

CONSTRAINED LOW-RANK MATRIX/TENSOR FACTORISATION

by Shuai Jiang

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Assoc. Prof. Richard Yi Da Xu

University of Technology Sydney Faculty of Engineering and Information Technology

June 2020

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Shuai Jiang declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

I also certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree at any other academic institution except as fully acknowledged within the text. This thesis is the result of a Collaborative Doctoral Research Degree program with Beijing Institute of Technology.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 30th June 2020

© Copyright 2020 Shuai Jiang

ABSTRACT

CONSTRAINED LOW-RANK MATRIX/TENSOR FACTORISATION

by

Shuai Jiang

Constrained low-rank matrix and tensor factorisation (MF/TF) have been widely used in machine learning and data analytics. Studies on the way of modelling constraints and the solution of optimisation task in general can provide theoretical supports for applications like image clustering, recommender systems and data compression. This thesis studies three algorithms of constrained low-rank MF/TF.

Imposing constraints on each feature vector of factor matrices is a common practice in many constrained low-rank MF algorithms. However, in many real scenarios, the relationships among features can influence the factorisation results as well. In order to better characterise the relationships among features, a novel MF algorithm, Relative Pairwise Relationship Constrained Non-negative Matrix Factorisation, is proposed. It places soft constraints over relative pairwise distances amongst features as regularisations to retain expected relationships after factorisation. It conforms to the so-called "multiplicative update rules" and detailed convergence proofs are provided. Experiments on both synthetic and real datasets have verified that imposing such constraints can keep most expected relationships unchanged after factorisation.

Directly adopted on tensor data, low-rank TF can effectively avoid the information loss caused by matricisation. The relationships among features of factor matrices in TF have practical meanings in many real scenarios. To describe such relative relationships in low-rank TF, this thesis proposes Relative Pairwise Relationship Constrained Non-negative Tensor Factorisation. It deals with both Camdecomp/Parafac and Tucker decomposition schemes and both squared Euclidean distance and divergence measures. The utilisation of tensor factorisation matricisation equation simplifies the update rules and greatly improves the computation efficiency. Experiments have demonstrated that the proposed algorithm can achieve higher accuracy when adopted on tensor applications.

There exists a problem of acquiring out-of-bounds and fluctuating values over predictions when applying low-rank MF on recommender systems. The commonly used solutions, truncation and imposing penalties, can cause the decrease in the number of effective predictions and affect the recommendation accuracy. This thesis creatively proposes Magnitude Bounded Matrix Factorisation to handle the above problem by imposing magnitude constraints for the first time. It first converts the original quadratically constrained quadratic programming task to an unconstrained one which is then solved by the well-known stochastic gradient descent. An acceleration approach for improving computation efficiency, an extracting method for magnitude constraints and a variant of MBMF for non-negative data are also introduced. Experiments have demonstrated that the algorithm is superior to existing bounding algorithms on both computing efficiency and recommendation performance.

Dissertation directed by Assoc. Professor Richard Yi Da Xu School of Electrical and Data Engineering

Dedication

I dedicate my dissertation work to my family without whom I would never accomplish this project. A special feeling of gratitude to my loving mother, Xueqin Jiang whose words of encouragement and push for tenacity have been helping me all throughout the way.

Acknowledgements

I would like to express my sincere gratitude to my supervisors Professor Richard Yi Da Xu and Professor Kan Li (Beijing Institute of Technology) for their continuous support, patience, motivation, enthusiasm and immense knowledge that guided and helped me in my whole PhD candidature. At many stages I benefited from their advice, particularly so when exploring new ideas. Their positive outlook and confidence in research inspired, encouraged and taught me how to become a researcher.

Also I would like to thank my peers for their selfless help in both my research and daily life. Thank you Dr. Jason Traish, Erica Huang, Ember Liang, Hayden Chang, Kelvin Deng, Sammi Zhao, Leon Li, Zyane Zhang and Carter Huang. Special thanks to my best friend David Li. At last, I wish to thank my lovely cats, Polo and Mango for their warmest companion.

> Shuai Jiang Sydney, Australia, 2020.

List of Publications

Journal Papers

- J-1. S. Jiang, K. Li, and R. Y. D. Xu. Relative Pairwise Relationship Constrained Non-Negative Matrix Factorisation. *IEEE Transactions on Knowledge and Data Engineering*, 31(8), pp.1595-1609, 2018.
- J-2. S. Jiang, K. Li, and R. Y. D. Xu. Magnitude Bounded Matrix Factorisation for Recommender Systems. *IEEE Transactions on Knowledge and Data Engineering*, doi: 10.1109/TKDE.2020.2998218, 2020. Online.
- J-3. S. Jiang, K. Li, and R. Y. D. Xu. Non-negative CP Tensor Decomposition with Relative Pairwise Relationship Regularizations. *Pattern Recognition Letters*, 2020. Under review.
- J-4. L. Bai, K. Li, J. Pei, and S. Jiang. Main objects interaction activity recognition in real images. Neural Computing and Applications, 27(2), pp.335-348, 2016.

Conference Papers

- C-1. C. Huang, S. Jiang, Y. Li, Z. Zhang, J. Traish, C. Deng, S. Ferguson, R. Y.
 D. Xu. End-to-end Dynamic Matching Network for Multi-view Multi-person
 3d Pose Estimation. In Proceedings of the European Conference on Computer
 Vision (ECCV), 1267, 2020.
- C-2. Y. Li, K. Li, S. Jiang, Z. Zhang, C. Huang, and R. Y. D. Xu. Geometry-driven Self-supervised Method for 3D Human Pose Estimation. AAAI Conference on Artificial Intelligence (AAAI), 7454, 2020.
- C-3. Z. Zhang, R. Y. D. Xu, S. Jiang, Y. Li, C. Huang, and C. Deng. Illumination adaptive person reid based on teacher-student model and adversarial training. *IEEE International Conference on Image Processing (ICIP)*, 2020.

Contents

	Cert	tificate		i
	Abs		ii	
	Ded		iv	
	Ack	gments	V	
	List of Publications			vi
	List of Figures			Х
	Abb	reviatio	on	xii
	Nota	ation		xiii
1	Int	roduc	ction	1
	1.1	Backgr	ound	1
	1.2	Object	ives and Contributions	7
	1.3	Thesis	Organisation	10
2	\mathbf{Lit}	eratu	re Survey	11
	2.1	Constr	ained Low-rank Matrix Factorisation	11
		2.1.1	Non-negative Matrix Factorisation	12
		2.1.2	Relationship Regularisations among Feature Vectors	14
		2.1.3	Bounding Constraints in Low-rank MF	16
	2.2	Constr	ained Low-rank Tensor Factorisation	19
		2.2.1	Non-negative Tensor Factorisation	22

4 24 26
24
26
28
29
35
0
2
5
6
60
51
4
- 54
56
50
52
53
58
70
0 72

viii

		4.5.4	Recommendations on Movielens 1M	. 74	
	4.6	Summa	ury	. 76	
5	Ma	agnitu	de Bounded Matrix Factorisation	77	
	5.1	MBMF	Problem Definition	. 77	
	5.2	Convers	sions from Constrained to Unconstrained Task	. 79	
	5.3	Solving	Unconstrained Optimisation	. 81	
	5.4	Acceler	ation for MBMF	. 83	
	5.5	MBMF	Algorithm and Its Variant	. 85	
		5.5.1	Original MBMF	. 85	
		5.5.2	Non-negative MBMF	. 86	
		5.5.3	Parameter Settings	. 86	
	5.6	Prelimi	naries of Data	. 88	
		5.6.1	Data Centring	. 88	
		5.6.2	Choice of Magnitudes	. 89	
	5.7	Comple	exity Analysis	. 91	
	5.8	Experir	ments	. 92	
		5.8.1	Prediction Variation	. 95	
		5.8.2	Performance on Real Recommender Systems	. 96	
		5.8.3	Discussion	. 102	
	5.9	Summa	ury	. 102	
0	C				
6	Conclusion 1				
	Bi	bliogra	aphy	106	

ix

List of Figures

1.1	A simple movie recommender system. The factorisation algorithm used	
	here is NMF with Euclidean measure proposed in [1]. Original missing	
	ratings are denoted by 0 and recovered ratings are showed in brackets.	
	As shown under the right factorised matrix, the distance between feature	
	vectors of movies "Star Wars" and "Titanic" is less than the distance	
	between movies "Star Wars" and "Star Trek"	3
1.2	Predicted values obtained from MF algorithm [2] with respect to	
	different densities of factorised matrices. Synthetic data are denoted	
	by blue dots in (a), (b) and (c) and the corresponding out-of-bounds	
	predicted values are denoted by red dots in (d), (e), (f) and (g).	
	Note that the red dots in (d) and (e) are depicted 20 times bigger	
	than those in other subfigures to ensure they are clearly visible. \ldots	5
2.1	Auxiliary function in MUL [1]	13

2.2	2 An example of projecting four 3D data points into 2D space. Points	
	are ordered by circled numbers, and the value near each dotted line	
	is the normalised Euclidean distance. (a) The original data space.	
	The distance between point $\textcircled{2}$ and point $\textcircled{4}$ is less than the distance	
	between point $\textcircled{3}$ and point $\textcircled{4}$ (marked by asterisk sign). (b)	
	Projected data points by GNMF using Euclidean distance between	
	each pair of original data points as dissimilarity matrix. The	
	distance between point $\textcircled{2}$ and point $\textcircled{4}$ becomes bigger than the	
	distance between point $\textcircled{3}$ and point $\textcircled{4}$. (c) LCNMF projects all	
	four points onto one when considering all RPRs. (d) RPR-NMF	
	retains all the RPRs after factorisation	15
2.3	B Illustration of CP tensor factorisation of a three-way tensor	21
2.4	Illustration of Tucker tensor factorisation of a three-way tensor	22
3.1	Using a piecewise linear function to approximate e^x	32
3.2	2 Performance with respect to the number of pairwise relationship	
	constraints. (a) MSL/MD, (b) CSR, (c) Processing time	42
3.3	B Performance with respect to the size of factorising matrix. (a)	
	MSL/MD, (b) CSR, (c) Processing time.	43
3.4	4 MSL/MD & CSR of RPR-NMF algorithms with penalty coefficients	
	varying from 0.4 to 2 and from 20 to 100	45
4.1	Performance of NTF algorithms with respect to iterations. (a) MSL,	
	(b) MD, (c) CSR	69
4.2	2 Running time of NTF algorithms with respect to number of	
	constraints. (a) CP algorithms, (b) Tucker algorithms. \ldots	71
5.1	Prediction variation on Synthetic dataset.	96

Abbreviation

MF - Matrix Factorisation

NMF - Non-negative Matrix Factorisation

CNMF - Constrained Non-negative Matrix Factorisation

MUL - Multiplicative Update Rules

GNMF - Graph Regularised Non-negative Matrix Factorisation

LCNMF - Label Constrained Non-negative Matrix Factorisation

RPR-NMF - Relative Pairwise Relationship Constrained Non-negative Matrix Factorisation

BMF - Bounded Matrix Factorisation

BMC-ADMM - Bounded Matrix Completion in Alternating Direction of Multiplier Method

MBMF - Magnitude Bounded Matrix Factorisation

TF - Tensor Factorisation

NTF - Non-negative Tensor Factorisation

CNTF - Constrained Non-negative Tensor Factorisation

LRNTF - Laplacian Regularised Non-negative Tensor Factorisation

RPR-NTF - Relative Pairwise Relationship Constrained Non-negative Tensor Factorisation

SVD - Singular Value Decomposition

CP - Candecomp/Parafac

Nomenclature and Notation

Lower-case non-bold characters denote iterative variables (e.g. i, j, k, n).

Lower-case bold characters denote vectors (e.g. \boldsymbol{u}).

Upper-case non-bold characters denote constant scalars (e.g. N, K, I).

Upper-case bold characters denote matrices (e.g. U).

Upper-case non-bold Euler characters denote functions (e.g. \mathfrak{F}).

Upper-case bold Euler characters denote tensors (e.g. \mathbf{X}).

 $U_{i:}$ denotes the i^{th} row of matrix U.

 $(.)^T$ denotes the transpose operation.

 $\mathbb R$ denotes the field of real numbers.