

Research on Intelligent Suppression for Torsional Vibration of Electric Vehicle Drivetrain

by Shengxiong Sun

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Prof. Nong Zhang

University of Technology Sydney
Faculty of Engineering and Information Technology

January 2020

CERTIFICATE OF ORIGINAL AUTHORSHIP

This research is supported by the Australian Government Research Training Program.

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis.

Production Note:

Signature of Student: Signature removed prior to publication.

Date: December 2019

i

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank the following people and organizations for their assistance and support during my candidature of the collaborative doctoral degree program.

First and foremost, I would like to express my true gratitude to my principal supervisor Prof. Nong Zhang, his intensive guidance and enlightenment are so helpful and encourage me a lot. Thank my co-supervisor Dr. Paul Walker all the same for his help and support, express appreciation to Dr. Jinglai Wu and Dr. Jiageng Ruan all the same.

I also would like to thank my former supervisor Prof. Cheng Lin from Beijing Institute of Technology for his support and assistance, together with his doctoral students Dr. Fengling Gao, Jiang Yi, Sheng Liang, Jian Chen, Xiang Gao, and Dr. Junhui Shi, Dr. Aidao Dong from BIT HuaChuang Electric Vehicle Technology Co., Ltd. and Dr. Bo Zhu and Hao Peng from Hefei Polytechnic University regarding helps for experiments.

There are also supports from my friends Adam McCormick Natalie Hammell, Sarah Woellner, Ann Madden, et al. from Anglican Church, Marrie Ma, Ao Li from the University of New South Wales, Zheng Gong from Wonder Group, Bao Wu from Tsinghua & Cornell Universities, et al.

Last but not least, special thanks to my parents, without their understanding and support I will not finish my studies successfully. My research and thesis get financial support from National Natural Science Foundation of China (grant number: 51575044), National Key R&D Program of China (grant number:2017YFB0103801), joint scholarship of University of Technology Sydney and China Scholarship Council.

TABLE OF CONTENTS

	i
ACKNOWLEDGEMENTS	ii
LIST OF FIGURES	vi
LIST OF TABLES	ix
GLOSSARY OF TERMS	X
ABSTRACT	xii
CHAPTER 1: INTRODUCTION	1
1.1 Overview of the Project	1
1.2 Research Objectives and Contribution to Knowledge	4
1.3 Presentation and Structure of the Thesis	5
1.4 Background and Literature Review	7
1.4.1 Background of Research	7
1.4.2 Literature and Information Review	13
1.5 Publications	32
CHAPTER 2: MODELLING AND ANALYSIS OF THE ELECTRIC VEHI	CLE
POWERTRAIN	33
2.1 Introduction	33
2.2 Modelling of the EV Powertrain	2.4
	34
2.2.1 Principles of Establishing Dynamic Equations for EV Powertrain	
2.2.1 Principles of Establishing Dynamic Equations for EV Powertrain 2.2.2 Modelling of the Permanent Magnet Synchronous Motor	34
	34
2.2.2 Modelling of the Permanent Magnet Synchronous Motor	34 36 41
2.2.2 Modelling of the Permanent Magnet Synchronous Motor	34 36 41
2.2.2 Modelling of the Permanent Magnet Synchronous Motor	34 36 41 42
2.2.2 Modelling of the Permanent Magnet Synchronous Motor	34 36 41 42 42
2.2.2 Modelling of the Permanent Magnet Synchronous Motor	34 41 42 42 43
2.2.2 Modelling of the Permanent Magnet Synchronous Motor	34 41 42 43 43

CHAPTER 3: INTELLIGENT PARAMETER ESTIMATION FOR VEHIC	LE
MASS BASED ON PARTICLE FILTER	.50
3.1 Introduction	.50
3.2 Bayesian Estimation Theory	.51
3.3 Nonlinear Particle Filter Algorithm	.52
3.3.1 Monte Carlo Integration	.52
3.3.2 Bayesian Importance Sampling	.53
3.3.3 Sequence Importance Sampling Based on Markov Process	.54
3.3.4 Particle Resampling	.56
3.3.5 General Algorithmic Flow of Particle Filter	.58
3.4 Particle Filter- Based Nonlinear Vehicle Mass Estimation	.59
3.4.1 Discretization of Nonlinear Continuous Systems	.59
3.4.2 Estimation of Vehicle Mass	.61
3.5 Simulation of the Vehicle Mass Estimator Performance	.62
3.6 Summary	.68
CHAPTER 4: NOVEL SLIDING MODE OBSERVER FOR MOTION STATE	OF
ELECTRIC VEHICLE DRIVETRAIN	.69
4.1 Introduction	.69
4.2 Accelerated Adaptive Second Order Super Twisting Sliding Mode Observer.	.70
4.2.1 Observability Criterion for Nonlinear Systems	.70
4.2.2 Principle of Sliding Mode Variable Structure	.71
4.2.3 Accelerated Adaptive Super-Twisting Sliding Mode Observer	.72
4.2.4 Observer Performance Test	.80
4.3 Observation of Torque in Drive Shaft Using AASTW	.84
4.3.1 Drive Shaft Torque Observer Design	.85
4.3.2 Simulation Test	.91
4.4 Summary	.94
CHAPTER 5: QUANTUM OPTIMAL CONTROL OF TORSION	AL
OSCILLATIONS FOR EV DRIVETRAIN	.95
5.1 Introduction	.95

5.2 Intelligent Optimization Based on Quantum Genetic Algorithm	96
5.2.1 Qubit Coding	97
5.2.2 Revolving Gate of Quantum Evolution	99
5.3 Active Damping Control for EV Drivetrain Oscillation	101
5.3.1 Optimal Control of Motor Torque Unloading Before Shifting.	101
5.3.2 Optimal Control of Motor Torque Loading for Launch	106
5.3.3 Active Damping Controller with Off-line QGA Optimization	Jnit 107
5.4 Simulation Test	109
5.4.1 Torque Unloading Phase	110
5.4.2 Torque Increasing for Launch Phase	116
5.4 Summary	119
CHAPTER 6: HARDWARE-IN-LOOP SIMULATION AND REAL	VEHICLE
EXPERIMENT	120
6.1 Introduction	120
6.2 Overview of the Rapid Prototype Experimental Platform	120
6.2.1 Software	121
6.2.2 Hardware	122
6.3 Experiment of Vehicle Mass Intelligent Parameter Estimation	123
6.4 Experiment of Drive Shaft Torque Observation	126
6.5 Experiment of Active Damping Control for EV Drivetrain	130
6.6 Summary	131
CHAPTER 7: SUMMARY AND PROSPECT	132
7.1 Summary	132
7.2 Prospect and Future Work	134
APPENDICES	135
Appendix A	135
Appendix B	136
REFERENCES	138

LIST OF FIGURES

Figure 1.1 Condition of Part of Beijing Traffic at A Certain Time	1
Figure 1.2 Organization of the Thesis.	6
Figure 1.3 Electric Vehicle Sales Forecast in Major Countries of the World	8
Figure 1.4 Typical Centralized Driven Electric Vehicle Powertrain Layout	9
Figure 1.5 Sketch of PMSM Efficiency	10
Figure 1.6 Electric Logistics Vehicle Prototype with Integrated Powertrain	11
Figure 1.7 Novel Synchronizer "Harpoon-Shift"	14
Figure 1.8 Alternative Shifting Strategies	18
Figure 1.9 (a) Case I, (b) Case II.	19
Figure 1.10 Various Approximate Functions of the Sign Function	26
Figure 2.1 Configuration of the EV Powertrain in This Thesis	33
Figure 2.2 Permanent Magnet Synchronous Motor Physical Model	37
Figure 2.3 Relationship of the Three Coordinates	38
Figure 2.4 Input and Output of Subsystems of EV Powertrain	41
Figure 2.5 Sketch of Vehicle Longitudinal Forces	44
Figure 2.6 Torsional Vibration Mechanics Model of the Electric Drivetrain	46
Figure 2.7 Frequency Response of Vehicle Body to Motor Excitation	49
Figure 3.1 Model of the State Space	55
Figure 3.2 Principle of Resampling.	56
Figure 3.3 Roulette Principle of resampling.	57
Figure 3.4 Process of Particle Filter.	58
Figure 3.5 Principle of Euler Discretization.	60
Figure 3.6 Simulation Model for Vehicle Mass Estimation	63
Figure 3.7 Vehicle Mass Estimation Performance When m=1500kg	64
Figure 3.8 Particles Distribution in Time Sequence When m=1500kg	64
Figure 3.9 Vehicle Mass Estimation Performance When m=1900kg	65
Figure 3.10 Particles Distribution in Time Sequence When m=1900kg	65

Figure 3.11 Vehicle Mass Estimation Performance When m=2300kg	66
Figure 3.12 Particles Distribution in Time Sequence When m=2300kg	66
Figure 3.13 Vehicle Mass Estimation Performance When m=2500kg	67
Figure 3.14 Particles Distribution in Time Sequence When m=2500kg	67
Figure 4.1 Motion of the System Trajectory Along the Sliding Manifold	71
Figure 4.2 Sketch Map of Adaptive Gain Effect.	75
Figure 4.3 Sketch Map of Majorant Trajectory for the Observer	77
Figure 4.4 Effect of Damping on Reachability	80
Figure 4.5 Observation Error Convergence of Regular Sliding Mode Observer	81
Figure 4.6 Observation Error Convergence of Super-Twisting Sliding Mode Ob	server82
Figure 4.7 Observation Error Convergence of Accelerated Super-Twisting Slice	ding Mode
Observer	82
Figure 4.8 Observation Error Convergence of Adaptive Super-Twisting Slice	ling Mode
Observer	83
Figure 4.9 Observation Error Convergence of Accelerated Adaptive Supe	r-Twisting
Sliding Mode Observer.	83
Figure 4.10 Motor Efficiency Map.	85
Figure 4.11 Scheme of Drive Shaft Torque Estimation	86
Figure 4.12 Domain of Π_1 and Π_2	88
Figure 4.13 Sketch of Sliding Mode Trajectory	89
Figure 4.14 Simulation Model of Observer for Torque in EV Drive Shaft	92
Figure 4.15 Working Condition Settings for Simulation	93
Figure 4.16 Tracking of the Measurable States of EV Drivetrain	94
Figure 4.17 Observation Performance of the Torque Observer	94
Figure 5.1 Typical Genetic Algorithm Optimization Flow Chart	96
Figure 5.2 Expression of Qubit on Spherical Coordinate	98
Figure 5.3 Quantum Genetic Algorithm Optimization Flow Chart	101
Figure 5.4 Simplified Transmission Model.	103
Figure 5 5 Structure of the Joint Control Algorithm with OGA Off-line	109

Figure 5.6 Electric Vehicle Powertrain Model in AMEsim	.110
Figure 5.7 Evolution of the Fitness.	.111
Figure 5.8 Motor Torque Output Under Optimal Control Law	111
Figure 5.9 Control Performance of the Drivetrain.	.112
Figure 5.10 Torque Transmitted in the Gears of Transmission	.112
Figure 5.11 Root Locus of the Drivetrain with Transmitted Torque Feedback	113
Figure 5.12 Root Locus of the Drivetrain with Wheel Speed Feedback	.114
Figure 5.13 Sensitivity Sww of Wheel Speed Response	.114
Figure 5.14 Sensitivity Sww of Transmitted Torque Response	.115
Figure 5.15 Evolution of the Fitness	116
Figure 5.16 Motor Torque Output of Control Laws	.117
Figure 5.17 Control Performance of Wheel Speed During Acceleration	.117
Figure 5.18 Root Locus of the Speed Control System	.118
Figure 5.19 Sensitivety of Wheel Speed Response.	.118
Figure 6.1 Interface of ControlDesk.	.121
Figure 6.2 Interface of ModelDesk.	.122
Figure 6.3 MicroAutobox.	.122
Figure 6.4 dSPACE Simulator.	.123
Figure 6.5 Experiment for Vehicle Mass Estimation.	.124
Figure 6.6 Fitting of the Sliding Speed.	.124
Figure 6.7 Fitting of the Drag Torque and Vehicle Speed	.125
Figure 6.8 Performance of the Vehicle Mass Estimation.	.126
Figure 6.9 Experiment for Drive Shaft Torque Observation	.126
Figure 6.10 PMSM External Characteristic Map	.127
Figure 6.11 Fitting of the Sliding Speed.	.128
Figure 6.12 Fitting of the Drag Torque and Sliding Speed	.128
Figure 6.13 Observation of Torque in Drive Shaft	.129
Figure 6.14 Experimental Equipment of Active Damping Control for EV Drivetrain.	.130
Figure 6.15 Experiment Results of RCP for Active Damping Control	.131

LIST OF TABLES

Table 1.1 New Energy Vehicle Sales	8
Table 1.2 Performance Comparisons of Typical Automatic Transmissions	12
Table 1.3 Vibrations (Noise) Classification of Electric Vehicle Powertrain	15
Table 1.4 Time Consumption of Shifting Process.	20
Table 1.5 Comparisons of Shift Quality	21
Table 1.6 Comparisons of Shift Quality in Different Conditions	21
Table 2.1 Parameters of the Torsional Vibration Mechanics Model	46
Table 3.1 Scope of Several Filtering Algorithms Applications	50
Table 3.2 Critical parameters in vehicle mass estimation	63
Table 4.1 Comparisons of Several Typical Sliding Mode Observers	81
Table 4.2 Parameters Configuration for Simulation.	93
Table 5.1 Adjustment Strategy of Quantum Revolving Gate	100
Table 5.2 Main Parameters of Drivetrain for Simulation.	110
Table 6.1 Parameters of Experimental Electric Bus	121
Table 6.2 Parameters of Experimental Electric SUV	127
Table B1 Natural Frequency and Vibration Mode of Electric Drivetrain	136

GLOSSARY OF TERMS

ABBREVIATIONS USED IN THESIS

Chapter 1

AMT- Automated Manual Transmission

ASTW-Adaptive Super Twisting

AT- Automatic Transmission

CVT-Continuously Variable Transmission

DCT-Discrete Cosine Transform

EKF- Extended Kalman Filter

GA-Genetic Algorithm

HIL- Hardware in Loop

KF- Kalman Filter

LQG- Linear Quadratic Gaussian

LQR- Linear Quadratic Regulator

MIMO- Multi-input Multi-output

MPC- Model predictive control

NVH- Noise, vibration, and harshness

PD-Proportional Derivative

PID- Proportional-Integral-Derivative

PMSM- Permanent Magnet Synchronous Motor

QGA- Quantum Genetic Algorithm

RCP- Rapid Control Prototype

RLS- Recursive Least Squares

RMS- Root Mean Square

SISO- Single-Input-Single-Output

SM-Sliding Mode

SMC-Sliding Mode Control

SMO-Sliding Mode Observer

STW-Super Twisting Sliding Mode Observer

SVPWM- Space Vector Pulse Width Modulation

UKF- Unscented Kalman Filter

UT- Unscented Transformation

Chapter 3

PF- Particle Filter

SIS- Sequential Importance Sampling

Chapter 4

AASTW- Accelerated Adaptive Super-Twisting Sliding Mode Observer

AcSTW-Accelerated Super-Twisting Sliding Mode Observer

AdSTW-Adaptive Super-Twisting Sliding Mode Observer

CAN- Controller Area Network

MCU- Motor Control Unit

VCU- Vehicle Control Unit

Chapter 5

QGA- Quantum Genetic Algorithm

ABSTRACT

Compared with the conventional fuel-consumption vehicle, electric vehicle does much better in controllability, regarding more accurate controlling of torque or rotation speed and more rapid response. The characteristic of rapid torque response will bring step motor torque output approximately when the drive tip in/out, because there exist torsional elastic damping parts such as tires and drive shaft in the drivetrain, moreover, there exists no flywheel to save the energy and buffer jerking, and then longitudinal vibration of vehicle that more sensitive to human will be introduced. In this thesis, by taking advantage of the excellent controllability of electric vehicle, active damping control of torsional vibration in vehicle drivetrain is researched, motor torque control in active damping for drivetrain torsional vibration is realized based on parameters intelligent estimation and motion state observation for the drivetrain. Improvement of electric vehicle drivability is realized focusing on driver's tipping in/out and unloading motor torque before shifting. The main content of the thesis is as follows.

Based on the drivetrain of electric drive logistics vehicle with two speeds automated manual transmission, multibody dynamic model of electric drivetrain is established, by Fourier transforming the multi-body dynamic model, frequency response function matrix of the system is obtained and frequency response analysis of the electric driving system can be carried on, and then natural frequencies, mode shapes and resonance characteristics of the drivetrain system can be revealed.

In order to solve this problem nonlinear particle filter-based intelligent parameter estimation method is proposed in this thesis. As a critical parameter in dynamic control of powertrain, vehicle mass varies continuously in a wide range and large magnitude during operation, it is one of the most significant variables in control law constituting, but vehicle mass is difficult to be measured automatically in real-time. The particle filter is recursive filter based on Monte Carlo algorithm, using the processes of importance sampling and resampling and according to motor torque output and motion states of drivetrain, parameter estimation of vehicle mass can be realized. Besides, this vehicle

mass intelligent estimation method is robust and statistical characteristics of disturbances and uncertainties in the powertrain system is unnecessary to be known.

In this thesis accelerated adaptive second order super-twisting sliding mode observer (SMO) is proposed, it can remarkably attenuate "chattering", the inherent drawback of sliding mode (SM) variable structure algorithm, and estimation error convergence is accelerated to a large extent by introducing of the "system damping". Motion states are also necessary in the control law designing for the drivetrain system, aiming to get the state variables of the drivetrain that are not measured directly, Based on the proposed novel sliding mode observer, torque accumulated in the drive shaft is observed to provide information for selection of appropriate shifting time, so that torsional vibration and jerking in drivetrain caused by sudden releasing of torque accumulated in the drive shaft after shifting is avoided, meanwhile, it also provides state information for the active control algorithm in the following content.

Based on the parameter estimation and state observation of the drivetrain, quantum genetics optimization and Linear Quadratic Gaussian joint algorithm is proposed to design the optimal control law to actively damp torsional vibration in drivetrain. According to the multi-feedbacks of the current motion states of drivetrain, optimal motor torque output command is calculated to compensate motion oscillations of drivetrain. The quantum genetic optimization unit utilizes qubits to replace binary encoding and quantum transformation is realized from quantum rotating gates so that the parameter in Linear Quadratic Gaussian to be optimized is searched faster to minimize the fitness function. By optimization of the parameter in Linear Quadratic Gaussian controller, more authentic and objective optimization of the controller performance is realized than the controller with subjective parameter selection from designer. Meanwhile, it will not increase the complexity and computational power consumption of the control law.

Rapid prototyping experiment, test rig experiment and real vehicle experiment are carried on focusing on parameter estimation, state observation and torsional vibration damping control to test the performances of the proposed algorithms in this thesis.