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ABSTRACT

Location Privacy Protection in Social Networks

by

Mohammad Reza Nosouhi

Social networks have become more ubiquitous due to new advances in smart-

phone technology. This has provided an opportunity for social network service

providers to utilise location information of users in their services. For example,

Facebook Places, Foursquare and Yelp are popular social networks that mostly rely

on utilising users’ location data in their services. They offer a variety of useful

services, from location recommendations to nearby friend alerts. However, protect-

ing location privacy of users is still an open challenge for social network service

providers. It has been shown that hiding real identity and choosing a pseudonym

does not guarantee to protect a user’s privacy since privacy may be invaded by

analysing position data only. This is really a big issue since other private informa-

tion of users can be revealed by analysing their location data (e.g., home address,

health condition, interests, etc.).

In this study, we investigate the location privacy issue of social networks and pro-

pose several solutions. We classify the proposed solutions into three categories based

on the selected approaches, i.e. (i) differential privacy-based, (ii) cryptography-

based, and (iii) anonymity-based solutions. We first study the approach in which

differential privacy is utilised to preserve privacy of users. In this regard, we develop

Distance–Based Location Privacy Protection mechanism (DBLP2), a customisable

location privacy protection approach that is uniquely designed for social network



users. It utilises the concept of social distance to generalise users’ location data be-

fore it is published in a social network. The level of generalisation is decided based

on the social distance between users.

Secondly, we study cryptography-based methods for location privacy protection

in Location–Based Services (LBS) and social networks. In this domain, we propose

three cryptography-based and privacy–aware location verification schemes to pre-

serve location privacy of users: (i) Privacy–Aware and Secure Proof Of pRoximiTy

(PASPORT), (ii) Secure, Privacy–Aware and collusion Resistant poSition vErifica-

tion (SPARSE), and (iii) a blockchain–based location verification scheme. These

schemes prevent location spoofing attacks conducted by dishonest users while pro-

tect location privacy of users. To the best of our knowledge, majority of the existing

location verification schemes do not preserve location privacy of users.

Thirdly, we investigate anonymity as another approach to preserve users’ pri-

vacy in social networks. In this regard, we first study the relevant protocols and

discuss their features and drawbacks. Then, we introduce Harmonized and Stable

DC–net (HSDC–net), a self–organizing protocol for anonymous communications in

social networks. As far as we know, social networks do not offer any secure anony-

mous communication service. In social networks, privacy of users is preserved using

pseudonymity, i.e., users select a pseudonym for their communications instead of

their real identity. However, it has been shown that pseudonymity does not always

result in anonymity (perfect privacy) if users’ activities in social media are linkable.

This makes users’ privacy vulnerable to deanonymization attacks. Thus, by employ-

ing a secure anonymous communication service, social network service providers will

be able to effectively preserve users’ privacy.

We perform extensive experiments and provide comprehensive security and pri-

vacy analysis to evaluate performance of the proposed schemes and mechanisms.



Regarding the DBLP2 mechanism, our extensive analysis shows that it offers the

optimum data utility regarding the trade–off between privacy protection and data

utility. In addition, our experimental results indicate that DBLP2 is capable of

offering variable location privacy protection and resilience to post processing. For

the SPARSE scheme, our analysis and experiments show that SPARSE provides

privacy protection as well as security properties for users including integrity, un-

forgeability and non–transferability of the location proofs. Moreover, it achieves a

highly reliable performance against collusions. To validate performance of the PAS-

PORT scheme, we implement a prototype of the proposed scheme on the Android

platform. Extensive experiments indicate that the proposed method can efficiently

protect location–based applications against fake submissions. For the proposed

blockchain–based scheme, our prototype implementation on the Android platform

shows that the proposed scheme outperforms other currently deployed location proof

schemes. Finally, our prototype implementation of the HSDC–net protocol shows

that it achieves low latencies that makes it a practical protocol.

In summary, this research study focuses on developing new mechanisms for pre-

serving location privacy of social network users. This is done through different

approaches. Moreover, extensive effort is made to make the current location–related

schemes and protocols privacy–aware. In this regard, several solutions in the form

of scheme, mechanism, and protocol are introduced and their performance is eval-

uated. The results of this research work have also been presented in seven papers

published in peer-revewied journals and conferences.

Keywords: anonymous communications; customizable differential privacy; data

privacy; DC–net; location privacy; location–based services; location proof; social

distance; social networks.
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Chapter 1

Introduction

1.1 Background

Social networks have become a very popular communication plaftform due to

the various attractive services and facilities that they offer to their users. Since

their introduction in the mid–1990s, social networks such as Facebook, Twitter and

LinkedIn have been exponentially growing every year in terms of active users and

revenue. According to the latest statistics [1], Facebook had 2.41 billion monthly

active users as of the second quarter of 2019 while it had only 100 million in August

2008. Moreover, its revenue has grown from USD 0.4 million in 2004 to USD 17.6

billion in 2019. This rapid and continuous growth of social networks indicates that

they have become a dominant method for people to connect and share information

on the Internet.

Social networks have become more ubiquitous due to new advancements in smart-

phone technology. Consequently, most social media time is now spent on mobile

devices. According to a comScore report, Instagram users spend 98% of their screen

time on their mobile devices rather than on desktops [2]. This figure is 86% for

Twitter users. Thus, an opportunity has been provided for social network service

providers to utilise users’ location information in their services. As a result, new

mobile social networks and Location–Based Services (LBS) have been introduced in

the past few years. For example, Facebook Places, Foursquare and Yelp are popular

social networks that base their services on the users’ location data. They offer useful

services, from location recommendations to nearby friend alerts. In LBS, real–time
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position data of a mobile user is utilised to provide his/her requested information

such as the nearest ATM, restaurant or a retail store. LBS have become one of the

most attractive mobile applications these days. Based on the market reports, the

number of downloads of LBS apps from different app stores has been more than 7.5

billion downloads in 2019 [3].

However, protecting users’ location privacy is a significant challenge for social

networks. Location privacy is very important because users’ location data can be

used to obtain other private information about them. For example, personal inter-

ests, health status and political tendency may be related to the places visited by a

user. Even if a user’s real name or ID is hidden or pseudonyms are used, it has been

shown that privacy may be invaded by analysing position data only [4], [5]. In this

case the user’s location data can be correlated with public information about the

user to reveal his/her identity. For example, an adversary who has access to users’

spatiotemporal data can reidentify a user if he knows that the user spends time in a

coffee shop every day and uses a specific online service at the same time. In another

example, users’ location data can identify a person as a potential cancer patient

if he/she has frequently visited a medical centre for cancer treatment. Therefore,

using pseudonyms cannot guarantee users’ location privacy by itself [5].

To address this issue, new location privacy preserving mechanisms should be

developed to prevent any undesired publication of users’ spatiotemporal data in

social networks. Although some efforts have been made in these directions, location

privacy is still an open issue in social networks [6], [7]. This study aims to investigate

different approaches for preserving users’ privacy in social networks. We first study

the approach in which Differential Privacy [8], [9] is utilised for privacy protection.

In this regard, we develop Distance–Based Location Privacy Protection mechanism

(DBLP2) which is a customisable location privacy protection mechanism designed

for use in social networks. It utilises the concept of social distance to design a
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customisable location privacy protection scheme in which a user’s location data is

generalised before it is published in a social network. The level of generalisation is

decided based on the social distance between users. For this reason, we extend the

standard Differential Privacy framework in the proposed mechanism to offer variable

privacy protection.

Secondly, as another approach, we investigate cryptography–based solutions and

methods for location privacy protection in Location–Based Services (LBS) and so-

cial networks. We propose three cryptography–based and privacy–aware location

verification schemes to preserve location privacy of users: (i) Privacy–Aware and

Secure Proof Of pRoximiTy (PASPORT), (ii) Secure, Privacy–Aware and collusion

Resistant poSition vErification (SPARSE), and (iii) a blockchain–based location

verification scheme.

Thirdly, we investigate anonymity as another approach to preserve users’ privacy

in social networks. In this domain, we propose a dummy–based location privacy

protection scheme for LBS [10]. In dummy–based schemes [11–16], in addition to

the user’s real location, some fake location data (dummies) are sent to the Location–

Based Service Provider (LSP) by the user as a service enquiry. This prevents an

adversary who has access to the LSP’s resources from distinguishing the user’s real

location. Furthermore, we introduce Harmonized and Stable DC–net (HSDC–net), a

self–organizing protocol for anonymous communications in social networks. In social

networks, privacy of users is generally preserved using pseudonymity, i.e., users select

a pseudonym for their communications instead of their real identity. However, it

has been shown that pseudonymity does not always result in anonymity (perfect

privacy) if users’ activities in social media are linkable. This makes users’ privacy

vulnerable to deanonymization attacks. Thus, by employing a secure anonymous

communication service, social network service providers will be able to effectively

preserve users’ privacy.



7

1.2 Problem Statement

Recently, due to the advances in the smartphone technology and positioning

systems, there has been the emergence of a variety of location–based applications

and services [17–20] such as activity–tracking applications, location–based services,

database–driven cognitive radio networks (CRNs), and location–based access control

systems. In these applications, mobile users submit their position data to a loca-

tion–based service provider (LBSP) to gain access to a service, resource, or reward.

These applications are very popular due to the useful services they offer. According

to recent business reports, the market value of location–based services (LBS) was

USD 20.53 billion in 2017 and is anticipated to reach USD 133 billion in 2023, with

an expected annual growth rate of 36.55% [21].

However, location privacy is a critical issue for these applications and services.

This is because other private information of users can be revealed by analysing their

location data (e.g., home address, health condition, personal interests, etc.). As

a result, users of location–based social networks are concerned that their location

privacy is breached by service providers or third–party entities. Moreover, when

users share their location data in social networks, they may be uncomfortable be-

cause their location privacy can be breached by other users. This may result in a

large degradation of the network utility because in this case, users may behave more

conservatively and keep their information local.

To address these issues, many research efforts have been made and several solu-

tions proposed so far. However, the existing solutions for privacy protection in social

networks have some critical problems. In this regard, we identified three issues, i.e.

dependency on user collaboration, binary access control, and low efficiency of data

utility that are presented and discussed in the next section. These problems result

in significant privacy concerns for social network users.
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To summarise, the following is the problem statement of this research work:

To develop new secure and efficient privacy–preserving schemes and mechanisms

for users of location–based social networks through three approaches, i.e. (i) differ-

ential privacy, (ii) cryptography, and (iii) anonymity approaches.

We also investigate the application scenarios of each approach. Different aspects

of the location privacy problem that each approach addresses will also be discussed.

In the next section, we present three research questions that are resulted from the

problem statement of this thesis.

1.3 Research Questions

In this subsection, we present the research questions resulted from the problem

statement.

• Research question (1): Is it possible to develop a privacy–preserving mechanism

that (i) does not rely on users’ collaboration, (ii) is flexible in terms of social

distance between users, and (iii)) achieves an optimum level of data utility?

In this regard, differential privacy [8–9] is a promising tool to address this ques-

tion. It provides a flexible and efficient platform for developing new secure privacy–

preserving mechanisms.

• Research question (2): Can we utilise cryptography–based techniques and solu-

tions to develop a privacy–aware and collusion–resistant location proof scheme

for users of location–based social networks?

In the second part of this research work, we investigate cryptography–based

solutions to protect location–based applications and services [17–20] against location

spoofing attacks while location privacy of users is preserved. In these applications,
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mobile users submit their position data to a location–based service provider (LBSP)

to gain access to a service, resource, or reward.

• Research question (3): Can we address the existing issues of DC–net and de-

velop a new efficient anonymous communication protocol to provide anonymity

in social networks?

In social networks, lack of anonymous group messaging service is tangible. To the

best of our knowledge, no social network provider offers such a service. Using this

service, users can create groups in social media and anonymously publish their

opinions (see [37–39] for some example applications). To offer anonymity, several

anonymous communication networks (ACNs) have been proposed so far. Among

these protocols, the Dining Cryptographers network (DC–net) [49] is one of the

most popular protocols that guarantees protection against traffic analysis attacks.

However, DC–net suffers from three critical issues that reduces its practicality. This

builds the third part of the research work presented in this thesis.

1.4 Research Objectives

This section presents the targets of this research study. The following three main

objectives are defined for this study.

i. Develop a customisable location privacy protection mechanism based on the

differential privacy framework that is uniquely designed for use in social net-

works.

ii. Develop cryptography–based privacy–preserving location verification mecha-

nisms for location–based social networks.

iii. Design and develop anonymisation schemes for users of social networks based

on the Dining Cryptographers network (DC–net) approach.
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Figure 1.1 : Research Objectives

To achieve the mentioned objectives, a comprehensive literature review should be

performed in each of the three targeted subtopics. In addition, extensive experiments

should be conducted to assess performance of the proposed mechanisms and ensure

that they can successfully address the identified problems of the current privacy

protection mechanisms in social networks. Fig. 1.1 shows how the three research

objectives are related to each other.

1.5 Scientific Contributions

In this section, the main scientific contributions of this research study are pre-

sented. They are categorised based on the three main topics covered in this the-

sis, i.e., differential privacy–based, cryptography–based, and anonymity–based ap-

proaches for privacy protection in social networks (see Table 1.1). For the first

approach, we have the following contributions:

• Using the concept of effective distance, we propose a weighted graph model

for social networks to measure the social distance between users.

• By customising the standard differential privacy framework, we introduce

a customisable and distance–based location privacy protection mechanism

(DBLP2) for social network users.

For the second approach that is covered in this research study, the following
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Table 1.1 : List of Contributions

Approach Contribution Objective Paper

Proposed a weighted graph For social distance [133]

Differential Privacy– model for social networks. measurement

Based Approach Introduced DBLP2 To preserve location privacy [133]

mechanism. of social networks’ users

Proposed SPARSE For private location proof [93]

scheme. generation and verification

Introduced PASPORT For private location proof [131]

Cryptography– scheme. generation and verification

Based Approach Developed P-TREAD For secure and private [131]

distance bounding mechanism. proximity checking

Proposed a blockchain–based For private location proof [130]

location proof scheme. generation and verification

Proposed a filtering To eliminate the

technique for spatiotemporal correlation [10]

Anonymity–Based Location-Based Services. problem in LBS

Approach Identified short stability as a To make DC-net a [132]

drawback of the DC-net protocol. reliable and practical protocol

Proposed HSDC-net protocol. For anonymous communication [132]

contributions are listed:

• We propose SPARSE, a secure and privacy–aware distributed location proof

scheme for mobile users. Our security analysis shows that SPARSE achieves

the necessary properties of a secure and private location proof system.

• We design PASPORT, a secure, privacy–aware and collusion–resistant location

proof scheme for mobile users.

• To privately perform the procedure of proximity checking, we propose P–TREAD

and integrate it into PASPORT.
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• We propose a blockchain–based, secure, and privacy–aware scheme for LP

generation and verification in which mobile users generate LPs for each other.

Regarding the last approach, i.e. anonymity in social networks, the contributions of

this research work are as follows:

• A new filtering technique is presented to eliminate the spatiotemporal corre-

lation problem in LBS applications.

• We prove that the “short stability” is a drawback of the DC–net protocol.

• We further improve SDC–net and propose HSDC–net, a collision avoiding and

accountable protocol for anonymous communications.

In the next section, we present the structural organization of the thesis.

1.6 Thesis Organization

This thesis is organised as follows:

• Part I: We investigate the differential privacy–based approach in Part I. We

first present a comprehensive literature review and some preliminaries in Chap-

ter 2. Efforts have been made to identify and present the related research issues

and directions. In Chapter 3, the research methodology for Customisable Lo-

cation Privacy Protection in Social Networks is presented. The results of our

analysis and experiments are presented and discussed in Chapter 4.

• Part II: In the second part of the thesis, we investigate the cryptography–

based approach and propose some privacy–preserving schemes based on cryp-

tographic algorithms and techniques. We first present the relevant literature

review and some preliminaries in Capter 5. Then, in Chapter 6, we introduce

Privacy–Aware and Secure Proof Of pRoximiTy (PASPORT) and present the
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results of our analysis and experiments. Our second proposed scheme, i.e. Se-

cure, Privacy–Aware and collusion Resistant poSition vErification (SPARSE),

is introduced in Chapter 7. Finally, in Chapter 8, we introduce the blockchain–

based location verification scheme and present the results of our experiments.

• Part III: In the last part of the thesis, we investigate the anonymity–based

approach and introduce two solutions for privacy protection. Firstly, in Chap-

ter 9, we present some related work and preliminaries. Then, in Chapter

10, our first anonomity–based solution, i.e. Harmonized and Stable DC–net

(HSDC–net), is introduced. Finally, in Chapter 11, our second anonomity–

based solution is introduced and its performance is evaluated and discussed.

• Chapter 12: This chapter summarises the thesis and highlights key investiga-

tions.

1.7 Conclusion

Social networks have recently become one of the most popular platforms for

communications. They have been exponentially growing every year in terms of active

users and revenue. Moreover, the recent advances in the smartphone technology and

positioning systems have made social networks more ubiquitous. This has resulted

in the emergence of a variety of location–based applications and services. In these

applications, mobile users submit their position data to a location–based service

provider (LBSP) to gain access to a service, resource, or reward. However, preserving

users’ location privacy is still a big challenge for social networks due to the recent

development of the data analysis and mining technologies. Location privacy is very

important for users because other private information about users can be obtained

by knowing their location data.

In the next chapter, we present an extensive literature review about the research
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questions addressed in this thesis. We first review the research studies relevant

to customisable location privacy in social networks. Then, we present a literature

review of the anonymity issue in social networks. Finally, we explore the location

verification schemes in location–based social networks by giving an overview of the

existing location proof schemes and discussing their pros and cons.
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Part I

Differential Privacy–Based

Approach
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Chapter 2

Literature Review and Preliminaries

2.1 Introduction

The recent advances in smartphone technology and positioning systems has en-

abled social network service providers to offer a variety of location–based applica-

tions and services for their users. In these applications, real–time location data of

mobile users is utilised to provide requested information or access to a resource or

service. The variety of useful services offered by these applications has made them

very popular [14], [17–19]. However, preserving location privacy of users is a big

challenge for the service providers since users share their location data either with

other users or with a service provider.

This chapter presents a literature review on the current privacy preserving tech-

niques and solutions in social networks. This includes the privacy preserving mecha-

nisms proposed based on the popular differential privacy framework. We also discuss

the current location privacy preservation mechanisms proposed for Location–Base

Services (LBS) and Geo–Social Networks (GeoSNs). In this regard, K–Anonymity,

Dummy–Based, and Cryptography–Based schemes are reviewed.

Moreover, this chapter presents some preliminaries as the foundation for the next

chapter. After briefly reviewing the concept of differential privacy and the Laplace

mechanism, we introduce the necessity of customising the adjacency relation defined

in the standard differential privacy to match its definition with the location domain.
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2.2 Literature Review

Privacy protection in social networks has been comprehensively studied by Abawajy

et al. [59] to present a comprehensive survey of the recent developments in social

networks’ data publishing. They have analysed different privacy risks and attacks in

social media along with the presentation of a threat model. They have also quanti-

fied and classified the background knowledge which is used by adversaries to violate

users’ privacy. In addition, Fire et al. [60] presented some strategies and methods in

privacy preserving social network data publishing through a detailed review of differ-

ent security and privacy issues. They have reviewed a range of existing solutions for

these privacy issues along with eight simple–to–implement recommendations which

can improve users’ security and privacy when using these platforms [13].

A few location privacy protection mechanisms have been proposed based on

differential privacy. In [64], a perturbation technique based on differential privacy

was introduced to achieve geo–indistinguishability for protecting the exact location

of a user. This technique adds random Laplace–distributed noise to users’ location in

order to sanitize their location before publishing. A differentially private hierarchical

location sanitization (DPHLS) approach has been proposed for location privacy

protection in large–scale user trajectories. The approach provides a personalised

hierarchical mechanism that protects a user’s location privacy by hiding the location

in a dataset that includes a subset of all possible locations that might be visited in a

region [65]. By doing this, the level of location randomisation is reduced, hence, the

amount of noise required for satisfying differential privacy conditions is minimized.

Another research study in the differential privacy field has been conducted in [66]

to consider the problem of releasing private data under differential privacy when the

privacy level is subject to change over time. In spite of other works that consider

privacy level as a fixed value, they have studied cases in which users may wish
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to relax their privacy level for subsequent releases of the same data after either

a re–evaluation of the privacy concerns or the need for better accuracy. For this

reason, the authors have presented a mechanism whose outputs can be described by

a lazy Markov stochastic process to analyse the case of gradual release of private

data.

Some other research studies have recently been done on the location privacy

of Geo–Social Networks (GeoSNs) users [61], [67–69]. GeoSNs are a variety of so-

cial networks by which users can find their favourite events, persons or groups in

a specific region or identify popular places by comparing how many people have

already checked–in at different places. This is done by utilising users’ location data

which have been shared by them in that region. In fact, GeoSNs combine location

recommendation services (such as services offered by location–based services) with

social network functionality [10], [69]. In other words, they can be viewed as loca-

tion–based social networks which connect people in a specific region based on their

interests.

In [69] different GeoSNs were classified into three categories Content–Centric,

Check–In Based and Tracking–Based according to the services they offer. In ad-

dition, the main privacy issues that threaten user location privacy were identified.

Moreover, the authors of [67] have studied techniques that sanitize users’ location

data based on differential privacy framework before publishing them as location

recommendations in GeoSNs. Moreover, to enhance the accuracy of the location

recommendations, they have identified some effective factors which improve data

accuracy.

In [68] a location–privacy–aware framework is offered to publish reviews for local

business service systems. The proposed framework publishes reviews based on utility

to achieve two main goals, maximizing the amount of public reviews which users
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Figure 2.1 : Methods for location privacy protection in location–based services

share and having the maximum number of businesses that obey the proposed public

principle. Moreover, in [70], the differential privacy framework has been adopted to

the context of location–based services to quantify the level of indistinguishability

in the users’ location data. Their proposed scheme is a symmetric mechanism that

injects noise to the real location of the user through a noise function to obfuscate

the user’s location before its submission. They have also analysed the mechanism

with respect to location privacy and utility.

One of the latest papers on the location privacy of GeoSNs users is [61] in which

the importance of users’ awareness of the outcomes of sharing their locations in

GeoSNs along with the resultant privacy threats were discussed. Moreover, a feed-

back tool has been designed to enable users to realize the level of threat related to

the disclosure of their location data. To evaluate the effectiveness of the proposed

feedback tool, they have conducted a user study which confirms the necessity of

users’ location privacy awareness.

Prior work on privacy issue of Location–Based Services has mostly focused on K–

Anonymity and Dummy–Based methods although some efforts have recently done
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on other techniques such as Differential Privacy [64], [71] and Cryptography–Based

[72–73] schemes.

K–Anonymity efforts [74–78] require a trusted third–party server which is called

an anonymizer, between users and LSP. The anonymizer receives service requests

from a user and enlarges its location into a region (cloaking region) so that it con-

tains the locations of K − 1 other users as well as location of the requesting user.

Therefore, the adversary cannot identify the requesting user among other K − 1

users. The advantage of these methods is that the communication cost between

users and anonymizer is reduced, however, they suffer from decreased QoS because

when there are not enough users near the requested user, the anonymizer has to in-

crease the radius of cloaking region, hence, the increased processing times results in

a greater service latency. To solve this problem, some efforts have been done in [76]

and [78] to increase QoS. In these papers the area of cloaking region is minimized

by using footprints–historical locations of other users.

Although the mentioned efforts have solved the low QoS problem, they still rely

on a trusted third–party anonymizer which is a disadvantage for these schemes. To

address this issue, a K–Anonymity privacy protection scheme has been proposed in

[79] which does not rely on a trusted anonymizer between users and LSP. However,

this method still requires a DataBase Management System (DBMS) to operate.

Several dummy–based location privacy schemes [4], [12–16] have been proposed

so far for location privacy protection. In all of them users send their location data

including noise (some fake location data or dummies) to LSP directly. Thus, there

is no need for a trusted anonymizer. In [4] and [12], two dummy generation algo-

rithms have been presented, Moving in a Neighbourhood and Moving in a Limited

Neighbourhood. In these algorithms, the first dummy set is selected randomly but

next dummies are generated in a neighbourhood of the previous position of the
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dummies. Moreover, a cost reduction technique was proposed in [4] to limit the

communications overhead caused by sending dummies.

However, generating dummies at random or through a fixed rule can not provide

flexible location privacy for users. Hence, in [11], a Privacy–Area Aware scheme

is proposed based on a flexible dummy generation algorithm in which dummies

are generated according to either a virtual grid or circle. This approach provides

configurable and controllable dummy generation by which it is possible to control the

user’s location privacy. A disadvantage of this method is that it does not consider

nature of the region. For example, some dummies may be generated in an unlikely

location for a user (e.g., in a river). To solve this problem in [12] a Dummy–Location

Selection (DLS) method has been proposed to prevent the adversary from exploiting

side information such as a region map. This is done by carefully selecting dummies

based on the entropy metric.

However, in [14] it has been showed that when a user adopts one of the afore-

mentioned dummy–based methods, the adversary can identify some dummies with

a minimum correct ratio of 58% by means of the spatiotemporal correlation be-

tween neighbouring location sets. Therefore, they have proposed a Spatiotemporal

Correlation–Aware privacy protection scheme in which correlated dummies are fil-

tered out and only uncorrelated dummies are sent to LSP. However, this method

can protect user’s location privacy under some conditions only and if the adversary

estimates the threshold angle which is used to filter space correlated dummies, he

will be able to identify dummies or even the user’s real location.

2.3 Preliminaries

This section presents some preliminaries that is required as the foundation for

the next chapter. We first review the concept of differential privacy and the Laplace

mechanism. Then, we discuss the necessity of customising the adjacency relation
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defined in the standard differential privacy to match its definition with the location

domain.

2.3.1 Differential Privacy

Differential privacy [8] is a privacy preserving framework that enables data

analysing bodies to promise privacy guarantees to individuals who share their per-

sonal information. In fact, differentially private mechanisms can make users’ private

data available for data analysis, without needing data clean rooms, data usage agree-

ments or data protection plans [9]. More precisely, a differentially private mechanism

that publishes users’ private data provides a form of indistinguishability between ev-

ery two adjacent databases. Here, ”adjacent” means that they differ only in a single

record. However, as you see later, we will extend the concept of ”adjacency” to the

location domain.

Definition [8]: The randomised mechanism A with domain H is ε−differential

private if for all S ⊆ Range(A) and for all adjacent x, y ∈ H (i.e. ||x− y||1 ≤ 1) we

have

Pr[A(x) ⊆ S] ≤ eεPr[A(y) ⊆ S],

where ε is the privacy level which is a positive value and denotes the level of privacy

guarantees such that a smaller value of ε represents a stricter privacy requirement.

In other words, for a smaller ε, the mechanism makes any adjacent data x and y

more indistinguishable, i.e. for a small value of ε, with almost the same probability,

the published A(x) and A(y) are placed in the same region S. However, for a

large ε, this probability is much higher for A(x) than A(y) which makes them

more distinguishable. Therefore, mechanism A can address privacy concerns that

individuals might have about the release of their private information. Note that

differential privacy is a definition, not an algorithm [9]. In other words, we can have

many differentially private algorithms for a privacy scenario and a given ε.
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2.3.2 Laplace Mechanism

One of the most popular mechanisms developed based on the differential privacy

framework is the Laplace mechanism [9], [64], [97] in which Laplace–distributed

noise is added to users’ private data to make it ε−differentially private.

Laplace Mechanism [9]: Given the private data x ∈ H, the Laplace mechanism

is defined as:

AL(x, ε) = x+N,

where, N is Laplace–distributed noise with scale parameter 1/ε and zero mean, i.e.,

N ∼ Lap(0,
1

ε
)

The probability density function for N is:

fN(n) =
ε

2
e(−ε|n|), (2.1)

where ε denotes the privacy level required by the user. The Laplace distribution

is a symmetric version of the exponential distribution. According to its probabil-

ity density function, with high probability, the Laplace mechanism generates much

stronger noise for small values of privacy level and vice versa [9], [64], [97].

In this research work, we consider the set of private data H ⊆ R2 since our target

is to protect users’ location data which is assumed as L =< latitude, longitude >

where latitude, longitude ∈ R are GPS coordinates in the ranges [−90, 90] and

[−180, 180] respectively. Moreover, the adjacency relation defined in the standard

differential privacy should be customised, since we need a mechanism for publishing

location data which guarantees that adjacent locations are indistinguishable to some

extent. For this reason, we will customise the adjacency relation definition later in

the next section in order to use differential privacy framework in location domain.
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2.4 Conclusion

In this chapter, we reviewed the existing literature on the current privacy pre-

serving techniques and solutions in social networks and reviewed the advantages and

disadvantages of each solution. It is concluded that differential privacy, as a promis-

ing framework, can be employed to develop reliable and efficient privacy preserving

mechanisms in social networks.

Moreover, this chapter presented some preliminaries as the foundation for the

next chapter. In this regard, the concept of differential privacy and the Laplace

mechanisms were presented. Moreover, we discussed the necessity of customising the

adjacency relation defined in the standard differential privacy to match its definition

with the location domain.

In the next chapter, we introduce the Distance–Based Location Privacy Pro-

tection (DBLP2) mechanism for users of social networks. It provides customisable

location privacy protection by which social network users can customise their privacy

settings according to their social distance to other users.
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Chapter 3

Customisable Location Privacy Protection in

Social Networks

3.1 Introduction

In this chapter, we propose the Distance–Based Location Privacy Protection

(DBLP2) mechanism for users of social networks. The proposed mechanism pre-

serves users’ location privacy at an individual level based on their social distances.

It returns a customised response through the differential privacy mechanism when-

ever a user requests to access another user’s location information. In the proposed

mechanism, closer relationships bring more accurate location information. The pri-

mary distinguishing characteristic of DBLP2 is that it provides a flexible location

privacy protection framework for social network users which overcomes the identi-

fied disadvantages. Moreover, DBLP2 improves data utility by generating responses

with optimal accuracy and providing privacy–aware access rights for different users.

Our extensive analysis shows that it offers the optimum data utility regarding the

trade–off between privacy protection and data utility. In addition, our experimental

results indicate that DBLP2 is capable of offering variable location privacy protec-

tion and resilience to post processing.

We first present the background in the next section. Then, in Section 3.3, our

proposed DBLP2 mechanism is introduced. Finally, Section 3.4 summarises this

chapter.
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3.2 Background

Social networks have recently become a popular online communication platform.

According to the latest statistics [1], Facebook had more than 2.41 billion monthly

active users in 2019 while it had only 100 million in 2008. This rapid and continuous

growth of social networks indicates that communication on them has become a

prominent method for people to connect and share information on the Internet.

Furthermore, people even use these services for their business promotion, such as

advertising and marketing activities. Furthermore, social networks have become

more ubiquitous due to the new advances in smartphone technology [6], [7]. This

has provided an opportunity for social network service providers to utilise location

information of users in their services. For example, Facebook Places, Foursquare and

Yelp are popular social networks that mostly rely on utilising users’ location data in

their services. They offer a variety of useful services, from location recommendation

to nearby friend alerts.

However, a big challenge for social networks is how to protect location privacy of

users. This challenge has become one of the most important issues in social media

due to the existing structure of social networks that enables an adversary to track

movements of users [6], [7]. For example, a new Chrome extension called Marauder’s

Map has been developed that enables Facebook users to easily track movements

of other users and plot them on a map with an accuracy of around one meter

[55]. It uses the location data that users have shared in Facebook Messenger chats.

Moreover, different methods have been proposed for user location inference based

on users’ tweets [56–58]. This is a significant issue since other private information

of users can be revealed by analysing their location data (e.g., home address, health

condition, interests, etc.).

To address these privacy issues, social network service providers offer some built–
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in tools enabling users to decide on their own privacy preferences. In addition,

different methods have been proposed to protect user location privacy in social

networks and Geo–Social Networks (GeoSNs) [61], [65], [67], [68]. However, these

tools and methods introduce additional problems that may lead to further privacy

leakage as follows.

Firstly, current solutions rely on user collaboration while some users may not be

competent enough to collaborate in such processes. Moreover, some users are not

even aware that social networks have been equipped with these privacy protection

tools. They might customise their default privacy settings only after their privacy

is violated [59], [60]. Secondly, the mentioned privacy protection tools and methods

are not efficient enough to protect different users’ privacy requirements [60], [61].

Specifically, they are not flexible in terms of social distance between users and rigidly

divide users to be either friends or strangers [62]. These privacy protection tools

look at the level of privacy protection as a rigid binary function, while in reality, we

treat privacy differently against different relationships. Although differential privacy

[8], [9] is the dominant tool used for privacy protection, it cannot offer customised

privacy protection in its current form. Finally, applying rigid privacy policies keeps

users information local and limits data utility for public [62], [106].

To address the aforementioned problems, in the next subsection, we propose the

Distance–Based Location Privacy Protection (DBLP2) mechanism. The proposed

mechanism protects location privacy of social network users based on their social

distances. We define social distance as a measurement index of social relationship

which indicates the intimacy of users based on their interactions in the social net-

work. In the next section, we present the preliminary knowledge of the related

topics.
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3.3 The Proposed DBLP2 Mechanism

In this section, the proposed DBLP2 mechanism is presented. Firstly, we present

the system architecture and propose a graph model for social networks. Then, we

discuss how social distances are converted to privacy levels. Finally, we present the

proposed customisable differential privacy framework. The designed mechanism is

independent of user collaboration and improves the utility of social networks. In

other words, it satisfies the following properties:

Flexible privacy : The system must generate ε(dij)–differential private responses,

where dij is the social distance between user ui and uj. Thus, the privacy level ε

must be a function of social distances.

Independent of user collaboration: The system must embrace the whole respon-

sibility of users’ privacy protection regardless of whether users collaborate with the

system or not. Therefore, by default, the system must perform a standard distance–

to–privacy function for each user to obtain the required privacy levels against other

users. Competent users can customise this function based on their own requirements.

Optimal accuracy : Responses generated by the system must be as accurate

as possible regarding the trade–off between privacy protection and data utility.

Therefore, to preserve data utility, the level of location generalisation must be

kept to a minimum, i.e., the system needs to minimise the expected squared er-

ror ‖ Lij − Li ‖2 (i, j ∈ V ), where Li is the real location of user ui and Lij is an

approximation of Li generated by the system for sending to user uj.

In the next section, we present system architecture of the proposed DBLP2

mechanism.
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Figure 3.1 : The proposed DBLP2 system architecture.

3.3.1 System Architecture

In this work, we assume the social network service provider as a centralised

trusted entity that is in charge of keeping users’ raw private location data, calculating

the social distances and executing our proposed DBLP2 mechanism.

Fig. 3.1 shows the proposed system architecture. As you see, when Bob sends

a request for Alice’s Location data, firstly, using their social distance, i.e. dAlice,Bob,

the privacy level ε that Alice requires against Bob is obtained. The required privacy

level ε is calculated by a distance–to–privacy function f . Default or Alice settings

have a critical role to convert dAlice,Bob to ε. Since function f can be different

for different users (depending how important location privacy is for the user), it

must be customisable by users based on their requirements. The default settings

are designed based on the behaviour of incompetent users. As you will see in this

section, these default settings model a moderate behaviour which most users have

in social networks in terms of privacy protection. Obviously, Alice can personalise

these settings based on her privacy protection requirements.

Finally, using a customised differential privacy mechanism, an appropriate amount
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of noise (regarding the obtained privacy level ε) is injected to Alice’s real location

(LAlice) and the sanitised location L′Alice is generated for offering to Bob. In the next

subsections, details of the mentioned stages are discussed.

3.3.2 Graph Model

We model social networks by a directed and weighted graph G = (V,E) in which

nodes represent social network users and edges define social relations between users.

Therefore, if user ui has |ui| friends in her friend list, node ui is connected to a set

of |ui| neighboring nodes. Now suppose the graph has |V | = N nodes and for each

edge (i, j) ∈ E we assign a weight wij which represents the social distance between

user ui and uj. As we discussed in Section 1, in most cases, a social network user has

different social distances from other users who are in her friend list. For example,

although a family member and a colleague of her can both be in her friend list, she

is more comfortable with the family member than the colleague in terms of privacy

concerns. Hence, we believe that weighted graphs are more appropriate models for

social networks rather than unweighted graphs because they enable us to model

different social distances by weighted edges.

Moreover, we adopt a directed graph to model the network instead of undirected

because we believe that social relations between users are not necessarily symmetric.

In other words, two friends in a social network might have different feelings about

each other. For example, although Bob regards himself as very close to Alice, she

may consider some privacy protection settings against Bob. We call this attribute

friendship asymmetry in social networks. A directed graph model allows us to

analyze privacy protection requirements for each user separately. Therefore, for any

given users ui and uj, equations dij = dji and wij = wji are not necessarily true.

Using the proposed graph model, the social distance dij can be obtained. For

this reason, we extend the effective distance definition [98], [99] to obtain the dis-
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Figure 3.2 : A simple example showing three users of a social network modelled by a

simple graph.

tance between friend users (neighbor nodes in the graph) in the social network (or

equivalently wij where (i, j) ∈ E). However, other methods and techniques for social

distance measurement [100–103] can be integrated into the DBLP2 mechanism.

The extended effective distance from the two neighbor nodes ui and uj is defined

as

e(i, j) = 1− log(pij),

where pij is the percentage of user ui’s messages which have been sent to user uj,

(i.e., 0 < pij ≤ 1) and is calculated by equation 3.1:

pij =
mij∑|ui|
k=1 mik

, (3.1)

where mij is the number of messages that user ui has sent to user uj and |ui| is the

cardinality of user ui (the number of ui’s friends).

The concept of effective distance reflects the idea that a small value of pij or

equivalently a small number of messages exchanged between user ui and uj results

in a large distance between them, and vice versa. Therefore, for each edge (i, j) ∈ E

we adopt

wij = e(i, j), (3.2)

as the effective weight that represents the social distance between two friend users

ui and uj.

A simple example is illustrated in Fig. 3.2 which shows how effective weights are
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applied to the nodes of a social network graph. As you see, 50% of user ui’s messages

has been sent to uj (i.e., Pij = 0.5) while she has sent only 2% of her messages to

uk. Therefore, after calculating effective weights for each friend using equation 3.2

and applying them to the graph, Fig. 3.2(B) is obtained. You see that ui has a

smaller distance to uj (1.3) than uk (2.7). The friendship asymmetry attribute is

also considered in our model (Fig. 3.2(B)) which makes the social network graph a

directed graph.

By applying effective weights to the whole network’s graph, we are able to cal-

culate the distance between non–friend users. For this reason, we just need to add

individual effective weights on each path between two non–neighbor nodes and find

the path with the minimum additive effective weights, i.e.

dij = min(

Kp∑
l=1

wpl ) ,

where wpl is the effective weight of the lth edge on the pth path between node ui

and uj and Kp is the the number of edges that make path p.

Different methods have been proposed to find the shortest path between a pair

of nodes in graphs [100–103]. Since the purpose of this section is not to offer an

algorithm for the shortest path problem, we just assume that we have the distance

between any pairs of nodes in the network.

3.3.3 Converting Social Distances to Privacy Levels

Before injecting noise to a user’s location data, we need to quantify her privacy

level against other users in a social network since we need to design a system with

flexible (variable) privacy level. Hence, we adopt the social distance as a determinant

factor to obtain different privacy levels that a user requires against other users.

To discuss how social distances are mapped to privacy levels, we assume f is a
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Figure 3.3 : An example of four users with different privacy protection requirements.

function which converts social distance between user ui and uj, i.e. dij(i, j ∈ V ),

to a privacy level ε(dij). The following properties can be considered for a standard

function f in social networks.

• f is a decreasing function since the standard differential privacy definition

specifies that a larger value of ε represents a more relaxed privacy level (or

equivalently a small social distance) and vice versa. Thus, there is always an

inverse relationship between dij and privacy level ε. The slope of these inverse

changes depends on the user behavior in terms of privacy protection, thus, it

can be different for each user.

• For large distances (d→∞), ε must be near zero (ε→ 0). This means a tight

privacy constraint for strangers who are far from a user in the network.

• For small distances, i.e. d → 0, ε must be a relatively large value (ε >> 1)

which represents a loose privacy constraint for a user’s close friends in the

network.

Different functions can be defined with the mentioned properties. For example,

an exponential function f in the following can be adopted to convert social distances



34

to privacy levels.

f(dij) = e(a−bdij) , (3.3)

where, a, b > 0 are regression coefficients used to calibrate the formula. However,

function f can have different properties for different users (dependant on how privacy

is important for each user). For example, a user might be very conservative and only

allows her family members and close friends to see her location. On the other hand,

there are always some social network users with minimal privacy concerns (see Fig.

3.3). Hence, a single function f can not satisfy privacy requirements of all users

with different privacy protection requirements. Therefore, users should be able to

customise f based on their own requirements.

However, to make the system independent of user collaboration, we consider the

behavior of the moderate user shown in Fig. 3.3 as a standard model and adopt its

function as the standard function f for all users. Those users who want to customise

this function can change the related settings. For example, by applying constants

c1, c2 and c3 to the mentioned function f (equation 3.3), we obtain the following

function f ′.

ε = f ′(dij) = c1 + e(c3−c2dij) (3.4)

where c1, c2, c3 ≥ 0. A default value is defined by the system for constants c1 to c3 to

create the standard function. However, each user is able to customise the function

by changing the appropriate settings. Therefore, all four groups of users introduced

in Fig. 3.3 are covered through a single function.

3.3.4 Customisable Differential Privacy

After discussing how social distances are converted to appropriate privacy levels,

we are ready now to present the noise injection mechanism for the DBLP2 system.

We adopt the differential privacy framework (see Section 3.1) because of its verified

privacy guarantees [8], [9]. The target is to randomise a user’s real location such
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that there must always be a minimum level of indistinguishability for an adversary

between the user’s real location and any other location which is adjacent to it.

This level of indistinguishability is varied inversely with the privacy level ε, i.e.

a large value of privacy level ε (smaller social distances equivalently) results in a

lower level of indistinguishability and vice versa. However, for the sake of data

utility, unnecessary randomisation must be avoided such that a balance between

data utility and the level of privacy protection must be kept regarding the trade–off

between data utility and privacy protection.

Since the proposed mechanism publishes location data, we customise the adja-

cency relation defined in the standard differential privacy in order to use differential

privacy framework in the location domain. This is shown in Definition 1.

Definition 1. Adjacency relation: Locations L and L′ are considered adjacent

if the distance between them is less than a predefined value D, i.e.

||L− L′||2 ≤ D

Using Definition 1 we customise the standard definition of differential privacy

to our needs. For this reason, we present the concept of (D, ε)−location privacy in

Definition 2.

Definition 2. (D, ε)−location privacy: Suppose L ∈ R2 be a user’s private

location and L′ ∈ R2 is adjacent to L, (i.e. ||L−L′||2 ≤ D). MechanismA : R2 → R2

is (D, ε)−location private if for any S ⊆ Range(A) we have

ln(
Pr[A(L) ∈ S]

Pr[A(L′) ∈ S]
) < ε

Intuitively, if an adversary wants to infer L, the distinguishability between L and

any adjacent location L′ that he selects is limited by ε. In other words, all adjacent

locations L′ have an equal chance to be placed in the region where A(L) is located.

Therefore, the level of distinguishability is determined by the privacy level ε. To
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simplify the notions, in the rest of this section, we simply use notion ”ε−differential

privacy” instead of ”(D, ε)−location privacy”.

Now suppose Li ∈ R2 is the GPS coordinates of user ui’s real location, i.e.

Li =< L
(1)
i , L

(2)
i >. If dij ∈ R+ is the social distance between user ui and uj, then

using equation 3.5, mechanism M : R2 → R2 generates response Lij that user uj

receives as an approximation of user ui’s location.

Lij =M(Li, ε(dij)) = Li +N(ε(dij)), (3.5)

where ε(dij) is the privacy level required by user ui against user uj and N is a

two–dimensional Laplace–distributed random variable with scale ε(dij).

From equation 3.5 it is concluded that the accuracy of the response Lij depends

on the amount of injected noise N(ε(dij)). The noise level itself is determined by the

privacy level ε (which is the scale of N ’s distribution) because the probability density

function of the Laplace distribution (see equation 2.1) states that a smaller amount

of noise is generated with high probability for larger values of ε and vice versa.

Therefore, since ε is an inverse function of dij, we can say that the system generates a

more accurate response for friends with smaller social distance (or larger privacy level

equivalently) while casual friends and strangers receives more generalised responses.

We already mentioned three properties for the system, i.e. flexible (variable)

privacy, independent of user collaboration, and optimal accuracy. Regarding the

first property, we can say that the system offers variable privacy because users

with different social distances from a specific user receive responses with different

accuracy. This accuracy has an inverse relation with the social distance between the

users. Therefore, the system provides a variable privacy protection tool for social

network users to preserve their location privacy against a spectrum of users (from

family members and close friend to strangers). Moreover, it is independent of user

collaboration. The reason is that, the system always considers a default privacy
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protection plan for all users by taking function f ′ with a default value for constants

c1 to c3. Therefore, there is always a default privacy plan for each user even if she

is not aware of such a privacy protection tool.

After the distance to privacy function is determined, the noise injection mecha-

nism is executed independent of user collaboration. This is applied even to incompe-

tent users who can not collaborate with privacy protection systems due to different

reasons (e.g. lack of sufficient language or computer skills) or are not aware of

privacy violation risks in the social network until their privacy is violated.

Regarding the third property (i.e. optimal accuracy), we analyze the accuracy

of system responses in terms of squared errors in the next section.

3.4 Conclusion

In this chapter, we proposed DBLP2, a distance–based location privacy protec-

tion system for social network users by extending differential privacy framework. It

addresses the three problems from which the current privacy protection solutions

suffer. Firstly, it works independent of user collaborations such that a standard

privacy protection plan is considered by default for all the network users which

works without users cooperation. However, users can customize their default plan

based on their own privacy protection policy. Secondly, the accuracy of the pro-

posed system’s responses has an inverse relation with the social distance between

users. Thus, the system provides a flexible (variable) privacy protection tool for so-

cial network users rather than a rigid binary privacy protection mechanism. Finally,

the proposed system improves the utility of social networks because of the follow-

ing reasons. (1) It generates privacy–aware responses with the optimum accuracy

regarding the trade–off between privacy protection and data utility. (2) The system

allows stranger visitors who compute global statistics and obtain privacy–aware lo-

cation information about users while in the existing social networks they are rejected
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firmly from gathering statistics by restricting access rights.

In the next chapter, we present a comprehensive system analysis and performance

evaluation of the proposed DBLP2 mechanism to assess its performance in terms of

achieving the optimum accuracy and resistance against privacy attacks.
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Chapter 4

Results

4.1 Introduction

In this chapter, we first present a comprehensive system analysis to show that the

proposed DBLP2 mechanism achieves the optimum accuracy and is resistant against

privacy attacks. Furthermore, we evaluate the system performance regarding the

four types of users discussed in the previous section, i.e. conservative user, very

relaxed user, relaxed user, and moderate user. Finally, we assess the immunity of

the proposed system against collusion attacks.

4.2 System Analysis

This section analyzes the performance of the system from accuracy and security

perspectives. First, we assess accuracy of the responses generated by the system

to ensure that it offers optimal utility. Next, the system immunity against privacy

attacks is assessed. Our analysis shows that the system offers optimal accuracy

which depends on ε only. In addition, from a security point of view, the results of

our analysis indicate that the proposed system is resilient to post processing and

collusion attacks.

Accuracy: It is vital for a privacy protection system to keep a balance between

data utility and the level of privacy protection. To maintain data utility, the system

must preserve the accuracy of privacy–aware responses. For this reason, the optimal

amount of noise should be injected to the users’ private location regarding the trade–

off between privacy protection and data utility. In other words, the noise magnitude
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must not be more than what is required for privacy protection.

In the proposed mechanism, the accuracy of response Lij can be measured by

squared error ∆ij as

∆ij = ||Lij − Li||22 i, j ∈ V,

where a smaller error represents more accuracy. By using equation 3.5 we haveL(1)
ij

L
(2)
ij

 =

L(1)
i

L
(2)
i

+

N1(ε(dij))

N2(ε(dij))

 ,
where L

(k)
ij ∈ R (k = 1, 2) are the GPS coordinates of response Lij andNk(ε(dij)) (k =

1, 2) are independent and identically distributed random variables, i.e.

Nk ∼ Lap(0, ε(dij)) ∀i, j ∈ V, k = 1, 2

Therefore, the squared error ∆ij is obtained as

∆ij = N2
1 (ε(dij)) +N2

2 (ε(dij)) i, j ∈ V

N2
1 + N2

2 = ∆ corresponds to a circle with radius
√

∆, for cumulative distribution

function of ∆. Therefore, we have

F∆(δ) = Pr[∆ ≤ δ] = Pr[(N2
1 +N2

2 ) ≤ δ]

=

∫ √δ
−
√
δ

∫ √δ−n2
2

−
√
δ−n2

2

fN1,N2(n1, n2)dn1dn2.

Since N1 and N2 are independent and identically distributed we have

fN1,N2(n1, n2) = fN1(n1)fN2(n2) =
ε2

4
e−ε(|n1|+|n2|).

Therefore,

F∆(δ) =

∫ √δ
−
√
δ

fN2(n2)

∫ √δ−n2
2

−
√
δ−n2

2

ε

2
e−ε|n1|dn1

=
ε

2

∫ √δ
−
√
δ

(1− e−ε
√
δ−n2

2)e−ε|n2|dn2
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Figure 4.1 : Probability density function for generalised gamma distribution.

By taking differentiation, we obtain the probability density function (PDF) of ∆ as

f∆(δ) =
d

dδ
F∆(δ) =

ε

2
√
δ
e−ε
√
δ (4.1)

From equation 4.1 it is derived that ∆ has generalised gamma distribution [126]

with scale parameter 1/ε2, expected value 2/ε2 and variance 20/ε4. This means that

the random variable ∆ depends only on ε, i.e. for larger values of ε (equivalently,

smaller social distances), with high probability, a smaller ∆ is offered and vice versa

(see Fig. 4.1). Therefore, the accuracy of the responses Lij is determined by the

privacy level ε only and they have a direct relation, i.e. any increase in ε results

in a more accurate response. This is exactly what the mechanism needs to satisfy:

flexible (variable) privacy and optimal accuracy, as we discussed in the previous

section.

Security: In the following, we analyze the proposed system’s performance

against privacy attacks. For this reason, we first show that the system is immune to

post processing. In other words, if an adversary has no additional knowledge about

a user’s real location, he cannot make the system’s responses less private by per-

forming computation on the output of the system. Next, we prove that the proposed

system is resilient against collusion attacks in which a group of users collaborate and

share their received responses to obtain a more accurate approximation.

Proposition 1. (Resilience to post processing): IfM : R2 → R2 is the proposed
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mechanism which preserves ε–differential privacy, then for any function f : R2 → R2,

the composition f ◦M : R2 → R2 also preserves ε− differential privacy.

Proof: Assume location L′ is adjacent to L, i.e. ||L′ −L|| ≤ D (see definition 1)

and S ′ ⊂ R2. By defining S = {l ∈ R2 : f(l) ∈ S ′} and becauseM is a ε−differential

private mechanism we have

Pr[f(M(L)) ∈ S ′] = Pr[M(L) ∈ S] ≤ eεPr[(L′) ∈ S ′]

Therefore, according to the definition of S we obtain

Pr[f(M(L)) ∈ S ′] ≤ eεPr[f(M(L′)) ∈ S ′]

which means f ◦M is also ε−differential private.

Resilience to post processing is a common advantage of mechanisms that adopt

the differential privacy framework [9], [127]. It guarantees that after the system

publishes an ε−differential private response, an adversary without any additional

knowledge on the private data cannot increase privacy loss and make it less private

[128].

Therefore, the proposed mechanism is resilient to post processing. This makes it

immune to privacy attacks that rely solely on post processing. Moreover, we proof

that the proposed mechanism is also resilient to collusion attacks in which a group of

users combine their responses to make a more accurate approximation. In practice,

an adversary can create multiple fake accounts in the social network and establish

such a colluding group.

Theorem 1. (Resilience to collusions): Consider a group of K users C ⊆ V

who collaborate and share their response M(li, ε(dij)) = lij(j = 1, 2, . . . , K), (i ∈

V ) to obtain l
(i)
c . If lij be an ε(dij)−differentially private response, then l

(i)
c is

(maxj∈Cε(dij)−differentially private.
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Proof : from equation 3.5 we have

li1

li2

.

.

.

liK


= li +



N(ε(di1))

N(ε(di2))

.

.

.

N(ε(diK))


,

where li is the private location of user ui. We sort the responses Lij(j = 1, 2, . . . , K)

such that

ε(di1) < ε(di2) < . . . < ε(diK),

which means liK is the most accurate response among lij(j ∈ C). To obtain l
(i)
c , the

adversary combines K received responses lij. Therefore,

l(i)c =
K∑
j=1

wjlij =
K∑
j=1

wj(li +N(ε(dij))),

where wj is the weight considered for response j in the combination process. For

simplicity we assume wj(j ∈ C) are equal, i.e.

wj =
1

K
j = 1, 2, . . . , K.

Therefore,

l(i)c = li +
1

K

K∑
j=1

N(ε(dij))

By defining N(ε(dij)) = Nij we have

l(i)c = li +
1

K

K∑
j=1

[NiK +
K∑

m=j+1

(Nim−1 −Nim)].

Since li +NiK = liK we obtain

l(i)c = liK +
K∑
j=1

K∑
m=j+1

(Nim−1 −Nim) (4.2)
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From equation 4.2 we can say that l
(i)
c consists of two parts. First, εiK−differential

private liK which is the most accurate response in C since εiK = maxj∈C εij and

second, a noise section. Since Nim−1 and Nim are independent Laplace– distributed

random variables, (Nim−1 − Nim) has also Laplace distribution. Therefore, we can

consider φ =
∑K

j=1

∑K
m=j+1(Nim−1−Nim) as Laplace-distributed noise added to liK .

In conclusion, we can say that l
(i)
c is the εiK−differential private response liK which

has been post processed by function g(x) = x = φ, i.e.

l(i)c = g(liK) = g(M(li)) = liK + φ.

According to proposition 1, mechanismM is immune to post processing, hence,

l
(i)
c is also εiK−differential private. Therefore, the result of any collusion attack is

equivalent to a (maxj∈C ε(dij))–differential private response which means no more

accuracy is obtained. Consequently, there is no need for additional privacy preserv-

ing noise when multiple users ask for a user’s private location.

4.3 Performance Evaluation

In this section, we evaluate the performance of our proposed DBLP2 system.

Firstly, we evaluate the proposed system’s performance regarding the four types

of users discussed in the previous section. Finally, we assess the immunity of the

proposed system against collusion attacks.

Variable Privacy: To evaluate the system performance in terms of variable

privacy, a single user scenario is considered in which the user’s location privacy is

protected against a variety of users. For this reason, we assess the magnitude of the

injected noise for a spectrum of users (i.e. from family members and close friends to

casual friends and strangers). To model this scenario, we increase the social distance

d from 0 to ∞ and obtain the related privacy level ε using the function introduced

in equation 3.4. Then, for each value of the obtained privacy level ε, the magnitude
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Figure 4.2 : The magnitude of the injected noise for a (A) conservative user, (B) very

relaxed user, (C) relaxed user, and (D) moderate user.

of the injected Laplace noise is calculated.

As discussed in Section 3.2.2, by selecting the appropriate values for constants

c1, c2 and c3, the distance to privacy function f ′ can model the behavior of different

users in choosing a privacy protection policy. Therefore, we adopt this function for

the experiments to convert social distances to privacy levels. In this regard, the

behavior of the four types of users introduced in Section 3.2.2 are modeled using

this function by selecting the suitable values for c1, c2 and c3. Finally, based on the

privacy levels obtained, the related noise magnitude is calculated. The results of

our experiments are shown in Fig. 4.2.

For the first type of user, i.e. the conservative user, the result (see Fig. 4.2 (A))

shows that the amount of injected noise is largely increased when the social distance

is raised above zero. This means that the system generates responses with high
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accuracy for the user’s family members and close friends (who have small social

distance) while other users receive a totally inaccurate response. We performed

the experiments for three different values of constant c2 to see the effect of this

parameter. As you see, c2 determines the threshold social distance at which a tight

privacy protection (required by the user) starts. In other words, c2 represents how

a user is conservative. We have also selected c1 = 0 and c3 = 0.1 in this case (c1

must be zero for this type of user).

Fig. 4.2 (B) shows the result for a very relaxed user (c2 = c3 = 0). In this case,

c1 determines a high privacy level (relaxed privacy) which the user selects against all

the other users. As you see, the system always generates a very small noise regardless

of the social distance (a relatively accurate response for all the other users). The

level of this noise is determined by c1. In other words, for larger c1 (higher privacy

level) a more accurate response is generated. You can realise the difference between

the system responses generated for the first and second type of users (Fig. 4.2 (A)

and (B), respectively), if you compare the amount of the noise generated for each

category. Moreover, the amplitude of the changes in the amount of generated noise

is higher for a smaller c1. The reason is that the variance of the generated Laplace

noise is 2/ε2. Thus, the variance is increased as c1 is decreased.

The noise magnitude for the third type of user, i.e. the relaxed user, is shown

in Fig. 4.2 (C) for different values of c1 and c2 (c3 = 3 is selected in this case). The

noise magnitude for this type of user is almost the same as what we have in Fig. 4.2

(B) (notice the amount of noise magnitude in Fig. 4.2 (B) and Fig. 4.2 (C)). The

only difference is that in this case, the user requires less privacy protection for small

social distances while in the second type, there is no difference between different

social distances in terms of privacy protection.

Finally, for the last type of users, i.e. the moderate user, which we propose her
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Figure 4.3 : The result of a collusion attack in which five users with different social

distances from the victim have shared their response to obtain a more accurate location

data.

behavior as the standard behavior, the result is shown in Fig. 4.2 (D) for different

values of c2 (c1 = 0, c3 = 3). As you see, for small social distances, the system

generates accurate responses (the noise magnitude is very small) while the level of

accuracy is gradually increased as the social distance gets bigger. The constant c2

determines the slope of this increment such that for a bigger c2, the noise magnitude

is increased with a higher rate.

Collusion Attacks: In this part, we consider a collusion attack in which five

users share their received responses to obtain a more accurate approximation of the

victim’s location. In practice, an adversary can establish such a colluding group

by creating five fake accounts in the social network. We assume that these five
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users have different social distances from the victim. In other words, the victim

has different privacy levels ε1, ε2, . . . , ε5 against these five users. Hence, they receive

responses with different accuracy as well, i.e. the user with the largest ε (smallest

social distance) receives the most accurate response and vice versa. We compare

the accuracies of these responses and the collusion outcome to see if there exists any

motivation for an adversary to perform a collusion attack or not. In order to have

a better picture of the system performance, we have performed the experiments 50

times for each user and obtained the squared error ∆ of the five responses and the

outcome of the collusion in each iteration. You can see the result in Fig. 4.3.

As will be discussed in section 5.1, the resultant squared error is a random

variable with the generalised gamma distribution. Therefore, as Fig. 4.3 shows, a

different error has been obtained for a specific user for separate experiments. In

addition, the amplitude of these changes is higher in a response with a lower ε. The

reason is that the variance of the squared error ∆, i.e. 20/ε4, is larger for a lower ε.

Moreover, as we expect, the accuracy of each response only depends on the privacy

level ε(d). Consequently, in each iteration, the user with the lowest ε has received

the response with the largest error and vice versa.

You see in Fig. 4.3 that the outcome of the collusion attack is almost the same

as the most accurate response and has never been more accurate than it. This

confirms the results of our analysis in the previous subsection which states that the

result of any collusion attack is equivalent to a (maxj∈C ε(dij))–differential private

response. Consequently, there is no logical motivation for an adversary to conduct

such a collusion attack since no additional benefit can be gained.

Moreover, regarding the combination process of the responses, Fig. 4.3 (A)

shows the result of the experiments when the same weights have been considered for

the responses, i.e. the responses have equal share in creating the collusion result.
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However, the results shown in Fig. 4.3 (B) is for a case in which the responses

have been combined with different weights. As you see, the same result has been

obtained in both cases which confirms that the combination process does not affect

the immunity of the system against collusion attacks.

4.4 Conclusion

In this chapter, we presented the results of our analysis and performance eval-

uation of the proposed DBLP2 mechanism. The proposed mechanism returns a

customised response through the differential privacy mechanism whenever a user

requests to access another user’s location information. Moreover, DBLP2 improves

data utility by generating responses with optimal accuracy and providing privacy–aware

access rights for different users. Our extensive analysis shows that it offers the op-

timum data utility regarding the trade–off between privacy protection and data

utility. In addition, our experimental results indicate that DBLP2 is capable of

offering variable location privacy protection and resilience to post processing.

In the next part of the thesis, we explore the crytography–based approach for

privacy preserving in social networks. In this regard, three diffrent cryptography–

based solutions are introduced and their performance is analysed and evaluated.
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Part II

Cryptography–Based Approach
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Chapter 5

Literature Review and Preliminaries

5.1 Introduction

In recent years, advancements in smartphone technology and positioning systems

have resulted in the emergence of location–based applications and services such

as activity–tracking applications, location–based services (LBS), database–driven

cognitive radio networks (CRNs), and location–based access control systems. In

these services, mobile users’ real–time location data is utilised by a location–based

service provider (LBSP) to provide users with requested information or access to a

resource or service. These applications are fast growing and very popular due to the

range of useful services they offer [14], [17–19].

However, it is possible for dishonest users to submit fake check–ins by changing

their GPS data. To clarify and highlight the fake location submission issue consider

LBSPs like Yelp and Foursquare that may offer some rewards (such as gift vouchers)

to users who frequently check in at specific locations. This creates an incentive for

dishonest users to submit fake check–ins by manipulating their GPS data. For ex-

ample, in a research study, Zhang et al. [26] found that 75% of Foursquare check–ins

are false and submitted by dishonest users to obtain more rewards. Furthermore, in

database–driven CRNs, malicious users can submit fake locations to the database

to access channels which are not available in their location [23, 25, 32].

In this chapter, we highlight and review the existing location verification schemes.

These schemes are also called location proof (LP) schemes in the literature. More-

over, we present some preliminaries as the foundation for the next three chapters.
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5.2 Literature Review

In this section, we review the literature on location proof (LP) schemes. They

are generally categorised into two groups depending on the system architecture:

centralized and distributed. In the centralized schemes, a trusted fixed wireless

infrastructure, usually a WiFi access point, is employed to check the proximity of

mobile users and generate LPs for them. On the other hand, in the decentralized

schemes, this task is done by ordinary mobile users who act as witnesses and issue

LPs for each other. This makes their implementation easier and cheaper than the

centralized mechanisms. In this section, we review the related literature on each

category separately.

5.2.1 Centralized Schemes

In this approach, a central trusted node such as a wireless access point is utilised

to generate LPs for users in a specific site. The idea of employing wireless access

points as location proof generators was introduced by Waters et al. [83] for the

first time. They measure the round–trip signal propagation latency to decide on the

proximity of a user to a trusted access point referred to as the location manager.

However, the proposed scheme is vulnerable against relay attacks and specifically

against Terrorist Frauds. In other words, their algorithm lacks a mechanism by

which the location manager ensures that the received ID is really for the user who

has submitted the LP request.

To address this issue, Saroiu et al. [84] proposed a technique in which the access

point broadcasts beacon frames consisted of a sequence number. To obtain an LP,

users must sign the last transmitted sequence number with their private key and send

it back to the access point along with their public key (the access point broadcasts

beacons every 100 milliseconds). This makes the system resistant against Terrorist

Frauds since the malicious prover does not have enough time to receive the sequence
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number from the adversary, sign and send it back to the adversary. However, the

proposed algorithm has privacy issues because users must reveal their identity pub-

licly. Javali et al. [85] have used the same idea to make their algorithm resistant

against relay attacks. They also utilise the unique wireless channel characteristics,

i.e., channel state information (CSI) to decide on users’ proximity. The proposed

scheme consists of three entities, i.e., Access Point, Verifier and Server which makes

the system expensive. In addition, the user’s identity is revealed publicly which

might cause privacy issues. Table 5.1 presents a comparison of these LP schemes.

5.2.2 Distributed Schemes

In the distributed scenarios, users collaborate with the system to generate LPs.

In other words, users act as witnesses for each other. The main advantage of this

approach is that there is no need for a trusted access point to issue LPs. Therefore,

this type of systems can be used in locations where users are far from a trusted entity.

APPLAUS introduced by Zhu et al. [86] is one of the pioneer research works on dis-

tributed location proof systems. In APPLAUS, mobile devices use their short–range

Bluetooth interface to communicate with their nearby devices who request an LP.

To preserve users’ location privacy, they need to select a set of M pseudonyms and

change them periodically. These pseudonyms are considered as users’ public keys

which are required to be registered with a trusted Certificate Authority (CA) along

with the associated private keys. However, changing pseudonyms regularly creates

a high level of computation and communication overhead. In addition, the users are

required to generate dummy LPs as well.

Davis et al. proposed a privacy–preserving alibi (location proof) scheme in [87]

which has a distributed architecture. To preserve users’ location privacy, in the

introduced scheme, their identity is not revealed while an alibi is being created.

Thus, only a judge with whom a user submits his/her alibi can see the user’s identity.
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Table 5.1 : Comparision of LP Schemes

LP Scheme Features Advantages Disadvantages

Round–trip signal propagation Privacy–aware

Waters et al. [83] delay is measured to Lightweight Vulnerable to P–P collusions

decide on device proximity

No DB mechanism is used Resistant to P–P collusions Privacy issue

Javali et al. [85] Utilises channel state information (CSI) Fast Expensive for implementation

to decide on users proximity

Access point broadcasts sequence

Saroiu et al. [84] numbers periodically Resistant to P–P collusions Privacy issue

Provers sign the last transmitted

sequence number to request an LP

To obtain a final LP, a user Needs three types of trusted

VeriPlace [92] needs to get an intermediate LP Privacy–aware entities run by separate

from a trusted access point parties

An entropy–based trust model Supports location Vulnerable to P–P collusions

STAMP [90] is used to address granualrity (the broaken Bussard–Bagga

P–W collusions DB protocol is employed)

APPLAUS [86] Provers adopt different pseudonyms Privacy–aware High communication overheads

and change them periodically High computation overheads

Provers’ ID is revealed only Privacy–aware

Alibi [87] when they choose to submit Lightweight Vulnerable to collusion attacks

their alibi to a judge

A group of local users Resilient to situations

Link [89] collaboratively verify a prover’s location when there is not Privacy issue

enough neighbour devices

SPARSE [93] No DB mechanism is used for Resistant to P–P collusions Prevents P–W collusions only

secure proximity checking Privacy–aware in crowded scenarios

PROPS [88] Group signatures and ZKP are Efficient and privacy–aware Vulnerable to P–W collusions

used to make provers anonymous
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However, collusions and other security threats have not been considered in the paper.

In the distributed solutions, Prover–Witness collusions are possible because wit-

ness devices are not always trusted. A witness device can issue an LP for a dishonest

user while one of them (or both) is not located at the claimed location. This is one

of the major challenges of these schemes. For example, in PROPS which has been

proposed by Gambs et al. [88], Prover–Witness collusions have not been discussed

although it provides an efficient and privacy–aware platform for users to create LPs

for other users.

To the best of our knowledge, there is no efficient and reliable solution proposed

in the literature to resolve the Prover–Witness collusions issue with a high level

of reliability even though some significant efforts have been made so far. For ex-

ample, in LINK introduced by Talasila et al. [89] a group of users collaboratively

verify a user’s location upon his/her request sent through a short–range Bluetooth

interface. It is assumed that there is a trusted Location Certification Authority

(LCA) to which the verifying users (located in the vicinity of the requesting user)

send their verification messages. Then, the LCA checks validity of the claim in

case of a Prover–Witness collusion. This is done by checking three parameters: the

spatiotemporal correlation between the prover and verifiers, the trust scores of the

users, and the history of the trust scores. However, it does not detect and prevent

Prover–Witness collusions with a high level of reliability. Moreover, in the LINK

scheme, users’ location privacy has not been considered in the scheme design since

a user needs to broadcast his/her ID to the neighbour verifiers.

STAMP introduced by Wang et al. [90] is another example in which an en-

tropy–based trust model is proposed to address the Prover–Witness collusions is-

sue. This method is also unable to provide the necessary reliability to detect

Prover–Witness collusions. In addition, to address Terrorist Frauds, STAMP em-
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ploys the Bussard–Bagga protocol [91] as the distance bounding protocol which has

already been shown to be unsafe [94–96]. Moreover, the computation time required

by STAMP to create an LP is long when users have a large private key [90].

Although different novel methods have been introduced so far, each of them

has its own constraints, i.e., privacy issues [85], [84], [89], vulnerability against

collusions [83], [86–90], high level of communication and computation overheads

[86], and expensive implementation [85], [92]. The scheme proposed in [93] prevents

Prover–Witness (P–W) collusions only in crowded scenarios.

5.3 Preliminaries

In this section, we first review distance bounding (DB) protocols and present the

security attacks that these protocols might experience. These attacks are a threat

for location proof systems as well because most LP schemes employ a DB protocol

for proximity checking. Following this, we review TREAD and discuss the need

of TREAD modification. Furthermore, we present an overview of the blockchain

technology and review the three diferent types of blockchains. Since we introduce a

blockchain–based LP scheme in chapter 8, it is needed to review the basic concepts

of blockchain systems first. Following this, we present some of the design challenges

that we need to address in this part of our research work.

Distance–Bounding Protocols

Distance–bounding protocols [91], [96], [109–111], were introduced by Brand

et al. [112] to determine an upper bound on the distance between a prover and

a verifier, whilst at the same time, the prover device authenticates itself to the

verifier. In other words, DB protocols aim to provide authenticated proximity proofs

in order to prevent some security attacks. Despite some implementation challenges,

in the future, DB protocols will be employed by bank payment companies and car
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manufacturers due to recent advances [96].

All DB protocols work based on the fact that RF signals do not travel faster

than light. First, the verifier sends a challenge bit and the prover replies promptly

by sending the corresponding response regarding the received challenge bit. This

procedure is called fast bit exchange in the literature. Then, the verifier measures

the related round–trip time (RTT ) which must be less than a specified threshold.

This threshold is obtained by computing RTTmax that is related to the maximum

allowed distance to the prover and is obtained through the following equation:

RTTmax =
2dmax
C

+ to ,

where dmax is the maximum allowed distance, C is the speed of light, and to is an

overhead time that is added to cover the computation time [95]. This process is

repeated n rounds with n different challenge bits (where n is the length of prover’s

private key). Finally, the verifier either accepts or rejects the prover’s claim.

In addition to the proximity checking, the verifier must authenticate the neigh-

bor prover at the same time. Otherwise, an adversary can collude with a remote

malicious prover and perform the fast bit exchange mechanism on behalf of the re-

mote prover. In this regard, there are some security attacks that a well–designed DB

protocol must be resistant against. In the literature, the following security threats

have been identified so far [96]. These attacks threat an LP scheme as well since

most of the LP schemes employ a DB protocol as their core function.

Distance Frauds: In a distance fraud, a malicious prover tries to convince an

honest verifier that his physical distance to the verifier is less than what it really

is (see Fig. 5.1 (a)). This attack can occur if there is no relationship between

challenge bits and response bits and the malicious prover knows the time at which

the challenge bits are sent. In this case, the malicious prover can send each response

bit before its challenge bit is received.
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Figure 5.1 : Distance–bounding protocols are generally exposed to three types of security

attacks: (a) Distance Fraud, (b) Mafia Fraud, and (c) Terrorist Fraud.

Mafia Frauds: In this attack, an adversary tries to convince an honest verifier

that a remote honest prover is in the vicinity of the verifier. The adversary in this

attack can be modeled by a malicious prover that communicates with the honest

verifier and a malicious verifier who interacts with the honest prover (Fig. 5.1 (b)).

The car locking system is a good example to understand this type of attacks where

an adversary tries to open a car’s door by convincing the reader unit that the key

is close to the car.

Terrorist Frauds: In this attack, a remote malicious prover colludes with an

adversary who is close to an honest verifier to convince the verifier that he/she is

in the vicinity of the verifier (see Fig. 5.1 (c)). Although in their collusion, they

never share private information (e.g., private key) with each other, it is still possible

that they establish a very fast communication tunnel between themselves and the

adversary relays the verifier’s message to the malicious prover who can sign and send

it back to the adversary for submission. Therefore, just a simple assumption that

users never share their private key can not protect the system against this type of

attacks.
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Table 5.2 : Comparision of the success probability of different security threats for some

well–known DB protocols

DB Protocol Distance Mafia Terrorist

Frauds Frauds Frauds

Swiss–Knife [110] (3/4)n (1/2)n to 1 (3/4)θn

Gambs et al [111] (3/4)n (1/2)n 1

Bussard–Bagga [91] 1 (1/2)n 1

privDB [119] (3/4)n (1/2)n 1

SKI [118] (3/4)n (2/3)n (5/6)θn

Fischlin–Onete [109] (3/4)n (3/4)n (3/4)θn

Moreover, there is another attack called Distance Hijacking introduced by Cre-

mers et al [113]. They believe this attack is an extension of distance frauds which

is very close to Terrorist Frauds as well. In a distance hijacking attack, a remote

malicious prover tries to provide wrong information about his distance to an honest

verifier by exploiting the presence of one or multiple honest provers.

To address the mentioned attacks, different DB protocols have been introduced

so far [91], [109–111], [114–119]. However, each protocol has its own constraints

(for more detail refer to [94–96], [108]). For example, the popular Bussard–Bagga

protocol (introduced by Bussard et al [91] to address the Terrorist Frauds) was

proven insecure by Bay et al [94–96]. Table 5.2 compares some well–known DB

protocols in terms of vulnerability against the mentioned security threats and frauds.

In this table, the success probability of the most common security threats have been

shown. n indicates the number of rounds in the DB process and θ is a parameter

related to a Terrorist Fraud such that it is difficult to prevent from the exhaustive

searches that are done to recover θn bits (see [95] and [108] for more details).

As we see in the table, most of the DB protocols are vulnerable to at least one

security attack. Moreover, the two fraud–resistant protocols, i.e. SKI [118] and
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Figure 5.2 : Message exchange diagram for TREAD

Fischlin–Onete [109], need a large n to provide sufficient reliability which makes the

DB process slow since the process is performed for n rounds.

TREAD

TREAD is a secure and light–weight DB protocol proposed by Avoine et al [108]

to address the aforementioned problems. In TREAD, a novel idea has been deployed

to make the protocol resistant to Terrorist Frauds: if a dishonest prover colludes

with another user to conduct a Terrorist Fraud, he can be easily and unlimitedly

impersonated by the accomplice later. This risk is not easily taken by any rational

prover.

Assuming there is a prover device in the vicinity of a trusted verifier who

have secretly shared the encryption/decryption key pair ek and dk, and the sig-

nature/verification key pair sk and vk, TREAD is performed in three phases, i.e.

Initialization, Distance Bounding, and Verification (see Fig. 5.2).

1) Initialization: In this phase, the following activities are performed by the

prover and verifier devices:

Prover: The prover device generates two random bit–strings a and b from the

uniform distribution on {0, 1}n, computes the signature σP = Ssk(a||b||IDP ) and
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Table 5.3 : List of Cryptographic Notations

Notation Description

‖ Concatenation

Sent(m) Signature of entity ent on message m

Eent(m) Encryption of message m using public key of entity ent

Loc GPS coordinates related to the prover’s Location

IDP The prover’s identity

IDW The witness’s identity

⊕ XOR operation

the encrypted message e = Eek(a||b||IDP ||σP ) where IDP is the prover’s ID (see

Table 5.3 for a list of notations). Then, it sends e||IDP to the verifier.

Verifier: Upon receiving e||IDP , the verifier device decrypts e using the decryp-

tion key dk and checks the prover’s signature σP using the verification key vk to see

if it is correct. If σP matches the prover’s signature, the verifier generates a random

bit–string h from the uniform distribution on {0, 1}n and sends it to the prover.

2) Distance Bounding: In this phase, the prover and verifier devices start to

perform the n–stage fast bit exchange process :

Verifier: In stage i, (i = 1, 2, . . . , n), the verifier picks a random bit ci, sends it

to the prover and starts its timer.

Prover: Upon receving ci, the prover immediately computes the following bit

ri = and sends it back to the verifier:

ri =


ai, if ci = 0

bi ⊕ hi, if ci = 1

Verifier: When ri is received by the verifier device, it stops the timer and records

its value ∆ti. Then, it performs stage i+1 until all the n stages are done after which
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it goes to the verification phase.

3) Verification: In this phase, the verifier device checks all the received ri for

i = 1, 2, . . . , n to see if they have been correctly computed based on hi, ci, ai and bi

(the last two bits received in the initialization phase). Then ∆ti must be less than

the predefined threshold RTTmax for i = 1, 2, . . . , n.

Finally, the prover’s request is accepted if the above checkings are successfully

passed for all n stages.

As we see, in case of a Terrorist Fraud, a dishonest prover (located far from

the verifier) not only has to provide the accomplice with his σP and e, but also

his random bit–strings a and b. Otherwise, the accomplice is unable to correctly

respond to the challenge bits ci in the DB phase. This enables the accomplice to

easily impersonate him later using a, b, σP , and e. See [108] for a comprehensive

security analysis on TREAD.

TREAD Modification

In spite of the security guarantees that TREAD offers, it needs some amendment

before we make use of it in our proposed architecture. In the following, we show

how the prover’s location privacy is negatively affected, if TREAD is integrated into

PASPORT without any customization.

In TREAD, the prover’s ID is sent to a neighbor verifier (which is assumed to

be trusted) through a short–range communication interface. Due to PASPORT’s

decentralized architecture, the trusted verifier is located far away from the prover.

Instead, a witness device (which is untrusted from a privacy point of view) collects

the prover’s data and performs the DB procedure. Thus, the prover’s ID is sent to

the witness devices in the form of a plain text message if we integrate TREAD into

PASPORT without any modification. This breaches the prover’s location privacy.
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Hence, it is necessary to modify TREAD and make it a privacy–aware DB protocol.

Note that prover anonymity can be offered by TREAD if group signatures are

used [108]. However, they guarantee provers’ anonymity up to group level only.

Since we do not want to use group signatures in the PASPORT’s architecture, in

the next section, we propose a private version of TREAD, i.e. P–TREAD, by which

a prover device can anonymously broadcast its LP request for neighbor witnesses

while he/she benefits from the TREAD security guarantees.

5.3.1 Blockchain Overview

A blockchain system is a tamper–proof and tamper–apparent ledger that is dig-

itally implemented using a distributed approach without requiring a central storage

system. It can also be implemented in such a way that no central authority is re-

quired to operate and maintain the whole system. The distributed ledger consists of

users transactions that are cryptographically signed by them. A group of transac-

tions create a block. Thus, the distributed ledger is made of blocks of transactions.

Users generate their transactions and broadcast them in the network where they

can be read by verifiers for verification. A verifier can be either an ordinary user

(in public blockchains) or an authorized user or entity (in private and consortium

blockchains). Once a transaction is verified, it is added to a new block. After a

new block is issued (added to the ledger), it is computationally infeasible to tamper

its transactions [121], [122]. The reason is that each block contains the hash of its

previous block. This links every block to its previous block which results in having

a chain of blocks.

Generally, blockchains can be divided into the following three categories based

on their permission model, which determines who can operate and maintain the

system (e.g., generate a new block).
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• Public blockchains: In a public blockchain system, any user can verify trans-

actions and generate a new block. This type of blockchain systems is also

called permissionless blockchain in which the system allows anyone to join the

network with both read and write permissions. Bitcoin is an example of a

public blockchain.

• Private blockchains: In private blockchains, only specific users or entities can

verify transactions and generate a new block. In other words, the system is

controlled by an organization that manages access permissions. Thus, not all

the users have access to the detail of the transactions stored in the ledger.

• Consortium blockchains: These systems are actually private blockchains that

are employed by a group of organizations. A consortium blockchain is con-

sidered as a semi-decentralized blockchain that usually adopts a hybrid access

method. Quorum and Corda are two examples of consortium blockchains.

It is proposed that the LP scheme proposed in this research work is implemented

as a public blockchain system. This has several advantages including complete

decentralization (independent of a trusted third party), full transparency of the

public ledger, more security (due to use of incentivized validation that results in more

miners contributing to validations), and self–sustainability. However, depending on

the application scenario, the proposed scheme can be implemented as a private or

consortium blockchain as well.

5.3.2 Design Challenges:

Blockchain technology has created a great opportunity to design decentralized

systems for different applications. However, some novel features of a blockchain–based

architecture introduce a number of design challenges for our work. For example,

recording users’ location data in a public ledger contradicts their location privacy.
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Figure 5.3 : An example of P–P collusions.

Moreover, regardless of the blockchain architecture, there are different security and

privacy challenges for LP generation and verification that must be addressed. In

this section, these design challenges are presented in three different categories, i.e.,

Security, Privacy, and Application–related challenges. We also present a counter-

measure for each design challenge which is used in the proposed scheme to address

the challenge.

Security Challenges

• Prover–Prover (P–P) collusions : In P–P collusions (also known as Terrorist

Frauds), a distant malicious prover colludes with an adversary who is located

in the vicinity of an honest witness (see fig. 5.3). During the attack, the

adversary pretends to be the distant prover and submits an LP request with

the witness on behalf of the malicious prover. To detect P–P collusions, we

adopt a time–limited approach in which a witness generates a random number

m and sends it to the prover through a short–range communication interface.

Then, only a short period of time T is given to the prover to sign m and send

it back to the witness. If the witness receives the response after the period

T , it rejects the prover’s request to generate an LP. Thus, in the case of a

P–P collusion, an adversary does not have enough time to relay m to the

remote dishonest prover and obtain his signature. Note that this approach

assumes that users never share their private key with each other. Therefore,
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the adversary cannot sign m on behalf of the remote prover.

• Prover–Witness (P–W) collusions : In this collusion scenario, a dishonest wit-

ness colludes with a distant malicious prover and issues a fake LP for him.

P–W collusions are the most difficult challenges to address in this area of re-

search. To the best of our knowledge, no reliable and effective solution has

been offered in the literature so far to address these attacks. In this research

work, we adopt a novel mechanism to address P–W collusions in which an

attacker (a dishonest witness who wants to generate a fake LP for a remote

dishonest prover) is forced to change his attack to a P–P collusion attack.

Therefore, the P–W collusion is detected since the proposed scheme detects

P–P collusions through the presented time–limited approach.

Privacy Challenges

To design an LP system using the blockchain architecture, one possible approach

is that we record users’ plaintext spatiotemporal data in a public ledger. However,

this approach contradicts users’ location privacy because their spatiotemporal data

is shown publicly. In addition, it has been shown that even if users hide their real

identity (which is common in blockchain systems) it is still possible to identify a user

by analyzing the history of his/her spatiotemporal data [14], [106]. Thus, adopting

a pseudonym by users cannot guarantee their location privacy.

To address this challenge, we adopt a novel approach in which users commit

to their spatiotemporal data before they create a transaction. These commitments

are then added to the transaction and will be stored in the public ledger after

verification:

C(P,ST ) = Commit(ST, r), (5.1)

where ST = (Loc, T ime) is the spatiotemporal data of the user (prover) and r is a

random nonce generated by him/her for the commitment to ST .
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When a user submits a location claim with a LBSP, he/she opens the commit-

ment by sending r to the LBSP. Therefore, if the user loses this r, his/her location

claim will not be confirmed by the LBSP. This is similar to a user wanting to spend

his/her Bitcoin money (in Bitcoin, users cannot spend the money in their wallet if

their private key is lost). Therefore, it is infeasible to obtain the history of a user’s

spatiotemporal data by analyzing his/her transactions stored in the public ledger.

Application–Related Challenges

In this subsection, we present two critical challenges that may result in negative

impacts on the performance of LP schemes if not addressed.

• Challenge 1 : A big challenge for our decentralized scheme lies in how we can

convince mobile users to act as a witness since they generally tend to reject

requests to generate LPs if there is not enough incentive for them (for example,

to save on battery consumption). To address this problem, we integrate an

incentive mechanism into our proposed LP scheme to reward users who collab-

orate with the system with a specific amount of cryptocurrency. The LBSPs

can make this currency valuable by exchanging them for rewards, badges and

benefits that they are currently providing to their users (see [26] and [84] for

more details and examples). Moreover, other businesses such as insurance

companies and government agencies that might utilize LPs of their customers

can contribute to make the currency more valuable. This creates the necessary

incentive for mobile users and verifiers to collaborate with the system.

• Challenge 2 : Speed is another challenge for an LP system that needs to be

addressed. As far as we know, the majority of the LP schemes which have been

proposed in literature so far utilize a DB protocol to check the proximity of a

prover to a witness. This not only requires some hardware changes on mobile

devices, but also makes the LP generation process slow when users adopt a long
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private key [85] since a prover device must respond to m challenge messages

that a witness sends to it, where m is the size of the prover’s private key. This

process is called fast–bit–exchange in literature.

In the proposed system design, we do not adopt a DB protocol to check the

proximity of a prover to a witness. Instead, the time–limited mechanism (discussed

in the security challenges) enables the witness to check whether the prover is really

located in its vicinity or not. This makes the LP generation process much faster

than the current solutions.

5.4 Conclusion

In this chapter, we reviewed the existing literature on the current location verifi-

cation solutions in location–based social networks and reviewed the advantages and

disadvantages of each solution. It is concluded that although different LP schemes

have been introduced so far, they suffer from at least one of the following problems:

location privacy issue, vulnerability against collusions, high level of communication

and computation overheads, and expensive implementation.

Moreover, this chapter presented some preliminaries as the foundation for the

next chapter. In this regard, we reviewed distance bounding (DB) protocols and

presented the security attacks that these protocols might experience. Following

this, we reviewed TREAD as a promising distance bounding protocol and discuss

the need of TREAD modification. Furthermore, we presented an overview of the

blockchain technology and review the three diferent types of blockchains. Finally,

we presented some of the design challenges that we need to address in this part of

our research work.

In the next chapter, we introduce our first location proof scheme, i.e. Privacy-

Aware and Secure Proof Of pRoximiTy (PASPORT) scheme. which performs LP
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generation and verification for mobile users in a secure and privacy–aware manner.

The proposed scheme provides the integrity and non–transferablity of generated

LPs.
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Chapter 6

PASPORT: Secure and Private Location Proof

Generation and Verification

6.1 Introduction

Recently, there has been a rapid growth in location–based systems and applica-

tions in which users submit their location information to service providers in order

to gain access to a service, resource or reward. We have seen that in these applica-

tions, dishonest users have an incentive to cheat on their location. Now, we present

some examples to highlight relevant issues in these applications.

• A significant percentage of Foursquare check–ins are fake and created by dis-

honest users to obtain in–system rewards (such as gift vouchers) offered to

users who frequently check–in at specific locations [26]. LBSPs like Yelp and

Foursquare offer some rewards (such as gift vouchers) to their users who fre-

quently check–in at specific locations. This encourages dishonest users to

submit fake check–ins by manipulating their GPS data. In a research study,

Zhang et al [26] found that almost 75% of Foursquare check–ins are false and

submitted by dishonest users to obtain more rewards.

• In the current online rating and review applications, users’ real location is

not verified which enables them to submit fake positive or negative reviews

for their own business or their rivals, respectively [27–28]. Online ratings and

reviews have a significant impact on the revenue of businesses. Thus, dishonest

users have an incentive to create either fake positive or negative reviews for

their own business or their rivals, respectively [26]. Specifically, using the new
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crowdsourcing platforms like Mechanical Turk [28], it is less challenging to

create a large number of fake reviews. Unfortunately, in the current online

rating and review platforms, users’ real location is not verified which enables

them to submit fake reviews.

• Activity–tracking applications such as RunKeeper and Endomondo enable

users to monitor their physical activities like running or cycling and share

their location–based activities with the service providers and other users in so-

cial networks [24]. Using these applications, users share their location–based

activities with the service providers and other users in social networks. To

encourage users, the service providers offer different incentives for them such

as vouchers, discounts, or awards [29–31].

• CRNs [23], [25], [32], as a typical LBS, are an efficient solution for the spectrum

management issue in large–scale IoT systems [23]. In this approach, to increase

spectrum utilisation, available frequency channels in a specific area are offered

to unlicensed radio users located at the region when the channels are not

occupied by licensed users. These networks are vulnerable to location spoofing

attacks since malicious users can submit fake locations to the database to

access channels which are not available in their location. This may cause

severe signal interference for the neighbour primary users [23], [33].

• In location–based access control applications [34–36], attackers can gain unau-

thorized access to a system or resource by submitting fake location claims.

• In activity–tracking applications, insurance companies may offer health insur-

ance plans in which customers are offered discounts if they have a minimum

level of physical activity [24], [29–31]. This creates an incentive for dishonest

users to cheat on their location data.



72

Unfortunately, no effective protection mechanism has been adopted by service providers

against these fake location submissions. This is a critical issue that causes severe

consequences for these applications. Motivated by this, we propose three location

verification schemes in this section to address the problem, i.e., (1) Privacy-Aware

and Secure Proof Of pRoximiTy (PASPORT), (2) Secure, Privacy–Aware and collu-

sion Resistant poSition vErification (SPARSE), and (3) a blockchain–based location

verification scheme. Using PASPORT, users submit a location proof (LP) to service

providers to prove that their submitted location is true. PASPORT has a decen-

tralized architecture designed for ad hoc scenarios in which mobile users can act as

witnesses and generate location proofs for each other. It provides user privacy pro-

tection as well as security properties, such as unforgeability and non–transferability

of location proofs. Furthermore, the PASPORT scheme is resilient to Prover–Prover

collusions and significantly reduces the success probability of Prover–Witness collu-

sion attacks. To further make the proximity checking process private, we propose

PTREAD, a privacy–aware distance bounding protocol and integrate it into PAS-

PORT. To validate our model, we implement a prototype of the proposed scheme

on the Android platform. Extensive experiments indicate that the proposed method

can efficiently protect location–based applications against fake submissions.

6.2 Background

The recent advances in the smartphone technology and positioning systems has

resulted in the emergence of a variety of location–based applications and services

[17–19] such as activity–tracking applications, location–based services, database–

driven cognitive radio networks (CRNs), and location–based access control systems.

In these applications, mobile users submit their position data to a location–based

service provider (LBSP) to gain access to a service, resource, or reward. These

applications are very popular due to the useful services they offer. According to
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recent business reports, the market value of location–based services (LBS) was USD

20.53 billion in 2017 and is anticipated to reach USD 133 billion in 2023, with an

expected annual growth rate of 36.55% [21]. However, LBSPs are vulnerable to

location spoofing attacks since dishonest users are incentivized to lie about their

location and submit fake position data [22–26].

Now, we present some examples to highlight relevant issues in these applications.

In the current online rating and review applications, users’ real location is not verified

which enables them to submit fake positive or negative reviews for their own business

or their rivals, respectively [27], [28]. Further, in CRNs [23], [25], [32], malicious users

can submit fake locations to the database to access channels which are not available

in their location. This may cause severe signal interference for the neighbour primary

users [23], [33]. In location–based access control applications [34–36], attackers can

gain unauthorized access to a system or resource by submitting fake location claims.

In activity–tracking applications, insurance companies may offer health insurance

plans in which customers are offered discounts if they have a minimum level of

physical activity [24], [29–31]. This creates an incentive for dishonest users to cheat

on their location data. Thus far, with these examples, it is clear that preventing

fake location submissions in these applications is still an open challenge.

To protect these applications against location spoofing attacks, a number of

location proof (LP) schemes have been proposed. Using these mechanisms, a mobile

device (called a prover in the literature) receives one or more LPs from its neighbour

devices when it visits a site. The prover then submits the received LPs to the LBSP

as a location claim. The LBSP checks the submitted LPs and either accepts or

rejects the user’s claim. LP schemes are categorized into two groups depending on

the system architecture: centralized or distributed. In the centralized mechanisms

[83–85], [92], a trusted wireless infrastructure (like a WiFi access point) is employed

to generate LPs for mobile users. In the distributed schemes [86–90], [93], mobile
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users act as witnesses and generate LPs for each other. The latter approach is useful

for scenarios in which there is no wireless infrastructure at the desired locations or it

is expensive to employ a large number of access points (APs) for different locations.

In our extensive literature review and to the best of our knowledge, we observed

that all the current LP schemes suffer from at least one key drawback. Firstly, some

of these schemes are vulnerable to Prover–Prover (P–P) collusions [83], [87], [90].

In this attack, a remote malicious prover colludes with a dishonest user (located

at a desired site) to obtain an LP. The dishonest user submits an LP request to

the neighbor witness devices on behalf of the remote prover. This security threat

is called Terrorist Fraud in the literature [91] (see the next subsection for more

details). Secondly, none of the current distributed schemes offer a reliable solution

for Prover–Witness (P–W) collusions. In this attack, a dishonest user acts as a

witness for a remote malicious prover and generates a fake LP for him [90]. Note

that this security threat is specific to the distributed LP schemes only since witnesses

are not trusted in this type of scheme while in the centralized mechanisms, LPs are

issued by a trusted entity only. Finally, in some schemes, location privacy has not

been considered [84], [85], [89], i.e., users broadcast their identity for neighbour

devices or a third party server during the LP generation or submission process.

In addition, there are other challenges with the current schemes such as high level

of communication and computation overheads [86], and expensive implementation

[85], [92]. As far as we know, no LP scheme has been introduced to address all these

challenges at the same time.

Motivated by this, to address these key concerns, we propose a distributed LP

scheme, PASPORT, which performs LP generation and verification for mobile users

in a secure and privacy–aware manner. The proposed scheme provides the integrity

and non–transferablity of generated LPs. To make PASPORT resistant to P–P col-
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lusions and perform private proximity checking, we develop a privacy–aware distance

bounding (DB) protocol P–TREAD and integrate it into PASPORT. P–TREAD is

a modified version of TREAD [108], a state of the art and secure distance bounding

protocol without privacy consideration. Our customization does not affect TREAD’s

main structure and features. Thus, PASPORT benefits from its security guarantees.

By employing P–TREAD as the distance bounding mechanism, a malicious prover

colluding with an adversary can easily be impersonated by the adversary later.

Generally, users do not take such a risk by initiating a Prover–Prover collusion. In

addition, to resolve the P–W collusions issue, we propose a witness selection mecha-

nism that randomly assigns the available witnesses to the requesting provers instead

of allowing them to choose the witnesses themselves. We show that by adopting

this mechanism, a P–W collusion can be conducted with only a negligible success

probability if LBSPs create sufficient incentives for users to act as witnesses and

generate LPs for provers.

6.3 PASPORT: The Proposed Scheme

In this section, we present our proposed scheme for secure LP generation and

verification. Firstly, we present the framework and its entities. Secondly, we present

the trust and threat model which we have considered in our work. Following this,

we introduce P–TREAD. Finally, the full framework of the PASPORT scheme is

presented.

6.3.1 Architecture and Entities

The proposed system architecture is shown in Fig. 6.1. As we see, the system has

a distributed architecture and consists of three types of entities, i.e., Prover, Witness

and Verifier. A Prover is a mobile user who requires to prove his/her location to

a verifier. A Witness is the entity that accepts to issue an LP for a neighboring
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Figure 6.1 : The proposed system architecture.

prover upon request. We assume service providers create sufficient incentives for

mobile users to become a witness and certify other users’ location. In PASPORT,

we consider witnesses as mobile users.

Finally, a Verifier is the unit who is authorized by the service provider to verify

LPs claimed by provers. We assume provers communicate with witnesses through a

short–range communication interface such as Wi-Fi or Bluetooth. This short–range

communication channel is supposed to be anonymous such that users can broadcast

their messages over it without revealing their identifying data such as IP or MAC

address.

6.3.2 Trust and Threat Model

We assume mobile users are registered with the service provider. Each user has

a unique public–private pair key stored on his/her mobile device and certified by a

Certification Authority (CA). Users’ identity is determined through their public key

and we assume users never share their private key with other users because they do

not give their mobile devices to others [85], [90], [92]. Thus, in a collusion scenario,

we suppose a malicious prover never goes that far to provide another party with

his/her private key. We also assume all the messages exchanged between the entities

might be eavesdropped by passive eavesdroppers. In the following, we discuss the
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trust and threat model for each entity individually.

Prover. It is assumed that the prover makes an effort to obtain false LPs. This

can be done through different scenarios in which a prover might (a) try to provide

the witnesses with fake information about his/her location to convince them to

generate LPs for him/her, (b) manipulate the LP issued for him/her to change its

location or time field, (c) attempt to steal an LP issued for another user and use

it for him/herself, and (d) collude with other users (provers or witnesses) to obtain

LPs. Moreover, we assume provers try to obtain the identity of witnesses.

Witness. A witness might collude with a prover to generate a fake LP for

him/her. In addition, a witness may try to deny an LP which has been issued

by him/herself. Witnesses are assumed to be curious about the provers’ identity.

Verifier. We suppose the verifier is trusted and never leaks users’ identity and

their spatiotemporal data. It is assumed that the verifier keeps a regularly updated

list of witnesses who are present at the given location and have accepted to generate

LPs for other users. The verifier accepts the LPs issued by these witnesses only. We

suppose service providers create necessary incentives to encourage selfish users to

collaborate with the system. Otherwise they might not generate LPs to save their

battery power or reduce their communication costs.

Regarding collusions, we consider both Prover–Prover and Prover–Witness col-

lusions in our threat model as it can be directly derived from the above assumptions.

In the next subsection, we introduce the proposed privacy–aware DB protocol P–

TREAD.

6.3.3 P–TREAD

In this subsection, we present P–TREAD, a modified version of TREAD, for

private proximity checking in the PASPORT architecture.
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As discussed in the Preliminaries subsection, to protect users’ privacy, we need

to customize TREAD in such a way that provers can anonymously submit an LP

request to neighbor witnesses. For this reason, in P–TREAD, we limit a witness’ role

to only collecting (not verifying) the required data from the prover (the verification

is performed by the remote trusted verifier). All the privacy–sensitive data are

encrypted by the prover and sent to a witness who signs and sends them back to

the prover as an LP. Then, after the claim (received LP) is submitted to the verifier

by the prover, verification of the claim can be performed by the trusted verifier in

the next phase. We divide the whole procedure into two phases, (a) data collection

and LP generation, and (b) authentication and verification.

Phase 1. Data collection & LP generation. In this part of the protocol,

the initialization phase of TREAD is performed with the following exceptions:

• The prover device does not send IDP to the witnesses as a plain text message

(it only sends e to the witnesses).

• e is computed by the prover device using the verifier’s public key. Therefore,

the witnesses can not decrypt it and deanonymize the prover. We assume that

the verifier publishes its public key for the users. Moreover, every user has

registered a public/private key pair with the verifier.

• The witness devices do not check the prover’s signature σP since the prover

must be anonymous (in addition, they can not decrypt e and obtain the sig-

nature). Later, σP will be checked by the verifier in the next phase.

Then, the DB procedure is performed similar to the DB phase of TREAD by which

the prover’s responses ri to challenge bits ci (i = 1, 2, . . . , n) are collected. After

data collection is finished, the witness device creates the following LP and sends it



79

to the prover:

LP = EV erifier(m2||SWitness(m2))

where m2 = r||c||h||e||IDW ||Loc||time and IDW is the witness ID. Note that the

prover can not see IDW since it is encrypted using the verifier’s public key. This

preserves location privacy of the witnesses as well. Finally, the prover submits the

following message with the remote verifier:

LP
′
= EV erifier(LP ||a||b||IDP )

In other words, the witness collects the required information from the prover (e and

r), creates message LP , and sends it to the prover for submission. In this phase, the

witness can not see the prover’s identity as it has been encrypted by the verifier’s

public key in message e.

Phase 2. Authentication & verification. In this phase, the verifier au-

thenticates the prover based on the received LP
′

and verifies the validity of the LP

issued by the witness. To do this, it first decrypts LP
′

using its private key and

extracts LP , a, b, and IDP . Then, it checks the following:

• The signature σP placed in message e must match the prover’s signature based

on IDP .

• The received IDP s placed in e and LP
′

must match.

• The witness signature on message m2 must match the signature associated

with IDW .

• The two a||bs placed in the messages e and LP
′

must match.

• The received response r must match r
′

where r
′

is obtained based on the

received a, b, h, and c bit–strings.



80

Figure 6.2 : Message flow between the three entities of the proposed scheme.

If all the above checks are successfully passed, the prover’s location claim is accepted

by the verifier.

As we see, by using P–TREAD, a prover can anonymously request an LP from

neighbor witnesses while the main structure of TREAD is preserved which brings

security guarantees for users. In the next subsection, we integrate P–TREAD into

our main LP scheme, i.e. PASPORT, to perform secure and private device proximity

checking.

6.3.4 The Workflow of PASPORT Framework

The proposed LP scheme consists of three main phases: Initialization, Location

Proof Generation, and Location Claim and Verification.

1) Initialization: In this phase users register with the system and the Certi-

fication Authority certifies users’ public–private key pairs. Moreover, the verifier

creates a Witness Table in which it keeps the identity and location of mobile users
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who accept to be a witness. This table is regularly updated as witnesses sign on or

off at every site. Furthermore, for every registered user in the system, the verifier

records a list of provers for which the user generates an LP. These lists are used

by the verifier to select which witnesses are qualified to generate LPs for a specific

prover. This is done to prevent Prover–Witness collusions.

2) Location Proof Generation: This phase is run in two stages: Witness Selection

and P–TREAD Execution (see Fig. 6.2).

2.1) Witness Selection: In this stage, the prover submits an LP request to

the verifier. Upon receiving the prover’s request, the verifier selects K witnesses

form its Witness Table to generate LPs for the prover. This is done to neutralize

Prover–Witness collusions because in this case, the prover does not have control

over the witness selection process. However, to further protect PASPORT against

prover–witness collusions, we integrate an entropy–based trust model as a supple-

mentary method into the witness selection mechanism. Using this trust model, a

trust score is computed by the verifier for every available witness device w based on

its LP generation history and the number of LPs that w and the prover have issued

for each other in the past. If the obtained score is above a threshold, the device is

selected to witness for a requesting prover. The following step by step activities are

performed in this stage:

i. Prover: First, the prover sends the following message Req to the verifier to

inform it that he/she wants to start requesting an LP. This message can be

sent to the verifier through the prover’s Internet connection.

Req = EV erifier(IDP‖Loc)

ii. Verifier: Upon receiving the prover’s message, the verifier extracts all the

witnesses who have recently (in a reasonable period of time) proved that they
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are in an acceptable distance to location Loc from its Witness Table (this

acceptable distance is defined depending on the application). Then, K wit-

nesses are selected among the shortlisted witnesses using the proposed trust

model. These K witnesses are then qualified to generate LPs for this prover.

If there are not enough qualified witnesses, the verifier suspend this request

until the necessary number of qualified witnesses become available. Then, the

verifier generates a unique ID for this LP (LP ID) and sends it to the selected

witnesses and the prover as well.

2.2) P–TREAD Execution: In this stage, the prover starts to perform the P–

TREAD protocol.

i. Prover: The prover generates two n–bit random numbers a and b, and then

computes the following message e and broadcasts it through the predefined

short–range communication interface (WiFi or Bluetooth).

e = LP ID‖EV erifier(m1‖SProver(m1)) ,

where

m1 = a‖b‖IDP‖Loc

ii. Witness: A witness upon receiving e, extracts the LP ID and compares it

with the one received from the verifier. If they are not same, it discards e.

Otherwise, it generates an n–bit random number h and sends it to the prover.

iii. Prover: The prover computes (zi = bi ⊕ hi) for i = 1, 2, . . . , n and sends an

Ack to the witness.

iv. Witness: The witness starts an n–stage time sensitive DB process by gen-

erating a random bit ci at each stage i and sending it to the prover. It also

starts a timer immediately after sending ci.
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v. Prover: Upon receiving ci, the prover instantly sends the following response

ri to the witness:

ri = ai.c̄i + zi.ci

vi. Witness: The witness stops the timer when the response ri is received from

the prover. The timer must show a time less than the predefined threshold

2dmax
C

+ to, where dmax is the maximum allowable distance between the prover

and the witness, C is the speed of light, and tO is the overhead time required

by the prover to compute the response bit ri upon receiving ci. If all the

n responses are received in the correct time, the witness issues the following

location proof and sends it to the prover:

LP = EV erifier(m2‖SWitness(m2)) ,

where

m2 = r‖c‖h‖e‖IDW‖Loc
′‖time

For timer values larger than this threshold, the witness generates the following

location proof:

LP = EV erifier(m3‖SWitness(m3)) ,

where

m3 = IDW‖reject

As we see, we adopt the sign–then–encrypt model to compute PASPORT mes-

sages. This protects the privacy of provers (witnesses). The reason is that if the

more common encrypt–then–sign model is chosen, a witness (prover) can check the

signature on e (on LP ) with the public keys of all the users and find the prover’s

(witness’) identity. Moreover, by using this method, eavesdroppers never infer the

users’ identity.
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3) Location Proof Claim and Verification: Upon receiving LP s from all the K

witnesses, the prover concatenates them in message m4 and sends it to the verifier.

m4 = EV erifier(LP1‖LP2‖ . . . ‖LPK‖a‖b)

The verifier checks the received location proofs and either accepts or rejects the

prover’s claim. First, it decrypts each witness’s location proof and message e using

its private key. Then, it computes r
′
i = ai.c̄i + (bi ⊕ hi).ci for i = 1, 2, 3, . . . , n

regarding the received a, b, c, and h. If r
′
i 6= ri, the verifier rejects the prover’s

claim. Otherwise, the following checks are performed by the verifier:

• Is the witness with identity IDW among the witnesses which have been qual-

ified by the verifier in the Witness Selection stage?

• Are the two IDP s extracted form Req and m1 the same?

• Are prover’s and witnesses’ signatures on m1 and m2 correct regarding ID P

and IDW s respectively?

• Is Loc in an acceptable range of Loc
′
?

• Is time in an acceptable range of the current time?

• Are the two a‖b s received in the messages m1 and m4 the same?

• Is K −KR ≥ T correct? Where KR is the number of rejected location proofs

and T is a threshold which is defined depending on the application.

Assuming the prover’s location claim passes all the above checks successfully, the

verifier accepts the prover’s claim.

6.3.5 Witness Trust Model

To further protect PASPORT against prover–witness collusions, we integrate an

entropy–based trust model into the PASPORT witness selection mechanism. Using
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this trust model, the verifier computes a trust score for a witness device based on

its LP generation history. If the obtained score is above a threshold, the device is

selected to witness for a requesting prover. In fact, a witness device receives a low

score if it has issued many LPs for that prover. Thus, the prover device is prevented

from receiving its LPs from a small group of witnesses only.

We adopt an entropy–based approach to measure the trust scores. In information

theory, entropy represents the average amount of information that we get from a

message produced by a stochastic source of data. It works based on the fact that

when a low–probability message is received, it carries more information than when

the source of data produces a high–probability message [120]. Thus, it is a suitable

measure of the level of diversity and randomness that a prover device should have

in the list of its witnesses. In other words, when a higher entropy is obtained for

a witness device, it is more likely that it has generated LPs for a diverse range of

provers rather than for a small group of prover devices.

Consider w is a witness device that has already issued at least one LP for N

prover devices p1, p2, . . . , pN . Assume A(w, pi) is a percentage of the past LP trans-

actions between w and pi out of w’s total past LP transactions. The entropy of w

is obtained using the following equation.

ew = −
N∑
i=1

A(w, pi)log(A(w, pi))

We define S(w, pi) as the trust score of device w to be selected as a witness for

the prover device pi.

S(w, pi) =
ewepi

1 + B(w, pi)

where B(w, pi) is the number of LPs that w and pi have issued for each other in the

past out of their total number of LP transactions.

As a result, in the witness selection phase, the verifier selects those devices with

the highest trust score. This prevents the system from selecting a witness who may
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have a connection with the prover and has already issued several LPs for the prover.

Moreover, using this model, possible prover–witness collusions can be detected and

prevented by the system because a prover device who has received majority of its

LPs from a small group of witnesses is more likely to collude with these witnesses.

6.3.6 PASPORT Usability

Since PASPORT has a decentralized architecture, it relies on the collaboration of

mobile users to generate location proofs for each other. Note that users usually need

to have an LP for crowded public places (e.g., shopping centers). This mitigates the

concerns about the number of available witnesses. However, mobile users may refuse

to collaborate with the system in order to save their battery power or reduce their

communication costs. To address this issue, service providers should create sufficient

incentives for mobile users to collaborate with the system and certify other users’

location. In this regard, we propose two approaches to overcome the issue.

i. Location–based service providers can incentivize mobile users to collaborate

by offering them some rewards, badges and benefits that they are currently

providing to their users (see [26] and [84] for more details and examples).

These rewards can be granted to mobile devices based on their contribution

in the network, e.g., the number of LPs that they have generated for other

users in a given time period. Moreover, other businesses such as insurance

companies and government agencies that might utilize LPs of their customers

can contribute to make the rewards more valuable. This creates the necessary

incentive for mobile users to collaborate with the system.

ii. The second approach is to integrate an incentive mechanism into the proposed

scheme, e.g., using a blockchain architecture that remunerate users with a

given amount of a cryptocurrency. Since PASPORT is a decentralized scheme,
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the distributed architecture of blockchains is an appropriate platform to ad-

dress this issue. This encourages mobile users to collaborate with the system

and respond to other users’ LP requests.

Thus, by applying the incentive policies on the proposed scheme and encouraging

mobile users, a sufficient number of witness devices are become available for the

verifier to select.

6.4 Results

In this section, we first present our security and privacy analysis. Then, the

results of our experiments are presented and discussed.

6.4.1 Security and Privacy Analysis

We perform a comprehensive security and privacy analysis to show that PAS-

PORT achieves the necessary security and privacy properties of a secure and privacy–

aware LP scheme described in [24] and [30].

1. Resistance to Distance Frauds: In PASPORT, distance frauds are pre-

vented by the time sensitive DB process (performed in stages 2–2–d, 2–2–e and

2–2–f) which is performed via a short–range communication interface. Moreover,

the existence of the random number h ensures us that ai 6= bi⊕hi. Otherwise (if the

witness does not send h and the prover responds just with ri = ai.c̄i+bi.ci), a remote

malicious prover can simply select a = b and send ri = ai = bi before it receives the

challenge bit ci (in this case ri does not depend on the challenge bit ci). Thus, for a

remote malicious prover the only way to have his fake location verified is colluding

with a dishonest prover or witness. As we see in this section, PASPORT is resistant

to Prover–Prover collusions and reduces the success probability of Prover–Witness

collusions to a negligible value.
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2. Unforgeability: It is not feasible for a malicious prover to create a location

proof himself without proving his location to a qualified witness. The reason is

that the verifier checks each qualified witness’ ID with their signature on m2. Since

users do not share their private key with each other, the malicious prover can not

create the witness’ signature on m2 even if he knows the identity of each qualified

witness. Moreover, an adversary who tries to forge another user’s location proof

will not be successful because he does not have the victim’s private key to sign

m1. Furthermore, if a location proof is created by a dishonest witness W
′

who has

not been selected as a qualified witness, it will be easily detected by the verifier by

comparing the identity of W
′

with all the qualified witnesses’ identity.

3. Non–Transferability: Suppose an adversary wants to use a location proof

which has been issued for prover P . Even if the adversary knows the prover’s ID, i.e.,

IDP , he still does not have the random numbers a and b to create m4 and submit his

claim. Note that random numbers a and b have been encrypted using the verifier’s

public key. Thus, neither the adversary nor the witness can see them. Moreover,

the presence of time in m2 makes it infeasible for the prover device P to give its

location proof along with IDP , a and b to another device for later submissions. In

this case, the prover can not change time because it has been signed by the witness’

private key and encrypted using the verifier’s public key.

4. Resistance to Mafia Frauds: Suppose an adversary A wants to perform a

Mafia Fraud on prover P and witness W who are both honest. Suppose A consists of

(or is modeled by) a witness W̄ and a prover P̄ . Even if we assume that W̄ obtains

message e by communicating with P , it is not feasible for p̄ to fool W using e. The

reason is that P̄ must successfully perform the DB process by sending response bits

ri to W . This requires the total knowledge of random numbers a and b which P

never sends them to W̄ . Moreover, A does not gain any further knowledge about

a and b by pretending to be different witnesses (for example n malicious witness
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W̄1, W̄2, . . . , W̄n). This is because P generates different numbers a and b whenever

he/she performs P–TREAD. In other words, for different witnesses, different a‖b is

generated. Therefore, PASPORT is resistant to Mafia Frauds.

5. Resistance to Terrorist Frauds (Prover–Prover collusions): Suppose

a remote malicious prover P colludes with an adversary A which is close to an

honest witness W to obtain a fake LP. In this attack, A must send message e to

W and perform DB process on behalf of P . To perform this attack, P helps A by

generating message e and sending it to A. In addition, P has to send the random

numbers a and b to A as well. Otherwise, A can not respond to challenge bits ci

in DB process and the attack is defeated. However, if P sends a‖b to A, he can

easily impersonate P later for as many times as he wants. Therefore, the prover

must select one between performing the attack and being impersonated. In fact, in

PASPORT, the cost of a Prover–Prover collusion is increased to such a level that

no rational prover accepts its risk.

6. Resistance to Sybil Attacks: In a Sybil attack, an adversary tries to

control or influence a peer–to–peer network by creating multiple fake identities.

There are a number of countermeasures that can be adopted to make PASPORT

resistant to Sybil attacks.

i. Identity Verification: Since PASPORT is a permissioned peer–to–peer net-

work (rather than a permissionless network, e.g., Bitcoin), all users’ identities

are verified before they are authorized to access the system. This can be sup-

ported by forcing users to perform a two–factor authentication process when

they register to the network. For example, users may be asked to provide a

security code sent to their mobile phone or email address. In this case, the

network rejects to create a new account if a duplicate mobile phone number

or email address is provided by the adversary. This makes a Sybil attack
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non–economic for malicious users since they have to provide many SIM cards

or email addresses to proceed with the attack. Alternatively, users may need

to sign up using individual email addresses or social network profiles, e.g.,

Facebook accounts. Furthermore, in a specific time interval, no more than a

specific number of accounts may be allowed to be created using a single IP

address.

ii. Unequal Reputation: A supplementary technique to prevent Sybil attacks

is to consider different levels of reputation for different accounts. Using this

technique, witness devices associated with the accounts with an older cre-

ation date receive more reputation and their testimony is highly accepted.

Newly–created accounts must remain active for a specific period before they

become eligible to witness. This limits the power of new accounts. There-

fore, creating many new accounts does not result in any advantage for a Sybil

attacker against other older reputable accounts.

iii. Cost to create an identity: To prevent malicious users from creating mul-

tiple fake accounts, the network may consider a small cost for every user that

wants to join the network. In this case, the cost to create a single account

is small. However, the total cost to create many identities is higher than the

reward or benefit that the attacker receives after successfully conducting the

Sybil attack. Note that it is more important to make it expensive for an at-

tacker to create and control multiple accounts in a short period of time rather

than just creating a new account. In other words, considering a cost for iden-

tity creation should not restrict honest users from joining the network. In

fact, the amount of cost should be selected in such a way that creating many

accounts becomes non–economic comparing to the benefits that the attacker

receives.
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7. Resistance to Witnesses Collusions: Witnesses might collude to obtain

an honest prover’s e and a‖b to impersonate P later. Since P generates different

random numbers a and b each time he/she communicates with a witness, the col-

luding witnesses do not gain more information than what they could obtain without

collusion.

8. Preventing Prover–Witness Collusions: In PASPORT, using the witness

selection mechanism, the verifier qualifies some witnesses to generate LPs for a

prover. A list of these qualified witnesses is kept and linked to the LP ID by the

verifier. Later, in the claim verification phase, the verifier rejects those location

proofs generated by unqualified witnesses. Therefore, a malicious prover can not

select a specific witness to generate an LP for him.

Let’s consider a case in which a remote malicious prover P colludes with some

dishonest witnesses which are present at the desired location. We assume KD is the

number of these colluding witnesses who have not generated an LP for P before in

a specific period of time. Now, suppose N > KD is the total number of witnesses

who have accepted to collaborate with the system at this location (including the

dishonest witnesses) and have not generated an LP for P since a specific time. Note

that creating necessary incentives for the witnesses by the service provider can make

N a large number. In PASPORT, a location claim is accepted if there are at least

T valid (non–rejected) location proofs associated with the claim. Thus, for KD ≤ T

the attack is definitely defeated. If T ≤ KD ≤ K and x is the number of dishonest

witnesses who have been qualified and selected by the verifier, the success probability

of a Prover–Witness collusion is obtained through the following equation:

Psuccess = P (x ≥ T )

= P (x = T ) + P (x = T + 1) + . . .+ P (x = KD)

=

KD∑
j=T

P (x = j) =

∑KD
j=T

(
KD
j

)(
N−KD
K−j

)(
N
K

)
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Figure 6.3 : Success probability of a Prover–Witness collusion for different values of KD

and system parameters.

Note that the malicious prover has to collude with the witnesses who are phys-

ically present at the location. This makes it very difficult to have a large KD.

However, we assume he can select KD ≥ K. In this case, if T = K is selected by

the system, we have:

Psuccess = P (x = T ) =

(
KD
K

)(
N
K

) =
KD!(N −K)!

N !(KD −K)!

Fig. 6.3 shows the collusion success probability for different KD and system

parameters. As we see, if K ≥ 0.5N is selected, the success probability of a collusion

is always less than 0.03. In STAMP [25], a similar LP scheme, the system will detect

collusions with a 0.9 success rate if a malicious prover P colludes with 5% of all the

users. Note that in STAMP, P can select any user to collude with, no matter

where he/she is located. In PASPORT, if P colludes with approximately 50% of the

witnesses who are physically present at the desired location and have not generated

an LP for him before, the system can prevent this collusion with a success rate

better than 0.97. Obviously, the second situation which offers a better prevention

rate is much tougher for P to fulfill. Therefore, with carefully chosen parameters,

PASPORT provides a more reliable solution for Prover–Witness collusions than what

is proposed in STAMP.
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9. Resistance to Distance Hijacking: In distance hijacking attacks [38], a

remote malicious prover H tries to fool an honest witness W on their mutual distance

by using the involuntary help of an honest prover P which is close to W . Suppose

H initiates the protocol by sending Req to the verifier. Upon receiving the related

LP ID, H must broadcast his message eH through a short–range interface but he

is not physically close enough to the qualified witnesses to do so. Thus, the attack

can not proceed. Even if we assume that H broadcasts eH for the witnesses, the

attack is defeated. The reason is that in this attack it is assumed that P responds

to W ’s challenge bits in the DB process since H is remote. However, the honest

prover P is not aware of random numbers aH and bH by which H has already created

eH . Instead, P replies to W with his/her own response bits ri computed using P ’s

random numbers aP and bP in the message eP . This causes W to generate the LP

based on eP other than eH . Therefore, if H uses the generated LP to submit his

claim with the verifier, this claim will be rejected since the signature on m1 (in

eP ) does not match with H’s identity. If H sends his aH‖bH to P beforehand, the

Distance Hijacking attack converts to a Terrorist Fraud in which P colludes with the

remote malicious prover. As we discussed before, PASPORT is resistant to Terrorist

Frauds as well.

10. Prover Location Privacy: The prover’s ID appears in messages Req,

m1 and m4. These messages are encrypted by the verifier’s public key. Thus, the

verifier is the only entity who can identify the prover and neither the witnesses nor an

eavesdropper can see the prover’s ID. As we discussed before, the sign–then–encrypt

model improves PASPORT’s ability to preserve user’s location privacy.

11. Witness Location Privacy: Since a witness device encrypts its ID using

the verifier’s public key, it is not feasible for the prover or an eavesdropper to identify

the witness. Also, users’ signatures do not reveal their identity because of the

employed sign–then–encrypt model.
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Figure 6.4 : (a) CPU usage for different key sizes. (b) and (c) Time required for LP

generation in our scheme, STAMP [25], and APPLAUS [26] under different key sizes. In

APPLAUS, the authors have not implemented their scheme for key sizes larger than 256.

12. Resistance to Eavesdropping: In PASPORT, the prover and witness en-

crypt their messages with the verifier’s public key. Therefore, an eavesdropper gains

nothing by listening to their communications. Only LP ID is sent without encryp-

tion that has no value by itself. Moreover, obtaining message e without the total

knowledge of random numbers a and b does not enable an eavesdropper to imper-

sonate the prover later. In addition, since PASPORT provides non–transferability,

an eavesdropper can not make a claim with an eavesdropped LP issued for another

user.

6.4.2 Performance Evaluation

To study the feasibility of the proposed scheme, we implemented a Java prototype

of the proposed scheme on the Android platform. Our experiments were performed

on two Android mobile devices: (1) a LG G4–H818P equipped with a Hexa–Core

1.8 GHz processor, 3 GB of RAM, and running Android OS 5.1, acting as a prover,

and (2) a Sony Xperia Z1 equipped with a Quad–Core 2.2 GHz processor, 2 GB

of RAM, with Android OS 4.4.4, acting as a witness. We adopted Bluetooth as

the communication interface between the mobile devices and conducted the tests in

both indoor and outdoor environments. Each measurement shown in this section
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Figure 6.5 : (a) and (b) Time required for LP generation over different physical distances.

The shown measurements are for the key sizes 2048 for (a) and 256 for (b). (c) P–TREAD

distance bounding protocol takes most of the time required for LP generation.

has been obtained by averaging the results of 10 independent tests. We used RSA

key pairs for encryption and SHA1 as the one–way hash function to compute users’

signatures. Since the LP verification phase is performed by the verifier server that

has a high level of storage and computational power, we focus our experiments on

the P–TREAD Execution phase that is performed by mobile devices with limited

resources.

During the application runtime, we measured the CPU utilization of the im-

plemented code by installing a monitoring application that reports the amount of

CPU usage of the processes running on the device. As we see in Fig. 6.4 (a), the

CPU usage for a user in standby mode is almost 0.5% and independent of the key

size. However, due to heavy computations required for encryption and signature

calculations in the LP generation phases, the average CPU usage increases to 2.5%,

8%, and 19% for key sizes 1024, 2048, and 3072, respectively.

We also recorded the amount of time that PASPORT requires to generate an LP

after the prover device receives LP ID from the verifier. We compared the results

to the decentralized schemes STAMP [25] and APPLAUS [26]. Fig. 6.4 (b) and

6.4 (c) show the results for different key sizes (in APPLAUS, the authors have not

implemented their scheme for key sizes larger than 256). As expected, longer times
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were recorded for larger key sizes. The reason is that the DB phase is performed for

n challenge bits. Thus, for larger values of n, it takes longer for the DB phase to be

performed. As the figures show, PASPORT provides faster responses than similar

schemes. The reason is that in STAMP and APPLAUS, the Bussard–Bagga DB

protocol is used for provers’ proximity checking while in PASPORT, we integrate

P–TREAD into the scheme to perform this job that is a more lightweight protocol

regardless of its security advantages over the Bussard–Bagga protocol. Unlike P–

TREAD, in the Bussard–Bagga protocol, different commitment and decommitment

computations are needed to be performed by the prover and witness devices, respec-

tively. Moreover, STAMP requires to perform at least two commitment calculations

in order to provide location privacy [25]. In APPLAUS, to preserve users’ location

privacy, they need to select a set of M pseudonyms and change them periodically.

This creates a high level of computation and communication overhead.

To evaluate the impact of physical distance between the mobile users on LP

generation, we conduct our experiments for different distances and compare the

results to the performance of STAMP and APPLAUS (see Fig. 6.5 (a) and 6.5 (b),

respectively). As we see, for longer distances, the required time for PASPORT to

generate an LP increases since higher communication latencies occurring in this case.

Note that distance only affects the Bluetooth communication latency and does not

change the amount of time required for computations performed in mobile devices.

Finally, Fig. 6.5 (c) shows what percentage of the time required for LP generation

is taken by the P–TREAD Execution phase. As we see, most of this time is taken by

the DB protocol since it requires multiple Bluetooth transmissions. As we discussed

before, this time is increased for larger key sizes. As a result, the selection of key

size has a critical impact on the scheme’s performance. Although larger key sizes

provide stronger security, they impose more computational and storage overheads.



97

Figure 6.6 : Outdoor path for the mobility tests (300 meters).

We also performed some experiments for the scenario in which multiple witness

devices participate in the LP generation process. To evaluate the effect of device

mobility, we performed the outdoor experiments while the prover and witness de-

vices were moving with an average speed of 1.2 m/s . Fig. 6.6 shows the 300 m

outdoor path that we used for the mobility test. During the mobility test, an aver-

age distance of 7 m was maintained between the prover and witness devices. Fig.

6.7 (a) and (b) show the time required by five different witness devices to generate

LPs for a single prover device in indoor and outdoor environments, respectively. We

noticed an average increase of 8% in the latency of LP generation for the indoor

environment. This is due to signal attenuations, absorptions and reflections caused

by indoor elements such as walls, windows, and furniture. However, it does not

have a significant impact on the system performance. Therefore, PASPORT per-

forms well in indoor environments. It is expected that PASPORT shows a better

performance if users communicate using WiFi as it provides more coverage distance

than Bluetooth.
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Figure 6.7 : Time required for LP generation when multiple witness devices are involved.

(a) outdoor and (b) indoor environments.

6.5 Conclusion

In this chapter, we studied the location verification issue in social networks and

proposed PASPORT, a secure and privacy–aware scheme for LP generation and ver-

ification. The proposed scheme has a decentralized architecture suitable for ad–hoc

applications in which mobile users generate LPs for each other. To address Terror-

ist Frauds, we developed a distance bounding protocol P–TREAD, that is a private

version of TREAD, and integrated it into PASPORT. Using P–TREAD, a dishonest

prover who established a P–P collusion with an adversary can easily be imperson-

ated by the adversary later. Thus, no logical user takes such a risk by initiating a

P–P collusion. Furthermore, we employed a witness selection mechanism to address

P–W collusions. Using the proposed mechanism, available witnesses are randomly

assigned to requesting provers by the verifier. This prevents malicious provers from

choosing the witnesses themselves.

In the next chapter, we introduce our second LP scheme, i.e. Privacy–Aware and

collusion Resistant poSition vErification scheme (SPARSE). Similar to PASPORT,

it has a distributed architecture designed to generate privac–aware location proofs

for mobile users.
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Chapter 7

SPARSE: Privacy–Aware and Collusion Resistant

Location Proof Generation and Verification

7.1 Introduction

In this chapter, we propose the Secure, Privacy–Aware and collusion Resistant

poSition vErification scheme (SPARSE) which provides secure and private LP gen-

eration and verification for mobile users. SPARSE has a distributed architecture

designed for ad–hoc scenarios in which mobile users generate location proofs for

each other. In the proposed scheme, we do not employ a DB protocol for protec-

tion against Terrorist Fraud. Instead we adopt a time–limited approach to make

SPARSE resistant to these attacks. This introduces two advantages. Firstly, the

speed of LP generation becomes independent of the length of the users’ private key.

Secondly, the costs of the system implementation is reduced since implementing

a DB protocol requires some hardware changes on mobile devices [85]. Moreover,

to address Prover–Witness collusions, we do not allow provers to choose their wit-

nesses. Instead, the system performs a witness selection mechanism by which some

witnesses are chosen and qualified to generate LPs for a specific prover. We show

that by using this method, if the service provider creates necessary incentives for

users to collaborate with the system and generate LP for each other, the success

probability of these collusions is negligible.

Since we do not integrate any distance bounding protocol into SPARSE, it be-

comes an easy–to–implement scheme in which the location proof generation process

is independent of the length of the users’ private key. We provide a comprehensive
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Figure 7.1 : The system architecture of SPARSE Scheme

security analysis and simulation which show that SPARSE provides privacy protec-

tion as well as security properties for users including integrity, unforgeability and

non–transferability of the location proofs. Moreover, it achieves a highly reliable

performance against collusions.

7.2 The SPARSE Scheme

Fig. 7.1 presents the proposed system architecture. As you see, SPARSE has a

distributed architecture and consists of three types of entities:

Prover : A mobile user who wants to prove his/her location to a verifier.

Verifier : The entity that is authorized to assess and verify the provers’ location

proofs.

Witness : A mobile user who has accepted to generate a LP for his/her neighbor

provers.

In the following we present some assumptions regarding our threat and trust

model:
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Figure 7.2 : Message exchange diagram for the proposed scheme.

– Users (provers and witnesses) send their messages to each other via their short–

range communication interfaces such as WiFi or Bluetooth.

– To obtain a fake LP, dishonest provers might provide the witnesses with fake in-

formation about their location or change the contents of a LP generated for him/her

or another user. They might also collude with other users (provers or witnesses) to

achieve their goal.

– Users never share their private key with each other [85], [90], [92].

– Witnesses are assumed to be untrusted. Thus, they may collude with a remote

dishonest prover and issue a fake LP for him/her. Moreover, both provers and

witnesses are untrusted from a privacy point of view.

– The verifier is supposed to be a trusted entity which does not publish users’

identity and their data.

Now, we introduce our proposed location proof scheme, SPARSE. It is executed

in two separate phases: Location Proof Generation, and Location Claim & Verifica-

tion (see Fig. 7.2). Refer to table 7.1 for a short description about the cryptographic

notations that are used in this paper.

1) Location Proof Generation:
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Table 7.1 : List of Notations

Notation Description

‖ Concatenation symbol

Su(m) Signature of user u on message m

Eent(m) Encryption of message m using public key of entity ent

Loc GPS coordinates related to the prover’s location

Loc
′

The witness’s location

time The current time

IDP The prover’s ID

IDW The witness’s ID

a. Prover: The prover starts the protocol by sending the following message m1

to the verifier to inform it that he/she wants to submit a location claim.

m1 = EV erifier(Req‖SProver(Req)),

where Req = IDP‖Loc is the prover’s request.

b. Verifier: Upon receivingm1, the verifier randomly selects K witnesses among

those who are present at Loc. Then, it generates a unique ID for this location proof

(IDLP ) and sends it to the prover and selected witnesses.

c. Witness: After receiving IDLP , a selected witness generates a random

sequence number rs and broadcasts the following message m3 through its predefined

short–range communication interface (Bluetooth or WiFi) for a period T (e.g., 100

ms).

m3 = IDLP‖rs

After this time, another rs is generated and broadcasted in a similar way. This

process is repeated until the witness receives a response from the prover.
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d. Prover: When the prover device receives m3, it first ensures that the IDLP is

the same as the one already received from the verifier. Otherwise, it just discards m3

and continues to listen to the channel. If they are same, the prover must immediately

compute message m4 and send it to the witness:

m4 = IDLP‖rs‖EV erifier(rs‖SProver(rs))

e. Witness: Upon receiving m4, provided that the IDLP in m4 is the same as

the current location proof ID, the witness checks to see whether this rs is the last

sequence number that had been broadcasted by itself. If it is, the witness generates

the following location proof LP and sends it to the prover.

LP = EV erifier(m5‖SWitness(m5)),

where m5 = m4‖Loc
′‖time‖IDW . Otherwise, the following null LP is sent to the

prover:

LP = EV erifier(m5‖SWitness(m5)),

where m5 = null‖IDW .

2) Location Claim & Verification:

a. Prover: The prover generates the following location claim LC using the K

received LP s from the K selected witnesses and submits it with the verifier:

LC = EV erifier(m6‖SProver(m6)),

where m6 = LP1‖LP2‖ . . . ‖LPK‖IDP .

b. Verifier: After the verifier receives the LC, it checks the following items:

• Are the two IDP s received through messages m1 and LC the same?

• Is the prover’s signature on m6 correct regarding the claimed IDP ?
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• For each LPi, (i = 1, . . . , K):

– Is the witness with identity IDW among the selected witnesses?

– Is the witness signature on m5 correct regarding the IDW ?

– Are time and Loc in an acceptable range of the current time and Loc
′
respectively?

– Are the two random sequences rs in m4 same?

• Is the number of non–null LPs greater than a predefined threshold KT ?

If all the above checks are passed successfully, the verifier accepts this LC. Otherwise,

the prover’s claim is rejected.

7.3 Results

This section presents our security and privacy analysis and discisses the results

of our experiments.

7.3.1 Security and Privacy Analysis

In this section, a comprehensive security and privacy analysis is presented to

show that SPARSE achieves the fundamental security and privacy properties of a

secure and privacy–aware location proof system described in [87], [88] and [92].

Resistance to Distance Frauds: In a distance fraud, a malicious prover tries

to convince an honest witness (or a verifier) that his physical distance to the witness

(or verifier) is less than what it really is. In SPARSE, the prover must sign and

encrypt the random sequence rs in a limited time T over a short–range communi-

cation interface. If a malicious prover is not located in the communication range of

the witness, he/she can not proceed with the attack. Thus, for him/her the only

way to get the fake location verified is to collude with another user. In this section,

we analyze the SPARSE performance against collusions separately.
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Unforgeability: We consider several scenarios: If a dishonest prover wants to

generate a LP by himself (without proving his proximity to a selected witness), the

verifier will detect this. Note that the verifier checks the received IDW with the

signature on m5. Since users do not share their private key, this prover can not

compute the witness signature on m5 even if he knows the identity of each selected

witness. Moreover, if a malicious user wants to forge another user’s LP, again the

prover will detect it. The reason is that he must sign messages m1 and m6 using

the victim’s private key which is not accessible for him. Furthermore, if a malicious

witness who is not among the selected witnesses wants to generate a LP for a prover,

the issued fake LP is detected by the verifier.

Non–Transferability: If a malicious user wants to submit a LP which has

been generated for another prover P , the verifier will find it because P ’s signature

is on rs which does not match with the attacker’s ID. Note that the attacker can

not see and manipulate the LP’s contents since it has been encrypted using the

verifier’s public key. Even if he knows the P ’s ID and wants to impersonate P by

submitting his request using a new m1, he must forge the P ’s signature which is

unlikely without having the P ’s private key. Moreover, the presence of time in m5

makes it impossible for him to use this LP later.

Resistance to Mafia Frauds: In this attack, an adversary tries to convince an

honest witness that an honest prover is in the vicinity of the witness while he/she

is not really (readers can refer to [91] and [94] for detailed information about Mafia

Frauds). We assume an adversary A is going to perform a Mafia Fraud on a remote

prover P and witness W who are both honest. We model A with a witness W̄ and

a prover P̄ . The time–limited process performed in stages 1.d and 1.e prevents P̄

from sending rs to W̄ for obtaining the P ’s signature on it because there is not much

time to do so. If this process takes longer than T , the witness will send another rs

which invalidates the previous rs. Thus, the attack is defeated.
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Prover & Witness Location Privacy: Since all the messages that contain

the prover’s and witness’ ID are encrypted with the verifier’s public key, they can

only be seen by the verifier. Moreover, we have employed the sign–then–encrypt

model to generate SPARSE messages. This makes it infeasible for a curious entity

or an eavesdropper to check the prover’s or witness signature with the public key of

all the users and find their identity.

Resistance to Terrorist Frauds (Prover–Prover collusions): In this at-

tack, a remote malicious prover colludes with an adversary who is close to an honest

witness to convince the witness that he/she is in its vicinity. Now, imagine an

adversary A that is close to an honest witness W wants to collude with a remote

dishonest prover P and answers to W ’s challenges on behalf of P . In this case, A

must send rs to P to sign and encrypt it and then sends it back to A for submission

with W . However, there is not enough time for them to do so because the validity

of this rs is only for a short period T . After this time, the witness will broadcast a

new rs and reject all the messages m4 which have the previous rs. Thus, SPARSE

is resistant to this type of attacks.

Resistance to Prover–Witness Collusions: Upon receiving a specific prover’s

request, it is the verifier that selects some witnesses to generate LPs for him/her.

Later, in the Location Claim & Verification phase, the verifier rejects any LPs gen-

erated by witnesses not selected by the verifier. Thus, the prover is not permitted

to collect a LP from any witness he/she likes. This makes it very difficult for a mali-

cious prover to set up a successful Prover–Witness collusion. In this case, he has to

increase the size of his collusion group to improve his chances of winning. In other

words, he must collect at least KT non–null LP to become successful. More pre-

cisely, if there are at least KT colluding witnesses among the K selected witnesses,

the attack will succeed. However, we show that this happens with a negligible prob-

ability. For this reason, suppose the malicious prover is colluding with KC dishonest
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witnesses which are located at his desired location L. We assume N is the num-

ber of all witnesses present at L (including the dishonest witnesses) and x is the

number of the colluding witnesses who are selected by the verifier to generate LP.

Obviously, for KC < KT we have Ps = 0, where Ps is the attack success probability.

For KT ≤ KC < K we have:

Ps = P (x ≥ KT )

= P (x = KT ) + P (x = KT + 1) + . . .+ P (x = KC)

=

KC∑
j=KT

P (x = j) =

∑KC
j=T

(
KC
j

)(
N−KC
K−j

)(
N
K

)
Note that the malicious prover must collude with the witnesses who are physically

present at L. This makes it too difficult to have a large KC , specifically, for the

applications where performing a large size collusion is too expensive. However, we

assume he can select KC > K. In this case, if KT = K is selected by the system,

we have:

Ps = P (x = KT ) =

(
KC
K

)(
N
K

) =
KC !(N −K)!

N !(KC −K)!

Simulation results show that Ps is negligible if system parameters are carefully chosen

(see the previous section for more details). Specifically, for large values of N , the

attack is defeated with a high probability. Note that if the service provider creates

enough incentives for the witnesses to collaborate with the system, we will have

a large N . Therefore, SPARSE can significantly reduce the success probability of

these collusions.

7.3.2 Performance Evaluation

In this section we evaluate the performance of SPARSE against Prover–Witness

collusions. We adopt the same configuration with which STAMP [90] performance

has been evaluated. Total number of users is set to 1000 and we suppose an average

of 5% of these users are present at each location. Moreover, the threshold KT = K
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Figure 7.3 : The success probability of Prover–Witness collusions. (A) β = 40% (B)

β = 60% and (C) β = 80%

is adopted which means no null LP is accepted by the verifier. It is also assumed

that the malicious prover sets up a collusion group of size KC which is varied from

1% to 7% of all the users. An aggregation rate β is allocated to each collusion group

which represents the percentage of colluding users who are located at the desired

location during the time at which the attack is performed. Thus, β = 0.7 means

that 70% of colluding users are present at the given location during the attack.

Fig. 7.3 shows the success probability of Prover–Witness collusions for differ-

ent values of β and K. As you see, the attack has a maximum success probability

of 0.012 and 0.07 for β = 40% and 60% respectively when 7% of users collude

with the malicious prover. This means that the system can prevent Prover–Witness

collusions with the minimum success rates 0.988 and 0.993 for the mentioned sit-

uations. Even if 80% of colluding users are located at the intended location (i.e.

β = 80%) and the malicious prover colludes with 5% of users, the system prevents

the attack with the success rates 0.98, 0.99, 0.997, and 0.999 for K = 7, 8, 10, and

12, respectively while in STAMP the maximum success rates 0.95, 0.92 and 0.65

have been achieved for different collusion tendencies when 5% of users collude. In

fact, STAMP has a relatively poor performance against provers with a low collusion

tendency. This is because they decide on the users’ LP transaction history. Thus,

for the malicious provers who have a diverse transaction history, STAMP does not
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Figure 7.4 : The average number of colluding witnesses that are selected by the verifier

for (A) K = 8 (B) K = 10 and (C) K = 12

offer a reliable performance (e.g. with a collusion tendency 0.2, STAMP achieves a

collusion detection rate 0.65 when 5% of users collude with the malicious prover).

However, SPARSE reaches the prevention success rates better than 0.98 regardless

of the prover’s past LP transactions. You can also see in Fig. 7.4 the average num-

ber of colluding witnesses who are selected by the verifier for different values of K

and β. As you see, the number of selected dishonest witnesses are less than K which

means that even for β = 70% and with 6% colluding users, the scheme is resistant

to these collusions if KT is chosen close to K.

7.4 Conclusion

In this chapter, we introduced SPARSE, a distributed location proof system for

mobile users. The main distinguishing characteristic of the proposed system is that

it provides a solution for the Terrorist Fraud and Prover–Witness collusions, the two

issues from which the current distributed location proof systems suffer. Moreover, we

have not employed the traditional distance bounding protocols. This not only results

in fast location proof generation by the witnesses (because they become independent

of the length of users’ private key), but also provides an easy–to–implement system

architecture.

In the next chapter, we introduce our third LP scheme which is a blockchain–
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based scheme for location proof generation and verification. It utilises the unique

features of the blockchain technology to provide a decentralized secure and privacy–

aware scheme for location proof generation and verification.



111

Chapter 8

Blockchain for Secure Location Verification

8.1 Introduction

In this section, we utilise the unique features of the blockchain technology to

design a decentralized scheme for location proof generation and verification. In the

proposed scheme, a user who needs a location proof (called a prover) broadcasts

a request to the neighbor devices through a short–range communication interface,

e.g. Bluetooth. Those neighbor devices that decide to respond (called witnesses)

start to authenticate the requesting user. In the proposed scheme, mobile users act

as witnesses for a user (prover) that requests an LP in their physical proximity.

Witnesses start to authenticate the prover and if the prover is successfully authen-

ticated, a transaction is created based on the proposed blockchain framework. The

transaction (that holds the prover’s LP data) is then broadcast onto a peer–to–peer

network over the internet where it can be picked up by verifiers for further verifi-

cation. Finally, the verified transaction is stored in a time–stamped public ledger

accessible for LBSPs. To preserve users’ location privacy, they cryptographically

commit to their spatiotemporal data before it is inserted into a transaction. Later,

they open the commitment when they submit a location claim with an LBSP.

To prevent distance frauds, all the communications between prover and witness

devices are performed through a short–range communication interface like Blue-

tooth. Moreover, we integrate an incentive mechanism into the proposed scheme

whereby witnesses and verifiers are rewarded by a small amount of cryptocurrency.

This incetivizes them to collaborate with the system rather than ignoring provers’
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requests to save power on their device. In the proposed blockchain framework, trans-

actions are created using a secure and privacy–aware method. They hlod provers’

commitment to their spatiotemporal data and the information related to witnesses

and verifiers’ rewards. However, they do not contain any data that identifies a

prover. A group of transactions forms a block which is identified by a unique header

generated by a cryptographic hash function. Each block contains hash of the pre-

vious block, therefore, all blocks are inherently linked. This makes the ledger (that

holds users’ LPs) immutable and irreversible. Moreover, employing the decentral-

ized blockchain architecture enables us to benefit from the power of consensus, while

the conventional LP schemes are performed by a central thirdparty entity.

Upon successful authentication, a transaction is generated as a location proof

and is broadcast onto a peer–to–peer network where it can be picked up by verifiers

for the final verification. Our security analysis shows that the proposed scheme

achieves a reliable performance against Prover–Prover and Prover–Witness collu-

sions. Moreover, our prototype implementation on the Android platform shows that

the proposed scheme outperforms other currently deployed location proof schemes.

8.2 The Proposed Architecture

The proposed scheme is executed in three stages, discussed next. Fig. 8.1 shows

the message exchange diagram of the proposed scheme. We explain the scheme step

by step based on the computations and operations that each entity performs.

1) LP Request Submission

Prover. In the first stage, the prover generates the following message m1 and

broadcasts it to the surrounding witness devices through a predefined short–range

communications interface:

m1 = m̄1‖r ,
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Figure 8.1 : Message exchange diagram of the proposed scheme

Figure 8.2 : In the proposed scheme, each transaction can have different inputs and

outputs.

where m̄1 = IDP‖H(Prev Tx)‖Index‖Rew‖C(P,ST ).

In m̄1, IDP is the prover’s ID (public key), H(Prev Tx) is the hash of the

prover’s previous unspent transactions containing the outputs that the prover wants

to spend now (see Fig. 8.2 and 8.3), Index specifies the index of that output (it

indicates how the prover has received this cryptocurrency that he/she wants to

spend), and C(P,ST ) is the prover’s commitment to his/her spatiotemporal data.

As you see, the prover sends the random nonce r to the witness because the

witness must be able to open the commitment C(P,ST ) to ensure that it is the same

with the current location. This prevents dishonest provers from committing to a

different location data and obtaining an LP for it.

Rew in the above message is the amount of reward that the prover is willing

to pay to a witness and a bridge. This reward cannot be less than a predefined
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Figure 8.3 : Block creation and transaction structure in the proposed scheme.

minimum amount Rewmin. The minimum reward amount is set to provide additional

protection against P–W collusions where a malicious witness is forced to change his

attack to a P–P collusion (see Section 6 for more detail). Without the predefined

minimum amount, the malicious witness can broadcast a m1 message on behalf of

a remote dishonest prover and add a very low reward amount to the Rew field to

decrease the incentive of other witnesses to issue an LP for this request. Thus, in

this case, the attack can proceed with a higher chance of success.

2) Tx Generation and Submission

Witness. Upon receiving m1, a witness (let us say wj, j = 1, 2, . . . , J where J is

the number of witnesses that reply to the prover’s request) opens the commitment

C(P,ST ) to check whether the spatiotemporal data inserted by the prover matches

the current location and time or not. If they are the same, wj sends the following

message mj
2 to the prover and starts a timer. This is done after the prover device

acknowledges that it is ready to receive the challenge message mj
2. This prevents

any disorder in execution of the mechanism since J different witnesses want to send

their challenges message to the prover:

mj
2 = LPj‖Signwj(LPj), j = 1, 2, 3, . . . , J

where LPj = m̄1‖nj‖IDwj‖IDb in which nj is a random number generated by wj
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IDwj and IDb are the identity of the witness and selected bridge, respectively. Note

that each device knows the ID of the currently serving bridge that has been elected

by users.

Prover. When the prover device receives each mj
2, it immediately signs it using its

private key and sends the following message mj
3 to wj:

mj
3 = mj

2‖SignP (mj
2)‖ j = 1, 2, 3, . . . , J

By signing mj
2 (which is an LP), the prover consents that he/she rewards Rew to

the witness, selected bridge, and verifier. For simplicity, we assume their share is

equal, however this assumption can be removed by adding two fields value w and

value b next to the IDwj and IDb respectively, to specify their share. The difference

between Rew and value w + value b is considered as the verifier’s reward (same as

the payment mechanism in Bitcoin).

Witness. Upon receiving mj
3, witness wj stops the timer and checks to see whether

it was received in the predefined period of time T . T is a system parameter and

must be carefully designed such that it only provides the prover with an opportunity

to sign mj
2, and send it back to wj (in the next section, we propose some practical

values for T based on our experimental results). Thus, with a carefully selected T ,

in case of a P–P collusion, an adversary does not have such an opportunity to relay

mj
2 to a remote dishonest prover and receive his signature.

If m3 is received in time, wj creates the following transaction Txj and broadcasts

it through its short–range communication interface to be delivered to the selected

bridge. Other mobile users that are located between the witness and bridge discard

the transaction if they have not already received the prover’s request message m1.

Otherwise, they broadcast it such that it finally reaches the bridge. As you will see
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in the next section, this technique enables the proposed scheme to prevent P–W

collusions.

Txj = mj
3‖Signwj(m

j
3), j = 1, 2, . . . , J

Note that wj does not have to check the prover’s signature on mj
2 since a verifier (that

has more power and computational resources) can do it later in the Tx Verification

phase. You will further see in the Tx Verification phase that a verifier randomly

selects the Tx issued by one of the J witnesses to add to the chain.

If mj
3 is not received in time, or the signature on mj

2 is not correct, wj broadcasts

the following transaction Txj onto the peer–to–peer network on the internet:

Txj = mj
3‖Nack‖Signwj(m

j
3‖Nack)

Thus, in case of a P–P collusion, the Nack transaction informs the verifiers on the

internet that a collusion is taking place.

The selected bridge. Upon receiving Txj, j = 1, 2, . . . , J , the selected bridge

device checks it to make sure its ID has been correctly inserted. It also discards the

additional copies of a transaction that might be received. Then it signs Txj using

its private key and broadcasts the following result onto the peer–to–peer network

using its internet interface:

mj
4 = Txj‖Signb(Txj)

3) Tx Verification

A Tx can be verified by any verifier in the network. A verifier plays a similar

role to a miner in Bitcoin. Upon receiving mj
4, j = 1, 2, . . . , J , a verifier starts to

perform the following checks:

• The prover signature on mj
2 matches the prover’s public key, i.e. IDP .
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• The witnesses’ signatures on LPj and Txj messages match their ID.

• The bridge signature on mj
4 is correct.

• Rew is equal or less than the output value of the prover’s unspent transactions

(indicated by H(Prev Tx) and Index).

• At least J1 non–Nack transactions received for this LP that pass the above

checks.

Moreover, if the output value in the prover’s previous transaction (indicated by

index in Fig. 8.3) is greater than Rew, the difference is considered as the last output

of the current Tx and goes to the prover’s wallet. Thus, in this case, the prover can

use this Tx later as an unspent transaction.

If all the above checks are passed, the verifier randomly selects one of the J

transactions and adds it to the current block that he/she is creating (see Fig. 8.3).

Blocks are identified by a unique header created by a cryptographic hash function.

Each block is linked to the previous blocks since the hash of the previous block is

stored in every block. This makes the ledger immutable and irreversible.

Regarding the consensus algorithm, we adopt the Proof of Stake (PoS) approach

instead of the Proof of Work (PoW) method. In PoS, a random selection process is

used by the network to determine which node is the generator of the next block. This

selection process is performed by considering a combination of different parameters,

e.g., the wealth of each node, the age of stakes, and different randomization factors

[121]. Those nodes who want to participate in the block generation process must lock

a specific amount of their coins into the network. This is considered as their bond or

stake that determines their chances to be selected as the next block validator (larger

stakes result in higher chances). Some randomization techniques are also integrated

into the selection mechanism to randomize it and prevent the wealthiest nodes to
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take control of the network. Dishonest validator nodes lose their stake if they do

not perform the protocol honestly (i.e., not to verify a fraudulent transaction).

PoS has several advantages over PoW and adopting PoS as the consensus algo-

rithm makes the block generation faster and more energy–efficient. For example, it

is a much greener consensus mechanism since block creators need to consume a lot

of energy in the PoW approach. Unlike the PoW approach, in PoS the block genera-

tors do not need to compete to solve difficult energy–consuming puzzles. Therefore,

the time required for block generation only depends on the computational power of

the block generator, i.e., the block generator only needs to verify the block’s trans-

actions and computes header of the block. In PoW, however, miners have to spend

additional time to solve difficult puzzles as well. In addition, PoS provides more

security regarding the 51% attack [123].

Similar to the Bitcoin setup, we propose two types of nodes in the network,

i.e., lightweight and full nodes. Full nodes can store a copy of the entire ledger

(all the blocks and transactions). Thus, there can be many backups of the public

ledger in the network. Location–based service providers have the required incentive

to play the role of a full node in the network since they benefit from the system

a lot. Moreover, they have more storage resources to store a copy of the entire

ledger. On the other hand, lightweight nodes (i.e., ordinary users) does not have

to store the whole blockchain. These nodes can access and explore the ledger using

the access services offered by the full nodes. These services are actually similar to

the Simplified Payment Verification (SPV) service offered in Bitcoin [124]. Thus,

lightweight nodes can create or verify a transaction without having to download the

entire ledger.
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8.3 Results

This section presents our security and privacy analysis and discisses the results

of our prototype implementation.

8.3.1 Security and Privacy Analysis

In this section the security and privacy of the proposed scheme are discussed.

Location Privacy: In the proposed scheme, a prover commits to his/her spatiotem-

poral data before requesting an LP. Thus, instead of the plaintext spatiotemporal

data, this commitment is stored in the public ledger. This makes the prover’s loca-

tion data publicly inaccessible. However, as discussed before, when the prover wants

to submit a location claim with a LBSP, he/she opens the commitment by sending

the random nonce r to the service provider. In the following, we provide a detailed

analysis on the proposed technique to show how it preserves users’ location privacy.

We make use of unforgeable cryptographic commitments to keep submitted loca-

tions private in the public ledger. To perform this technique, users commit to their

spatiotemporal data before they create a transaction:

C(P,ST ) = Commit(ST, r) = grvST ,

where ST = (Loc;Time) is the spatiotemporal data of the prover and r ∈ {0, 1, . . . , q−

1} is a random nonce generated by the prover for commitment to ST . g and v are

selected from the subgroup of G of order q in Z∗p , where q and p are pre–determined

values such that q divides p− 1.

As discussed in Section 5, C(P, ST ) is added to a transaction and will be stored

in the public ledger after verification. When the prover wants to submit a location

claim with a LBSP, he/she opens the commitment by sending r and ST to the service

provider who can confirm C(P, ST ) = grvST . Using the above commitments, the

proposed technique achieves two essential security properties:
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i. Binding Property: A prover cannot change the submitted location any-

more. Thus, when the commitment is opened at a later stage by an LBSP,

the revealed location data is really what the prover has already committed to.

In other words, the prover cannot find another nonce r̄ such that it results in

the same commitment value C(P, ST ) considering a different spatiotemporal

data S̄T 6= ST .

Proof: If a prover P commits to ST and can later open the commitment as

S̄T 6= ST , then we have:

grvST = gr̄vS̄T ,

or equivalently:

logg(v) =
r − r̄

S̄T − ST
This means that the prover could calculate the discrete logarithm logg(v) that

contradicts the fact that discrete logarithms are computationally infeasible to

calculate.

Hiding Property: When a user’s commitment is added to the public ledger,

it is infeasible to open it unless the prover shares the random nonce r.

Proof: Similar to the encryption with one–time pad, vST and consequently

ST , are perfectly hidden in grvST because gr is a random element of G. Thus,

it is computationally infeasible for an adversary to obtain ST without the

knowledge of r.

Therefore, the provers’ private spatiotemporal data are not revealed to the public

even though they are stored in a public ledger. However, the provers can open their

commitments by sharing the random nonce r with the related service provider.

Resistance to Distance Frauds: This attack is performed by a single attacker,

i.e. a malicious prover who is far from a desired location L. During the attack, the
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malicious prover attempts to convince the honest witnesses (located at L) that his

physical distance to them is less than what it really is. In the proposed architecture,

mobile users perform the proposed scheme by running an application that commu-

nicates with other devices through a short–range communication interface. In other

words, witness devices only listen for any incoming LP requests using their short–

range communication interface. This makes it impossible for a distant malicious

prover to perform a distance fraud.

Resistance to Terrorist Frauds (P–P collusions): The detection of P–P col-

lusions is commonly performed by witnesses and a verifier. When a witness device

receives a prover’s LP request, it performs the presented time–limited mechanism

in which the prover is given a short period of time T to sign message mj
2 (generated

by the witness wj, j = 1, 2, . . . , J) and send it back to the witness. In case of a P–P

collusion, an adversary who is conducting the attack has only two options to choose

from, since he does not have the prover’s private key:

(a) The adversary relays mj
2 to the remote dishonest prover to obtain his signature.

This process takes a period of time T
′

= 2tc + tp where tc and tp are the commu-

nication and processing times, respectively. In this case, the witness receives the

response after T
′′

= T + 2tc approximately. Hence, the attack is detected by the

witness because T
′′

is definitely greater than T . In the next subsection, we propose

some practical values for T based on our implementation results.

(b) The adversary signs mj
2 himself (using his own private key). In this case, the

verifier who checks the signatures will detect this in the Tx verification phase. Note

that checking the signature could also be done by the witnesses. However, it is more

efficient to make a verifier responsible for this duty because it has more power and

computational resources than a witness device (as signature checking requires heavy

computations to be performed).
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Moreover, utilizing the random number nj makes mj
2 a random message. This

prevents the adversary from guessing mj
2 and relaying it to the prover in advanced

to have his signature ready to send back to the witness.

Resistance to P–W collusions: The proposed architecture has been designed in

such a way that a malicious witness who is going to perform a P–W attack is forced

to change his attack to a P–P collusion. To clarify this, let us consider a malicious

witness W who colludes with a dishonest prover P to generate a fake LP for him. For

this reason, W creates a fake transaction TxW and based on his situation performs

one of the following:

1) W broadcasts the fake transaction through its short–range communication in-

terface for the elected bridge to receive and broadcast it onto the peer–to–peer

network on the internet. The local mobile users (including the bridge) who receive

TxW broadcast it only if they have already received an LP request (message m1)

with the same IDP . Since the prover’s IDP is not published in the P-W collusion

scenario, the fake transaction TxW is prevented from being published to the poten-

tial verifiers on the internet. Consequently, TxW is not added to the public ledger.

This forces the witness to locally publish the IDP by broadcasting an LP request

message m1. In this case, we can say that the attack is changed to a P–P collusion

in which an adversary (W in this scenario) broadcasts an LP request on behalf of

a remote prover. As we discussed in the previous analysis, the proposed scheme is

resistant to P–P collusions. Therefore, P–W collusions are prevented by the scheme

as well.

2) W broadcasts the fake transaction TxW onto the peer–to–peer network himself

(instead of broadcasting it to be received by a legitimate bridge). In this case, W

does not have to be located at the desired location. To be successful, W needs

to insert another ID along with its associated signature into the transaction as a
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bridge ID and signature, respectively. Since each mobile device may only have

one ID, three mobile devices must be involved in the attack at this stage (P , W ,

and a bridge). However, in the verification phase, verifiers need to receive at least

J1 non–Nack transactions related to this LP (this is one of the requirements that

a verifier checks before adding a transaction to a block). Hence, in this case, a

malicious prover needs to collude with J1 + 1 mobile devices to conduct a successful

attack (totally J1 + 2 mobile devices must be involved in the attack). This can be

more expensive for the malicious prover than the reward or benefit that the LBSP

provides specifically when J1 is a large number. Note that users usually need to

have an LP for crowded public places. Thus, there is no concern about the number

of available witnesses. Specifically, by integrating the incentive mechanism into the

proposed scheme, mobile users have enough incentive to respond to other users’ LP

requests. Therefore, a large J1 can be adopted by the system to make the attack

non–economic for malicious provers. Moreover, LBSPs can look at the history of

LPs that have been issued for a prover to determine if a specific group of witnesses

always issue LPs for this prover.

To make the scheme more resistant against P–W collusions, verifiers can adopt

a random J1 in a specific range. Therefore, the dishonest prover does not know

what collusion group size he must adopt, making it more challenging to conduct an

attack.

Non–Transferability: In the proposed scheme, a transaction added to a block can

only be used by its owner, i.e. the prover. The reason is that it is signed by the

prover, hence, if a dishonest prover provides another user with his random nonce r,

the user cannot claim an LP with the LBSP using this Tx. Therefore, the prover

signature makes a Tx non–transferrable.
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8.3.2 Implementation Results

To study the feasibility of the proposed scheme, we implemented a Java prototype

of the proposed scheme on the Android platform. Our experiments were performed

on two Android mobile devices: (1) a LG G4–H818P equipped with a Hexa–Core

1.8 GHz processor, 3 GB of RAM, and running Android OS 5.1, acting as a prover,

and (2) a Sony Xperia Z1 equipped with a Quad–Core 2.2 GHz processor, 2 GB of

RAM, with Android OS 4.4.4, acting as a witness.

We adopted Bluetooth as the communication interface between the mobile de-

vices and conducted the tests in both indoor and outdoor environments. Each

measurement shown in this section has been obtained by averaging the results of 10

independent tests. We used RSA key pairs for encryption and SHA1 as the one–

way hash function to compute users’ signatures. Since the Tx verification phase

is performed by verifiers that use desktop or laptop computers with a high level of

storage and computational power, we just focus our experiments on Request Submis-

sion, Proximity Checking, and Tx Generation phases that are performed by mobile

devices with limited resources. The implemented code occupies only 64 KB of data

memory. Moreover, during the application runtime, less than 1% of the available

memory is used. We also recorded the CPU utilization of the code by installing

a monitoring application that reports the amount of CPU usage of the processes

running on the device. As you see in Fig. 8.4 (a), the CPU usage for a user in

the standby mode is almost 0.5% and independent of the key size. However, due to

heavy computations required for signature and commitment calculations in the LP

generation phases, the average CPU usage increases to 3%, 10%, and 24% for key

sizes 1024, 2048, and 3072, respectively.

We measured the amount of time that the proposed scheme requires to generate

an LP after the prover device broadcasts m1. We compared the results to the
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Figure 8.4 : (a) CPU usage for different key sizes. (b) and (c) Time required for LP

generation in our scheme, STAMP, and APPLAUS under different key sizes. (d) and (e)

Time required for LP generation over different physical distances. (f) Time required for

Tx generation after a witness receives message m3.

decentralized schemes STAMP [90] and APPLAUS [86]. Fig. 8.4 (b) and 8.4 (c) show

the results for different key sizes (in APPLAUS, the authors have not implemented

their scheme for key sizes larger than 256). As you see, our proposed scheme is faster

than STAMP by an order of magnitude. The reason is that we have not adopted

a DB protocol to check the prover’s proximity to the witness while in STAMP,

the Bussard–Bagga DB protocol is used to perform this job. As discussed in before,

adopting a DB protocol makes an LP generation scheme slow specifically when users

select a long private key.

To evaluate the impact of physical distance between mobile users on LP gener-

ation, we conduct our experiments for different distances and compare the results

to the performance of STAMP and APPLAUS (see Fig. 8.4 (d) and 8.4 (e), respec-

tively). Compared to them, our scheme’s Bluetooth communications have a smaller
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Figure 8.5 : The percentage of LP requests that successfully pass the P–P collusion

detection test for different values of T .

share in the amount of time required to generate an LP (the number of Bluetooth

communications is lower in our scheme since it does not run a DB protocol). Thus,

the level of dependency on physical distance is much lower in our scheme. Note that

distance only affects the Bluetooth communication latency and does not change the

amount of time required for computations performed in mobile devices.

We also examined the computational time required for the witness device to

generate a transaction. The results are shown in Fig. 8.4 (f) for different key sizes.

As you see, key size has a negative impact on Tx generation latency because the

only heavy operation that the witness device needs to perform in the Tx generation

process is signature computation.

Finally, to obtain the optimum value for parameter T , we changed it from 100

to 700 ms by steps 100 ms (see Fig. 8.5) and recorded the percentage of LP requests

that passed the P–P collusion detection test. We found that T can be approximately

set to 400, 500, and 700 ms for the key sizes of 1024, 2048, and 3072, respectively.

These are close to the maximum amount of time that an ordinary device requires

to respond to the challenge message sent by a witness device located in its vicinity.

If a small value is selected for T , slow mobile devices will fail to sign the challenge
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message and send it back to the witness in the given time T . Therefore, a specific

tolerance can be considered for mobile devices with a slower CPU speed. However,

increasing T can provide a malicious prover with the opportunity to successfully

conduct a P–P collusion attack.

8.4 Conclusion

In this chapter, we proposed a blockchain–based, secure, and privacy–aware ar-

chitecture for LP generation and verification. The target of the proposed scheme

is to prevent dishonest mobile users from submitting fake check–ins and location

claims with LBSPs. It relies on the collaboration of mobile devices that generate an

LP for other mobile devices. We also integrated an incentive mechanism into the

proposed scheme to reward mobile users who collaborate with the system. The main

strengths of the proposed architecture are the following: (1) It does not require a

central trusted authority to operate due to employing the blockchain decentralized

architecture. (2) It has reliable performance against P–P and P–W collusions to

which the majority of the current schemes are vulnerable. (3) Our prototype im-

plementation shows that the LP generation procss in the proposed scheme is faster

than the existing schemes due to employing a faster mechanism for proximity check-

ing. (4) It preserves users’ location privacy as they commit to their spatiotemporal

data before it is published and added to the public ledger. Thus, it is not possible

to infer a user’s location data by exploring the public ledger.

In the next chapter, we explore anonymity of users in social networks and pro-

pose Harmonised and Stable DC–net (HSDC–net), a self–organising protocol for

anonymous communications in social networks. We also present the results of our

prototype implementation that shows HSDC–net achieves low latencies and can be

efficiently integrated into social network applications.
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Part III

Anonymity–Based Approach
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Chapter 9

Literature Review and Preliminaries

9.1 Introduction

In the last part of this thesis, we investigate anonymity as another approach to

provide privacy in social networks. As far as we know, social networks do not offer

publicly available anonymous group messaging. If these services are employed by

social network service providers, users can be able to create a group in social media

and anonymously post their opinions. For example, consider a group of journalists;

each journalist wishes to publish some secret government information that he/she

obtained from a confidential source. Using an anonymous communication protocol,

they can create a group in social media and anonymously publish their posts without

the risk of prosecution (see [37–39] for more example applications). Note that the

protocol not only needs to hide the origin of each post, but it must also be resistant

against traffic analysis to prevent a government agency or an ISP from identifying

the message publishers by monitoring and analysing the journalists’ traffic in the

network.

To offer anonymity, several anonymous communication networks (ACNs) have

been proposed so far such as onion routing [40], AN.ON [41–42], and Tor [43]. These

solutions work based on mixnet [44], a basic anonymous communication protocol.

However, to guarantee users’ anonymity, they need access to a set of geographically

distributed servers (or mixes) such that at least some of them are trusted [45]. In

addition, mixnet–based networks cannot provide the necessary protection against

traffic analysis attacks [37], [46–48]. These attacks can be conducted by powerful
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adversaries like large ISPs who can monitor users’ traffic in the network [46]. Din-

ing Cryptographers network (DC–net) [49] is another anonymous communication

protocol that guarantees protection against traffic analysis attacks. Unlike mixnet,

DC–net is completely performed by the users themselves and does not require any

proxy. However, DC–net suffers from three critical issues that reduce its practi-

cality. Firstly, there is a collision possibility issue. Users’ messages are exposed

to corruption due to possible collisions. In DC–net, every user publishes a vector

of data that has N elements (positions or slots) where N is the number of users

in the group who want to anonymously publish a message. It requires every user

to place his/her message in a unique slot where other users must insert their keys

XORed together. Any deviation from this procedure makes all the users’ messages

unrecoverable. Secondly, DC–net is vulnerable to disruptions and Denial of Service

(DoS) attacks since a malicious user can disrupt the protocol by sending irrelevant

bit–streams in each of the N slots.

Finally, DC–net is able to provide anonymity only for a few protocol cycles.

We name this issue the Short stability problem. To the best of our knowledge,

no previous research work has identified this flaw in the DC–net performance. We

prove that it is feasible to infer the origin of each message, after users published

their messages for at least three protocol cycles.

9.2 Literature Review

In this section, we present a brief review of the literature on anonymous commu-

nication protocols. Prior significant research work in this area started in the early

1980s when Chaum presented mixnet [44]. In mixnet, users’ encrypted messages are

batched together and successively relayed into the network after they are decrypted

and shuffled by a set of proxies (named as mixes). Several extensions of the mixnet

protocol have been proposed so far such as onion routing [40], Tor [43], An.On
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[42], and Mixminion [80]. However, these protocols require that users’ messages are

passed through a series of proxies which results in high latency and makes them

vulnerable to traffic analysis [81]. Moreover, they are vulnerable to active attacks

and disruptions which break the anonymity guarantees and cause protocol jamming,

respectively [46], [52], [82]. In addition, mixnet–based protocols offer anonymity as

long as at least one mix in the network executes the protocol honestly.

Beside the original mixnet, Chaum introduced DC–net as another option to-

wards anonymous communication [49]. DC–net is a distributed and non–interactive

protocol that allows a group of users to anonymously publish their messages in a

single broadcast round. It provides users with secure anonymous communication if

the protocol is executed honestly. However, DC–net suffers from three critical issues

that make it impractical [38–39], [50–52].

To address the DC–net problems, a number of DC–net extensions have been

introduced. Dissent [38] focuses on addressing traffic analysis and DoS attacks to

which mixnet and DC–net protocols are vulnerable. For this reason, the authors of

Dissent have proposed a mechanism to trace disrupting (misbehaving) users. This is

called accountability in the literature. However, in Dissent, the employed shuffling

mechanism imposes a delay at the start of each round that makes the protocol

impractical for delay–sensitive applications [52].

Herbivore [39] is another anonymous group messaging protocol that provides

anonymity by dividing a large group of network users into smaller DC–net subgroups.

In fact, in Herbivore, the size of user groups is reduced in order to limit the attack

surface. This enables the protocol to provide only small sizes of anonymity sets.

Although DC–net–based protocols have a decentralized and non–interactive struc-

ture, a few numbers of server–based protocols have also been proposed in the litera-

ture. For example, Wolinsky et al. [82] suggest a client/server architecture to achieve
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a high level of scalability. In their proposed protocol many untrusted clients anony-

mously publish their messages through a smaller and more trusted set of servers.

The protocol offers traffic analysis resistance and strong anonymity, provided that

there is at least one honest server. However, the proposed disruptor tracing proce-

dure is too costly. To solve this issue, public–key cryptography and zero–knowledge

proofs are used in Verdict [46] to infer and exclude any misbehaviour before it results

in a disruption. However, no security analysis has been presented in the paper to

proof its security. Riffle [47] is another server–based protocol proposed in this area

of research. It consists of a small set of servers that provide anonymity for a group

of users. However, it still relies on at least one trusted proxy server.

Prior work on privacy issue of Location–Based Services has mostly focused on K–

Anonymity and Dummy–Based methods although some efforts have recently done

on other techniques such as Differential Privacy [9], [64] and Cryptography–Based

[72–73] schemes.

K–Anonymity efforts [74–78] require a trusted third–party server which is called

an anonymizer, between users and LSP. The anonymizer receives service requests

from a user and enlarges its location into a region (cloaking region) so that it con-

tains the locations of K-1 other users as well as location of the requesting user.

Therefore, the adversary cannot identify the requesting user among other K-1 users.

The advantage of these methods is that the communication cost between users and

anonymizer is reduced, however, they suffer from decreased QoS because when there

are not enough users near the requested user, the anonymizer has to increase the

radius of cloaking region, hence, the increased processing times results in a greater

service latency. To solve this problem, some efforts have been done in [76–78] to

increase QoS. In these papers the area of cloaking region is minimized by using

footprints–historical locations of other users.
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Although the mentioned efforts have solved the low QoS problem, they still rely

on a trusted third–party anonymizer which is a disadvantage for these schemes.

However, in [5] a K–Anonymity privacy protection scheme has been proposed which

doesn’t rely on a trusted anonymizer between users and LSP. But their method still

requires a DataBase Management System (DBMS) to operate.

Several dummy–based location privacy schemes [4], [12], [13–16] have been pro-

posed so far for location privacy protection. In all of them users send their location

data including noise (some fake location data or dummies) to LSP directly. Thus,

there is no need to a trusted anonymizer. In [4] and [12], two dummy generation

algorithms have been presented, Moving in a Neighbourhood and Moving in a Lim-

ited Neighbourhood. In these algorithms, the first dummy set is selected randomly

but next dummies are generated in a neighbourhood of the previous position of the

dummies. Also, a cost reduction technique was proposed in [4] to limit the commu-

nications overhead caused by sending dummies. However, generating dummies at

random or through a fixed rule can not provide flexible location privacy for users.

Hence, in [11], a Privacy–Area Aware scheme is proposed based on a flexible dummy

generation algorithm in which dummies are generated according to either a virtual

grid or circle. This approach provides configurable and controllable dummy genera-

tion by which it is possible to control the user’s location privacy. But a disadvantage

of this method is that it doesn’t consider nature of the region. For example, some

dummies may be generated in places which are unlikely for a user to be there (e.g., in

a river). To solve this problem in [13] a Dummy–Location Selection (DLS) method

has been proposed to prevent the adversary from exploiting side information such

as a region map. This is done by carefully selecting dummies based on the entropy

metric.

But in [14] it has been showed that when a user adopts one of the aforementioned

dummy–based methods, the adversary can identify some dummies with a minimum
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correct ratio of 58% by means of the spatiotemporal correlation between neighbour-

ing location sets. Therefore, they have proposed a Spatiotemporal Correlation–

Aware privacy protection scheme in which correlated dummies are filtered out and

only uncorrelated dummies are sent to LSP. But this method can protect user’s loca-

tion privacy under some conditions only and if the adversary estimates the threshold

angle which is used to filter space correlated dummies, he will be able to identify

dummies or even the user’s real location.

9.3 Preliminaries

This section presents the foundation for the next sections. After briefly reviewing

DC–net protocol, we introduce its drawbacks and explain why it requires modifica-

tions.

9.3.1 DC–net Overview

DC–net [49] is a distributed and non–interactive protocol proposed to provide

anonymous communications for a group of users who wish to anonymously publish

their messages in the group. Its title comes from the example by which Chaum

explained his proposed protocol:

Three cryptographers sit around a table in a restaurant to have dinner. They

are informed by a waiter that someone has anonymously paid their bill. The payer

can be one of them or the bill might have been paid by the NSA (National Security

Agency). They respect each other’s right to make an anonymous payment, but

they are curious to see if NSA has paid the bill. Thus, they perform the following

protocol:

For all pairs, two cryptographers share a secret bit by tossing an unbiased coin

behind their menu such that only those two cryptographers see the result. Thus,

cryptographer A, for example, has two secret bits kAB and kAC that have been shared
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Figure 9.1 : The Dining Cryptographers network in a simple example.

with cryptographer B and C, respectively (see Fig. 9.1). Then, if a cryptographer

has paid the bill, he XORs his shared keys with bit 1. Otherwise, the XOR operation

is performed with bit 0. In both cases, each cryptographer announces his result. If

the three published results are XORed together, the result bit is 0 if NSA has paid

their bill. If one of the cryptographers has paid the bill, the result is 1.

This basic protocol has been extended to multiple users in [125]. Let’s consider

N users u1, u2, u3, . . . , uN who wish to anonymously publish some L–bit messages

mi (i = 1, 2, . . . , N). Assume that each pair of users (ui, uj) shares an L–bit key

kij(w) in a set–up phase where kij(w) = kji(w) for i, j, w ∈ {1, 2, . . . , N}. Moreover,

in this phase, every user computes the following XORed Keys (XK) vector:

Xi = [xi(1) xi(2) xi(3) . . . xi(N)],

where

xi(w) = ⊕Nj=1
j 6=i

kij(w), w = 1, 2, . . . , N. (9.1)

After the set–up phase, users can broadcast their messages by performing the fol-

lowing steps:



136

(1) Every user ui randomly selects a slot (position) si ∈ {1, 2, . . . , N} in his/her

Xi vector.

(2) The XK vector Xi is converted to Yi by replacing xi(si) with mi ⊕ xi(si).

Then, Yi is published.

Since ⊕Ni=1xi(w) = 0 for w = 1, 2, . . . , N , if users have selected different positions,

we have:

⊕Ni=1Yi = M
′
,

where M
′

is the users’ messages vector M = [m1 m2 m3 . . .mN ] in which the

elements have been shuffled. We define M
′

as the Shuffled Messages Vector (SMV)

since we need to refer to this vector frequently.

Therefore, the users’ messages are published for the group in such a way that

the origin of each message is anonymous.

9.3.2 DC–net Drawbacks

Although DC–net offers strong anonymity, it suffers from some critical issues:

• Collision possibility : In DC–net, it is assumed that the users select different

slots (or positions) in the XK vector Xi. However, if two users ui and uj place

their messages in the same slot (i.e., si = sj are selected by them), mi ⊕mj

is recovered in the M
′

vector at the final stage that makes both mi and mj

unrecoverable (note that in this case, one element of M
′

is obtained as 0).

• Vulnerability against disruptions (security issue): DC–net works well only

when users execute the protocol honestly. The protocol is jammed if a mali-

cious user, for example, fills Yi with some random bits and publishes it. In

this case none of the users’ messages is successfully recovered.

Apart from that, we identified another critical issue, i.e. short stability, in the
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DC–net performance which is discussed in the next subsection.

9.3.3 The Short Stability Issue

We noticed that DC–net provides anonymity only for a few protocol cycles. After

users publish their messages for at least three cycles, it is possible to infer the origin

of each message by analysing vectors Yi published in the previous three cycles by

the users. To clarify this, consider the following example:

DC–net is performed by a group of four users u1, u2, u3, and u4 who want to

publish some 5–bit messages. They publish Y
(1)
i ,Y

(2)
i , and Y

(3)
i (i = 1, 2, 3, 4)

in the first three protocol cycles. Suppose the XK vector for user u1 is X1 =

[11000 10100 00110 10110], and for these three cycles, he/she selects slots 2, 4,

and 1 in the XK vector X1 to XOR his/her messages m
(1)
1 = 10011,m

(2)
1 = 11001,

and m
(3)
1 = 10101, with X1 components, respectively. Thus, for the published vector

Y1 we have:

Y
(1)
1 = [11000 00111 00110 10110]

Y
(2)
1 = [11000 10100 00110 01111]

Y
(3)
1 = [01101 10100 00110 10110]

By analysing these three vectors, the XK vector X1 is easily obtained. Intuitively,

if different slots are selected by the user u1, for a specific w ∈ {1, 2, 3, 4}, x1(w) is

the element in the set {y(l)
1 (w)} (l = 1, 2, 3) that has been repeated at least twice.

Having X1, the other users are able to compute X1 ⊕ Y
(j)
1 and identify u1 as the

publisher of m
(1)
1 , m

(2)
1 , and m

(3)
1 . If the same slot is chosen for at least two cycles,

the elements of the above set are totally different (assuming there are different

messages in each cycle). In this case, this slot is identified as the one in which the

user has XORed his/her message during at least two of these cycles.
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9.4 Conclusion

In this chapter, we reviewed the existing literature on anonymity and reviewed

the advantages and disadvantages of different anonymous communication protocols.

It is concluded that .

Moreover, this chapter presented some preliminaries as the foundation for the

next chapter. In this regard, the concept of differential privacy and the Laplace

mechanisms were presented. Moreover, we discussed the necessity of customising the

adjacency relation defined in the standard differential privacy to match its definition

with the location domain.

In the next chapter, we introduce our anonymity–based solution, i.e. Harmonized

and Stable DC–net (HSDC–net) for privacy preservation in social networks. HSDC–

net is a self–organizing protocol for anonymous communications that enables users

of social networks to anonymously publish their messages.
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Chapter 10

Anonymity in Social Networks

10.1 Introduction

While hiding the contents of users’ messages has been successfully addressed be-

fore, the anonymization of message senders remains a challenge, specifically if users

do not trust their ISP. To resolve this challenge, several solutions have been pro-

posed so far. Among these solutions, the Dining Cryptographers network protocol

(DC–net) provides the strongest anonymity guarantees. However, DC–net suffers

from two critical issues that makes it impractical: (1) collision possibility, (2) vul-

nerability against disruptions and DoS attacks. Moreover, we noticed a third critical

issue during our investigation: (3) DC–net users can be deanonymized after they

publish at least three messages. In other words, anonymity is provided only for a

few cycles of message publishing. In this paper, we propose Harmonized and Stable

DC-net (HSDC–net), a self–organizing protocol for anonymous communications. In

our protocol design, we first resolve the short stability issue and obtain SDC–net, a

stable extension of DC–net. Then, we integrate the Slot Reservation and Disruption

Management sub–protocols into SDC–net to overcome the collision and security is-

sues, respectively. Our prototype implementation shows that HSDC–net achieves

low latencies that makes it a practical protocol.

In the next section, we present our anonymity–based solution, i.e. Harmonized

and Stable DC–net (HSDC–net) for privacy preservation in social networks.
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Figure 10.1 : HSDC–net system architecture.

10.2 HSDC–net: Secure Anonymous Messaging in Online

Social Networks

In this section, we describe the proposed HSDC–net protocol and present the

Disruption Management sub–protocol. At the end of this section, we discuss how

HSDC–net supports multiple reservations.

10.2.1 Protocol Description

Suppose a group of N users who want to anonymously publish their messages

in the group. Assume they all use a simple messaging application that does not

offer anonymity. We add HSDC–net (as a separate and independent module) to the

messaging application to make it an anonymous message exchanging application

(see Fig. 10.1). In this scenario, HSDC–net delivers the SMV to the messaging

application in which the other users’ messages are placed in such a way that the

origin of each message is anonymous.

The proposed protocol is performed in three phases (1) Initialization, (2) Schedul-

ing, and (3) Message Publishing (MP). In the scheduling phase, after the protocol

initialization, the available N slots are anonymously allocated to the users. Then,



141

they publish their messages by continuously executing the MP phase. In the follow-

ing, we present each phase individually and in the order that they are performed.

Initialization

In this phase, all the N users in the group execute an initialization algorithm

individually. Considering user u1, this algorithm takes as input the user vector

U = [u2 u3 . . . uN ] and generates the following items in collaboration with the

users specified in U :

• A matrix of pairwise symmetric keys K
(0)
1 =



K
(0)
12

K
(0)
13

. . .

K
(0)
1N


,

in which K
(0)
1j = [k

(0)
1j (1) k

(0)
1j (2) . . . k

(0)
1j (N)], where k

(0)
1j (w), (w = 1, 2, . . . , N)

is an L–bit secret symmetric key that u1 shares with uj (j = 2, 3, . . . , N) to

use in slot w.

• Vector R1 = [r12 r13 . . . r1N ], where r1j is a random integer number shared

secretly between users u1 and uj.

Moreover, by executing this algorithm, each user ui signs the following two items

using his/her private key and sends them to user uj (j = 1, 2, . . . , N, j 6= i) (we

assume every user has adopted a public/private key pair and already published

his/her public key in the network):

• The jth row of matrix K
(0)
i (i.e., K

(0)
1j for user u1).

• The jth element in Ri (i.e., rij).

We will use these signatures for disruption management.
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Scheduling Phase

In this phase, every user ui performs the SR sub–protocol that is executed in the

following steps:

(1) ui creates vector Si = [Si(1) Si(2) . . .Si(N)], in which every element consists of

L zero bits (i.e., Si(w) = 0 for w = 1, 2, . . . , N).

(2) Two random integer numbers l and n are selected by ui in [1, L] and [1, N ],

respectively. Then, the lth bit in Si(n) is set to 1 to obtain S
′

i (assuming S
′

i is a

single bit–stream, it has only a single bit 1 in the position l + (n− 1)L).

(3) ui computes and publishes the following vector Zi:

Zi = [Zi(1) Zi(2) . . .Zi(N)],

where Zi(w) = [⊕Nj=1
j 6=i

k
(0)
ij (w)]⊕ S

′

i(w) ,w = 1, 2, . . . , N .

(4) Upon receiving N−1 vector Zj (j = 1, 2, . . . , N, j 6= i) from the other users (who

performed the same procedure), ui computes vector V = [V(1) V(2) . . .V(N)], in

which V(w) = ⊕Ni=1Zi(w). Note that V(w) = ⊕Ni=1S
′

i(w) because the terms related

to the pairwise keys are cancelled out when they are XORed together. Thus, if we

consider vector V as a single bit stream, it shows all the 1 bits set by the users

(in step 2) placed in their primary positions (see Fig. 10.2). (5) ui computes the

hamming weight of V, i.e., H = Hamming(V) that indicates how many bits 1 exist

in V. Based on the obtained H, two situations are supposable:

• If H = N , there is no collision and every user has selected a unique slot. In

this case, (considering V as a single bit stream) ui highlights his/her selected

1 (set in step 2) in V, keeps all the 1s and removes all the 0s of V (Fig. 10.2).

This results in a bit stream of size N in which all the N bits are 1. In this bit

stream, the bit number associated with the position in which the highlighted

bit 1 has been placed is the slot assigned to ui.
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Figure 10.2 : A simple illustration of SR performance.

• If H 6= N , it means two or more users have selected the same random numbers

l and n in step 2. In this case, the SR sub–protocol needs to be restarted.

However, to protect users against the DC–net short stability issue, we need

to change the users’ pairwise keys. To do this, every user ui changes his/her

symmetric keys K
(0)
i to K

(1)
i by adding rij to all the elements in the jth row of

K
(0)
i , (j = 1, 2, . . . , N, j 6= i). Using this technique, users can non–interactively

obtain a new set of pairwise keys without imposing any further communication

overhead.

As you see, we consider S
′

i as a single LN–bit vector in which every bit represents a

slot. By doing this, the N users have LN slots to select from instead of only N slots.

This can reduce the probability of collision to a negligible level if L is a relatively

large number.

Message Publishing (MP) Phase

After the N available slots of SMV are allocated to the N users in the scheduling

phase, every user ui can anonymously publish his/her messages. This can be done
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by performing the original DC–net protocol. However, as discussed before, the short

stability issue must be addressed first. For this reason, we propose Stable DC–net

(SDC-net) that addresses this issue.

Stable DC-net (SDC-net): In SDC–net, users change their pairwise keys before

they start a new round of the MP phase (publishing a new message is done with a

new set of pairwise keys). This makes the elements of Y
(p)
i dissimilar for different

rounds (p = 0, 1, 2, . . .).

Suppose ui wants to publish his/her message m
(p)
i in round p of the MP phase.

To change his/her pairwise keys, ui simply adds rij (which has been secretly shared

with user uj in the initialization phase) to all the elements in the jth row of K
(p−1)
i

(j = 1, 2, . . . , N, j 6= i). This results in K
(p)
i which is a set of different keys in

comparison to K
(p−1)
i . Therefore, by applying a different set of keys in equation 9.1,

a different XK vector Xi is obtained in each round of MP that makes Y
(p)
i completely

dissimilar to Y
(p−1)
i . Note that, the new sets of pairwise keys are obtained by the

users without imposing any further communication overhead to the protocol.

Now, let’s return back to explain the MP phase. In round p of this phase, user ui

publishes message m
(p)
i by invoking algorithm SDC − net(U,K(p)

i ,m
(p)
i , slti). This

algorithm takes as input, the vector U of N − 1 users, matrix of pairwise keys

K
(p)
i , user’s message m

(p)
i , and the slot number assigned to ui. The output of this

algorithm is the Y
(p)
i vector that its elements are obtained using equation 10.1 and

10.2:

y
(p)
i (w) = ⊕Nj=1

j 6=i
kij(w), for w = 1, 2, . . . , N, w 6= slti, (10.1)

and

y
(p)
i (slti) = m

(p)
i ⊕ (⊕Nj=1

j 6=i
kij(slti)) (10.2)

Similar to DC–net, every user is able to obtain the SMV by XORing the received
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N − 1 vector Y
(p)
j (j = 1, 2, . . . , N, j 6= i) with his/her own vector Y

(p)
i , i.e.:

SMV (p) = ⊕Ni=1Y
(p)
i (10.3)

As we mentioned before, users’ messages are shuffled in SMV such that the origin

of each message is unknown.

Disruption Management

As we discussed before, the original DC–net protocol is jammed if one or more

users perform dishonestly. Since misbehaviours of dishonest users are inherently

unavoidable, protecting DC–net against disruptions and jamming attacks is difficult

and imposes additional time and communication overheads on the protocol [46],

[52]. Therefore, creating accountability is a good solution to address this issue.

After a disruption is detected (if the users’ messages in SMV have been cor-

rupted), assuming the disruption is detected in round p, the following steps are

performed by every user ui who detects the disruption:

1) ui publicly informs other users that his/her message in slot slt has been corrupted

(note that revealing slt does not jeopardize ui’s anonymity since other users cannot

see his/her real message which has been corrupted).

2) Upon receiving ui’s announcement, other users publish the set of their keys related

to this slot, i.e., uj (j = 1, 2, . . . , N, j 6= i) publishes {k(p)
jl (slt)}Nl=1

l6=j
.

3) Every user uj checks the other users’ published keys to see if a user (say ul) has

published a key different than their shared pairwise key k
(p)
jl .

4) If uj (in step 3) finds that user ul has published a key different than their shared

pairwise key (i.e. k
(p)
jl ), he/she announces ul’s identity as the disruptor. To support

his/her claim, uj publishes ul’s signature on the real k
(p)
jl and rjl received during the

initialization phase.
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5) ui computes Dj = ⊕Nl=1
l 6=j

k
(p)
jl (slt) for j 6= i.

6) If Dj 6= Y
(p)
j (slt), uj’s identity is published by ui as the disruptor. Other users

can also confirm this by computing Dj and comparing it with Y
(p)
l (slt).

7) The messaging application is notified by sending the identity of the disruptor(s).

After the identity of disruptor(s) is publicly announced, the users can resume the

protocol, this time by excluding the disruptor(s). To do this, they need to update

their matrix of pairwise symmetric keys K
(p)
i by eliminating the row(s) associated

with the disruptor(s). However, they do not need to perform the initialization phase

and set up new pairwise keys as the previous keys are still valid.

Multiple Reservations

In HSDC–net, it is possible that a user reserves more than one slot in the schedul-

ing phase. The reason is that during the scheduling phase, the users have LN slots

to select from which is much larger than the number of users in the group, i.e. N ,

specifically, if L is a large number. This is an advantage for users with a high ac-

tivity rate that need to publish more messages during a single cycle. To reserve B

slots (B > 1) when performing the SR sub–protocol, a user needs to repeat step

2 of SR for B times. Note that in this case, the users’ XK vectors and SMV have

N + A(B − 1) elements (or slots), where A is the number of users who reserve B

slots. On the other hand, it is required to consider an upper limit on the number

of slots that every user can reserve. This protects the protocol from performance

degradation caused by collisions.

10.3 Results

This section presents a comprehensive security analysis of the proposed HSDC–

net protocol and discusses the results of our prototype implementation.
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10.3.1 Security Analysis

In this section, we show how the proposed protocol performs against different

security threats. The target of these security threats can be either deanonymizing

users’ messages or disrupting the protocol performance.

DoS attacks on SR sub–protocol: Suppose a malicious user uD reserves

many slots by setting the majority (or all) of vector ZD’s bits to 1. This results in

many collisions during the scheduling phase. According to our experimental results,

using the SR sub–protocol, the maximum number of SR restarts is 2, which can be

considered as a threshold to decide on a DoS attack. When a DoS attack is detected

during the scheduling phase, the DM sub–protocol is invoked which outputs the

identity of disruptor(s). Then, after uD is excluded from the list of peers, the honest

users can resume the protocol.

Collusions: Consider NC colluding users (uc,1, uc,2, . . . , uc,NC ) who want to

deanonymize the messages of a specific user uv. For this reason, they join the group

of which uv is a member, such that the final group size is N (N > NC). Moreover,

the NC colluding users share their matrix of pairwise keys (i.e., K
(0)
i ) along with

their random vector Ri. To deanonymize uv’s messages in round p, they need to

compute uv’s XK vector X(p)
v , compare it with the received Y(p)

v , and obtain m
(p)
v .

They can compute A1(w) = ⊕NCj=1k
(p)
v,j(w) (w = 1, 2, . . . , N) since they have already

shared their matrix of pairwise keys and random vector R. Thus, by using Equation

9.1, they start to build X(p)
v :

x(p)
v (w) = A1(w)⊕A2(w), w = 1, 2, . . . , N,

where A2(w) = ⊕Nj=NC+1k
(p)
v,j(w).

As you see, they need to have A2(w) to obtain each x
(p)
v (w) for w = 1, 2, . . . , N .

However, computing A2(w) requires the knowledge of pairwise keys k
(p)
v,j (j = NC +

1, NC+2, . . . , N) shared between uv and the non–colluding users (uNC+1, uNC+2, . . . , uN).
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Hence, the attack is defeated since A2(w) is unknown to the colluding users. Fur-

thermore, by employing a group entry control mechanism (like the one proposed in

[39]), we can prevent malicious users from setting up large size collusion groups.

Node Failures: Suppose user uo becomes offline while the protocol is being

performed. This prevents the other users from computing SMV using Equation 10.3

because uo is no longer broadcasting his/her vector Yo. In this case, the remaining

users can easily exclude uo and resume the protocol. To do this, assuming uo is

disconnected at round p, every user ui needs to exclude his/her keys shared with

uo (i.e. {k(p)
io (w)}Nw=1

w 6=i
) from Equations 10.1 and 10.2 before computing his/her Yi

vector. In other words, the users must remove the row associated with uo from their

matrix of pairwise symmetric keys K
(p)
i to be able to perform the next rounds of the

protocol. However, they do not need to perform the initialization phase and set up

new pairwise keys as the previous keys are still valid.

10.3.2 Performance Evaluation

In this section, we evaluate the performance of HSDC–net and present the re-

sults of our prototype implementation. In our evaluations, we consider Twitter,

Facebook Messenger, and Instagram. We conducted our experiments based on the

maximum number of characters per message allowed in these applications. For Twit-

ter, the maximum number of characters in a tweet has recently increased from 140

to 280 characters. However, this value is 500 and 2000 characters for Instagram and

Facebook Messenger, respectively. We considered 2 bytes of data per character on

average, as UTF–8 coding system is used by these applications.

Implementation

We developed a prototype implementation of HSDC–net to evaluate its deploy-

ment in microblogging applications. The implementation is written in Python and
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Figure 10.3 : Probability of collision after a single run of SR for (a) B = 3 and (b)

B = 5.

uses OpenSSL 1.1.0 for eliptic curve DSA signatures and PKI operations. We used

the Deterlab [63] infrastructure to test the prototype under realistic network condi-

tions. Deterlab provides a shared testbed for distributed protocols and enables us

to easily change network topology and node configurations.

Setup: The testbed topology that we used in Deterlab consists of three 100

Mbps LANs with 10 ms latency between the core switches and clients. The three

LANs are connected together using 10 Mbps links with 20 ms latency. We executed

the protocol for 5 to 50 clients. Two types of client machines were used for the

experiments: 3GHz Intel Xeon Dual Core with 2GB of RAM and 2.13 GHz Intel

Xeon CPU X3210 Quad Core with 4GB of RAM.

Evaluation

Collisions: Fig. 10.3 shows the probability of collision for different values of the

number of simultaneously active users and the scheduling overhead efficiency factor

B. Collisions are more likely to occur for larger values of B that shows a sensible

trade–off between collision probability and the efficiency factor B. Note that the

values of collision probability shown in the figures have been obtained based on only
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Figure 10.4 : (a) Time required to initialize the protocol, reserve a slot, and perform one

cycle of anonymous message publishing. (b) End–to–end latency to publish an anonymous

post.

a single run of the scheduling phase. However, we noticed that even for larger values

of B, almost 100% of the slots for the next B MP cycles are successfully allocated

in at most two runs of the scheduling phase.

Latency: Fig. 10.4 (a) shows the time required to perform the three phases

of HSDC–net. In this figure, the shown results are for the scenario in which the

clients publish messages of length 560 bytes (the maximum size of a single tweet on

average). Large values of N result in larger XK vectors that make the system slower.

Note that the illustrated time required for performing the message publishing phase

includes the time needed for a single run of the SR sub–protocol. For example,

considering N = 50, it takes 1.1 sec for the clients to anonymously publish a tweet

in the group. 0.56 sec of this time is spent on the slot reservation phase. The

end–to–end latency to publish an anonymous post is illustrated in Fig. 10.4 (b) for

Twitter, Instagram, and Facebook Messenger. Twitter has the quickest responses

since it has the smallest XK vector.

The time required to reserve B slots in a single run of the SR sub–protocol is
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Figure 10.5 : Time required to reserve B slots in a single run of SR for different values

of B

shown in Fig. 10.5. As the figure indicates, for B = 1 and B = 3 only a single run of

SR is required to reserve B slots. However, some collisions have occurred for B = 5

and B = 7 in larger values of N that caused the SR sub–protocol to be restarted.

Finally, in Fig. 10.6, the end–to–end latency of HSDC–net and some of the most

well–known anonymity protocols are compared. As you see, HSDC–net outperforms

Dissent [38] and Verdict [46] protocols in terms of speed. The reason is that the

SR and MP phases in HSDC–net are performed using simple and lightweight oper-

ations i.e. XOR and SUM. However, in Dissent and Verdict, heavy–duty tasks are

performed for public–key encryption/decryptions and zero–knowledge proofs. Note

that the latency of HSDC–net will be shorter if we have B > 1 because in this case

only a single run of SR is required for B consecutive cycles of message publishing.

Communication overhead: We also examined the maximum possible size of

the XK vector for Twitter, Facebook Messenger, and Instagram. Considering 50

users who publish their messages simultaneously in a group, the maximum size of

an XK vector is obtained 27, 49, and 195 KB, for these applications, respectively.
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Figure 10.6 : End–to–end latency to anonymously publish a tweet for HSDC–net and

some well–known anonymity schemes.

These values are quite practical since they are in range of the average size of an

ordinary email that is 75 KB. Note that, realistically, N is the number of users

that want to simultaneously publish their messages not the maximum number of a

group’s members. Thus, the real group size can be much larger than N .

10.4 Conclusion

In this chapter, we reviewed the anonymity issue in social networks and proposed

HSDC–net, a self–organizing and accountable protocol for anonymous communica-

tions. It addresses the three issues from which the original DC–net protocol suffers,

i.e., short stability, collision possibility, and vulnerability to disruptions. We first

extend DC–net to Stable DC–net (SDC–net) to solve the short stability issue. To

address the collision issue, we integrated the Slot Reservation sub–protocol into

SDC–net, by which users can reserve slots before they start to publish their mes-

sages. Our experimental results show that the probability of collisions are signifi-

cantly reduced. Finally, to handle disruptions, we proposed Disruption Management

sub–protocol and integrated it into SDC–net.
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In the next chapter, we introduce our second anonymity–based solution for pri-

vacy preservation in location–based services and social networks.
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Chapter 11

A Hybrid Location Privacy Protection Scheme in

Big Data Environment

11.1 Introduction

In this chapters we explore location privacy in location–based services (LBS)

and proposes a hybrid location privacy protection scheme for users. Indeed, loca-

tion privacy is a significant challenge of LBS. Particularly, by the advantage of big

data handling tools that are easily available, huge location data can be managed

and processed easily by an adversary to obtain user private information from LBS.

So far, many methods have been proposed to preserve location privacy of users in

these services. Among them, dummy–based methods have various advantages in

terms of implementation and low computation costs. However, they suffer from the

spatiotemporal correlation issue when users submit consecutive requests. In this

chapter, we investigate this issue and propose a practical dummy–based location

privacy protection scheme to address it. The proposed method filters out the cor-

related fake location data (dummies) before submissions. Therefore, the adversary

can not identify the user’s real location. Evaluations and experiments show that

our proposed filtering technique significantly improves the performance of existing

dummy–based methods and enables them to effectively protect the user’s location

privacy in the big data environment.
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11.2 Background

With the recent huge advance in technology, we are now facing the age of big

data. According to the IBM report∗ we create 2.5 quintillion bytes of data every

day, and 90% of the data in the world today has been created in the last two years

alone. This data comes from sensors, social media sites, emails, digital pictures

and videos, and different mobile applications. Among these applications, Location-

Based Services (LBS) have a significant and growing impact on big data since they

produce a large number of location data every day [104–105]. These location data

have three dimensions, personal, spatial and temporal, indicating a user’s location at

a specific time. Location–Based Service Provider (LSP) uses these data to provide

information, such as the nearest ATM, restaurant, or a retail store.

However, a significant challenge for LBS is how to protect users location privacy.

Since LSPs store location data of users, it is feasible that an adversary at LSP

obtains private information about a user by analysing her position data. Even if a

user’s name or ID is hidden or pseudonyms are used, it has been shown that privacy

may be invaded by analysing position data only [4], [106]. Hence, it is necessary to

develop a location privacy preserving system to prevent LSPs from obtaining the

user’s real location.

Many methods have been proposed to achieve this goal [4], [12], [75–76], [79].

These methods can be categorized in different ways. In [79], they have been catego-

rized as Spatial Anonymization, Obfuscation, and Private Retrieve methods. How-

ever, in [14] they have been classified from a different point of view as Dummy–based,

K–Anonymity, Differential Privacy and Cryptography–based methods. Regardless

how we classify them, they all have a common goal: to protect user’s location privacy

while at the same time user benefits from advantages of the service.

∗https://www.ibm.com/software/data/bigdata/what-is-big-data.html
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Each of the aforementioned methods has its own strengths and weaknesses. But

among them, dummy–based methods have drawn the attention of researchers due

to their unique features ([4], [12], [10–11], [14–16]). In dummy-based methods, in

addition to the user’s real location, some fake location data (dummies) are sent to

LSP by the user as a service enquiry. This prevents the adversary from distinguishing

the user’s real location. LSP then provides the requested information to the user,

who can easily extract her own required information among them and ignores the

others. The most important advantage of dummy–based methods is that they do not

rely on a trusted third party anonymizer. Moreover, users do not need to encrypt

the requests. Thus, there is no need to share a key between the LSP and users.

However, for some LBS in which users send requests continuously, such as route

navigation applications, it has been shown that dummy–based methods suffer from

a crucial restriction, which has been named as the spatiotemporal correlation issue

[14]. When a user sends consecutive service queries, there is always two types of

correlation between neighbouring location sets, i.e., space and time correlations. In

Fig. 11.1, we show an example of these correlations. As we can see in the diagram,

there are two consecutive location data, each one consisted of the user’s real location

and four dummies. Although dummy D′3 in the second location set is geographically

close to other dummies and the user’s real location, it isn’t reachable in the request

time interval since there is a river between them. Hence, the adversary can exploit

this time correlation and identify it as a fake location data. Moreover, you can

see that D′4 is not in the same direction with other dummies and the real location.

Thus, the adversary can identify it as a dummy because it is separated from the

trajectory, especially when we consider more consecutive requests.

Experiments in [14] indicated that the existing dummy–based schemes can pro-

tect user location privacy with no more than 42% success ratio when users send

consecutive requests. To solve the mentioned problem, a spatiotemporal correlation–
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Figure 11.1 : The concept of Spatiotemporal correlation issue between 2 neighbouring

location sets.

aware scheme has been proposed in [14], in which correlated dummies are identified

and prevented from transmission to LSP. This makes the neighbouring submitted

location sets uncorrelated. Therefore, the adversary can’t increase the probability

of distinguishing the real location by identifying dummies and ignoring them.

The proposed scheme in [14] has well identified and addressed the spatiotemporal

correlation issue. However, the scheme can only solve the problem under some

conditions. To solve this issue, a new filtering technique is presented in this chapter

which enables users to filter out spatiotemporal correlated dummies. It works with

the existing dummy–based methods to generate initial candidate dummies. Then,

it examines the generated dummies in terms of time and space correlations and

filters out the corrolated ones. It guarantees that only uncorrelated dummies are

submitted to the LSP. Unlike [14], our proposed technique can prevent the adversary

from identifying dummies without the limitations which [14] has while enjoys all of

its advantages.

11.3 Assumptions and Definitions

Table 11.1 summarizes the notations to be used throughout the chapter. The

system architecture that we adopt is a client–server model (see Fig. 11.2) in which
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Table 11.1 : Summary of Notation

Symbol Meaning

Ki User location privacy requirement number

lji jth dummy generated at ith service request

lri User’s real location at ith request

Ti Time at which ith location is sent to LSP

Li={l1i , l2i ,. . . , lKi−1
i , lri } Location set at ith service request

< lri−1, lri > The real movement path

no trusted third–party is required. LSP is assumed to be untrusted and knows what

location privacy protection algorithm the user runs. Also, we assume that LSP has

enough public side information about the requesting region (e.g., he has a detailed

map of the region), therefore, he can utilize the spatiotemporal correlation between

neighbouring location sets to identify the user’s real location.

At ith service request, the algorithm generates Ki-1 dummies, (l1i , l
2
i ,. . . , lKi−1

i ),

and the location set Li is formed by adding the user’s real location lri to dummies.

Then, as we can see in Fig. 11.2, Li is submitted by the user to LSP at time Ti

. LSP processes the request and sends the requested information back to the user

including Ki service query results. Finally, the user picks up her own query result

and ignores the others.

11.3.1 User’s Location Privacy Requirement

If we define Ki as the parameter which reflects the user’s location privacy re-

quirements, then the adversary must not be able to identify the user’s real location

with a probability greater than 1/Ki. We define this as the minimum User’s Loca-

tion Privacy Requirement (ULPR). Therefore, in order to satisfy it, the user must
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Figure 11.2 : Our proposed system architecture. Unlike K–Anonymity methods, there is

no need to have a trusted third–party anonymizer.

Figure 11.3 : An example of two neighbour location sets at time Ti−1 and Ti.

send at least Ki-1 uncorrelated dummies with the real location to LSP.

11.3.2 Analysis of a Correlation–Aware Scheme

The spatiotemporal correlation–aware privacy protection scheme presented in

[14] uses a Direction similarity filter to make sure that all dummies are in the same

direction with the real movement path, and hence are not correlated in terms of

space. To do this, the algorithm filters out those fake movement paths which have

an angle with the real movement path larger than a threshold, which is designed as

follows:

∀li ∈ Li, ∃li−1 ∈ Li−1 : ∠[(li−1, li), (l
r
i−1, l

r
i )] ≤ σA , (11.1)

where symbol ∠ denotes the angle between the fake and real movement paths and

σA is a threshold angle defined by the user.
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The problem here is that if an adversary chooses σ′A so that σ′A<2σA (the adver-

sary doesn’t know σA since it is a user–defined value), the algorithm cannot satisfy

the minimum ULPR, because if the adversary calculates the angle between any pair

of the movement paths, he can identify those pairs which have an angle larger than

σ′A as the fake movement paths. For example, in Fig. 11.3 the angle between 2 fake

movement paths is θ1+θ2. According to (1), both θ1 and θ2 are smaller than σA, so

we have

θ1 + θ2 ≤ 2σA (11.2)

Therefore, if the adversary chooses σ′A so that σ′A<2σA, then he concludes that

both movement paths are fake because the angle between them is larger than the

threshold and none of them can be the real movement path. In such cases the min-

imum ULPR is not satisfied because some dummies are identified by the adversary,

and he can distinguish the user’s real location with a probability greater than 1/Ki.

Hence the scheme proposed in [14] works for σ′A>2σA only.

In the next section, our new filtering technique is presented which simulation

results show that it can successfully solve this problem.

11.4 The Hybrid Scheme

Our proposed scheme can work with any existing dummy generation methods.

After dummies generated, they are passed through a three–stages filter to eliminate

the spatiotemporal correlated dummies and hence satisfy the minimum ULPR (by

submitting at least Ki − 1 uncorrelated dummies with the real location to LSP).

We have chosen the last stages of our proposed filter same as Time Reachability

and In–degree/Out–degree filters presented in [14]. But we have developed a new

filtering technique for the first stage.
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11.4.1 Direction Filter

This is the first filter that dummies are applied to. The goal of this filter is to

eliminate the spatial correlation between neighbouring location sets. This is done by

the direction filter which makes sure that each dummy has at least one movement

path in the same direction with the real movement path. Therefore, there are at

least Ki−1 spatially uncorrelated dummies at the output of this stage. The filtering

rule is defined as 

∀li ∈ Li, ∃li−1 ∈ Li−1 :

θmin ≤ ∠[(li−1, li), x axis)] ≤ θmax

∀li−1 ∈ Li−1, ∃li ∈ Li :

θmin ≤ ∠[(li−1, li), x axis)] ≤ θmax,

(11.3)

where θmin and θmax are calculated through (4):

 θmax = (j + 1) 2π
Ki

;

θmin = j 2π
Ki

for j
2π

Ki

≤ θri ≤ (j + 1)
2π

Ki

(11.4)

j = 0, 1, 2, . . . , Ki − 1,

where θri is the angle between the real movement path and x axis at ith service

request and [θmin,θmax] is the angle range that selected dummies can have.

The algorithm not only checks the current dummies, but also checks the previous

location data which have already submitted to the LSP. This is because all dummies

in the previous location set must have at least one movement path with the same

direction as the real movement path’s direction. Otherwise the related dummy will

be identified by the adversary as a detached point since there is no movement path



162

leaves it in the same direction with other movement paths. Unlike [14], there is no

need to use a user–defined parameter like σA which adds some side information to

the adversary’s knowledge.

11.4.2 Time Reachability Filter

After that space correlation between neighbouring dummies has been removed

in the first stage, time reachability filter checks the reachable time of every possible

movement path formed between the existing dummies and the previous location set.

Every movement path which is unreachable in the request time interval Ti − Ti−1 is

eliminated by this filter. Therefore, the adversary is no longer able to identify fake

movement paths from their unusual reachable time. In fact, this filter guarantees

that every dummy has at least one movement path which is reachable in the request

time interval. Thus, all dummies which pass this filter and the user’s real location

have same entropy in terms of time reachability.

After this stage, there must be at least Ki − 1 dummies to satisfy the minimum

(ULPR), otherwise (in case that more than M −Ki + 1 dummies are filtered where

M is the total number of initial dummies) the dummy generation algorithm will be

re–invoked to generate another initial dummy set and the algorithm will be restarted.

11.4.3 Detached/Hub Filter

This filter has the same structure as In–degree/Out–degree filter in [14] has. The

dummies finally are applied to this filter to make sure that:

• There is at least one movement path for each dummy (there is no detached

dummy which has no possible movement path starts from or ends at it).

• There is at least one dummy with larger number of movement paths than what

the real location has. (If the real location has the most number of movement

paths, it is identified by the adversary since it is a movement hub [14])
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Again, at the end of this stage, we must have at least Ki − 1 dummies to satisfy

the minimum ULPR. In fact, the last stage completes the performance of other two

stages and if in any of the previous stages a dummy has been detached (due to

eliminating its movement paths) or if the real location has become the movement

hub, the detached/hub filter will sort it out and eliminate this additional information

which can be exploited by the adversary to identify the user’s real location.

11.5 Analysis on the proposed scheme

The adversary is assumed to be able to store and analyse the user’s location data

in order to obtain some private information about the user. We assume a location

privacy protection scheme to be secure if it can satisfy the minimum ULPR.

If our scheme is adopted by a user to protect her location privacy, she submits

her query to LSP includes her real location and at least Ki − 1 dummies. Since all

dummies have already passed through direction, time reachability and detached/hub

filters, there is no spatiotemporal correlation between the dummies, also, the move-

ment paths formed by our proposed scheme are indistinguishable. In the other word,

it can be said that:

1) For each dummy, there is at least one movement path which is reachable in

the request time interval. So, totally, there are at least Ki − 1 different movement

paths reachable in the request time interval. Hence, if the adversary wants to exploit

any time correlation between neighbouring location data and choose one movement

path as the real one, he will be successful with a probability of no more than 1/Ki.

2) Through direction filter, only those dummies are selected to submit that

at least one of their corresponding movement paths is in the same direction with

the real movement path. Therefore, if the adversary tries to identify dummies by

means of the space correlation between dummies, he has to choose one among Ki
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uncorrelated location points which means the success ratio is not more than 1/Ki .

So, our proposed scheme satisfies the minimum ULPR, hence, protects the user’s

location privacy effectively.

11.6 Performance Evaluation

11.6.1 Evaluation Setup

The algorithm has been implemented in Matlab on a Windows 7 laptop with

2.3 GHz Intel i5 CPU and 4GB memory. We use California Points of Interest† as a

real dataset with 208,000 locations including restaurants, bars, shopping centers and

hospitals. Also, we adopt the GridDummy algorithm [11] to generate dummies for

consecutive requests over a real road map of Los Angeles city (source: TIGER/Line

Files‡).

In our experiments, the user’s location privacy requirement K is selected from the

common range 3 to 20 and for simplicity we assume the user has same Ki in all the

requests. Also, for each user we define a trajectory consisted of 11 real locations and

10 movement paths. The reachable time between consecutive locations are obtained

from Google Map API.

We define the number of indistinguishable movement paths as the criteria to

measure the level of location privacy protection. This is because the larger number of

indistinguishable movement paths we have, the less likely the adversary can identify

the user’s real location among dummies.

†https://www.cs.utah.edu/ lifeifei/SpatialDataset.htm

‡https://www.census.gov/geo/maps-data/data/tiger-line.html
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Table 11.2 : The Average number of dummy regenerations for different numbers of

initial candidate dummies

Initial candidate dummies Average number of

dummy regenerations

1.5K 4

2K 1

3K 0

4K 0

11.6.2 Results

Fig. 11.4 shows the number of indistinguishable movement paths for each user

location privacy requirement K. The baseline shows the minimum ULPR in which

the adversary faces only K indistinguishable movement paths. As you see, our

proposed algorithm has a significant distance with the baseline, especially in large

amounts of K. For example, when K=20, the minimum ULPR is satisfied by only

20 indistinguishable movement paths. However, our proposed algorithm can form

98 indistinguishable movement paths on the average, which is much more than 18.

Therefore, our proposed method always satisfies the minimum ULPR hence, protects

the user’s location privacy in consecutive requests with 100% success ratio.

Fig. 11.4 shows the case in which we have generated 1.5K dummies as the

initial candidate dummies. The reason that we have not generated only K initial

candidate dummies is that the algorithm may never be completed. In fact, in such

cases, some of these K dummies are always filtered by the algorithm. Hence, we have

less than K location data after filtering and consequently the algorithm is restarted

continuously. Therefore, to guarantee the algorithm’s convergence we must generate

more than K initial candidate dummies. Also, choosing a larger number of initial
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Figure 11.4 : Average number of indistinguishable movement paths for 1.5K initial can-

didate dummies.

Figure 11.5 : Average number of indistinguishable movement paths for 3K initial candi-

date dummies.

candidate dummies causes more dummies at the output, thus more indistinguishable

movement paths the adversary faces (Fig. 11.5) that means higher location privacy

protection.

On the other side, by increasing the number of initial candidate dummies, the

computation cost for filtering is increased though the number of dummy regen-

erations reduced. To find an optimum number of initial candidate dummies, we

compare the average number of dummy regenerations for 1.5K, 2K, 3K and 4K

number of initial candidate dummies in Table 11.2. As you see, by increasing the

number of initial candidate dummies, the average number of dummy regenerations
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is reduced. This is obvious because if we have more initial candidate dummies it is

more likely that we have at least K location data at the output and there is no need

to regenerate dummies. But this decrease isn’t significant from 2K to 3K an 4K.

Thus, the optimum number for initial candidate dummies is 1.5K which is not too

much to increase the computation cost and at the same time the number of dummy

regenerations is in an acceptable level.

11.7 Conclusion

In this chapter, we proposed an enhanced filtering technique to improve the

performance of dummy generation methods when users send consecutive requests in

LBS applications. It eliminates the spatiotemporal correlation between neighbouring

dummies before submitting them to the service provider. The proposed algorithm

consists of 3 filters. Direction and Detached/Hub filters have been designed to elim-

inate the spatial correlation between neighbouring location sets. Moreover, Time

filter eliminates those dummies which are correlated in time reachability factor. Se-

curity analysis show that our proposed scheme satisfies the minimum User’s Location

Privacy Requirement (ULPR). Also, experimental evaluations indicate that the pro-

posed algorithm can significantly improve the user’s location privacy by increasing

the number of indistinguishable movement paths.
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Chapter 12

Summary

12.1 Introduction

The recent advances in smartphone technology and positioning systems has en-

abled social network service providers to offer a variety of location–based applica-

tions and services for their users. In these applications, real–time location data of

mobile users is utilised to provide requested information or access to a resource or

service. However, preserving location privacy of users is a big challenge for the ser-

vice providers since users share their location data either with other users or with a

service provider.

In this regard, many research efforts have been made to address this issue. From

our literature review, we found that differential privacy, as a promising framework,

can be employed to develop reliable and efficient privacy preserving mechanisms in

social networks. However, Anonymity and Cryptography–Based approaches have

also been used in this domain. Each of the mentioned approaches has its own

benefits and disadvantages as discussed in this thesis. In this chapter, we present a

summary of the research work done in this study.

12.2 Conclusion

In this research study, we investigate the location privacy issue in social network

and develop Distance–based Location Privacy Protection mechanism (DBLP2), a

customisable location privacy protection approach that is uniquely designed for so-

cial network users. In DBLP2, the concept of social distance is utilised to generalise
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users’ location data before it is published in a social network. The level of gen-

eralisation is decided based on the social distance between users. Furthermore, to

preserve users’ location privacy in location–based applications and services (the pop-

ular and fast growing social network applications), we propose three privacy–aware

location verification schemes: (i) Privacy–Aware and Secure Proof Of pRoximiTy

(PASPORT), (ii) Secure, Privacy–Aware and collusion Resistant poSition vErifi-

cation(SPARSE), and (iii) a blockchain–based location verification scheme. They

prevent dishonest users from conducting location spoofing attacks while protect lo-

cation privacy of users. To the best of our knowledge, majority of the existing

location verification schemes do not preserve location privacy of users.

Theoretical and experimental results show that DBLP2 mechanism provides the

optimum data utility regarding the trade–off between privacy protection and data

utility. In addition, our experimental results indicate that DBLP2 is offers variable

location privacy protection and is resilience to post processing. Regarding the pro-

posed SPARSE scheme, our analysis and experiments show that SPARSE provides

privacy protection as well as security properties for users including integrity, unforge-

ability and non–transferability of the location proofs. Moreover, it achieves a highly

reliable performance against collusions. To validate performance of the PASPORT

scheme, we implement a prototype of the proposed scheme on the Android platform.

Extensive experiments indicate that the proposed method can efficiently protect

location–based applications against fake submissions. For the proposed blockchain–

based scheme, our prototype implementation on the Android platform shows that

the proposed scheme outperforms other currently deployed location proof schemes.

We also study the anonymity topic in social networks and utilise it as another

solution to preserve users’ privacy in social networks. In this regard, we

first study the relevant protocols and discuss their features and drawbacks. Then,
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we introduce Harmonized and Stable DC–net (HSDC–net), a self–organising proto-

col for anonymous communications in social networks. As far as we know, social net-

works do not offer any secure anonymous communication service. In social networks,

privacy of users is preserved using pseudonymity, i.e., users select a pseudonym for

their communications instead of their real identity. However, it has been shown

that pseudonymity does not always result in anonymity (perfect privacy) if users’

activities in social media are linkable. This makes users’ privacy vulnerable to

deanonymisation attacks. Thus, by employing a secure anonymous communication

service, social network service providers will be able to effectively preserve users’

privacy.

The proposed HSDC–net protocol addresses the three issues from which the

original DC–net protocol suffers, i.e., short stability, collision possibility, and vul-

nerability to disruptions. We first extend DC–net to Stable DC–net (SDC–net) to

solve the short stability issue. To address the collision issue, we integrated the Slot

Reservation sub–protocol into SDC–net, by which users can reserve slots before they

start to publish their messages. Our experimental results show that the probability

of collisions are significantly reduced and they are totally avoided after at most two

runs of SR. Finally, to handle disruptions, we proposed Disruption Management

sub–protocol and integrated it into SDC–net. The results of our implementation

show that HSDC–net achieves low latencies that makes it a practical protocol.
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