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ABSTRACT

CONSTRAINED LOW-RANK MATRIX/TENSOR FACTORISATION

by

Shuai Jiang

Constrained low-rank matrix and tensor factorisation (MF/TF) have been widely

used in machine learning and data analytics. Studies on the way of modelling

constraints and the solution of optimisation task in general can provide theoreti-

cal supports for applications like image clustering, recommender systems and data

compression. This thesis studies three algorithms of constrained low-rank MF/TF.

Imposing constraints on each feature vector of factor matrices is a common prac-

tice in many constrained low-rank MF algorithms. However, in many real scenarios,

the relationships among features can influence the factorisation results as well. In

order to better characterise the relationships among features, a novel MF algorithm,

Relative Pairwise Relationship Constrained Non-negative Matrix Factorisation, is

proposed. It places soft constraints over relative pairwise distances amongst features

as regularisations to retain expected relationships after factorisation. It conforms to

the so-called “multiplicative update rules” and detailed convergence proofs are pro-

vided. Experiments on both synthetic and real datasets have verified that imposing

such constraints can keep most expected relationships unchanged after factorisation.

Directly adopted on tensor data, low-rank TF can effectively avoid the infor-

mation loss caused by matricisation. The relationships among features of factor

matrices in TF have practical meanings in many real scenarios. To describe such

relative relationships in low-rank TF, this thesis proposes Relative Pairwise Rela-

tionship Constrained Non-negative Tensor Factorisation. It deals with both Camde-

comp/Parafac and Tucker decomposition schemes and both squared Euclidean dis-

tance and divergence measures. The utilisation of tensor factorisation matricisation



equation simplifies the update rules and greatly improves the computation efficiency.

Experiments have demonstrated that the proposed algorithm can achieve higher ac-

curacy when adopted on tensor applications.

There exists a problem of acquiring out-of-bounds and fluctuating values over

predictions when applying low-rank MF on recommender systems. The commonly

used solutions, truncation and imposing penalties, can cause the decrease in the

number of effective predictions and affect the recommendation accuracy. This the-

sis creatively proposes Magnitude Bounded Matrix Factorisation to handle the above

problem by imposing magnitude constraints for the first time. It first converts the

original quadratically constrained quadratic programming task to an unconstrained

one which is then solved by the well-known stochastic gradient descent. An acceler-

ation approach for improving computation efficiency, an extracting method for mag-

nitude constraints and a variant of MBMF for non-negative data are also introduced.

Experiments have demonstrated that the algorithm is superior to existing bounding

algorithms on both computing efficiency and recommendation performance.

Dissertation directed by Assoc. Professor Richard Yi Da Xu
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Nomenclature and Notation

Lower-case non-bold characters denote iterative variables (e.g. i, j, k, n).

Lower-case bold characters denote vectors (e.g. u).

Upper-case non-bold characters denote constant scalars (e.g. N,K, I).

Upper-case bold characters denote matrices (e.g. U ).

Upper-case non-bold Euler characters denote functions (e.g. F).

Upper-case bold Euler characters denote tensors (e.g. X).

Ui: denotes the ith row of matrix U .

(.)T denotes the transpose operation.

R denotes the field of real numbers.
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