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ABSTRACT

Resource Optimization for Communication and Radar Sensing in

Vehicular Networks

by

Ping Chu

With a great increasing volume of vehicles and population, transportation sys-

tems are facing many challenges such as congestion, air pollution, crashes and noise.

Vehicular communication and radar sensing technology is promising for realizing

intelligent, faster, safer transportation. The rapidly increasing amount and mobility

of vehicles require frequent resource allocation, which can cause network congestion

, large signalling and processing delay. In addition, due to the limited available

bandwidth, wide deployment of radar sensors on automotive vehicles can poten-

tially lead to a severe interference problem. Therefore, resource optimization for

vehicular communication and automotive radars becomes a key issue in future au-

tonomous vehicular networks, to meet their performance requirements and improve

the spectral efficiency.

In this thesis, we investigate the resource optimization algorithm for communica-

tion and radar sensing in vehicular networks, addressing the following three issues:

1. The resource allocation and optimization scheme for vehicular communications

based on traffic prediction, considering both critical latency requirement and

spectral efficiency;

2. The mode selection scheme for vehicle-to-everything (V2X) communications to

optimize energy consumption, considering resource reusing between vehicular

users and conventional users;

3. The power optimization and interference characterization for automotive radars,



including the modeling of vehicle distribution, the consideration of different

types of radars and the assumption of radar antenna directivity.

Regarding the first issue, we propose a novel semi-persistent resource allocation

scheme based on a two-tier heterogeneous network architecture including a central

macro base station (MBS) and multiple roadside units (RSU). Considering the pre-

dictability of vehicular flows, we combine the traffic prediction with this resource

allocation scheme. In the proposed semi-persistent scheme, the MBS pre-allocates

persistent resources to RSUs based on predicted traffic, and then allocates dynamic

resources upon real-time requests from RSUs while vehicles simultaneously commu-

nicate using the pre-allocated resources. Based on this scheme, we mainly study two

classes of optimization problems: 1) minimizing the relative latency with the con-

straint of total bandwidth; 2) minimizing the total bandwidth with the constraint

of transmission latency. Different algorithms are developed to address the problems.

Towards the second issue, we investigate a two-tier heterogeneous cellular net-

work where the macro tier and small cell tier operate according to a dynamic time-

division duplex (TDD). Based on dynamic TDD which can adjust UL and DL time

configurations to accommodate to the traffic asymmetry, we propose a vehicular

device-to-device (V-D2D) mode selection scheme jointing time allocation, power

control to minimize the energy consumption of the vehicles and the whole network.

The problem is formulated as a convex optimization problem, and a geometrical

interpretation is provided.

For the third issue, we firstly study the mean power of effective echo signals

and interference, by considering both front- and side- mounted automotive radars

equipped with directional antennas. We employ the stochastic geometry method to

characterize the randomness of vehicular location and hence radars in both two-lane

and multi-lane scenarios, and derive closed-form expressions for the mean interfer-

ence by approximating the radiation pattern by Gaussian waveforms. Based on

the interference analysis, we aim to minimize the total transmission power of each

vehicle with constraints on the required signal to interference and noise ratio. An

optimal solution is obtained based on linear programming techniques.
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Chapter 1

Introduction

1.1 Research Background

With an increasing volume of vehicles over the past decades, traffic accidents and

congestion have become important transport issues all around the world. There-

fore, the concerns on improving roadway safety and relieving traffic congestion have

been growing. Vehicular network is an enabling technology for realizing intelligent,

faster, safer transportation [1, 2]. Future autonomous vehicular networks will be

equipped with high-quality wireless services, which incorporate high-data-rate com-

munications technology with intelligent vehicles and high-resolution radar sensing

capabilities. Firstly, vehicles can exchange different kinds of information with road-

side infrastructure or other vehicles with the assistance of wireless communication

technology. In addition, automotive radar also is an essential configuration in smart

transportation systems, which play a key role in estimating the position, speed, and

feature signal of objects, activities, and events.

There are two main categories of services for vehicular communication, namely

non-safety and safety services [3]. Targeting at decreasing traffic accidents, safety

service has more stringent requirements on delay and reliability. System laten-

cy includes both signal transmission time and the delay caused by the associated

signalling process, e.g., resource request and allocation. Therefore, resource man-

agement for vehicular communications based on its stringent requirements is an

important and challenging problem. Device-to-device (D2D) communication has

been widely recognized as a key component in 5G mobile networks from academia
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and industry [4,5]. The use of D2D communication underlaying cellular network can

significantly improve both spectrum and energy efficiency, coverage extension, and

can decrease the delay and energy consumption. Moreover, using D2D communica-

tion also extends the battery lifetime of mobile terminals by facilitating the physical

proximity of devices. D2D is an enabler for vehicular communication to meet its

stringent reliability and latency requirements [6, 7]. There are different modes for

vehicular communication in cellular networks, an efficient mode selection scheme is

necessary to operate vehicular device-to-device (V-D2D) communication and opti-

mize resources. The vehicles in the same cell within the possible range for direct

communication have an opportunity to select the V-D2D mode. How to operate

mode selection and optimize the resources for V-D2D is a challenge.

For automotive radar sensing, the main challenge also lies in the resource man-

agement. In the last few years, automotive radar systems have become common on

the high-end vehicles and are now being installed on more electronic models, too. In

the near future, we will see wide deployment and usage of automotive radar on the

road. However, the increasing usage of automotive radar sensors potentially leads

to increasing occurrence of radar-to-radar interference. The reception of unwanted

signals from other automotive radar sensors is usually called mutual interference

between automotive radar sensors [8]. Such interference happens when the sensors

use the same frequency channel and are within the range of their respective cover-

age. The reception of interference signals can lead to problems such as ghost targets

or a reduced signal-to-noise power ratio (SNR). Therefore, resource optimization is

necessary to meet the performance requirements for automotive radar sensors with

interference.

In this dissertation, we comprehensively investigate and develop the resource

optimization for communication and radar sensing in vehicular networks, addressing

the problems discussed above. Note that, in this dissertation, we study the resource



3

optimization for vehicular communication and automotive radar sensing separately

to pave the way for future research on joint communication and radar sensing (JCRS)

technology in autonomous vehicular networks.

1.2 Motivation and Objectives

1.2.1 Critical Delay and Reliability of Vehicular Communications

As a component of the intelligent transportation system (ITS), vehicular com-

munication has attracted research attention from both academia and industry [9,10].

There are two main solutions to enable vehicular communications, i.e., IEEE 802.11p

protocol dedicated short-range communication (DSRC) and cellular network stan-

dards. The IEEE 802.11p protocol is designed for vehicular communications based

on dedicated infrastructure and licensed transmission bands. However, recent s-

tudy [11] has revealed several inherent issues of the 802.11p-based technologies,

including scalability, potentially unbounded channel access delay, lack of quality-of-

service (QoS) guarantees. In addition, it is hard to know the communication status

of neighboring vehicles due to the lack of a centralized control node [12].

Cellular networks provide an off-the-shelf potential solution for vehicular com-

munications, which can make use of a high-capacity, large-cell-coverage-range, and

widely deployed infrastructure. Vehicular communications have stringent require-

ments on delay and reliability considering safety service. However, current studies

about resource management did not consider the limitations: (1) the existing re-

source management schemes in V-D2D communication rarely take the signalling

latency into consideration when doing the latency analysis; (2) growing vehicular

communications will greatly increase cellular load, which will cause signalling con-

gestion and larger latency. Underlaying cellular network, we introduce a two-tier

system framework to solve the potential network congestion problem and reduce the

signalling delay.



4

1.2.2 Limited Resources for Vehicular Networks and Predictability of

Traffic Flow

Dense vehicles and their high mobility require frequent and heavy resource al-

location. For vehicular communication underlaying cellular networks, frequency

resources are limited since they also need to be used by traditional cellular user-

s. Considering the limited frequency resources, the most crucial problem needing

to be solved is how to effectively allocate and use the resources based on different

objectives (e.g., sum throughput capacity, latency, total rate). Therefore, resource

optimization algorithms for improving resource efficiency are necessary and signifi-

cant. In addition, vehicle flow is regular and predictable. It also denotes resource

requirement for vehicular communications. Higher accuracy prediction for short-

term traffic flow is an efficient way for resource management to improve resource

efficiency. We conduct studies of a resource allocation scheme for vehicular commu-

nication combining traffic predictions.

Conventionally, radar sensing systems are often designed at mmWave or even

higher frequency bands. Nowadays, both academia and industry have shown strong

interest in mmWave wireless communications owing to the appealing features such as

the very wide bandwidth and hence high communication capacity. This can further

increase the congestion of the mmWave spectrum and also lead to the increasing

occurrence of radar-to-radar interference. Based on a basal road system model, we

introduce stochastic geometry methods to construct the system model and conduct

studies of radar interference and resource optimization.

1.2.3 Green Transportation Systems

In conventional cellular networks, communication requests of all the vehicles have

to be served by the base station (BS), which does not only put a heavy burden on

the delay and capacity-constrained backhaul links, but it is also energy inefficient.
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Aiming to reduce CO2 emissions from vehicles and save non-renewable energy, a

sustainable and green transportation system is therefore of crucial importance [13].

V-D2D communication can be applied to achieve very considerable energy efficiency

and latency improvement by efficient data offloading via either single-hop or multi-

hop transmissions. Underlaying the conventional cellular networks, we conduct s-

tudies of mode selection for V-D2D communication toward the goal of improving

energy efficiency.

1.3 Approach and Contribution

In this dissertation, we first study the resource allocation scheme with traffic pre-

diction for vehicular communications. We mainly propose a novel semi-persistent

resource allocation scheme on top of a two-tier heterogeneous network for vehicular

communications. The scheme can improve bandwidth efficiency, avoid network con-

gestion, and reduce the processing latency significantly. We propose a simple and

effective method for predicting the short-term traffic flow by considering the correla-

tion window in both time and spatial domains according to the vehicle moving speed.

Based on the total available bandwidth and the predicted resource needs mapped

from the predicted vehicle traffic, an improved water-filling algorithm is proposed to

optimally allocate the resource. By combining pre-allocation of persistent resource

and dynamic resource allocation in real time, significant delay linked to resource

allocation can be reduced, with negligible degradation on spectrum efficiency. The

proposed semi-persistent scheme over the two-tier cellular architecture is effective

and promising for vehicular communications. In addition, we also formulate anoth-

er optimization problem based on this system framework, which shows significant

improvement for the performance evaluation.

We then investigate the mode selection of V-D2D communications. We study the

optimal mode selection with energy consumption minimization for V-D2D communi-
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cation underlaying a two-tier heterogeneous cellular network considering a dynamic

time-division duplex (TDD) scheme. In particular, we have discussed the problem

with two optimal objectives: minimizing the energy cost of the overall network and

the vehicular energy only. The analysis results show that V-D2D communication is

preferable and energy-efficient in a large portion of the macro cell and small cell in

some cases.

In the last part of our work, we study the interference characterization method

and power optimization for automotive radar. We introduce a stochastic geometry

method to model the location and density of vehicles and hence automotive radars.

We consider both front- and side-mounted radars with directional antennas, and

develop a framework for analytically calculating the mean interference power seen

by each radar. Approximating the antenna radiation pattern with a Gaussian func-

tion, we derive closed-form expressions for the mean interference power. Based on

the interference analysis, we then formulate the cost function for minimizing the

total transmission power of radars on each vehicle. Our results provide importan-

t guidance for developing ad-hoc automotive radar networks and optimizing their

frequency resource access and allocation.

1.4 Thesis Organization

This thesis is organized as follows:

• Chapter 2: As a literature review chapter, this chapter firstly presents a survey

of vehicular networks, including vehicular communication networks and auto-

motive radar sensing networks. Next, resource optimization for both vehicular

communication and radar sensing is also reviewed.

• Chapter 3: In this chapter, based on the two-tier heterogeneous cellular net-

works, we propose a semi-persistent resource allocation scheme, which aims
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to offload centralized traffic and support low-latency communications. Based

on the system framework, a classical algorithm and an improved traffic pre-

diction method are introduced for persistent resource allocation in advance.

Next, with the formulation of different optimization problem, an improved

water-filling algorithm and corresponding solution are proposed for dynamic

resource allocation.

• Chapter 4: This chapter demonstrates a mode selection scheme for V-D2D

communications with energy consumption minimization underlaying two-tier

heterogeneous cellular networks. The formulation problem with two objec-

tives are discussed and a geometrical interpretation of energy-optimal mode

selection is given.

• Chapter 5: In this chapter, we develop a signal and interference power analysis

framework for automotive radar, by applying the stochastic geometry model.

First, we formulate the vehicular location distribution and derive the expres-

sions for the mean power of the interference. Next, we investigate how to

minimize the total transmission power while guaranteeing an average signal-

to-interference-and-noise ratio (SINR) for radar sensing. Simulation results

and performance analysis are also provided in this chapter.

• Chapter 6: A brief summary of the contents and contributions of this thesis

is given in this chapter. Possible research directions for future work are also

discussed.



8

Chapter 2

Literature Review

This chapter is devoted to reviewing works which is related to this thesis, including

studies on cellular-based vehicular networks, automotive radar sensing, resource

optimization for vehicular communications, prediction for vehicular traffic flow and

resource management for automotive radars.

2.1 Communication and Radar Sensing in Vehicular Network-

s

Next-generation autonomous vehicular networks include not only automotive

radar sensing but also vehicular communications. Vehicle-to-everything (V2X) com-

munications, including vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-

to-infrastructure (V2I), and vehicle-to-network (V2N) communications has been de-

fined by the 3rd Generation Partnership Project (3GPP) group [14]. A typical

vehicular network in the urban environment is shown in Fig. 2.1. V2X communica-

tions technology together with existing automotive radar sensing capabilities in the

modern smart vehicles have a great potential for enabling a variety of applications

for optimizing traffic congestion, improving road safety, providing driver infotain-

ment and manufacturer services. Examples of such advanced applications include

road hazard warning, cooperative collision alert , point-of-interest notification, in-

vehicle Internet access and remote vehicle diagnostics [15, 16]. Extensive work in

the literature investigated the performance of vehicular communications, measured

for example by routing, broadcasting, security and traffic management of vehicular
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Figure 2.1 : An illustration of vehicular networks on an urban road.

ad-hoc networks [17–19], resource allocation and communication link quality [20,21].

Among the major techniques to enhance these performance measures, cellular net-

works are capable of providing wide coverage and flexible centralized control for

network resources, which is critical for achieving reliable V2X communication for

fast-moving vehicles. Simultaneously, a radar sensing system enables exact mea-

surement of distance and relative velocity of objects in front, beside, or behind the

car, which is required to improve driving safety and enable safe autonomous opera-

tions. Particularly, mm-Wave automotive radar is expected to be a key technology

improving driving safety in the next-generation autonomous vehicular networks due

to its unique advantages of detecting vehicles even under bad weather conditions

like fog, spray, heavy rain, or snow [22,23].
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The following kinds of literature investigated cellular V2X communications [11,

24–27] and automotive radar sensing [28–31] in vehicular networks. [11] provided a

survey on the state of the art of LTE, which discussed the related work and running

standardization activities, analyzed strengths and weaknesses of long term evolu-

tion (LTE) as an enabling technology for vehicular communications. [24] provided a

comprehensive overview of the long-term evolution-vehicle (LTE-V) standard sup-

porting sidelink or V2V communications using LTE’s direct interface named PC5 in

LTE. In [25], the authors proposed a mobile-edge computing architecture for future

cellular vehicular networks and demonstrate its potential advantages. In [26], en-

hanced design aspects to support LTE-based V2X services were presented, and a new

demodulation reference signal sequence design was performed. [27] introduced the

NOMA technique into the LTE-based vehicular network to support massive connec-

tivity and reduce resource collision for multiple V2X applications via either power

domain or code domain multiplexing. In [28], the authors proposed an automotive

radar signal processing scheme for target detection, tracking, and classification. [29]

proposed a novel way to cluster radar data points for radar signal processing, which

has shown a good measurement on radar data. Different approaches which focused

on the application of automotive radar were proposed to mitigate radar interference

in [30,31].

2.2 Resource Optimization for Vehicular Communications

Resource allocation for vehicular communication is one of the most important

and challenging problems due to the highly dynamic mobility of vehicles, vast range

of data services and congested frequency spectrum [32]. Numerous ideas and tech-

niques have been emerging, aiming to allocate resource for V2X communications

based on DSRC [33–36] and cellular networks. Considering the advantage of cellu-

lar networks, we mainly focus on the investigation of cellular V2X communications.
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In the following, we review works on resource management in cellular vehicular net-

works, mode selection of V-D2D. In addition, we also do a literature survey on the

prediction for vehicular flows with consideration of the relationship between resource

requirements and traffic flows.

2.2.1 Resource Management for Cellular V2X Communications

The vehicular users (V-UEs) in cellular networks can operate either in the un-

derlay or in the overlay modes [37, 38]. In the underlay modes, an important prob-

lem that needs to be addressed is the interference among traditional cellular users

(CUEs) and VUEs. Numerous studies on resource allocation algorithms have been

investigated.

Based on safety-critical requirements of vehicular communication, literatures

[20, 39, 40] proposed radio resources and power allocation algorithms to maximize

the sum rate of CUEs under the condition of fulfilling V-UEs’ requirements. In [39],

the authors proposed a two stages resource allocation algorithm. First, by problem

transformation, the interference which is caused by resource reusing between the

V2V and traditional cellular transmissions will be resolved. The eNB allocates re-

source blocks (RBs) to both VUEs and CUEs with the assumption of equal power

allocation. Then, the transmission power is adjusted for each VUE and CUE by the

eNB after completing the RB allocation in the first stage. In [20], the sum rate of the

CUEs is maximized and the transmit power of the VUEs is minimized. In [40], au-

thors first proposed a problem transformation method to transform the requirements

of V2X communications into mathematical constraints which can be computed only

using channel state information (CSI). Different from [20, 39], resource reusing can

occur not only between cellular users and vehicles but also among different vehicles

in this study. Then, a novel three-stage cluster-based RB sharing and power allo-

cation scheme based on matching theory was proposed, which had not only better
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cellular sum rate performance and availability, but also improved robustness to the

number of VUEs as well as the required number of RBs per VUE compared to the

existing schemes. In [41], Mei et al. investigated a radio resource, power allocation,

and coding schemes for jointly optimizing V2V communications. This scheme aims

to guarantee the latency and reliability requirements of VUEs and maximize the in-

formation rate of CUEs. In [42], Wei et al. proposed a resource allocation scheme for

V2X communications in the heterogeneous networks to jointly address power con-

trol, frequency allocation and sharing. This scheme aims to achieve fairness among

CUEs, WiFi-UEs, and VUEs. Based on different service needs, VUEs are classi-

fied into non-safety and safety ones. Then, to reduce computation complexity, the

orginal optimization problem is decomposed into three steps to maximize the total

throughput of CUEs and non-safety VUEs while guaranteeing the quality-of-service

(QoS) demands of safety VUEs and WiFi-UEs.

The above methods mainly studied resource allocation schemes that allow users

to share the same resources based on user pairing. Some works focused on inves-

tigating the resource allocation scheme allowing VUEs to reuse the same resources

based on user clustering [43, 44] and user geographic location [45, 46]. In [43], the

authors proposed a zone-based hybrid scheduling algorithm aiming to maximize the

sum rate of cellular V2V while accounting for the link reliability in terms of the

outage probability for all receiving VUEs. Depending on the geographical locations,

the VUEs are divided into different communication groups. In the first, the eN-

B allocates resources for VUEs by a proposed hybrid scheduling. In the second,

the reuse patterns are defined where resources are reused in each communication

group. Then, specific resources are allocated to VUEs in each zone of one pattern.

In [44], the authors studied and proposed a radio resource management scheme for

D2D-based vehicular communications to maximize the sum V2I capacity while guar-

anteeing the reliability of all V2V links. The graph partitioning tools are used to
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divide interfering V2V links into different clusters before formulating the spectrum

sharing problem as a weighted 3-dimensional matching problem, which is then solved

through adapting a high-performance approximation algorithm. In [45], a two-stage

resource allocation scheme was proposed for V2X communications to minimize the

latency of delay-sensitive services, meanwhile satisfying the corresponding reliabili-

ty requirements and data rate requirements. In the first phase, based on the traffic

density information, resources are allocated for each sub-region, where orthogonal

resources are allocated in different sub-regions. In the second phase, resources that

can be reused are used among sub-regions based on the channel state information. A

novel proximity and load-aware resource allocation scheme for V2V communication

was proposed in [46] to minimize the total network cost while satisfying QoS require-

ments of vehicles. Firstly, based on the proximity information and traffic patterns of

vehicles, a dynamic clustering scheme is proposed to group the VUE pairs into sets

of zones. Then, a matching game is proposed to allocate resources among VUEs in

each zone. In contrast to the resource allocation algorithms in the underlaying mod-

e, some works [47–49] focused on the study of cellular V2X communication in the

overlaying scheme where the conventional cellular transmission and V2V are carried

out in a separate frequency band. Thus, cellular users are well protected with over-

lay scheme, but in some cases, frequency efficiency may be relatively low because

the frequency is not reused. However, despite the large amount of literature focused

on resource allocation for cellular V2X communication with different modes, they

rarely take the signalling latency and heavy loading into consideration when con-

ducting the latency analysis. In addition, the papers for resource allocation based

on geographic zone do not consider the connection between different zones caused

by the directionality of the vehicle.

Heterogeneous vehicular network is efficient for offloading centralized traffic, im-

proving the sum-rate capacity and supporting low-latency communications [50–54].
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A heterogeneous vehicular network is typically a two-tier network with a central

macro base station (MBS) and multiple distributed small cells. In [50, 51], network

performance is characterized, with particular concern for frequent handoff between

small cells. In [52], an analytical model based on clustering is proposed to charac-

terize the network performance. In [53, 54], cognitive radio is proposed for sharing

spectrum between macro cells and small cells. These studies demonstrate the feasi-

bility and great potential of heterogeneous vehicular networks.

In D2D communication, the choice of cellular communication or direct com-

munication defines the mode selection underlaying cellular networks and extensive

research on mode selection of D2D has been conducted, e.g., [55–57]. An efficien-

t mode selection scheme is a way for optimizing the resources. For cellular V2X,

VUEs can also communicate using either direct link (i.e., V-D2D) or traditional

cellular link. Focusing on the mode selection and resource allocation of cellular V2X

communications, the authors in [58] designed a deep reinforcement learning-based

mode selection and resource allocation scheme for cellular V2X to maximize the sum

capacity of V2I while guaranteeing the latency and reliability requirement of V2V.

In [59], the authors proposed a flexible mode selection scheme for cellular V2X to

decide transmission mode (i.e., direct and network modes) of vehicular transmitter.

Based on a stochastic geometry model, the expressions for success probabilities of

different modes are derived. In [60], Li et al. proposed a novel joint power control

and resource mode selection approach to support safety-related V2X services un-

der different network load conditions. They considered different resource allocation

modes and proposed power control strategies for different modes to maximize the

information while mitigating the interference between VUEs and pedestrian user

equipment. However, from the perspective of non-renewable resources and green

transportation, minimizing the energy consumption of vehicles is not considered by

these studies when conducting the mode selection for V2X.
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2.2.2 Prediction for Vehicular Traffic Flow

Accurate short-term traffic prediction is important for efficient resource manage-

ment [61,62]. Existing techniques can be classified into two main classes: parametric

model-based and non-parametric based predictions [63]. The former adopts explicit

mathematical models such as auto-regressive-integrated-moving-average (ARIMA)

and its variants [64,65]. The latter does not assume a model, and it predicts the traf-

fic using machine learning techniques such as artificial neural networks (ANN) [66]

and k-Nearest Neighbour (kNN) [67–69]. Several works focused on the resource al-

location scheme based on a prediction algorithm [70–73]. In [70], Asheralieva et al.

proposed a predictive resource allocation strategy for cognitive wireless networks by

employing adaptive algorithms to predict the network loading. These algorithms

can detect changes in the traffic characteristics, and adapt automatically. A novel

prediction-based resource allocation algorithm [71] was proposed in a heterogeneous

wireless access medium. The developed scheme is decentralized and does not require

a central resource manager to perform the resource allocation. In [72], the authors

presented a solution that applied forecasting techniques to adjust the allocated s-

lice resources based on different service classes to optimize the network utilization.

In [73], the authors proposed a stacked long short term memory model to predict

the historical traffic data of V2V communications to reveal the pattern of traffic vol-

ume, from which it was found that potential patterns may help implement resource

allocation in large scale. However, for vehicular communications, there has been

little work to combine resource allocation and vehicular traffic flow forecasting.

2.3 Resource Optimization for Automotive Radars

The reception of interference signals can lead to problems such as ghost targets

or a reduced SNR. In the real road traffic situation, mutual interference between

different automotive radars is unavoidable due to the resource reusing. For example,



16

forward- and sideward- looking radars interfere with their peers travelling in the

opposition direction or crossroads. Backward-looking radars can interfere with the

forward- and sideward- looking radars in the same direction.

There have been some studies on radar interference modelling. In [74], the mutual

interference between FMCW radars was analysed and the effect of interference on

radar performance was evaluated. In [75], interference was investigated for different

types of radars under different conditions (e.g., weather condition and vehicular

position). Detailed causes of mutual interference for two types of radar sensors were

analyzed. In [76], a simulation-based predictor using ray-tracing was proposed for

modelling the received power levels for useful echo and interference signals. In [77],

a stochastic geometry method was adopted to analyze radar interference, where

vehicle locations were assumed to follow two types of point models including a

linear Poisson Point Process (PPP) and a fully regular lattice. It was shown that

the mean interference is independent of the point models when the width of the road

approaches zero.

To mitigate radar interference, techniques such as resource allocation [78, 79]

and interference mitigation [80, 81] have been proposed. In [78], a power allocation

strategy based on game theory was proposed for distributed multiple radars in a

spectrum sharing environment. In [79], a game theoretic approach was introduced

for joint beamforming and power allocation in a distributed radar network and a

pricing mechanism was proposed to minimize the inter-radar interference. In [80],

an adaptive beamforming approach was developed based on MIMO radar to mit-

igate wireless interference for radar-wireless spectrum sharing systems. In [81], a

frequency-hopping random chirp FMCW technique was proposed to reduce mutual

interference for FMCW radars. In [82], two power allocation schemes were pro-

posed for distributed multiple-radar systems to meet a predetermined localization

threshold. Optimal resource allocation schemes under various constraints were al-
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so investigated for coexisting and integrated radar and communications systems

in [83–86].

One major limitation of these works is that they do not take into considera-

tion the impact of antenna radiation pattern on interference modelling and then

mitigation. In [77], a directional antenna was considered but it was assumed that

the gain in the main-lobe is the same and the side-lobe was disregarded. Using a

flat main-lobe may cause exaggerated interference, while ignoring side-lobes leads

to under-estimated interference, particularly when each signal for sensing is typi-

cally very small and can be comparable to the interference received through the

side-lobes [75, 87]. Nevertheless, stochastic geometry is a powerful tool for charac-

terizing the randomness of vehicular locations [77, 88, 89]. It has been widely used

for modelling nodes in cellular networks [90], femtocells [91], and vehicular network-

s [92, 93]. It is particularly useful for vehicular networks where both transmitters

and receivers are randomly located and moving. Random geometric graph [94] is

also a useful tool for performance analysis and optimization of large wireless net-

works. Compared with random geometric graphs, stochastic geometry enables more

flexible and tailored analysis, e.g., studying the average behavior over many spatial

realizations of a network, where nodes are placed according to a specified probability

distribution.

So far, we have reviewed the resource allocation for communication and radar

sensing. In summary, all the above works on optimizing resources in vehicular net-

works either focused on interference management of cellular V2X and performance

improvement based on vehicular reliability requirements, or focused on resource

sharing of coexisting radar and communications systems, but rarely took the sig-

nalling latency into consideration when conducting the latency analysis, also did

not consider the impact of antenna radiation pattern when modelling interference

and allocating resources. In the following chapters, we will introduce our work that
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brings new contributions to the existing research.
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Chapter 3

Semi-Persistent Resource Allocation Based on
Traffic Prediction for Vehicular Communication

In this chapter, based on the two-tier heterogeneous vehicular network, we propose

a semi-persistent resource allocation scheme. This scheme aims to address the two

aforementioned limitations in resource management, and can significantly reduce

signalling latency while optimizing resource allocation. In the proposed scheme, the

MBS provides centralized control over resource allocation for RSUs and each RSU

provides direct short-range communication as well as resource allocation to vehicles

within its coverage. The traffic of vehicles is regular and predictable, so is their

resource requirement for communications. This scheme first pre-allocates persistent

resources to each RSU based on predicted traffic, and then provides additional real-

time dynamic resource allocation to RSUs with insufficiently allocated resources

during pre-allocation. With pre-allocated resource, each RSU can directly provide

initial resource allocation to vehicles when receiving their requests, without having

to wait for the resource being assigned by the MBS. This can significantly reduce the

signalling latency and mitigate congestion. By combining pre-allocation and real-

time dynamic allocation, the proposed scheme is expected to achieve an excellent

balance between spectrum efficiency and latency.

The rest of this chapter is organized as follows: Section 3.1 introduces the sys-

tem model, the proposed semi-persistent resource allocation scheme, the problem

formation, kNN prediction algorithm and the solution of the optimization problem.

Simulation results are also given in this Section which validate the effectiveness of

the proposed semi-persistent scheme in comparison with two benchmark schemes.
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Another optimized problem based on the semi-persistent scheme are formulated in

Section 3.2. The corresponding system model, solution of the problem and simula-

tion results are also presented in this Section. Section 3.3 summarizes this chapter.

3.1 Bandwidth-Constrained Semi-persistent Resource Alloca-

tion Scheme in Two-tier Cellular Networks

Performance of the proposed scheme is closely related to the accuracy of pre-

dicted traffic, the ratio between allocated persistent and dynamic resources, and the

actual resource optimization algorithm. In this section, we consider a segment-based

road model, where a road is divided into multiple segments and the resource request

and allocation are per-segment based. We first develop a cost function for the overall

latency, including both communication and signalling latency, subject to the band-

width constraints. We then develop a kNN algorithm for predicting the vehicle traffic

and then the resource requirement, by assuming a linear relationship between them.

Based on the predicted value, we then propose an improved water-filling algorithm

to generate near-optimal solution to the constrained delay minimization problem.

Extensive simulation results using practically measured traffic data demonstrate the

superiority of our proposed scheme in latency reduction. Compared to benchmark

schemes, our scheme is shown to achieve latency reduction up to 11.6%.

3.1.1 System Model for Semi-persitent Resource Allocation

In this section, we present the system model, propose the semi-persistent re-

source allocation scheme, and then formulate the cost function of delay that will be

optimized later.
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Figure 3.1 : RSU-cellular architecture and the segmented road model.

System Model

We consider an urban free-way fully covered by the LTE cellular network, as

shown in Fig. 3.1, where a straight road with two lanes is exemplified. We assume

that the road is equipped with RSUs, spaced at distances based on individual cov-

erage. We divide the road of interest into N segments, where each RSU supports

the communication of vehicles in each segment. Road segmentation enables efficient

spectral resource allocation and management, and offers potential for low-latency

communications. Denote the segment set as N = {1, 2, ..., N}. Given two-way traf-

fic, the density of vehicles in different segments can be different, and can also be

correlated over space and time.

For vehicular communications, we consider a two-tier heterogeneous network,

where a MBS provides centralized control on network resource for RSUs, and each

RSU is directly responsible for providing access to vehicles in the V2I communication

mode, and conducting local resource allocation for V2V and V2I communications

within its segment. Since the communications between vehicles are mainly limited
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to be within a segment, they are directly managed by the corresponding RSU. When

resource allocation is needed, each RSU collects requests from vehicles and lodges a

request to the MBS. Once the resource is allocated, the RSU will then confirm with

the vehicles.

The required network resource for communications is assumed to be linearly

proportional to the vehicle traffic within the segment. We represent the request-

ed resource as bandwidth, but it can be easily extended to general time-frequency

resource blocks. Hence for each segment, the required bandwidth is linearly propor-

tional to the vehicle traffic with a scalar ε.

We do not consider frequency reuse here and the frequency channels being al-

located across segments are different. For frequency reuse, in the considered road

model we may divide the roads into blocks, each block containing a sequence of con-

tinuous segments. The same set of frequencies can then be allocated in an increasing

order to the segments in each block, so that segments in different blocks using the

same frequencies are sufficiently spaced with negligible interference. Our proposed

scheme can then be applied to each block straightforwardly.

Semi-persitent Resource Allocation

In a conventional persistent resource allocation scheme, the MBS only allocates

frequency resources to RSUs in advance based on traffic prediction. On the opposite,

in a dynamic scheme, the MBS only allocates resources to RSUs upon their real-

time requests, without doing pre-allocation. These two allocation schemes have

respective advantages and disadvantages. For persistent allocation, its performance

largely depends on the accuracy of predicted resource demands. Although it avoids

the real-time signalling loading and delay, inaccurate and insufficient prediction and

resource allocation can lead to low spectrum efficiency and even longer delay. For

dynamic allocation, each request and confirmation for resource allocation incurs
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delay, and it could also be impractical due to the instantaneous very-high loading

resulting from fast-varying traffic flow.

Our semi-persistent scheme combines persistent and dynamic resource allocation,

which can achieve an excellent balance between reducing the delay and improving

the bandwidth efficiency. In the proposed semi-persistent scheme, the total avail-

able resource is divided into persistent and dynamic resource pools. Using predicted

mean traffic and then the mean bandwidth needs, the MBS pre-allocates some re-

source to each RSU in a segment from the persistent pool in advance, as will be

detailed in Section 3.1.2. In real-time, the MBS then further allocates resources to

the segments that only need additional resources upon requests from the dynamic

resource pool, as will be investigated in Section 3.1.3. Our scheme can be applied to

either vehicle density based prediction by assuming a linear relationship between the

bandwidth requirement and the number of vehicles in one segment, or the prediction

for communication bandwidth/capacity directly.

Assume that we are at time tTs where t is an integer and Ts is the observation

interval, and we are now processing the resource allocation problem for the next

time period from tTs to (t + 1)Ts. For simplicity, we use t to represent either the

time tTs or the period from (t− 1)Ts to tTs hereafter. We define some symbols and

rules as follows:

• The total available bandwidth, total allocated persistent bandwidth and total

remained dynamic bandwidth are denoted as B, BP , and BD respectively.

We have BD + BP ≤ B, as there could be unallocated bandwidth due to

constraints applied in our optimization problem. The current time is t;

• The persistent bandwidth allocated to the n-th segment for (t + 1) is Bp
n(t +

1), n ∈ N . Therefore BP =
∑N

n=1 B
p
n(t+ 1).

• When Bp
n(t + 1) < Breq

n (t + 1), the n-th RSU will request dynamic resources
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from the MBS. The dynamic bandwidth allocated to each segment for (t+ 1)

is Bd
n(t+ 1), where

∑N
n=1 B

d
n(t+ 1) ≤ BD. In addition, the actual bandwidth

requirement at t + 1 is denoted as Breq
n (t + 1), n ∈ N and Bd

n(t + 1) needs to

satisfy Bd
n(t+ 1) ≤ Breq

n (t+ 1)− Bp
n(t+ 1).

• The total allocated bandwidth Bn(t+ 1) to the n-th segment at t+ 1 is then

given by Bn(t+ 1) = Bp
n(t+ 1) +Bd

n(t+ 1).

• Let the signalling and processing delay for the dynamic resource request and

allocation be ts. We assume that ts is a constant for all segments.

• The ground-truth delay τ exp
n (t + 1) denotes the “true” delay if the requested

bandwidth Breq
n (t+ 1) is fully allocated.

Referring to Fig. 3.2, the system operation and the actual latency in the proposed

scheme are described as follows. We divide the communication process within each

segment into two stages. In the first stage, a RSU schedules vehicle communications

using the pre-allocated persistent bandwidth meanwhile it will start a new resource

request with the MBS upon receiving the actual bandwidth requests from vehicles.

After communication for a period ts that corresponds to the signalling and pro-

cessing delay for the new bandwidth request, the RSU receives updated bandwidth

allocation and the second stage starts. The RSU now schedules the communication

with the combined persistent and dynamic bandwidth. If no dynamic bandwidth

is allocated, the segment continues using only the persistent bandwidth. We ignore

the signalling delay within a segment during this process because it has little im-

pact on our proposed scheme. Note that the prediction and persistent bandwidth

allocation is assumed to be done in a relatively long interval of tens to hundreds of

timeslots, while dynamic allocation is done within each timeslot, with a period of

typically 100 ms. For vehicle density based prediction, the interval can be tens of
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Figure 3.2 : Illustration of latency for each timeslot in the n-th segment for the
period (t, t+ 1)Ts. Each period contains tens to hundreds of such timeslots.

seconds as the density will not change significantly during a short period; and for

network-bandwidth-demand based prediction, it can be smaller.

Formulation of the Cost Function

We now formulate an average relative latency as the cost function for our opti-

mization problem. We aim to minimize the average relative latency by optimizing

the allocation of persistent and dynamic bandwidth.

Based on Shannon’s capacity formula, the data rate is linearly proportional to the

bandwidth. Here, we approximate the data rate as the product of the bandwidth

and a segment-dependent constant cn accounting for possibly different signal-to-

noise ratios in different segments. Let the total number of bits to be transmitted be

Sn(t + 1) in time t + 1 and in the n-th segment. Then the bits being transmitted

during the first stage will be cnBp
n(t+1)ts and the transmission latency in the second
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stage will be

τan(t+ 1) =
Sn(t+ 1)− cnB

p
n(t+ 1)ts

cn(B
p
n(t+ 1) +Bd

n(t+ 1))
. (3.1)

The total latency is then given by

τn(t+ 1) = τan(t+ 1) + ts. (3.2)

Therefore, the ground-truth expected latency that corresponds to the actually

required bandwidth is

τ exp
n (t+ 1) =

Sn(t+ 1)

cnB
req
n (t+ 1)

. (3.3)

Note that τ exp
n (t+1) is typically specified in a standard, for example, τ exp

n (t+1) = 100

ms according to 3GPP TR 36.885 [14].

If the allocated persistent bandwidth exceeds the actually required bandwidth

in one segment, i.e., Bp
n(t+1) ≥ Breq

n (t+1), the RSU does not need to request more

bandwidth from MBS. Hence, we let U and V denote the index sets of the RSUs

that do not and do request dynamic bandwidth, respectively. The size of the sets

are U and V . We can then define the averaged total relative latency T (t+ 1) as

T (t+ 1) =
1

N

N∑
n=1

τn(t+ 1)

τ exp
n (t+ 1)

=
1

N

{∑
u∈U

Breq
u (t+ 1)

min {Bp
u(t+ 1), Breq

u (t+ 1)} +
∑
v∈V

[
Breq

v (t+ 1)− Bp
v(t+ 1)tsv

Bp
v(t+ 1) +Bd

v(t+ 1)
+ tsv

]}

=
1

N

{
U +

∑
v∈V

[
Breq

v (t+ 1)− Bp
v(t+ 1)tsv

Bp
v(t+ 1) +Bd

v(t+ 1)
+ tsv

]}
, (3.4)

where N = U + V and tsv = ts/τ exp
v (t + 1) is the relative signalling latency. Note
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that both U and V depend on the allocated persistent resource.

Our objective is to determine optimal allocations for persistent and dynamic

resources so that T (t+1) is minimized. The optimization problem is formulated as

min
{Bd

v (t+1)}V

v=1

T (t+ 1) (3.5a)

subject to 0 <

V∑
v=1

Bd
v(t+ 1) ≤ BD; (3.5b)

0 ≤ Bd
v(t+ 1) ≤ Bdu

v (t+ 1), ∀v; (3.5c)

where

Bdu
v (t+ 1) = Breq

v (t+ 1)− Bp
v(t+ 1) (3.6)

is the upper bound of Bd
v(t + 1). Equation (3.5b) represents a general constraint

on the total available bandwidth for dynamic allocation. The constraint in (3.5c)

ensures that no more bandwidth than that actually needed will be allocated to one

RSU. It guarantees the fairness during resource allocation and enables the overall

optimality attained.

3.1.2 Vehicular Traffic Prediction Based on kNN

In this section, we choose kNN for traffic prediction for its simplicity and efficien-

cy in solving non-linear problems which typically exist in traffic prediction [95]. Its

efficiency can be seen from our simulation results using practically measured traffic

data as will be presented in Section 3.1.4. It is noted that although our prediction

scheme is presented by referring to the vehicular traffic prediction, it can be readily

extended to direct network traffic prediction.

We focus on short time traffic prediction (30 seconds) using a space-time kNN



28

(ST-kNN) algorithm. Previous works on the kNN method mainly focused on the

whole road, which did not consider the difference and correlation between different

parts on the road. In order to apply it into our problem where the traffic for

each segment needs to be predicted, we introduce a space-time windowing method

to exploit the data correlation, which can achieve better prediction performance.

Our proposed kNN method predicts the future traffic using a weighted prediction

function based on latest and historical data sets in both windowed space and time

domains.

Fig. 3.3 depicts the processing flow of the proposed kNN method. The search

procedure finds the nearest neighbours of each segment in the time and spatial

domains from historical observations that are most similar to the current conditions.

The nearest neighbors are then used as the input to a linear function to generate

the prediction. The main process of our improved ST-kNN algorithm is summarized

below and described in detail next.

1. Define an appropriate state space;

2. Decide the window size;

3. Define a distance metric to determine nearness of historical data to the current

conditions;

4. Select a prediction method given a collection of nearest neighbours.

State Space

State vector is a standard for comparing the current data and the historical

database. It can have a significant impact on the prediction accuracy. Here the state

vector contains the traffic values measured over a continuous period (t, t−1, ..., t−q),

where q needs to be selected carefully to avoid resulting in excessive similar values
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Figure 3.3 : Processing flow of the ST-kNN algorithm.

when comparing the current observation data and the historical database. We will

show the impact of the value q on system performance in Section 3.1.4. For Segment

n(n ∈ N ), the current traffic state vector is given by

vn(t) = [Vn(t), Vn(t− 1), Vn(t− 2), ..., Vn(t− q)] (3.7)

where Vn(t) is the traffic value at time t.

The state vector vn(t) is then compared with neighbouring blocks in both space

and time domains from the historical database. Selection of these blocks will be

discussed in the next subsection.

Choice of the Window Size ν

Considering one traffic direction on the road, the traffic flow in different segments

can be highly correlated over both the spatial and temporal domains. Fig. 3.4.

illustrates the correlation of the traffic volume between different segments. The

same color stands for the mostly correlated traffic, e.g., V3(t) in Segment 3 at time

t is strongly correlated with V1(t− 2), V2(t− 1), V4(t+ 1), and V5(t+ 2).

Here, the window size is selected according to the correlation between different

segments dependent on the movement speed of vehicles. The vehicle speeds could

vary significantly between different time periods of a day such as peak and off-peak

time. The time periods can be classified according to the variation of the speed or
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the average speed using for example an unsupervised classification algorithm [96].

Here, we use the average speed υ.

For predicting the traffic in Segment n, we apply windowing across segments of

distance L = υTp in the spatial domain and over a period of Tp in the time domain,

where Tp is the prediction interval. During this period, vehicles at Segment m, the

furthest to Segment n, will travel to Segment n. In other words, the current traffic

flow rate at time t in Segment n is strongly correlated with those up to Segment

m at time t − Tp. The actual number of blocks will be the quantized values for L

and Tp with respect to the length of segments and Ts, respectively. Let νnm be the

relative index of samples and 0 < νnm ≤ �Tp/Ts� where �Tp/Ts� denotes the least

integer larger than Tp/Ts. Note that the selected state vector in the neighbouring

blocks can be represented as

⎧⎪⎨
⎪⎩

vm(t+ νnm) = [Vm(t+ νnm), Vm(t+ νnm − 1), . . . , Vm(t+ νnm − q)] , when m > n,

vm(t− νnm) = [Vm(t− νnm), Vm(t− νnm − 1), . . . , Vm(t− νnm − q)] , when m < n.

(3.8)

When m = n, then νnm = 0. Here, the window size ν based on speed and distance

is only suitable for a one-way road.

Distance Metric of Traffic Data

Learning a good distance metric in feature space is crucial in real-world appli-

cation [97]. Here we use Euclidean distance, a common distance metric between

real-time and historical traffic data used in kNN prediction [67,98]. It is given by

li =

∑q
iq=1

√
(Vn(t− iq)− Vm(t± νnm − iq))2

q
, (3.9)

where Vn(t− iq) is the traffic flow of segment n at the time (t−iq) and Vm(t± νnm − iq)

is the traffic volume of segment m which is strongly correlated with Vn(t− iq) in
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Figure 3.4 : Illustration of traffic correlation and the windowing concept.

the historical database, li represents the Euclidean distance of the two traffic state

vectors.

Prediction Function

Based on the Euclidean distance values computed for the blocks in the windowed

spatial and temporal domains, k nearest neighbours with the least distance values

are found from the historical database. We then use a weighted linear function [99]

[page 2-3] to predict the traffic. The predicted traffic flow Vn(t+ 1) in segment n at

time (t+ 1) is given by

Vn(t+ 1) =
k∑

i=1

aiVm(i, t± νnm + 1), (3.10)



32

where the weight ai is defined as

ai =
l−1
i∑k

i=1 l
−1
i

. (3.11)

Assuming a linear relationship between the vehicular and network traffic, the

predicted bandwidth for time t+1 can be obtained as b̂pn(t+1) = εVn(t+ 1), n ∈ N ,

where ε is the mapping coefficient.

Application of a Scaling Coefficient

Instead of directly using the predicted value to allocate the bandwidth to seg-

ments, we apply a scaling factor θ to it and the pre-allocated persistent bandwidth

for the n-th segment is given by

Bp
n(t+ 1) = θb̂pn(t+ 1), (3.12)

with

0 < θ ≤ B∑N
n=1 b̂

p
n(t+ 1)

. (3.13)

There are two reasons that we introduce θ here. Firstly, the total available band-

width could be smaller than the sum of the predicted bandwidth for all segments,

and hence we need to do a scaling. Secondly, even when the total bandwidth is suf-

ficient, allocating less resource than the predicted value may achieve overall better

performance given the fluctuation of the instantaneous traffic. We will investigate

and propose a rule-of-thumb for selecting the values of θ for a given ratio between

the total available bandwidth and the statistical mean of the required bandwidth in

Section 3.1.4.
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3.1.3 Minimization of Average Relative Latency

Assume that the total available bandwidth B is known. After allocating the

persistent bandwidth using (3.12), we now get the remaining bandwidth BD(t+ 1)

as

BD(t+ 1) = B − θ

N∑
n=1

b̂pn(t+ 1), (3.14)

which is available for dynamic allocation based on the actual requests Breq
n (t + 1)

from RSUs.

Our goal is now to find the optimal dynamic allocation Bd
n(t+ 1) for (3.5), with

a given θ. Note that strictly speaking, an optimal solution will require optimization

for both θ and Bd
n(t + 1). Since there exists no closed-form statistical distribution

for the required bandwidth, it is hardly possible to find a closed-form expression

for the optimal θ. Therefore, we only test a series of values for θ in the simulation

in Section 3.1.4, and disclose the optimal range of θ based on practically measured

channels. Note that in the case of Bp
n(t + 1) ≥ Breq

n (t + 1) when the allocated

persistent bandwidth is sufficient, a RSU will not make a request for for dynamic

bandwidth.

For the optimization problem in (3.5), we can separately consider two situation-

s. In the first situation, BD ≥ ∑V
v=1 B

du
v (t + 1), which means there is sufficient

bandwidth that can satisfy every RSU’s request. In this case, the MBS can just

allocate the bandwidth to each RSU as being requested. In the second situation,

BD <
∑V

v=1 B
du
v (t+1), which implies that

∑V
v=1 B

d
v(t+1) = BD and not all requests

can be satisfied. An optimization algorithm is needed for allocating the dynamic

bandwidth in this situation.

It is easy to verify that T (t+1) in (3.5) is a convex function of Bd
v(t+1). Hence
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the optimization problem meets the Karush-Kuhn-Tucker (KKT) conditions and can

be generally solved by convex optimization algorithms such as linear programming.

To provide a closed-form solution and shed more insights on the design, we propose

a bandwidth-constrained water-filling algorithm (BC-WFA) next.

Algorithm 1 BC-WFA Algorithm.

Require: vector {pv}, {wv},
{
Bdu

v

}
for v = 1, 2, ..., V , the set E = {1, 2, ..., V }, and

BD.
Ensure:

{
Bd

v

}
1: while E 	= ∅ do
2: Use (3.18)-(3.20) to compute

{
Bd

v

}
.

3: Λ ← {
v | Bd

v > Bdu
v , v ∈ E

}
.

4: if Λ 	= ∅ then
5: if v ∈ Λ then
6: Bd

v = Bdu
v .

7: end if
8: E ← E\Λ, BD = BD −∑

v∈Λ B
du
v .

9: else
10: Output

{
Bd

v

}
as v ∈ E.

11: end if
12: end while

Under the conditions of BD <
∑V

v=1 B
du
v (t + 1), and

∑V
v=1 B

d
v(t + 1) = BD,

the BC-WFA algorithm optimizes the dynamic bandwidth allocation, in order to

minimize the relative latency in (3.5). The algorithm is developed based on the geo-

metric water-filling method in [100]. The detailed steps are presented in Algorithm

1, with the concept illustrated in Fig. 3.5, where the dashed line denotes the water

level.

Firstly, let {Bp
v(t+ 1)}Vv=1 be a sorted sequence, which is positive and monoton-

ically increasing. Let pv denote the “step depth” of the vth stair and wv represents
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Figure 3.5 : Illustration of the BC-WFA water-filling for dynamic resource allocation.

the weighted coefficient as shown in Fig. 3.5(a). They are given by

wv =
√

Breq
v (t+ 1)− Bp

v(t+ 1)tsv, for v = 1, 2, ..., V. (3.15)

pv =
Bp

v(t+ 1)

wv

, for v = 1, 2, ..., V. (3.16)

Let BD
2 (k) represent the water volume (dynamic bandwidth) above the kth step,

as shown in the shadowed area in Fig. 3.5(a). It is given by

BD
2 (k) =

[
BD −

k−1∑
v=1

(pk − pv)wv

]+

, for k = 1, ...., V (3.17)

where (x)+ = max {0, x}.

According to the GWF algorithm without the individual upper bound constraint

(3.5c) in [100], the explicit solution to (3.5) is given by

⎧⎪⎨
⎪⎩

Bd
v =

[
Bd

k∗

wk∗
+ (pk∗ − pv)

]
wv, 1 ≤ v ≤ k∗,

Bd
v = 0, k∗ < v ≤ V,

(3.18)
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where

k∗ = max
{
k | BD

2 (k) > 0, 1 ≤ k ≤ V
}
. (3.19)

Here k∗ can be treated as the highest step under water. The allocated dynamic

bandwidth for this step is

Bd
k∗ =

wk∗∑k∗
v=1 wv

BD
2 (k

∗), (3.20)

which is illustrated by the shadowed area in Fig. 3.5(b).

In Algorithm 1, the constraints (3.5c) are checked in Steps 4-7. Allocations

which do not satisfy the constraints are set as the individual upper bound and then

removed in Step 8. The process repeats until all allocations are completed with

constraints satisfied.

3.1.4 Simulation Results

In this section, we present simulation results for the proposed BC-WFA semi-

persistent resource allocation scheme. As mentioned before, we would like to use

real data for the simulation. Since the network model for vehicular communications

is not available yet, we base our simulation on real vehicle traffic, and assume a

linear mapping with ε = 1 between the network traffic (required bandwidth) and

the vehicle traffic. Actually, we can see that ε does not have a direct impact on

the objective function in (3.4) only if the linear mapping holds. In the case when

this relationship does not hold, for example, when there are a burst of bandwidth

requests, the proposed semi-persistent scheme can still cope with this via dynami-

cally allocating bandwidth in real time using the proposed water-filling algorithm.

This is because the vehicular traffic prediction is only used for allocating persistent

bandwidth. However, the burst will translate into increased variance and the overall

performance may be degraded.
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We use the vehicular traffic dataset collected from a section of Interstate 80 (I-

80) freeway located in Emeryville, California [101]. The dataset includes both traffic

density and average vehicle speed. The study area was approximately 500 meters

(1,640 feet) in length and consisted of six freeway lanes, including a high-occupancy

vehicle (HOV) lane. The section includes six traffic stations and the time interval

of the collected data is 30s within 10 days. Traffic flow data from the first nine days

is selected as the historic database and data collected from the last day is used as

the test data, assuming that RSUs co-locate with these traffic stations. The road is

accordingly divided into six segments numbered as 1 to 6. We consider a one-way

traffic with direction from Segment 1 to 6. With such data, we are capable of doing

prediction every 30s. As discussed before, there is no particular requirement on the

interval of prediction, and hence the interval here is indicative only.

Our simulation is based on a setup where the 30s interval is divided into many

timeslots (200 in this chapter). During the interval, the required bandwidth in each

time-slot in each segment could be varying and is assumed to follow a Gaussian

distribution. Let the measured real free-way traffic over the 30s interval in [101]

be the average of this distribution, denoted as B
req
n (t + 1) for the time interval

[tTs, (t+ 1)Ts], with Ts = 30s. The actual bandwidth requirement is then assumed

to follow the Gaussian distribution with mean B
req
n (t+1) and variance 0.2Breq

n (t+1),

i.e., f(Breq
n (t + 1)) → N (

B
req
n (t+ 1), 0.2B

req
n (t+ 1)

)
. Based on the predicted aver-

age traffic, persistent bandwidth will be requested and pre-allocated; the actually

required bandwidth in each timeslot is then generated following the Gaussian distri-

bution, and dynamic bandwidth is then allocated if requested. Note that our scheme

does not exploit and hence does not rely on the actual traffic models. However its

performance may be affected by the models indirectly. For example, a distribution

with larger variance can lead to lower efficiency of the proposed scheme.
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Prediction Performance

In order to evaluate the performance of the proposed prediction algorithm, we

define and use Mean Absolute Percent Error (MAPE) [102] as a performance metric

MAPE =
1

n

n∑
j=1

|V
p
j − V r

j

V r
j

|, (3.21)

where V p
j is the predicted traffic flow and V r

j is the real traffic flow. n is the number

of predictions. Larger MAPE means worse prediction performance.

We first look for the best parameter values for the ST-kNN algorithm. To deter-

mine a proper window size νnm which is related to the moving speed, we adopt an

ISODATA algorithm and classify a day into off-peak and peak time periods based

on vehicle moving speed [96]. Fig. 3.6 shows the cumulative distribution function

(CDF) of the average traffic for peak and off-peak periods using the real traffic data.

The window size νnm can then be calculated for different time periods, and may vary

across segments. Using segment 5 as an example at peak time (6:30-10 am), we get

ν56 = 1, ν54 = 1, ν53 = 2, ν52 = 3, ν51 = 4, based on the average speed and distance

between segments [101].

We then determine the values for k and p. Fig. 3.7 shows the MAPE value of

the prediction for Segment 5 using ST-kNN with different k and q values. When

k = 15 and q = 5, the algorithm is found to achieve the best accuracy, with the

averaged MAPE of 0.098 for the whole day. The best values for parameters k and

q for all segments are shown in Table I. In practical implementation, a trial-and-

update process can be applied regularly to decide their best values for the next time

period. Since the characteristics of the traffic flow in a certain area vary slowly, such

updates can be done slowly and at a low computational cost due to the simplicity

of the ST-kNN algorithm.



39

150 200 250 300 350 400 450 500
Traffic Volume

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Peak time
Off-peak time

Figure 3.6 : The traffic volume during off-peak and peak time period, respectively.

Table 3.1 : Obtained best values for parameters k and q.

Segment n 1 2 3 4 5 6
k 15 15 18 15 15 15

q 5 5 4 5 5 5

The predicted traffic flow, as well as the actual data, are shown in Fig. 3.8(a).

For comparison, we also presented the prediction results in Fig. 3.8(b) for the least

minimum mean square error (LMMSE) algorithm, which is widely used for channel

and traffic prediction [103,104]. The size of the adopted prediction correlation matrix

in LMMSE is 10×10, and its complexity is much higher than the proposed ST-kNN

due to the matrix inversion operation. For LMMSE, the averaged MAPE is 0.1063,

comparable to that of the ST-kNN algorithm. The accuracy of LMMSE predictor

can be improved with increasing the size of the prediction correlation matrix, at a

higher complexity. The figure shows that LMMSE also tends to smooth the output

of prediction, and hence is not as accurate as ST-kNN for predicting small-scale
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Figure 3.7 : Prediction results with different k and q values in Segment 5.
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Figure 3.8 : Predicted and real traffic flow in a day in Segment 5 using (a) ST-
kNN and (b) LMMSE algorithm. Time interval between the plotted samples is 5
minutes. The average MAPE values for ST-kNN and LMMSE are 0.098 and 0.1063,
respectively.
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Latency and Bandwidth Efficiency

Based on requirements specified by 3GPP TR 36.885 [14], we adopt τ exp
n (t+1) =

100 ms and the signalling delay ts is set to vary from 5ms to 25ms. Note that different

latency values can be set for different segments in our scheme; for example, more

stringent latency values such as τ exp
n (t + 1) = 20 ms can be used in certain safety

critical cases like truck platooning. The relative latency T (t+1) is obtained for each

timeslot and is then averaged over all timeslots.

For comparison, we use the following two benchmark schemes. One is the con-

ventional purely dynamic allocation scheme (DS) where the water-filling algorithm

is used to allocate the total available bandwidth to each RSU in real time, with

the goal of minimizing average relative latency. This corresponds to the case of

θ = 0 in the proposed semi-persistent scheme (SPS) and we can denote the delay as

T (t + 1)|θ=0,n∈N . The other one is a purely persistent scheme (PS) where the total

bandwidth is all allocated to RSUs based on predicted traffic without the following

dynamic allocation. The optimal relative latency for the persistent scheme is given

by

T (t+ 1) =
1

N

N∑
n=1

Breq
n (t+ 1)

min
{
θmaxb̂

p
n(t+ 1), Breq

n (t+ 1)
} , (3.22)

where θmax =
B∑N

n=1 b̂
p
n(t+ 1)

.

The total bandwidth B may also be optimized, which is beyond the scope of this

study. Here, we simply set it as a scaled value of the statistical mean of the total

requested bandwidth, i.e., B = aEt(
∑

n B
req
n (t)), where a is the scalar close to 1,

and Et(·) denotes the averaging operation over time. We will study its impact on

the performance of the proposed scheme and on the coefficient θ shortly.
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Figure 3.9 : Average relative latency versus θ for DS and SPS during off-peak and
peak time. For PS, the averaged latencies are 1.1650 and 1.1404, respectively. Sig-
nalling latency is ts = 15ms and a = 0.9.

We also define another performance metric, the bandwidth efficiency as

ρ =

∑N
n=1min

{
Bp

n(t+ 1) +Bd
n(t+ 1), Breq

n (t+ 1)
}

B
, (3.23)

which characterizes the efficiency of bandwidth usage.

We first study whether there is an optimal θ that minimizes the overall latency

for the proposed scheme. Figs. 3.9 and 3.10 present the average relative latency

and bandwidth efficiency for the proposed SPS and DS, respectively, with a = 0.9

and ts = 15ms. Note that the curves for DS are level straight lines as the scheme is

unrelated to θ. For PS, the value of θmax is fixed in each segment. Hence we directly

provide the averaged values across segments, which are 1.1650 and 1.1404 for the

relative latency and 85.45% and 87.91% for the bandwidth efficiency, for off-peak
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Figure 3.10 : Bandwidth efficiency versus θ for DS and SPS during off-peak and
peak time. The averaged bandwidth efficiencies for PS are 85.45% and 87.91%,
respectively.

and peak time respectively. We can see that the proposed SPS provides the lowest

latency in the three schemes for most of the θ values (θ > 0.7). Its bandwidth

efficiency is always better than PS, and is close to DS when θ < 0.9 and then the

gap increases after that. The increased gap is due to the fact that in the proposed

scheme, the allocated persistent bandwidth grows with θ increasing, which causes

Bp
n(t + 1) > Breq

n (t + 1) for some segments. We can also observe that the latency

curves for the proposed scheme are somewhat convex, with optimal values of θ in

the range of approximately [1.04, 1.1] and [0.98, 1.2], respectively.

In Fig. 3.11, we further show the bar-plot for the optimal values of θ for different

values of B through varying the scalar a. It is clear that the ranges of optimal θ

increase consistently with a increasing.

In Fig. 3.12, we demonstrate how the average relative delay varies with the
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Figure 3.11 : Optimal θ values for different total bandwidth B = aEt(
∑

n B
req
n (t))

for SPS.

total bandwidth. For the proposed semi-persistent scheme, we present the results

for the cases where both the optimal θ and θ = a are used. The proposed SPS

achieves consistently lower latency than the two benchmark schemes. With a = 1,

the achieved average latency is only 5% more than the expected one. The latency

gaps between the two values of θ are also small, which indicates that θ = a can be

simply used as a rule-of-thumb for the proposed scheme.

Finally, we evaluate how the latency varies with the relative signalling delay tsn

for the three schemes. The simulation results are presented in Fig. 3.13, where the

optimal value of θ is used in the SPS. As expected, the relative latency increases

linearly with tsn for the DS and it remains as a constant for the PS. Across the

simulated range of tsn, the proposed SPS grows slowly with tsn increasing, and always

achieves the lowest latency. The bandwidth efficiency is unrelated to the signalling

delay and therefore is not presented.
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Figure 3.12 : Variation of average relative latency with the total bandwidth. Sig-
nalling delay is set as 15 ms.
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peak time, respectively.

3.2 Latency-Constrained Semi-persistent Resource Allocation

Scheme in Two-tier Cellular Networks

In this section, considering another system model, We introduce a non-model-

based LMMSE predictor for predicting vehicular network traffic and use the semi-

persistent resource allocation scheme for V2X communications with strict latency

requirements. A cost function for the total bandwidth for the area of interest is

developed under latency constraints for resource allocation.

3.2.1 System Model and Problem Formation

In this part, we present the system model, and then formulate the cost function

of the total bandwidth.
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Figure 3.14 : Two-tier cellular architecture and the segmented road model.

As shown in Fig. 3.14, we consider an urban cellular V2X network with a two-

tier architecture where a MBS is in the first tier and several RSUs are in the second

tier. We divide the area of interest into N segments, where each RSU supports

the communication of vehicles in each segment. Denote the segment set as N =

{1, 2, ..., N}. Assume that MBS provides centralized control over network resource

for RSUs, and each RSU is directly responsible for providing access to vehicles in the

V2I communication mode, or do local resource allocation for vehicles in the mode of

direct V2V communications within its segment as shown in the subfigure Fig. 3.14

(a). In the two-tier heterogeneous network, purely dynamic resource allocation will

incur delay due to resource requests and confirmation from all vehicular users. As

shown in Fig. 3.14 (b), each vehicle user who wants to communicate with others

needs to send a request to MBS via RSU.

In this part, we mainly investigate bandwidth allocation across segments by using
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the proposed semi-persistent scheme in the area. Assume that there is no frequency

reuse and orthogonal frequency channels are allocated across segments.

Note that our prediction is only for the mean traffic for one time period of Ts,

and hence the resource pre-allocation is applied every Ts seconds. Real-time traffic

request and dynamic allocation then happens many times during the Ts seconds.

Assume that we are at time tTs, and are now processing the resource allocation

problem for the next time period from tTs to (t+ 1)Ts. For simplicity, we use t+ 1

to represent this period. We now define some symbols and rules as follows:

• The dynamic bandwidth allocated to n-th segment for t+1 is Bd
n(t+1), where

BD =
∑N

n=1B
d
n(t+ 1).

• When Bp
n(t + 1) < Breq

n (t + 1), some vehicle users in the n-th segment will

request dynamic resources from the MBS via RSU.

• The transmission latency requirements of vehicular users in the n-th segment

at time t+ 1 is trn and a signalling latency tsn will be introduced for vehicular

users who need dynamic allocation.

Formulation of the Cost Function

Now, we formulate a cost function for the total required bandwidth in the area of

interest. Our main objective is to minimize the total bandwidth under the transmis-

sion latency constraints of vehicular users. Based on the proposed semi-persistent

scheme, the total required bandwidth can be expressed as

B(t+ 1) =
N∑

n=1

[Bp
n(t+ 1) +Bd

n(t+ 1)]. (3.24)
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Therefore, the cost funtion can be defined by

min
{tn}Nn=1

B(t+ 1)

subject to 0 < trn ≤ T r
n , (3.25)

where T r
n is the threshold of latency for vehicular communications in the n-th seg-

ment.

3.2.2 LMMSE Predictor for Network Traffic and Optimization of Cost

Function

LMMSE Predictor for Persistent Allocation

Network traffic exhibits high correlation in short timescales and long-range de-

pendence over segments, and such correlation and dependence can be well exploited

for traffic prediction. Here, we introduce an LMMSE predictor, which is widely used

for channel estimation and traffic prediction [103,104].

Let b(t) be the average network traffic in the [(t− 1)Ts, tTs] time period, where

Ts is the interval of observations. We propose the following M -coefficients linear

predictor

b̂(t+ 1) =
M−1∑
k=0

a(k)b(t− k) (3.26)

for predicting the mean network traffic one sample ahead of the current one, where
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a0, a1, ..., aM−1 are the LMMSE coefficients. These coefficients can be obtained as

[a(0) a(1) ... a(M − 1)] = [R(1) R(2) ... R(L)] R†
t ,

Rt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R(0) R(1) ... R(L− 1)

R(1) R(0) ... R(L− 2)

... ... ... ...

R(M − 1) R(M − 2) ... R(L−M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (3.27)

where L ≥ M , the superscript † denotes the pseudo-inverse of a matrix, Rt is the

autocorrelation matrix at time t with

R(i) =
1

M

M+i∑
t=i+1

b(t)b(t− i), 0 ≤ i ≤ M − 1. (3.28)

According to the predicted network traffic, the MBS allocates persistent band-

width to each segment. Here, we introduce a scaling factor θ instead of directly using

the predicted value to allocate the bandwidth to segments, and the pre-allocated

persistent bandwidth for the n-th segment is given by

Bp
n(t+ 1) = θb̂n(t+ 1). (3.29)

The reason we introduce θ here is that there will be gaps between the predicted

and real values. Therefore, an appropriate θ is helpful for minimizing the total

bandwidth for the area of interest. In Section 3.2.3, we will investigate the optimal

θ numerically.

Minimization of Total Bandwidth

After allocating the persistent bandwidth, we now need to complete dynamic

allocation in real time. With a given θ, our goal is to find the optimal dynamic
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allocation Bd
n(t+ 1) based on the actually requested bandwidth Breq

n (t+ 1) and the

latency threshold. Note that, in the case of Bp
n(t + 1) ≥ Breq

n (t + 1), the allocated

persistent bandwidth can already meet the latency requirement of vehicular commu-

nications. Let V denote the index sets of the segments where Bp
n(t+1) < Breq

n (t+1).

The size of the sets is denoted as V . Then we can rewrite (3.24) as

B(t+ 1) = θ
N∑

n=1

b̂n(t+ 1) +
V∑

v=1

Bd
v(t+ 1) (3.30)

According to the Shannon’s capacity formula, the transmission rate of a vehicular

communication link is r = B log(1+SNR), where B denotes the channel bandwidth.

Assume that breq bits need to be transmitted over one link. Thus, the transmission

delay can be expressed by t =
breq

B log(1 + SNR)
. It is obvious that the transmission

delay is inversely proportional to the bandwidth. Therefore, we define the relation-

ship between transmission delay and bandwidth as tn =
cn
Bn

. Thus, we can obtain

trv =
cv

Breq
v (t+ 1)− Bp

v(t+ 1)
, ∀v ∈ V. (3.31)

For the v-th segment, the transmission time needs to meet the following rela-

tionship based on the constraints of the latency

trv − tsv =
cv

Bd
v(t+ 1)

. (3.32)

By substituting (3.31) into (3.32), the allocated dynamic bandwidth can be ex-

pressed by Bd
v(t + 1) =

trv
trv − tsv

[Breq
v (t+ 1)− Bp

v(t+ 1)]. We then rewrite (3.30)

as

B(t+ 1) = θ
N∑

n=1

b̂n(t+ 1) +
V∑

v=1

trv
trv − tsv

[Breq
v (t+ 1)− Bp

v(t+ 1)]. (3.33)

With a given θ and the constraint 0 < trv ≤ T r
v , Bd

v(t + 1) obtains its minimum
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value when trv = T r
v . The minimum is given by

Bop(t+ 1) = θ

N∑
n=1

b̂n(t+ 1) +
V∑

v=1

T r
v

T r
v − tsv

[Breq
v (t+ 1)− Bp

v(t+ 1)]. (3.34)

3.2.3 Simulation Results

In this section, we present simulation results for the proposed semi-persistent

resource allocation scheme (SPS) and demonstrate its performance based on two

types of data sets. One data set is generated from simulated Autoregressive (AR)

process, and the other is from real measured traffic flow data.

For comparison, we also provide results for the conventional purely dynamic

resource allocation scheme (DS), which allocates bandwidth based on the latency

requirements in real time. The minimum total bandwidth for DS is given by

BD
op(t+ 1) =

N∑
n=1

T r
n

T r
n − tsn

Breq
n (t+ 1). (3.35)

In order to evaluate the performance of proposed prediction model LMMSE, we

define and use Mean Absolute Percent Error (MAPE) as a performance metric

MAPE =
1

n

n∑
j=1

∣∣∣∣∣ b̂j − bj
bj

∣∣∣∣∣ . (3.36)

Larger MAPE means worse prediction performance.

Simulation Results based on AR Model

Firstly, we generate the average bandwidth needs using an AR model with co-

efficients ai = exp(r ∗ i), i = 1, 2, 3 and Gaussian noise with variance 10−4. Let

the prediction interval be Ts = 5s. Denote the generated average bandwidth for

[tTs, (t + 1)Ts] as B
req

n (t + 1). We generate 8 sets of data (i.e., N = 8) based on
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Figure 3.15 : Minimum total bandwidth versus θ for dynamic and semi-persistent
schemes; MAPE=5.63%; ts = 15ms.

different values of r (r = −0.95,−1,−1.05,−1.1,−1.15,−1.2,−1.25, 1.3). Each set

includes 500 data samples. Using the LMMSE predictor, we can obtain the predict-

ed bandwidth requirement for each segment, i.e., b̂(t + 1). Based on the predicted

average traffic, persistent bandwidth will be requested and pre-allocated in advance.

On the assumption that the actual bandwidth requirement in each 2s period

follows the Gaussian distribution with mean B
req

n (t+1) and variance 0.2B
req

n (t+1).

In this study, each 5s interval is divided into 20 timeslots. In each timeslot, dynamic

bandwidth is then requested and allocated.

According to the requirement specified by 3GPP TR 36.885 [14], we adopt 100ms

as the latency threshold of vehicular communication in the simulation, i.e., T r
n =

100ms and the signalling delay tsn is set to vary from 5ms to 25ms.

We first study whether there is an optimal θ for the proposed scheme. Fig. 3.15

presents the optimal total bandwidth for SPS and DS, respectively, with ts = 15ms.
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Figure 3.16 : Achieved total bandwidth versus signalling latency ts for DS and SPS.

Note that the curve for the dynamic scheme is a level straight line as it is unrelated to

θ. We can see that SPS provides smaller total bandwidth compared with DS for all

of the θ values. Moreover, there exists an optimal θ (θ = 0.93 in this example). The

green curve is for the ideal situation (denoted as Bideal(t+1)) where the accuracy of

traffic prediction equals to 100%. When θ = 0.93, the gap between Bop(t + 1) and

Bideal(t+ 1) reaches the minimum value.

In Fig. 3.16, we show how the total bandwidth varies with the signalling latency

ts, where θ = 0.93. As expected, the total bandwidth increases linearly with ts

for DS. Across the simulated range of ts, the proposed SPS grows slowly with ts

increasing, and always achieves the lower total bandwidth.

In Fig. 3.17, we present the optimal values of θ for different signalling latencies

for SPS. The optimal θ increases with ts growing. The range of the optimal θ is

[0.894 0.952].
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Figure 3.17 : Optimal θ with varying signalling latency ts.

Simulation Results based on Real Traffic Flow Data

Assume there is a direct mapping between vehicle density and the network band-

width requirements, we test the performance of the proposed scheme using real ve-

hicle density data collected from a section of Interstate 80 (I-80) freeway located

in Emeryville, California [101]. There are six traffic stations collecting the data,

resembling six RSUs (i.e., N = 6). The record is for 10 days and the traffic flow

data from the eighth day (8:00am-12am) is selected for testing. The time interval

of the collected data is 30s, and hence Ts = 30s. Similarly, we divide Ts into 100

timeslots, and real-time bandwidth requirement in each timeslot is simulated using

the same Gaussian distribution based on AR Model.

Firstly, for the prediction correlation matrix Rt, we fix the product of the number

of its rows M and the number of columns L (M ∗ L = 48) to be 48, and we test

the prediction performance of the LMMSE predictor. In Fig. 3.18, we compare the
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Figure 3.18 : Prediction results with different M and L values in segment 5.

MAPE values for different pairs of (M,L). The algorithm is found to achieve the

best accuracy when M = 6 and L = 8.

Fig. 3.19, Fig. 3.20 and Fig. 3.21 show the simulation results for the real traffic

data, in parallel to those for the artificially generated ones in Fig. 2, 3 and 4.

Both of these results demonstrate the effectiveness of the proposed semi-persistent

resource allocation scheme in minimizing the bandwidth usage under given time

delay constraints.

3.3 Summary

In this chapter, we proposed a novel semi-persistent resource allocation scheme

on top of a two-tier heterogeneous network for vehicular communications. The

scheme can improve bandwidth efficiency, avoid network congestion, and reduce the

processing latency significantly. Based on this scheme, we mainly study two classes

of optimization problems: 1) minimizing the relative latency with the constraint of

total bandwidth; 2) minimizing the total bandwidth with the constraint of trans-
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Figure 3.19 : Total bandwidth versus θ for DS and SPS using real vehicle density
data; MAPE=9.15%; ts = 15ms.

mission latency. For the first problems, we proposed a simple and effective ST-kNN

method for predicting the short-term traffic flow by considering the correlation win-

dow in both time and spatial domains according to the vehicle moving speed. Based

on the total available bandwidth and the predicted resource needs mapped from the

predicted vehicle traffic, an improved water-filling algorithm is proposed to opti-

mally allocate the resource to each RSU. By combining pre-allocation of persistent

resource and dynamic resource allocation in real time, significant delay linked to re-

source allocation can be reduced, with negligible degradation on spectrum efficiency.

Supported by simulation results with real traffic data, the proposed semi-persistent

scheme over the RSU-cellular architecture is effective and promising for vehicular

communications. For the second optimization problem, we use LMMSE for traffic

prediction and also provid an optimal solution to the problem. Simulation is con-

ducted for both artificially generated and real-world data, and the results validate

the effectiveness of the proposed semi-persistent scheme.
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Figure 3.20 : Total bandwidth versus signalling latency ts for DS and SPS with the
real vehicle density data; θ = 0.89.
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Figure 3.21 : Optimal θ versus signalling latency ts.
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Chapter 4

V-D2D Mode Selection Underlaying Two-tier
Cellular Networks

In this chapter, we consider two-tier heterogeneous cellular networks. To simplify

our modeling, we assume that there is one small cell formed by RSU in a macro cell

and both of them operate according to a dynamic TDD scheme that natively sup-

ports multi-cell D2D-based V2V mode selection and resource allocation. The V-D2D

communication pair can reuse the resource of cellular users to improve spectrum ef-

ficiency; however, that will cause a new interference (BS-to-BS) with dynamic TDD

scheme. In this case, we use the character of dynamic TDD to minimize the energy

consumption of the network system by adjusting UL and DL time configurations.

The joint time allocation, mode selection, power control and resource allocation

scheme are developed. From Shannon’s capacity formula, we can know that the

transmission energy per bit decreases with the transmission time [105]. Through

the derivation, it shows that the joint mode selection and resource allocation prob-

lem can be formulated as a convex optimization problem. We can find the optimal

time allocation and transmission mode, then we demonstrate the mode selection

threshold when V-D2D communication is preferable. Finally, we give a geometri-

cal interpretation of an energy-optimal mode selection scheme. Results show that

V-D2D communication plays an important role both in the macro cell and small

cell for energy consumption minimization. There is a large portion for V-D2D com-

munication mode in the cell. Moreover, cell-edge vehicular users also benefit from

V-D2D communication.

The rest of this chapter is structured as follows. Section 4.1 describes the sys-
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tem model and assumptions. Then we calculate the energy consumption of three

communication scenarios, present a convex optimization formulations and optimal

threshold conditions for energy-efficient mode selection in section 4.2. In section 4.3,

we give a geometrical interpretation of the deduced results which is supported by

simulations. Section 4.4 finally concludes this part of our study and suggestions for

further work.

4.1 System Overview and Problem Formulation

The considered two-tier heterogeneous cellular network where V-D2D commu-

nication is enabled with the assistance of BS is shown in Fig. 4.1. It consists of

a macro BS (MBS), two vehicles which can communicate using possible modes, a

RSU and two downlink traditional cellular users; all of them are denoted by 0, 1, 2,

3, c1 and c2, respectively. As shown in Fig. 4.1, the transmission scheduled in the

two-tier cell can be realized via one of the following transmission modes:

• Mode A (Macro cellular mode): Two users use conventional cellular transmis-

sion and communicate through the MBS, i.e. V-UE1 sends data to the MBS

(uplink) and then the MBS forwards the data to V-UE2(downlink)

• Mode B (V-D2D mode): A direct link is set up and can be used for commu-

nication between V-UE1 and V-UE2.

• Mode C (RSU mode): Two users within the small cell communicate through

the RSU.

The main aim of our work is to develop algorithms which can determine the

communication modes selection to minimize the energy cost from the perspective of

both the vehicles and the overall cellular network.
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Figure 4.1 : System model for V-D2D communication underlaying two-tier hetero-
geneous cellular network with dynamic TDD scheme. V-UE1 communicates with
V-UE2 via MBS, RSU or through a direct link.

In our model, we assume that the cellular base stations operate in the dynamic

TDD where the uplink and downlink transmissions operate in the same bandwidth

but alternate in time and time is divided into frames with duration of T seconds.

In the cell, c1 and c2 use the orthogonal spectrum resources. As for the single

communication pair (the transmitter V-UE1 and the receiver V-UE2), we consider

a scenario of sharing downlink resource of cellular network and make the following

assumptions:

• When V-UE1 and V-UE2 are in the coverage of the small cell, they can com-

municate via the RSU or communicate directly by V-D2D communication and

they reuse the resource of c1, thus V-UE2 and RSU receive the interference

from MBS as shown in Fig. 4.1 (a).

• When one of V-UE1 and V-UE2 is not in the coverage of the small cell, they can
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communicate via the MBS or communicate directly by V-D2D communication.

They reuse the resource of c2, thus V-UE2 and MBS receive the interference

from RSU as shown in Fig. 4.1 (b).

• The two downlinks from MBS to c1 and from RSU to c2 keep transmitting

data in the full frame time T and have the constant transmit power, p0c1 and

p3c2 respectively. Furthermore, the positions of c1 and c2 are far away from

the transmitters, so we don’t consider the interference that they receive.

For the communication between V-UE1 and V-UE2, we assume that the portions

of time allocated to the uplink and downlink can be adjusted dynamically. V-D2D

communication can use the whole frame for its transmission, see Fig. 4.1 (c). The

instantaneous rate rij between V-UE1 and V-UE2 based on the Shannon’s capacity

formula are given by

rij(pij, Gij, Ij) = W log(1 +
pijGij

σ2 + Ij
), (4.1)

where W denotes the channel bandwidth, and σ2 is the noise power. Gij is the

channel gain between the transmitter-i and the receiver-j, pij stands for the transmit

power level used for the communication from transmitter-i to receiver-j. In addition,

we assume maximum transmission power level pmax
ij , and denote the corresponding

instantaneous rate in (4.1) by rmax
ij (Gij) . Ij is the interference experienced from BS

(MBS or RSU) at receiver-j.

We further assume that breq bits must be transmitted in each time frame from

V-UE1 to V-UE2, which translates into a minimum rate requirement of rreq = breq/T .

It means when the instantaneous rate rij exceeds rreq, the rate requirement can be

satisfied by transmitting for only a fraction of the full time. Specifically, the time
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tij during which the transmitter-i transmits data to receive-j can be denoted as

rijtij = breq. (4.2)

Obviously, when the instantaneous rate achieves the maximum value, the re-

quired transmission time achieves a lower bound, i.e., tij ≥ breq/rmax
ij . That also

means lower values of tij would make pij exceed pmax
ij , leading to a power-infeasible

time allocation.

By inverting the power-rate relationship (4.1), the energy cost can be derived as

Eij(tij) = pijtij = (exp(
ln 2breq

Wtij
)− 1)

σ2 + Ij
Gij

tij, (4.3)

which has been proved to be a convex and gradually decreasing function of the

transmission duration tij in paper [105]. This implies that the minimum value of

Eij can be obtained when tij takes the maximum value.

4.2 Optimal Mode Selection with Energy Minimization

In this section, we will solve the mode selection problem and exploit the possi-

bility of V-D2D communication between two vehicles compared with macro cellular

mode and RSU mode to reduce the transmission energy consumption. Furthermore,

extending vehicular battery lifetime, reducing gasoline consumption and CO2 emis-

sions are vital in green transportation systems. When we are more concerned about

green transportation, reducing vehicular energy cost is more important than reduc-

ing the total network one. Hence we define the following two scenarios to develop

an optional mode selection policy:

• minimizing the overall network energy consumption including vehicles and BS;

• minimizing the energy consumption of vehicular transmitters.
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To achieve an optional mode selection solution, we analyze the energy costs of three

different modes, and further deduce and compare their minimum energy costs. The

analyses show that the energy minimization problem can be formulated as a convex

optimization problem, and has an optimal solution.

4.2.1 Energy Minimization based on Macro Cellular Mode

In this mode, V-UE1 and V-UE2 will transmit information through MBS with

two time intervals, i.e., t10 for the uplink and t02 for the downlink. Note that, the sum

of transmission time including uplink and downlink cannot exceed the entire frame

time T. In the dynamic TDD system, the time allocation can be adjusted. Here we

are interested in the minimization of energy cost by changing the transmission time:

1) Minimizing the overall energy consumption of the network. The convex opti-

mization problem could be formulated as the summation of the cellular uplink and

downlink energy consumption as following,

min
{t10,t02}

E10(t10) + E02(t02) + E0c1 + E3c2 (4.4a)

subject to t10 + t02 ≤ T, (4.4b)

t10 ≥ breq

rmax
10

, t02 ≥ breq

rmax
02

, (4.4c)

where E0c1 is the energy cost of c1 in the time T and E0c1 = p0c1T , E3c1 is the

energy cost of c2 in the frame T and E3c2 = p3c2T . The constraint in (4.4b) ensures

that the duration of the communication based on Mode A does not exceed the frame

time length T, and the constraints in (4.4c) guarantee that the transmit power does

not exceed the maximum value, i.e, power feasibility. To ensure the constraints

(4.4b) and (4.4c) are non-empty, we deduce that breq must satisfy

breq ≤ T.
rmax
10 rmax

02

rmax
10 + rmax

02

. (4.5)
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Since the objective function in (4.4) is monotonically decreasing in (t10, t02), the

optimal solution is attained when t10 + t02 = T . Therefore, the problem (4.4) is

equivalent to the following single-variable optimization problem,

min
{t02}

E10(t10) + E02(t02) + E0c1 + E3c2 (4.6a)

subject to
breq

rmax
02

≤ t02 ≤ T − breq

rmax
10

, (4.6b)

which is a solvable convex optimization problem in a single variable and can be

solved easily.

2) Minimizing vehicle energy consumption. When we only consider minimizing

the energy consumption of vehicles (here we disregard the energy spent by the MBS

and the RSU), the optimal problem changes into min
t02

E10(T−t02) while the constraint

remains the same in (4.6b). Because E10(T − t02) is monotonically increasing with

t02 increasing, so the objective is minimized by setting t02 to be its minimum value

breq/rmax
02 , which means that the MBS transmits at its maximal power. The optimal

time interval of uplink transmission can be obtained

t∗10 = T − t02 = T − breq

rmax
02

. (4.7)

In addition, the minimum energy cost is

E10(t
∗
10) = (exp(

ln 2breq

Wt∗10
)− 1)

σ2 + I0
G10

t∗10, (4.8)

where I0 stands for the interference that the RSU receives from the MBS I0 =

p3c2G30.
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4.2.2 Energy Minimization based on V-D2D Mode

In this mode, the minimum energy needed to establish a direct communication

can be determined in the following scenarios.

1) Minimizing the overall energy consumption of the network: the optimization

problem can be simply determined by

min
{t12}

E12(t12) + E0c1 + E3c2 (4.9a)

subject to
breq

rmax
12

≤ t12 ≤ T, (4.9b)

Similar to Mode A, the constraints (4.9b) guarantees that the communication is

power feasible and its duration can not exceed the frame length. Since the objective

function in (4.9) is monotonically decreasing in t12 , so to obtain the minimal energy

consumption, t12 should exploit the entire frame length T . Then the minimum

energy cost in Mode B can be expressed by

EV-D2D = (exp( ln 2breq

WT
)− 1)σ

2+I2
G12

T + E0c1 + E3c2
, (4.10)

where I2 stands for the interference that V-UE2 receives from the MBS or RSU,

I2 = p0c1G02 or I2 = p3c2G32.

2) Minimizing vehicle energy consumption, the optimization problem is

min
{t12}

E12(t12) (4.11a)

subject to
breq

rmax
12

≤ t12 ≤ T, (4.11b)

Since the objective function in (4.11) is monotonically decreasing in t12 , to obtain

the minimal energy consumption, t12 should exploit the entire frame length T . Then
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the minimum energy cost is

EV-D2D = E12 (T ) =

(
exp

(
ln 2breq

WT

)
− 1

)
σ2 + I2
G12

T. (4.12)

4.2.3 Energy Minimization based on RSU Mode

Here, V-UE1 and V-UE2 will transmit information through RSU with two time

intervals (t13, t32) , t13 for the uplink and t32 for the downlink. Here we focus on

the minimization of energy cost by adjusting the transmission time, and similar to

Mode A, we get the conclusion as following:

1) Minimizing the overall energy consumption: the optimization problem can be

denoted as

min
{t13,t32}

E13 (t13) + E32 (t32) + E0c1 + E3c2 (4.13a)

subject to t13 + t32 ≤ T, (4.13b)

t13 ≥ breq

rmax
13

, t32 ≥ breq

rmax
32

, (4.13c)

To ensure the power feasibility, breq must satisfy

breq ≤ T.
rmax
13 rmax

32

rmax
13 + rmax

32

. (4.14)

2) Minimizing vehicle energy consumption: the minimum energy cost is

E13 (t
∗
13) =

(
exp

(
ln 2breq

Wt∗13

)
− 1

)
σ2 + I3
G13

t∗13, (4.15)

where t∗13 = T − breq

rmax
32

, and I3 stands for the interference that MBS receives from the

RSU, I3 = p0c1G03.
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4.2.4 Mode Selection Scheme

We have deduced the minimum energy consumptions for three different commu-

nication modes in above, and then the optimal selection scheme is simply to use

the communication mode which spends the smallest energy. There are two mode

selection scenarios for the single pair V-UE1 and V-UE2.

i) In the small cell, there are two communication modes which can be chosen:

Mode B and Mode C. The mode selection solution has the intuitive form that V-D2D

mode is preferred when the direct link can be strong enough, i.e.,

G12 ≥ H(G13, G32). (4.16)

The threshold H(G13, G32) depends on the uplink and downlink gains of RSU,

and whether we want to minimize the total system energy consumption, or only the

energy cost of the vehicles.

From the overall network perspective, a direct communication should be estab-

lished if EV-D2D in (4.10) is smaller than the minimum amount of energy needed for

the Mode B, derived from the solution to problem (4.13). Let (t∗13, t
∗
32) denote the

optimal time allocation in problem (4.13). Thus, when V-D2D mode (Mode B) is

more energy efficient, the threshold is H(G13, G32) =
(exp( ln 2breq

WT )−1)(σ2+p0c1G02)T
E13(t∗13)+E32(t∗32)

.

When we only care about the energy consumption by vehicles, the threshold

condition that D2D communication is more efficient becomes

H(G13, G32) = n(G32)G13, (4.17)

where n (G32) =
(exp( ln 2breq

WT )−1)(σ2+p0c1G02)T

E13

(
T− breq

rmax
32 (G32)

) .

We can find that even though we neglect the energy consumption for the down-
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link, G32 still plays a role in terms of determining mode selection.

ii) In the macro cell, there are also two communication modes which can be

chosen: Mode A and Mode B. The mode selection policy form that D2D mode is

preferred becomes

G12 ≥ Z(G10, G02). (4.18)

Similar to i), from the overall network perspective, the threshold when V-D2D mode

(Mode B) is more energy efficient is Z(G10, G02) =
(exp( ln 2breq

WT )−1)(σ2+p3c2G32)T
E10(t∗10)+E02(t∗02)

.

From the vehicular device perspective, the threshold condition that V-D2D com-

munication is more efficient becomes

Z(G10, G02) = g(G02)G10, (4.19)

where g (G02) =
(exp( ln 2breq

WT )−1)(σ2+p3c2G32)T

E10

(
T− breq

rmax
02 (G02)

) . The G02 also effects the energy cost of

the vehicle even though we neglect the energy consumption of the downlink.

4.3 Analysis and Simulation Results

4.3.1 Simulation Setup

This section shows the simulation results to demonstrate the geometrical inter-

pretation about the optimal mode selection scheme. We consider two-tier heteroge-

neous cell with a MBS, a RSU, two cellular users, and one V2V pair. We assume

that the channel gains follow a conventional path-loss model Gij = G0D
−α
ij , where

Dij is the distance between vehicular user-i and vehicular user-j. G0 is the path

gain per meter, and α is the path-loss exponent, normally in the range of 2 to 6.

For simplicity, we focus on the vehicle energy consumption, and re-write (4.17) and
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Table 4.1 : Simulation parameters.

Parameter Value
Carrier Frequency 1 GHz
Macro Cell Radius 500 m
Small Cell Radius 200 m
Channel Bandwidth (W) 6 MHz
Noise power spectral density -174 dBm/Hz
Path-Loss exponent (α) 4
Path gain at reference distance of 1 m 5.7 · 10−4

Max transmit power for macro BS 40 W
Max transmit power for small cell BS 8 W
Max transmit power for V-UE1 0.25 W
Transmit power of Downlink c1 (p0c1) 10 W
Transmit power of Downlink c2 (p3c2) 2 W
Time frame duration T 1 time unit

(4.19) in terms of distance as

⎧⎨
⎩
D12 ≤ n̄(D32)D13,

D12 ≤ ḡ(D02)D10,

(4.20a)

(4.20b)

where n̄(D32)
Δ
=

[
n(G0D

−α
32 )

−(1/α)
]

and ḡ(D02)
Δ
=

[
g(G0D

−α
02 )

−(1/α)
]
. To character-

ize the region where V-D2D mode and RSU mode are preferable, we fix the position

of V-UE1 in the small cell, hence, D10 and D13 are fixed. Meanwhile, we vary the

position of V-UE2 along a circle centered at the small cell base station and macro

base station respectively. Conditions (4.20) state that V-D2D mode is preferable

when V-UE2 is located at the intersection of this circle and disc centered at the

position of V-UE1 (with radius n̄(D32)D13 or ḡ(D02)D10).

4.3.2 Results

Now, we present the simulation results obtained with the practical system pa-

rameters summarized in Table I. The data requirement breq is set to guarantee

power feasibility for the mode A and mode B; we set breq = kT
rmax
10 rmax

02

rmax
10 +rmax

02
and
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Figure 4.2 : V-D2D mode and RSU mode optimality area when minimizing the
vehicles energy cost.

breq = kT
rmax
13 rmax

32

rmax
13 +rmax

32
, where k ∈ [0, 1] , and we choose the smaller one of breq when

V-UE1 and V-UE2 communicate in the small cell.

In the presented figure, the blue area represents V-D2D power feasibility area

within which V-UE1 can fulfill the rate requirement in V-D2D mode with p12 ≤ pmax
12 .

The red area represents the V-D2D optimality area in which V-D2D mode is more

energy efficient than the macro cellular mode, and the yellow area stands for the

V-D2D optimality area in which V-D2D mode is more energy efficient than the RSU

mode. Hence, intersection of the two areas represents the location of V-UE2 where

V-D2D mode is both power feasible and energy-optimal. We also gain the green

area in which RSU mode is more energy efficient.

Fig. 4.2 shows the V-D2D optimality area when the vehicle energy is the primary

concern. We consider two different locations of V-UE1 and k = 1. When V-UE1

stays in the edge of the macro cell and small cell, we can see that the portion of

D2D optimality area increases. It is worth noting that cell-edge users can benefit

from V-D2D communication, achieving the required session rate with much lower

energy cost.



72

-600 -400 -200 0 200 400 600

-400

-300

-200

-100

0

100

200

300

400

500

600
k=1

BS

UE1

c1

c2

(a)

-600 -400 -200 0 200 400 600 800

-400

-200

0

200

400

600

800
k=1

BS

UE1

c1

c2

(b)

-600 -400 -200 0 200 400 600

-400

-300

-200

-100

0

100

200

300

400

500

600

k=0.5

BS

UE1

c1

c2

(c)

-600 -400 -200 0 200 400 600 800

-400

-200

0

200

400

600

800

k=0.1

BS

UE1

c1

c2

(d)

Figure 4.3 : V-D2D mode and RSU mode optimality area when minimizing the
overall network energy cost.
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Figure 4.4 : Percentage of energy saved in V-D2D mode compared with Mode A
and Mode C.
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Fig. 4.3 (a) and (b) represent the V-D2D optimality area when the overall

network energy cost is the primary concern. Interestingly, V-D2D communication is

preferable in a large percentage of macro cell and small cell, almost close to half the

cell. Fig. 4.4 (a) and (b) show the reduction of energy in V-D2D mode compared

with Mode A and Mode C. When V-UE1 and UE2 are closer, the energy saving is

significant. Fig. 4.3 (a), (c) and (d) show the impact of rate requirement on the

V-D2D optimality area for the overall network energy saving problem. We fix the

position of V-UE1, and consider three different values of the target rate by choosing

k = 1, k = 0.5, k = 0.1. This shows that the V-D2D feasibility area clearly increases

as breq reduces, the corresponding V-D2D optimality area decreases.

4.4 Summary

In this chapter, we have studied the optimal mode selection with energy con-

sumption minimization for V-D2D communication underlaying a two-tier heteroge-

neous cellular network, considering a dynamic TDD scheme. In particular, we have

discussed the problem with two objectives: minimizing the energy consumption of

the overall network and the vehicles energy only. Simulation results show that the

D2D optimality area is strongly affected by the network parameters. In some cases,

V-D2D communication is preferable in a large portion of the macro cell and small

cell.
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Chapter 5

Interference Characterization and Power
Optimization for Automotive Radar with

Directional Antenna

In this chapter, applying the stochastic geometry model, we develop a signal and

interference power analysis framework for automotive radars, by considering both

front-mounted (FR) and side-mounted radars (SR), and directional antenna radi-

ation patterns. We first study a two-lane scenario and then extend the work to a

multi-lane one. Using the stochastic geometry model to formulate the vehicular lo-

cation distribution in a road segment, we derive the expressions for the mean power

of effective echo signals and the interference, taking into consideration the frequen-

cy reuse factor, vehicle density, and radiation patterns for FR and SR. Assuming

a Gaussian waveform for the antenna radiation pattern, we provide closed-form ex-

pressions for their mean interference power. We then investigate how to minimize

the total transmission power while guaranteeing an average SINR for radar sensing.

Extensive simulation results are provided and found to match analytical results very

well.

The remainder of this chapter is organized as follows. Section 5.1 introduces the

system and stochastic geometric model, and formulates the echo and interference

signals. In Section 5.2.1, considering a two-lane scenario, we present the analytical

framework for mean interference characterization, and present closed-form expres-

sions with Gaussian approximation. Section 5.2.2 extends the results to a multi-lane

scenario. In Section 5.3, we present the power minimization algorithm. Finally, sim-

ulation results are provided in Section 5.4, and Section 5.5 concludes the chapter.
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5.1 System and Signal Models

In this section, we adopt stochastic geometry methods to construct the system

model and emulate geometric distribution of vehicles on a two-lane road and the

radio propagation of associated radars. Without loss of generality, we consider a

vehicle located at the origin of one lane and call it the typical vehicle, and assume

that its statistical behaviour is typical and representative of all other vehicles. We

consider a temporal snapshot of the road traffic during which the vehicles can be

considered as stationary, preserving the geometric statistics of the traffic. We note

that these statistics are indeed not constant over a long period. However, they are

of a slow kinetic nature and can be safely regarded as static for a given segment of

a road over a reasonable observation period.

5.1.1 Geometrical Model

Automotive radar is used to locate objects in the vicinity of the hosting vehicle.

A modern vehicle could be equipped with more than one radar. Automotive radars

can be categorized into three types based on detection capabilities: long range radar

(LRR) which is used for measuring the relative speed and distance of other vehicles,

medium range radar (MRR) which is used for detecting objects in a wider field of

view (e.g., for cross traffic alert systems), and short range radar (SRR) which is used

for sensing in the vicinity of the car (e.g., for parking aid or obstacle detection). The

LRR, as well as MRR, are mounted on the front of the vehicle, and SRR, as well

as MRR, are mounted on the sides and back of the vehicle. Different field of views

(FoVs) are demanded for these three types of automotive radars.

Here, we consider the setup where a vehicle is equipped with one FR for adap-

tive cruise control and two SRs for side impact. Generally, automotive radars are

equipped with directional antennas which generate directional beams with main and

side lobes. The beamwidth of different radars is generally different. We assume that
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Figure 5.1 : The interference between automotive radars. (Red vehicles stand the
interfering ones.)

all vehicles are equipped with the same types of FR and SR.

We consider a two-way road with one lane in each direction. Assume that the

lanes are of equal width, L, and vehicles travel in the middle of the lane. We assume

that there is no coordination between the frequency band that a radar uses. A radar

just randomly selects its frequency band. When radars use the same frequency band,

interference can be potentially generated. Fig. 5.1 illustrates a simplified layout of

the interfering FR/SR radars. Only the beam from one SR is plotted for each

vehicle, as the other one causes negligible interference to other radars in the setup.

We assume that the interference to a FR and SR is mainly from the FR and SR of

vehicles travelling in the opposite direction.

We capture the randomness of vehicle location using the popular geometrical

distribution of PPP. In each lane, the locations of vehicles follow a unidimensional

PPP [106] in R
1 with a homogeneous linear density ρ measured in vehicles per

unit length. We denote the set of vehicles in one lane as ΦPPP. Let ξ denote the

probability that a vehicle in the opposing lane uses the same frequency as the typical

vehicle. Considering the interference from other vehicles to the typical one, we can
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describe the interferers by applying a random marking as

ΘPPP = {i : i ∈ ΦPPP,M(i) = 1} , (5.1)

where the mark M(i) is defined for different interfering scenarios as follows:

• From FR to FR or from FR to SR,

M(i) =

⎧⎪⎨
⎪⎩

0, �i ≤ 0,

B(ξ), �i > 0,
(5.2)

where �i denotes the location of vehicle i, the interference between FR and

FR is zero for � ≤ 0, and B(ξ) is a Bernoulli random variable with selection

probability ξ; and

• Between SR and SR,

M(i) = B(ξ), i ∈ ΦPPP. (5.3)

5.1.2 Radar Reception

Each radar may receive two types of impacting signals including radar echo

signal and interference signals. The echo signal is transmitted by the typical vehicle

and the reflected signal is used for object localization. The interference signals are

from other radars using the same frequency band as the typical vehicle. For inter-

ference signals, we use the inverse square law of the distance for signal attenuation

analysis. For the effective power of echo signals, we only take into consideration

directly reflected paths from targets. For interference analysis, we consider an ad-

ditional gain factor corresponding to a statistical fading process, to account for

multipath propagations.

Here, we only consider signals coming from the horizontal plane, and hence a
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two-dimension model is adopted for signal and interference analysis. The ideas

presented in this chapter can be extended to three-dimension models.

We assume effective echo signals are coming from the direction corresponding to

the maximum antenna gain, and hence the results serve as upper bounds for other

target directions.

Radar Echo-Signal

The power of received echo-signal is well characterized, for example, in [107]. For

FR, it can be represented as

Sf
r =

PfGf

4πR−2
f

× σf
c

4πR−2
f

Af
e

=
PfGf

4πR−2
f︸ ︷︷ ︸

Incident power density

× σf
c

4πR−2
f

︸ ︷︷ ︸
Reflected power density

× Gfλ
2
f

4π︸ ︷︷ ︸
Effective area of receiving antenna

= εf1ε
f
2ε

f
3PfR

−4
f , (5.4)

where Pf is the FR transmission power, R is the distance between radar and target,

Gf and Af
e are the maximum antenna gain and the effective area of receiving antenna,

respectively, and σf
c is the cross-section area (RCS) of the target. The parameters

εf1 , ε
f
2 and εf3 are given by

εf1 =
Gf

4π
, εf2 =

σf
c

4π
and εf3 =

Gfλ
2
f

4π
=

Gf

4π

(
c

ff

)2

, (5.5)

where ff is the central operating frequency and c is the speed of light.

Similarly, the received power of echo-signal for SR can be written as

Ss
r =

PsGs

4πR−2
s

× σs
c

4πR−2
s

As
e = εs1ε

s
2ε

s
3PsRs

−4, (5.6)
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where Ps is the SR transmission power, and

εs1 =
Gs

4π
, εs2 =

σs
c

4π
and εs3 =

Gsλs
2

4π
=

Gs

4π

(
c

fs

)2

. (5.7)

Symbols with subscript s are defined for SR accordingly.

Interference Signals

We introduce a random vector Hi, where i refers to the i-th interfering vehicle, to

account for the statistical channel fading for interfering signals. This randomness is

caused by multipath propagation due to reflections from buildings, vegetation, and

other vehicles. We assume that the elements of this random vector are identically and

independently distributed (i.i.d.), because of the homogeneous fading environment.

The interference power from FR and SR of vehicle i to the FR of the typical one

can be expressed by

Ifi = Iffi + Isfi

= ( εf1 Pf gf (βi)︸ ︷︷ ︸
(a) FR Interference power.

+ εs1 Ps g
s(π/2− βi)︸ ︷︷ ︸

(b) SR Interference power.

) · εf3 gf (βi)︸ ︷︷ ︸
(c) Rx antenna gain of FR.

Hi‖ri‖−2

(5.8)

where Iffi and Isfi denote the interference power from FR and SR to FR, respec-

tively, ‖ri‖ is the distance between the typical and interfering vehicles, βi is the

angle between the moving direction and the line connecting the two vehicles, gf (βi)

and gs(βi) denote the normalized antenna radiation pattern (or antenna gain) as a

function of signal incoming direction β, with a maximum of 1, for FR and SR, re-

spectively. As shown in Fig. 5.2, βi can be expressed as βi = arcsin(L/ri). In (5.8),

part (a) and (b) denote the power of interference signals transmitted in the direction

of βi from FR and SR, respectively, and part (c) denotes the receiver antenna gain
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Figure 5.2 : Illustration of the signal strength and interference between automotive
radars in different directions.

in the direction of βi.

Similarly, we can represent the interference to SR as

Isi = Ifsi + Issi

= ( εf1Pf gf (βi)︸ ︷︷ ︸
(a) FR Interference power.

+ εs1Ps g
s(π/2− βi)︸ ︷︷ ︸

(b) SR Interference power.

) · εs3 gs(π/2− βi)︸ ︷︷ ︸
(c) Rx antenna gain of SR.

Hi‖ri‖−2.

(5.9)

5.2 Interference Characterization

In this section, we first derive general expressions for mean interference power in

order to get a general sense of the main parameters that affect the interference value

and then derive closed-form expressions by using a specific Gaussian waveform to
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approximate the antenna radiation pattern. The results here are also applicable to

vehicles in the most left and right lanes in a multi-lane scenario. Then, we extend

the analysis to multiple lanes.

5.2.1 Interference Characterization in Two-line Scenarios

General Expressions

Assume that the interference signals from vehicles are statistically independent.

The total interference power received at the typical vehicle can be written as

If =
∑

i∈ΘPPP

Ifi

=
∑

i∈ΘPPP

[(
εf1Pfg

f (βi) + εs1Psg
s(π/2− βi)

) · εf3gf (βi)Hi‖ri‖−2
]
, and (5.10)

Is =
∑

i∈ΘPPP

Isi

=
∑

i∈ΘPPP

[(
εf1Pfg

f (βi) + εs1Psg
s(π/2− βi)

) · εs3gs(π/2− βi)Hi‖ri‖−2
]
, (5.11)

for FR and SR, respectively, where ΘPPP denotes the set of interfering vehicles

characterized by PPP.

According to the Campbell theorem [108] [page 281], we can calculate the s-

tatistical mean of the interference power at FR as follows, as shown in the next

page.

In (5.12), EH [·] denotes the expectation over the statistical fading channel, EΘPPP

is the expectation over all interfering vehicles with numbers and their locations

following PPP, ρI is the density of interfering vehicles measured in [cars/unit length]

and ρI = ξρ, and r(�) =
√

(L2 + �2). The step (e) follows the assumption that

individual propagation channels are i.i.d, and are uncorrelated to the geometrical
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point process. The final step uses the assumption that the average channel gain is

normalized to unity i.e., EH [H] � uH = 1.

Similarly, we can obtain the mean power of the interference at SR and present

it in (5.13).

From (5.12) and (5.13), we can have the following observations:

• The mean interference from FR and SR of interfering vehicles are a linearly and

monotonically increasing function of their transmission power, respectively.

However, the total interference to each of FR and SR is a weighted sum of

their transmission power and hence is not a linear function of it any more;

• The interference power is linearly proportional to the effective density of the

interfering vehicles ρI, as expected.

In the next section, we consider two special functions for gf and gs to get compact

results, which provide more insights into the interference.

If = E
[
If

]
= Iff + Isf

= EH

[
EΘPPP

[ ∑
i∈ΘPPP

εf1Pfg
f (βi)ε

f
3g

f (βi)‖ri‖−2

]]
︸ ︷︷ ︸

Mean interference from FR to FR

+

EH

[
EΘPPP

[ ∑
i∈ΘPPP

εs1Psg
s
(π
2
− βi

)
εf3g

f (βi)‖ri‖−2

]]
︸ ︷︷ ︸

Mean interference from SR to FR

e
= EH [H]

{
ρIε

f
1ε

f
3Pf

∫ +∞

0

[
gf

(
arcsin

L

r(�)

)]2
r(�)−2d�+

ρIε
s
1ε

f
3Ps

∫ +∞

0

gs(
π

2
− arcsin

L

r(�)
)gf (arcsin

L

r(�)
)r(�)−2d�

}

= ρI

{
εf1ε

f
3Pf

∫ +∞

0

[
gf (arcsin

L

r(�)
)

]2
r(�)−2d�+

εs1ε
f
3Ps

∫ +∞

0

gs(
π

2
− arcsin

L

r(�)
)gf (arcsin

L

r(�)
)r(�)−2d�

}
. (5.12)
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Is = Ifs + Iss

= EH

[
EΘPPP

[ ∑
i∈ΘPPP

εf1Pfg
f (βi)ε

s
3g

s
(π
2
− βi

)
‖ri‖−2

]]
︸ ︷︷ ︸

Mean Interference from FR to SR

+

EH

[
EΘPPP

[ ∑
i∈ΘPPP

εs1Psg
s
(π
2
− βi

)
εs3g

s(
π

2
− βi)‖ri‖−2

]]
︸ ︷︷ ︸

Mean Interference from SR to SR

e
=

{
ρIε

f
1ε

s
3Pf

∫ +∞

0

gf (arcsin
L

r(�)
)gs(

π

2
− arcsin

L

r(�)
)r(�)−2d�

+2ρIε
s
1ε

s
3Ps

∫ +∞

0

[
gs

(
π

2
− arcsin

L

r(�)

)]2
r(�)−2d�

}
EH [H]

= ρI

{
εf1ε

s
3Pf

∫ +∞

0

gf (arcsin
L

r(�)
)gs(

π

2
− arcsin

L

r(�)
)r(�)−2d�

+2εs1ε
s
3Ps

∫ +∞

0

[
gs

(
π

2
− arcsin

L

r(�)

)]2
r(�)−2d�

}
. (5.13)

Interference with Gaussian Directional Radiation Pattern

Here, we consider a special example for the antenna radiation pattern (gf (·) and

gs(·)), which can be represented by a normalized Gaussian function. There are two

reasons for considering a beam pattern of Gaussian function: (1) It can lead to

compact and closed-form expressions; and (2) it provides a good approximation to

actual beam patterns as will be shown in Section 3.1.4. The gain function gf (β)

and gs(β) are given by

⎧⎪⎪⎨
⎪⎪⎩

gf (β) = exp(− β2

2σ2
f

), β ∈ [−π

2
,
π

2
],

gs(β) = exp(− β2

2σ2
s

), β ∈ [−π

2
,
π

2
],

(5.14)

where σ2
f and σ2

s are the parameters of the Gaussian function and are adjustable.

From Fig. 5.2, we have � = L/ tan(β). For the directional antenna, applying (5.14)
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to (5.12) and (5.13), we can obtain

If = Iff + Isf

=
ρIε

f
1ε

f
3Pf

L

∫ π
2

0

exp

(
−β2

σ2
f

)
dβ +

ρIε
s
1ε

f
3Ps

L

∫ π
2

0

exp

⎛
⎜⎝−

(π
2
− β

)2

2σ2
s

− β2

2σ2
f

⎞
⎟⎠ dβ

=

√
π

2L
ξρ

(
uσf

εf1ε
f
3Pf + uσf,s

εs1ε
f
3Ps

)
, (5.15)

and

Is = Ifs + Iss

=
ρIε

f
1ε

s
3Pf

L

∫ π
2

0

exp

⎛
⎜⎝− β2

2σ2
f

−

(π
2
− β

)2

2σ2
s

⎞
⎟⎠ dβ +

2ρIε
s
1ε

s
3Ps

L

∫ π
2

0

exp

⎛
⎜⎝−

(π
2
− β

)2

σ2
s

⎞
⎟⎠ dβ

=

√
π

2L
ξρ

(
uσf,s

εf1ε
s
3Pf + 2uσsε

s
1ε

s
3Ps

)
, (5.16)

where erf(x) is the Gaussian error function, and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uσf
�σf erf(

π

2σf

),

uσs �σs erf(
π

2σs

),

uσf,s
� exp

(
− π2

8
(
σ2
f + σ2

s

))
⎡
⎣erf

⎛
⎝ πσf

2
√
2σs

√
σ2
f + σ2

s

⎞
⎠

+erf

⎛
⎝ πσs

2
√
2σf

√
σ2
f + σ2

s

⎞
⎠
⎤
⎦ √

2σfσs√
σ2
f + σ2

s

.

(5.17)

From (5.15) and (5.16), we can get the following observations in addition to those

obtained from (5.12) and (5.13):

• The mean interference power is linearly proportional to both the frequency

reuse factor ξ and the effective density of interfering vehicles ξρ;
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• It is interesting to see that, when the same radar and transmission power is

used for FR and SR, Isf and Ifs are largely the same;

• When FR and SR are the same, we can get Isf = Ifs and Iss = 2Iff , and the

ratio of total interference between FR and SR is 2/3. This is because SR and

FR see interference from 0 to 180 degrees and 0 to 90 degrees, respectively.

Note that this only applies to the two-lane case.

5.2.2 Extension to Multiple-lane Scenarios

Now, we extend the analysis to multiple lanes, as shown in Fig. 5.3, where there

are m lanes in the same direction and n lanes in the opposite direction. We assume

that the vehicles in the lanes of each direction follow independent PPP geometrical

distribution with density ρi and ρj, (i ∈ 1, ...,m and j ∈ 1, ..., n), respectively.

Assume that the typical vehicle is at a non-edge lane i. Referring to Fig. 5.3, the

radar interfering scenarios can be described as follows:

1) Interference to FR from SRs and FRs: The interfering SRs include the SR1s

on vehicles from the lanes 1, ..., i − 1 and 1, ..., n, and the SR2s on vehicles

from the lanes i+ 1, ..,m. The interfering FRs are on vehicles from the lanes

1, ..., n;

2) Interference to SR1 from SRs and FRs: The interfering SRs include the SR2s

on vehicles from the lanes i+1, ...,m and the SR1s from the lanes 1, ..., n. The

interfering FRs are on vehicles from the lanes i+ 1, ...,m and 1, ..., n;

3) Interference to SR2 from SR1s and FRs on vehicles in the lanes 1, ..., i− 1.
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Figure 5.3 : Illustration of the interference in multiple lanes.

Mean Interference to FR

The mean interference received at the FR on the typical vehicle is given by

If = Iff + Is1f + Is2f , (5.18)

where Is1f and Is2f denote the mean interference from SR1 and SR2 to the FR,

respectively. Similar to the analytical method in Section 5.2.1, we can get the

following results with the Gaussian radiation pattern function:

Iff =

√
π

2L

n∑
j=1

1

m− i+ j
uσf

ξjρjε
f
1ε

f
3Pf , (5.19)

Is1f =

√
π

2L

[
n∑

j=1

ξjρj
m− i+ j

+
i−1∑
k=1

ξkρk
i− k

]
uσf,s

εs1ε
f
3Ps1 , (5.20)

and

Is2f =

√
π

2L

m∑
k=i+1

ξkρk
k − i

uσf,s
εs1ε

f
3Ps2 , (5.21)



87

where Ps1 and Ps2 denote the transmission power of SR1 and SR2, respectively, and

ξk and ξj represent the frequency reusing probabilities.

Mean Interference to SR1

The mean interference to SR1 is given by

Is1 = Ifs1 + Is2s1 + Is1s1 , (5.22)

where Ifs1 , Is2s1 and Is1s1 denote the mean interference power from FR to SR1,

from SR2 to SR1, and from SR1 to SR1, respectively.

Referring to Section 5.2.1, we can derive the following results,

Ifs1 =

√
π

2L

[
m∑

k=i+1

ξkρk
k − i

+
n∑

j=1

ξjρj
m− i+ j

]
uσf,s

εf1ε
s
3Pf , (5.23)

Is2s1 =

√
π

L

m∑
k=i+1

ξkρk
k − i

uσsε
s
1ε

s
3Ps2 , (5.24)

and

Is1s1 =

√
π

L

n∑
j=1

ξjρj
m− i+ j

uσsε
s
1ε

s
3Ps1 . (5.25)

Mean Interference to SR2

The mean interference to SR2 is given by

Is2 = Ifs2 + Is1s2 , (5.26)
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where Ifs2 and Is1s2 denote the mean interference power from FR to SR2 and from

SR1 to the SR2, respectively. We can obtain the following results,

Ifs2 =

√
π

2L

i−1∑
k=i

ξkρk
i− k

uσf,s
εf1ε

s
3Pf , (5.27)

and

Is1s2 =

√
π

L

i−1∑
k=1

ξkρk
i− k

uσsε
s
1ε

s
3Ps1 . (5.28)

5.3 Minimization of Radar Transmission Power

The SINR is an important parameter that determines the detection performance

of vehicular radar. In this section, we study how to minimize the total radar trans-

mission power of the typical vehicle when some low thresholds of the mean SINR

are to be met. We start with the two-lane scenario and then extend it to multiple

lanes.

5.3.1 Optimization in Two-lane Scenarios

The mean SINRs for FR and SR can be represented as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
γf =

Sf
r

If + σ2
ηf

,

γs =
Ss
r

Is + σ2
ηs

,

(5.29a)

(5.29b)

where Sf
r and Ss

r are the reflected signal power from the target as described in (5.4)

and (5.6), and σ2
ηf

and σ2
ηs are the variance of the additive white Gaussian noise

(AWGN) in radar.

Let γf,0 and γs,0 be the lower threshold of the desired SINR at FR and SR, respec-

tively. Targeting at minimizing the total radar transmission power, we formulate
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Figure 5.4 : Illustration of the optimal solution.

the following optimization problem,

min
{Pf ,Ps}

Pf + Ps (5.30a)

subject to Pf > 0, (5.30b)

Ps > 0, (5.30c)

γf ≥ γf,0, (5.30d)

γs ≥ γs,0, (5.30e)

The optimization in (5.30) is a linear programming problem which can be solved

by the linear programming (LP) method. As shown in Fig. (5.4), the optimal

solution can be obtained at the intersection of the two lines, where γf = γf,0 and

γs = γs,0.
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In order to get the optimal solution, we firstly rewrite (5.30d) and (5.30e) with

equality as ⎧⎨
⎩
a1Pf − b1Ps = σ2

ηf
γf,0,

a2Ps − b2Pf = σ2
ηsγs,0,

(5.31a)

(5.31b)

where a1, b1, a2 and b2 are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 =εf1ε
f
2ε

f
3R

−4
f −

√
π

2L
uHuσf

γf,0ξρε
f
1ε

f
3 ,

b1 =

√
π

2L
uHuσf,s

γf,0ξρε
s
1ε

f
3 ,

a2 =εs1ε
s
2ε

s
3R

−4
s −

√
π

L
uHuσsγs,0ξρε

s
1ε

s
3,

b2 =

√
π

2L
uHuσf,s

γs,0ξρε
f
1ε

s
3.

(5.32)

Existence of the optimal solution to (5.30) is under the following conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1 > 0,

a2 > 0,

a1a2 − b1b2 > 0.

(5.33a)

(5.33b)

(5.33c)

In (5.33), the constraints (5.33a) and (5.33b) guarantee the inequalities (5.30d)

and (5.30e), and the constraint (5.33c) guarantees that the solution region of LP

is non-empty, which means the liner inequalities (5.30d) and (5.30e) have the valid

intersection, i.e., line (5.31a) has a larger slope than line (5.31b).

Therefore, we can obtain the optimal solution for the transmission power as

⎧⎪⎪⎨
⎪⎪⎩

P �
f =

σ2
ηf
γf,0a2 + σ2

ηsγs,0b1

a1a2 − b1b2
,

P �
s =

σ2
ηf
γf,0b2 + σ2

ηsγs,0a1

a1a2 − b1b2
.

(5.34)

When there is a total power constraint for each of Pf and Ps, the minimum required
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SINR cannot be achieved simultaneously if either P �
f or P �

s exceeds the constraint.

From (5.34), we can see that both P �
f and P �

s decrease with the resource reusing

probability ξ. Hence we can reduce ξ to reduce P �
f and P �

s .

The minimum total transmission power is thus given by

(Pf + Ps)min =
σ2
ηf
γf,0 (a2 + b2) + σ2

ηsγs,0 (a1 + b1)

a1a2 − b1b2
. (5.35)

Referring to Fig. 5.4 and (5.35), we can see that the minimum transmission

power increases with the effective density ξρ increasing. When ξρ increases, the

slope a1/b1 of line lf decreases and the slope b2/a2 of line ls increases. Consequently,

the intersection of the two lines P �
f and P �

f increases.

5.3.2 Optimization in Multiple-lane Scenarios

In multiple-lane scenarios, considering one FR and two SRs, the optimization

problem can be formulated as follows

min
{Pf ,Ps}

Pf + Ps1 + Ps2 (5.36a)

subject to Pf > 0, (5.36b)

Ps1 > 0, (5.36c)

Ps2 > 0, (5.36d)

γf ≥ γf,0, (5.36e)

γs1 ≥ γs1,0, (5.36f)

γs2 ≥ γs2,0, (5.36g)

where Ps1 and Ps2 denote the transmission power of radar SR1 and SR2, respectively,

γs1 and γs2 represent the SINR of SR1 and SR2, respectively, and γs1,0, γs2,0 are the
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thresholds of the mean SINR.

Similar to the process in two-lane scenarios, we can solve the optimization prob-

lem by rewriting the constraints (5.36e), (5.36f) and (5.36g) as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

am,1Pf − bm,1Ps1 − cm,1Ps2 ≥ σ2
ηf
γf,0,

am,2Ps1 − bm,2Pf − cm,2Ps2 ≥ σ2
ηs1

γs1,0,

am,3Ps2 − bm,3Pf − cm,3Ps1 ≥ σ2
ηs2

γs2,0,

(5.37a)

(5.37b)

(5.37c)

where the factors are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

am,1 =εf1ε
f
2ε

f
3R

−4
f −

√
π

2L

n∑
j=1

ξjρj
m− i+ j

uHuσf
γf,0ε

f
1ε

f
3 ,

bm,1 =

√
π

2L

[
n∑

j=1

ξjρj
m− i+ j

+
i−1∑
k=1

ξkρk
i− k

]
uHuσf,s

γf,0ε
s
1ε

f
3 ,

cm,1 =

√
π

2L

m∑
k=i+1

ξkρk
k − i

uHuσf,s
γf,0ε

s
1ε

f
3 ,

am,2 =εs1ε
s
2ε

s
3R

−4
s1

−
√
π

L

n∑
j=1

ξjρj
m− i+ j

uHuσsγs1,0ε
s
1ε

s
3,

bm,2 =

√
π

2L

[
n∑

j=1

ξjρj
m− i+ j

+
m∑

k=i+1

ξkρk
k − i

]

uHuσf,s
γs1,0ε

f
1ε

s
3,

cm,2 =

√
π

L

m∑
k=i+1

ξkρk
k − i

uHuσsγs1,0ε
s
1ε

s
3,

am,3 =εs1ε
s
2ε

s
3R

−4
s2
,

bm,3 =

√
π

2L

i−1∑
k=i

ξkρk
i− k

uHuσf
γs2,0ε

f
1ε

s
3,

cm,3 =
i−1∑
k=1

√
π

ξkρk
(i− k)L

uHuσsγs2,0ε
s
1ε

s
3.

(5.38)
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Let Pf +Ps1 +Ps2 = Pt. Substituting Ps2 = Pt −Pf −Ps1 into (5.37), we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(am,1 + cm,1)Pf − (bm,1 − cm,1)Ps1 ≥ σ2
ηf
γf,0 + cm,1Pt,

(am,2 + cm,2)Ps1 − (bm,2 − cm,2)Pf ≥ σ2
ηs1

γs1,0 + cm,2Pt,

(am,3 + bm,3)Pf + (am,3 + cm,3)Ps1 ≤ am,3Pt − σ2
ηs2

γs2,0.

(5.39a)

(5.39b)

(5.39c)

In order to ensure that the inequality (5.39) has a solution, the intersection

(P �
f , P

�
s1
) of line (5.39a) and (5.39b) must meet the condition

(
aM3 + bM3

)
P �
f+

(
aM3 + cM3

)
P �
s1
≤

aM3 Pt − σ2
ηγs2,0. Therefore, we get the inequality for the total transmission power Pt

as

Pt ≥
(am,3 + bm,3)P

�
f + (am,3 + cm,3)P

�
s1
+ σ2

ηs2
γs2,0

am,3

, (5.40)

The optimal solution to (5.36) is then obtained when the equality is taken in

(5.40), and is given by

(Pt)min =
σ2
ηf
γf,0Am + σ2

ηs1
γs1,0Bm + σ2

ηs2
γs2,0Cm

Dm

.

(5.41)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Am =cm,2cm,3 − am,2am,3 − am,3bm,2 − bm,3cm,2 − am,2bm,3 − bm,2bm,3,

Bm =bm,3cm,1 − am,1am,3 − am,3bm,1 − cm,1cm,3 − am,1cm,3 − bm,1bm,3,

Cm =bm,1bm,1 − am,1am,1 − am,1cm,1 − bm,1cm,1 − am,1cm,1 − bm,1cm,1,

Dm =am,3bm,1bm,1 − am,1am,1am,3 + am,1bm,3cm,1 + am,1cm,1cm,3+

bm,1bm,3cm,1 + bm,1cm,1cm,3.

We can see that the optimal power is obtained at the intersection of the three lines.
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5.4 Simulation Results and Discussion

In this section, we present simulation results to verify the accuracy of the derived

analytical expressions on radar interference, and test the optimality of our proposed

power minimization scheme. Important observations are highlighted in italic in this

section.

5.4.1 Simulation Setup

Referring to the simulation parameters in Table 5.1, our system setup is described

as follows. We generate the number and locations of vehicles randomly following

the PPP with the vehicle density paramater ρ, and allocate vehicles using the same

frequency with the typical vehicle according to the frequency reuse probability ξ.

The pathloss and channel fading of the effective signal and interference signals are

simulated following the description in Section 5.1.2. Most of the radar parameters

are similar to those used in [77, 109, 110], except for the radiation patterns of the

antennas.

The directional radiation patterns of the radar antennas used in this chapter are

generated as follows. Let θf and θs be the 3dB beamwidth of the main-lobe of FR

and SR, respectively. From Eq. (5.14), we can obtain σ2
f and σ2

s corresponding to

the 3dB beamwidth as

⎧⎪⎪⎨
⎪⎪⎩

σ2
f = − θ2f

8 ln gf (θf/2)
=

θ2f
8 ln 2

σ2
s = − θ2s

8 ln gs(θf/2)
=

θ2s
8 ln 2

.

(5.42)

Generally, SR has wider beamwidth than FR. According to [109], the beamwidth of

automotive radars is typically between 15◦ to 80◦.

Since the maximum antenna gain is typically linked to the beamwidth and ra-

diation pattern, we set Gf = 1/(
√
2πσf ) and Gs = 1/(

√
2πσs), being the antenna
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Table 5.1 : SYMBOLS AND THEIR VALUES USED IN THE PAPER AND SIM-
ULATION.

Symbol Numerical Value Definition/Explanation
Rf Variable [m] Distance from FR to target
Rs Variable [m] Distance from SR to target
L 6 [m] Lane spacing
P f
r Refer to (5.4) [mW] Reflected signal of FR

P s
r Refer to (5.6) [mW] Reflected signal of SR

ρ Variable [cars/m] Vehicles linear density
ff 76.5 GHz [110] Central frequency of FR
fs 77.5 GHz [110] Central frequency of SR
ξ Variable Spectrum reusing probability
γf,0 10 [dB] [109] The γ threshold of FR
γs,0 10 [dB] [109] The γ threshold of SR
Gf as given in the paper Maximum antenna gain of FR
Gs as given in the paper Maximum antenna gain of SR
σc 30dBsm [109] Front-Radar cross-section
σs
c 30dBsm [109] Side-Radar cross-section

gf (β) Refer to (5.14) Gain in different direction (FR)
gs(β) Refer to (5.14) Gain in different direction (SR)
Hi - Interfering signals fading progresses
uH 1 the mean value of Hi

c 3e8[m/s] Speed of light
εf1/ε

s
1 Refer to (5.5) and (5.7) Radar-specific transmission constant

εf2/ε
s
2 Refer to (5.5) and (5.7) Target-specific constant

εf3/ε
s
3 Refer to (5.5) and (5.7) Radar-specific received constant

gains via the Gaussian waveform for FR and SR, respectively. Note that since we

only consider the gain at the horizontal plane, it is much smaller than the actual

total antenna gain. Hence the values of the interference power and transmission

power minimization results presented in this section are only relative, and we fo-

cus on investigating their relationship with the system parameters and verifying the

accuracy of the analytical results.

5.4.2 Radar Mean Interference

In this part, we focus on studying how the interference, as well as the signal-

to-interference power ratio (SIR), is affected by different system parameters in a



96

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Vehicle density  [1/m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
ea

n 
in

te
rfe

re
nc

e 
va

lu
e 

[m
W

]

10-9

Analytical,FR
Simulated, FR
Analytical, SR
Simulated, SR
Analytical with SAG, FR
Simulated with SAG, FR
Analytical with SAG, SR
Simulated with SAG, SR

Figure 5.5 : Analytical and simulated mean interference power at SR and FR, where
σf = 0.1112, θf = 15◦, and σs = 0.5929, θs = 80◦; ξ = 4%.

two-lane scenario. Without considering noise, the mean SIR is defined as SIR(If ) =

Sf
r /I

f and SIR(Is) = Ss
r/I

s for FR and SR, respectively. The transmission power is

set as Pf = Ps = 10 mW.

The mean interference power at FR and SR with varying vehicle density ρ of the

PPP geometrical model is shown in Fig. 5.5. We set θf = 15◦ and θs = 80◦, i.e., σf =

0.1112 and σs = 0.5929 for FR and SR, respectively. The simulated interference

power is shown to be linearly proportional to vehicle density, and matches very

well with the analytical one. We also compare our results with those in [77] which

assumes the use of a directional antenna with the same antenna gain (SAG) over a

range of directions. The mean interference for [77] is shown to be much larger than

ours, which indicates that the use of directional antennas can significantly reduce

the interference.

To evaluate the accuracy of approximating the directional radiation pattern of
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Figure 5.6 : MNAE between ULA and its Gaussian approximation for FR (left
subfigure) and SR (right subfigure), with various beamwidth values.

a radar by a Gaussian function, we consider a uniform linear antenna array (ULA)

here. Fig. 5.7 presents the radiation pattern for the ULAs and their Gaussian

approximations for FR and SR. The beamwidth of the ULA is determined by the

number of antennas in the array, where antennas are spaced at half wavelength. We

introduce a metric, mean normalized approximation error (MNAE) δ, to evaluate

the approximation accuracy for the interference. The MNAE is defined as

δ =
1

K

[
K∑
i=1

|IGau
i − IULA

i |
IGau
i

]
× 100%, (5.43)

where IGau
i and IULA

i denote the mean interference obtained in the i-th test for

the Gaussian approximation and the actual ULA, respectively, K is the number of

tests. Fig. 5.6 plots the MNAE for FR and SR with different parameters of the

Gaussian approximation to the two ULA beams shown in Fig. 5.7. We obtain the

minimum MNAE 0.65% when θf = 15.6◦ for FR, and 1.54% when θs = 59◦ for

SR. The waveforms for the specific Gaussian approximations with these parameters

are plotted in Fig. 5.7. The MNAE is very small, which means that the Gaussian
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Figure 5.7 : Radiation pattern of a ULA and its Gaussian approximation for FR,
where σf = 0.1156, θf = 15.6◦ and SR, where σs = 0.4373, θs = 59◦. In this specific
example, the ULA has 10 and 3 antennas for the FR and SR, respectively.

function is an accurate approximation to the radiation pattern of real antenna arrays.

In Fig. 5.8, we show more details of the composition of interference. It is

interesting to see that most of the interference to one radar is from the same type of

other radars. As can be seen from Fig. 5.8 (a), more than 75% of the interference to

FR is from other FRs, and the narrower the beamwidth is, the higher the proportion

is. Similarly, from Fig. 5.8 (b), we can see that more than 74% of the interference

is from SR-to-SR for the simulated beamwidth ranging from 40 to 80 degrees. This

suggests that the cross-impact between FR and SR shall be considered differently

to their respective self-impact when using resource allocation such as frequency

allocation for interference mitigation.

We further study the impact of beamwidth on interference and present the results

in Fig. 5.9. We can see that the mean interference power If decreases rapidly with

θf increasing but increases slightly with θs increasing from 30◦ to 120◦. This is
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Figure 5.8 : Ratio Iff/If of FR (left sub-figure) and Iss/Is of SR (right sub-figure),
ρ = 1/50.

consistent with the results in Fig. 5.8 (a). In Fig. 5.10, we demonstrate how the

mean SIR for FR is affected by beamwidth. As shown in Fig. 5.10, SIR(If ) decreases

with either the beamwidth θf or θs increasing. The change of SIR(If ) is very small

with varying θs, as If varies slowly with θs. Combined with the results in Fig. 5.9,

we see that although the mean interference power at FR decreases, the mean SIR

is reduced with θf increasing. This indicates that the signal power decreases faster

than the interference. Therefore, FR with a narrower beamwidth θf can achieve

better overall sensing performance.

We also present similar results for SR in Fig. 5.11. We can obtain similar obser-

vations to those for FR, and can conclude that using a SR with narrower beamwidth

can generate overall better performance for side sensing. We can also see that the

mean interference power at SR is comparable to that at FR, even though it has a

much wider beamwidth.

Note that the above observations for FR and SR are based on the assumption

that the received effective echo signal is mainly from the main beam direction. When

the sensing direction deviates significantly from the centre, the conclusions may need
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Figure 5.9 : Analytical and simulated results for the mean interference power at FR
with varying beamwidth. In the right sub-figure, ρ = 1/20; ξ = 4%.

to be further revisited.

5.4.3 Power Minimization Results

For power minimization, we need to set the noise power in the radar receiver.

Since our antenna gain is relative, we cannot directly set up the receiver noise floor

according to, for example, the thermal noise and device bandwidth. Instead, we

determine a noise floor relative to the antenna gain, to make the simulation results

close to practical realizations. This is achieved by setting a desired received SNR

for targeted sensing distances. As an example, we consider the sensing distances

Rf = 25m and Rs = 15m, the transmission power 10 mW, and the desired received

SNR 15 dB. For radar beamwidth θf = 15◦ and θs = 60◦, without considering

interference, we can work out the equivalent variance of AWGN for FR and SR as

σ2
ηf

= 4.0392× 10−11mW and σ2
ηs = 1.5076× 10−11mW, respectively.

We first present results for two-lanes (from Figs. 5.12 to 5.14) and then for

multi-lanes. For multi-lanes, we set the numbers of lanes m and n as m = n = 3
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and assume that the typical vehicle located in the middle lane. Similar parameters

are used in two-lane and multi-lane scenarios.

In Fig. 5.12, we demonstrate how the minimized transmission power is affected

by the vehicle density ρ. The figure shows that the minimum power P ∗
f + P ∗

s in-

creases almost linearly with ρ increasing, particularly when ξ, the resource reusing

probability, is small. As expected, it also increases with ξ increasing, as interference

also grows. For comparison, the results for [77] are also presented. Its optimized

transmission power is shown to be significantly larger than ours. The comparison

shows clearly the great impact of using a directional antenna in reducing the required

transmission power. In Fig. 5.13, we show the zone of different combinations of the

transmission power from FR and SR that can meet the required minimum SINR.

We can see that the optimized analytical solution indeed achieves the minimum

transmission power.

In Fig. 5.14, we illustrate the relationship between the minimized transmission

power and beamwidth θf and θs. In the left sub-figure, when θs is fixed to 60◦, both

P ∗
f + P ∗

s and P ∗
f increase with θf increasing, and P ∗

s almost remains unchanged.
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Figure 5.11 : Analytical and simulated results for the mean interference power of
SR with varying beamwidth. In the right sub-figure, ρ = 1/20; ξ = 4%.

This is because the mean interference power of SR only varies insignificantly with

θf . In the right sub-figure, when θf is fixed to 15◦, both P ∗
f + P ∗

s and P ∗
s increase

with θs increasing, and P ∗
f almost remains unchanged.

In Fig. 5.15, we show that similar to the two-lane case, the minimum transmis-

sion power in a multi-lane scenario increases almost linearly with the vehicle density

ρ increasing. Comparing Fig. 5.15 with 5.12, we can see the averaged power per

radar increases in the multi-lane case.

In Fig. 5.16, we demonstrate how the minimized transmission power changes

with varying beamwidth in the three-lane case. In the left sub-figure, we note that

the optimized transmission power (Ps1)min and (Ps2)min remain nearly constant with

θf increasing, while (Pf )min increases rapidly with θf increasing. This is because the

mean interference power of SR1 and SR2 only changes slightly with the beamwidth

θf of FR, as can be seen from Fig.5.11. We also note that compared to the two-lane

case, (Ps2)min remains almost unchanged and (Pf )min only slightly increases, bene-

fiting from the narrow beamwidth; however, (Ps1)min is much larger than (Ps2)min
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Figure 5.12 : Total minimized transmission power with a Gaussian beam for varying
vehicle densities in a two-lane scenario.

because the SR on the right side of the typical vehicle sees more interference. We

can have similar observations for SR from the right subfigure of Fig. 5.16.

5.5 Summary

In this chapter, we introduced a stochastic geometry method to model the lo-

cation and density of vehicles and hence automotive radars. We considered both

front- and side-mounted radars with directional antennas, and developed a frame-

work for analytically calculating the mean interference power seen by each radar.

Approximating the antenna radiation pattern with a Gaussian function, we derived

closed-form expressions for the mean interference power. Based on the interference

analysis, we then formulated the cost function for minimizing the total transmission

power of radars on each vehicle. With the SINR constraints for each radar, we

derived optimal solutions that minimize the total transmission power. Linking the

antenna gain to the main parameter in the Gaussian function, we demonstrated how



104

Figure 5.13 : Optimal total transmission power based on simulated results in two-
lane case, where θf = 15◦, θs = 60◦, ξ = 4% and ρ = 0.02.

the interference and the SIR vary with the beamwidth of both radars.

Some of the important insights obtained from this study are summarized below:

• The side-mounted radar sees interference comparable to the front-mounted

radar, although it has a much larger beamwidth;

• In general, narrower beamwidth leads to larger interference but higher SIR for

both radars, and overall, both FR and SR with a narrower beamwidth can

achieve better overall sensing performance;

• Interference power is shown to be linearly proportional to vehicle density;

• Most of the interference to one radar is from the same type of other radars,

which should be an important factor to be considered by resource allocation;

• The optimized transmission power for different radars changes differently from

the two-lane to three-lane cases: the power for SRs facing more lanes is much
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Figure 5.14 : Minimum transmission power with varying θf and θs in a two-lane
scenario, where ρ = 1/50 and ξ = 4%, θs = 60◦ (left), and θf = 15◦ (right).

larger than those facing less lanes, while the power of FR is only slightly

increased due to the narrow beamwidth.

Our results provide important guidance for developing ad-hoc automotive radar

networks and optimizing their frequency resource access and allocation. Our work

in this study can be extended to provide more accurate characterization for radar

interference, by considering actual radar operations, such as partially-overlapped

frequency band of chirp waveforms due to asynchronous operation of FMCW radars,

and the repetition length and period of chirp waveforms.
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Chapter 6

Conclusions

6.1 Summary

This thesis studied resource optimization for both communication and auto-

motive radar sensing in vehicular networks, including investigating a novel semi-

persistent resource allocation scheme for cellular V2X communications to minimize

the latency requirement, a mode selection scheme for cellular V-D2D communica-

tions to minimize energy cost of vehicles or networks and a power optimization

scheme based on a developed interference analysis framework for automotive radars.

The relevant literature review can be found in Chapter 2 and the innovative research

results achieved in this thesis are summarised below:

In Chapters 3 and 4, we mainly investigated two classes of optimization prob-

lems for cellular V2X in two-tier heterogeneous networks: 1) optimizing the relative

latency and bandwidth efficiency for cellular V2X based on traffic prediction; 2)

optimizing the energy consumption based on V2X mode selection.

In Chapter 3, considering the strict requirements and limited frequency re-

sources of vehicular communications, we proposed a semi-persistent resource allo-

cation scheme which is based on traffic prediction in two-tier heterogeneous cellular

networks. Based on the proposed framework, we studied two optimization cases

which are 1) minimizing relative latency under the constraint of total bandwidth

or 2) minimizing total bandwidth resources with the constraints of latency, and we

provided different solutions and algorithms in each case.

Next, in Chapter 4, considering different communication modes for cellular V2X
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(e.g., V2I or V2V), we investigated a two-tier heterogeneous cellular network where

the macro tier and small cell tier operate according to a dynamic TDD. Based on

dynamic TDD which can adjust UL and DL time configurations to accommodate to

the traffic asymmetry, we proposed a mode selection scheme jointing time allocation,

power control to minimize the energy consumption of the vehicles and the whole

network. Finally, we gave a geometrical interpretation of an energy-optimal mode

selection scheme. Results show that V-D2D communication plays an important role

both in the macro cell and small cell for energy consumption minimization. There

is a large portion for V-D2D communication mode in the cell. Moreover, cell-edge

users also benefit from V-D2D communication.

In Chapters 5, we studied the mean power of effective echo signals and interfer-

ence, by considering both front- and side- mounted radars equipped with directional

antennas. We employed the stochastic geometry method to characterize the ran-

domness of vehicles and hence radars in both two-lane and multi-lane scenarios,

and derived closed-form expressions for the mean interference by approximating the

radiation pattern by Gaussian waveforms. Simulation results are shown to match

the analytical results very well, and insights are obtained for the impact of radar

parameters on interference. Based on the interference analysis, we aim to minimize

the total transmission power of each vehicle with constraints on the required signal

to interference and noise ratio. An optimal solution is obtained based on linear

programming techniques and corroborated by simulation results.

6.2 Future Work

The work in this thesis can be potentially enriched in, but not limited to, the

following various aspects.

Firstly, our semi-persistent resource allocation scheme can potentially be extend-

ed to a more complex environment such as a dense urban area where both traditional
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cellular UEs and vehicular UEs exist and share the same resources, which will gen-

erate interference between them. A challenging problem is that multiple factors

should be taken into consideration (e.g., different requirements of both C-UEs and

V-UEs, interference management). In addition, with rigorous network traffic mod-

els, it is also possible to derive an optimal coefficient analytically to replace the

current rule-of-thumb in Chapter 3. Therefore, this is an on-going and worthwhile

topic which deserves further study.

Secondly, next-generation wireless networks (i.e., 5G and beyond) will be ex-

tremely dynamic and complex due to the ultra-dense deployment of heterogeneous

networks (e.g., cellular networks, WiFi, ad-hoc). In this heterogeneous situation,

vehicular communication will enjoy the benefit of cooperative multi-network. Re-

garding the mode selection of V2X communications, another important problem is

the selection of networks. Therefore, communication mode selection combined with

network mode selection is also expected in future work.

Thirdly, current automotive radar systems still lack a centralized control and re-

source allocation mechanism which will generate serious interference between radars

caused by the use of shared spectrum and the inherent lack of coordination. There-

fore, a reasonable resource allocation scheme aiming to improve accurate radar de-

tection is expected in future work. For automotive radar, the most important thing

is how to improve its localization accuracy. Generally, range and velocity estima-

tion are indicators to measure the ability of radar. In addition, the Cramér-Rao

lower bound (CRLB) is a good way to point out the best range and velocity estima-

tion performance the FMCW radar can achieve. Based on radar’s requirements for

these performance indicators, we can formulate the optimization problem to allocate

the resources. In addition, JCRS technology is promising in autonomous vehicular

networks for its appealing capability of operating both communication and radar

sensing functions. How to allocate and share the resources between communication
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and radar sensing is a challenging problem when radar-communication coexists.

Therefore, resource allocation for JCRS deserves further study in future work.
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