagnetization current distribution interval of the (a) deterministic
solutions, and robust solutions obtained by the optimizer based on (b) SMCA method,
and (c) PCCI method

Abbreviations

ANN	Artificial Neural Network
ANOVA	Analysis of Variance
BLUE	Best Linear Unbiased Estimation
CAE	Computer-Aided Engineering
CI	Chebyshev Interval
СРМ	Claw Pole Motor
DACE	Design and Analysis of Computer Experiments
DEA	Differential Evolution Algorithm
DFSS	Design for Six Sigma
DG	Differential Gear
DPMO	Defects Per Million Opportunities
DTC	Direct Torque Control
EA	Evolutionary Algorithms
EDAs	Estimation of Distribution Algorithm
EMF	Electromotive Force
EV	Electric Vehicle
FOC	Field-Oriented Control
GA	Genetic Algorithm
HEV	Hybrid Electric Vehicle
HM	Homogenization Method
ICE	Internal Combustion Engine
IPMSM	Interior Permanent Magnet Synchronous Motor
LSL	Lower Specification Limit
LSM	Least Square Method
MCA	Monte Carlo Approach
MDO	Multi-disciplinary Design Optimization
MLE	Maximum Likelihood Estimation
MMA	Method of Moving Asymptotes
MPC	Model Predictive Control

MPP	Most Probable Point
MTPA	Maximum Torque Per Ampere
NSGA	Non-dominated Sorting Genetic Algorithm
OC	Optimality Criteria
PCCI	Polynomial Chaos Chebyshev Interval
PCE	Polynomial Chaos Expansion
PID	Proportion Integration Differentiation
PM	Permanent Magnet
PMSM	Permanent Magnet Synchronous Motor
POF	Probability of Failure
PSO	Particle Swarm Optimization
RBDO	Reliability-Based Design Optimization
RBF	Radial Basis Function
RDO	Robust Design Optimization
RSM	Response Surface Model
SA	Sensitivity Analysis
SIMP	Simplified Isotropic Material with Penalization
SM	Space Mapping
SMCA	Scan and Monte Carlo Approach
SOM	Sequential Optimization Method
SPMSM	Surface-mounted Permanent Magnet Synchronous Motor
SS	Switching Signal
SVM	Support Vector Machine
TFM	Transverse Flux Motor
USL	Upper Specification Limit

Abstract

To investigate the design optimization techniques of electrical machines, a literature survey is conducted about the problem modeling, and techniques utilized for the effective optimization conduction with various case studies. As a comprehensive design optimization example, an in-wheel motor development for distributed direct vehicle driving is investigated in detail. The works on the application analysis, new material application (grain-oriented silicon steel), topology development, manufacturing process, experiment verification, and parametric deterministic optimization are presented.

Based on the state-of-art design optimization methods and case studies, challenges and proposals are also presented in the survey. In the design stage, the bring-up of new topology depends on the expertise of the designers. This means the expert system still plays an important role in the application-oriented design optimization process. Moreover, parametric optimization is carried out based on the specific design which means the freedom of optimization is limited. To overcome the restriction of parametric optimization for high freedom optimization topology optimization method is investigated. At the current stage, the topology optimization of the soft magnetic components of electrical machines considering various electromagnetic performances is studied. The optimization results of the design examples verified the effectiveness of the proposed method in achieving the optimal shape of the design.

Another problem is about the uncertainties in manufacturing such as tolerances which bring in reliability problems for the conventional deterministic optimal solution. Under this circumstance, the robustness optimization is important for searching optimal solution with both high objective performance and reliability. For the robust optimization of electrical machines, the additional uncertainty quantification and robustness assessment further aggravating the complexity and computation cost of the problem. Considering the problem with different types of uncertainties, high effective optimizers are proposed based on effective uncertainty quantification methods with a general framework. The numerical study results proved the effectiveness of the proposed method.

Contents

CERTIFICATE OF ORIGINAL AUTHORSHIPi
Acknowledgmentsii
Publications Based on the Thesis Projectiii
List of Figuresv
List of Tablesxi
Abbreviationsxiv
Abstractxvi
Contentsxvii
Chapter 1 Introduction
1.1 Background and Significance1
1.2 Research Objectives
1.3 Outline of the Thesis
References4
Chapter 2 Literature Survey on the Design Optimization of Electrical Machines
2.1 Introduction
2.2 Basic Procedure for Design Optimization of Electrical Machines
2.3 Determination of the Initial Design7
2.3.1 Determination of Specifications from the Applications7
2.3.2 Determination of Machine Types, Materials, and Structures
2.4 Multidisciplinary Modeling for Objective and Constraint Performances9

2.5 Selection of Design Optimization Variables10
2.6 Optimization Algorithms
2.6.1 Popular Algorithms
2.6.2 Comparison and Comments
2.7 Techniques and Strategies for Optimization Acceleration14
2.7.1 Surrogate Models, Modeling Techniques and Optimization14
2.7.2 Sequential Optimization Method Based on Space Reduction18
2.7.3 Multilevel Optimization Method20
2.7.4 Space Mapping Method24
2.8 Rethinking, Challenges, and Proposals
2.9 Topology Optimization for Electrical Machines
2.10 Robust Optimization for Electrical Machines
2.10.1 Robust Design Optimization Methods with Stochastic Uncertainties
2.10.2 A Case Study Based on DFSS for Stochastic Uncertainties
2.10.3 A Case Study for Robust Optimization of Electrical Machines for High- Quality Manufacturing
2.10.4 Robust Design Optimization Methods with Non-Stochastic Uncertainties41
2.10.5 Comments
2.11 Application-Oriented System-level Design Optimization for Electrical Drive Systems
2.11.1 Method and Flowchart
2.11.2 Comments and Suggestions

2.12 Conclusions	47
References	47
Chapter 3 Electromagnetic Design of an In-wheel Motor with Grain-Oriented Silic Steel	on 57
3.1 Introduction	57
3.2 Design Requirements and Aims	59
3.3 Electromagnetic Design Analysis	61
3.4 Core Material	64
3.5 Motor Design	67
3.5.1 Winding Arrangement	67
3.5.2 Motor Structure and Design Parameters	68
3.6 Performance Calculation with FEM	69
3.6.1 Flux Linkage and Back EMF	72
3.6.2 Resistance and Inductance Calculation	72
3.6.3 Cogging torque	73
3.6.4 Steady-State Performance Prediction	74
3.7 Conclusions	79
References	79
Chapter 4 Prototyping, Test, and Optimization of the In-wheel Motor	81
4.1 Introduction	81
4.2 Accessory Manufacturing	81
4.2.1 Stator Core Component	81

4.2.2 Fixing Plate for Stator	
4.2.3 Rotor Carrier and Connection Hub	85
4.2.4 Shaft	86
4.2.5 Winding Component and Other Components	87
4.3 Assembly	
4.3.1 Stator Assembly	88
4.3.2 Rotor Assembly	89
4.3.3 Final Assembly	90
4.4 Prototype Test	91
4.4.1 Resistance Measurement	91
4.4.2 Inductance Measurement	91
4.4.3 Back EMF	92
4.4.4 Loading test	94
4.5 Optimization	96
4.5.1 Optimization of the Mechanical Design	96
4.5.2 Optimization of the Electromagnetic Design	97
4.6 Conclusions	104
References	
Chapter 5 Topology Optimization for Electrical Machines	106
5.1 Introduction	106
5.1.1 Literature Review on the Topology Optimization Methods Machines	for Electrical

5.1.2 Work in This Chapter
5.2 Fundamentals of Finite Element Model for Electrical Machine Analysis 117
5.3 Performance Calculation
5.3.1 Flux Linkage Calculation with Magnetic Vector Potential125
5.3.2 Flux Linkage and Apparent Inductance Calculation with Magnetic Field Energy
5.3.3 Flux Linkage and Inductance in Rotational Coordinate System
5.3.4 Torque Calculation128
5.4 Topology Optimization with the Density Method
5.4.1 Interpolation method135
5.4.2 Sensitivity Analysis of Field Energy137
5.4.3 Sensitivity Analysis of Flux Linkage and Inductance138
5.4.4 Sensitivity Analysis of Torque139
5.4.5 Optimization Algorithms141
5.4.6 Optimization Framework147
5.4.7 Postprocessing
5.5 Design Example
5.5.1 Lightweight Rotor Optimization of an SPMSM150
5.5.2 Torque Ripple optimization of an IPMSM156
5.5.3 Comparison and Summary161
5.6 Conclusions
References

Chapter 6 Robust Optimization for Electrical Machines Considering Different
Uncertainties
6.1 Introduction
6.2 Problem Definition
6.2.1 Robust Optimization Model with Different Uncertainties170
6.2.2 Uniformity of the Robust Optimization Models172
6.3 Methods for Stochastic Uncertainties173
6.3.1 Polynomial Chaos Expansion173
6.3.2 Dimension Reduction Method176
6.4 Method for Interval Uncertainties177
6.5 Method for Hybrid Uncertainties181
6.6 Optimization Framework185
6.7 Design Example
6.7.1 The Case with Stochastic Uncertainties189
6.7.2 The Case with Interval Uncertainties197
6.7.3 The Case with Hybrid Uncertainties201
6.8 Conclusions
References
Chapter 7 Conclusions and Future Works
7.1 Conclusions
7.2 Future Works