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ABSTRACT

Resource Optimization for Communication and Radar Sensing in

Vehicular Networks

by

Ping Chu

With a great increasing volume of vehicles and population, transportation sys-

tems are facing many challenges such as congestion, air pollution, crashes and noise.

Vehicular communication and radar sensing technology is promising for realizing

intelligent, faster, safer transportation. The rapidly increasing amount and mobility

of vehicles require frequent resource allocation, which can cause network congestion

, large signalling and processing delay. In addition, due to the limited available

bandwidth, wide deployment of radar sensors on automotive vehicles can poten-

tially lead to a severe interference problem. Therefore, resource optimization for

vehicular communication and automotive radars becomes a key issue in future au-

tonomous vehicular networks, to meet their performance requirements and improve

the spectral efficiency.

In this thesis, we investigate the resource optimization algorithm for communica-

tion and radar sensing in vehicular networks, addressing the following three issues:

1. The resource allocation and optimization scheme for vehicular communications

based on traffic prediction, considering both critical latency requirement and

spectral efficiency;

2. The mode selection scheme for vehicle-to-everything (V2X) communications to

optimize energy consumption, considering resource reusing between vehicular

users and conventional users;

3. The power optimization and interference characterization for automotive radars,



including the modeling of vehicle distribution, the consideration of different

types of radars and the assumption of radar antenna directivity.

Regarding the first issue, we propose a novel semi-persistent resource allocation

scheme based on a two-tier heterogeneous network architecture including a central

macro base station (MBS) and multiple roadside units (RSU). Considering the pre-

dictability of vehicular flows, we combine the traffic prediction with this resource

allocation scheme. In the proposed semi-persistent scheme, the MBS pre-allocates

persistent resources to RSUs based on predicted traffic, and then allocates dynamic

resources upon real-time requests from RSUs while vehicles simultaneously commu-

nicate using the pre-allocated resources. Based on this scheme, we mainly study two

classes of optimization problems: 1) minimizing the relative latency with the con-

straint of total bandwidth; 2) minimizing the total bandwidth with the constraint

of transmission latency. Different algorithms are developed to address the problems.

Towards the second issue, we investigate a two-tier heterogeneous cellular net-

work where the macro tier and small cell tier operate according to a dynamic time-

division duplex (TDD). Based on dynamic TDD which can adjust UL and DL time

configurations to accommodate to the traffic asymmetry, we propose a vehicular

device-to-device (V-D2D) mode selection scheme jointing time allocation, power

control to minimize the energy consumption of the vehicles and the whole network.

The problem is formulated as a convex optimization problem, and a geometrical

interpretation is provided.

For the third issue, we firstly study the mean power of effective echo signals

and interference, by considering both front- and side- mounted automotive radars

equipped with directional antennas. We employ the stochastic geometry method to

characterize the randomness of vehicular location and hence radars in both two-lane

and multi-lane scenarios, and derive closed-form expressions for the mean interfer-

ence by approximating the radiation pattern by Gaussian waveforms. Based on

the interference analysis, we aim to minimize the total transmission power of each

vehicle with constraints on the required signal to interference and noise ratio. An

optimal solution is obtained based on linear programming techniques.
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