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ABSTRACT

Low-quality images captured in hazy weather can seriously impair the proper

functioning of vision system. Although many meaningful works have been done

to realize the haze removal, there are still two key issues remain unsolved. The

first one is the long processing time attributed to the involved tools; the second

one is existing prior employed in state-of-the-art approaches cannot be suitable for

all situations. To address such problems, a series of haze removal techniques have

been developed. The main contributions of this dissertation can be summarized

as the following.

For efficiency, a gamma correction prior is proposed, which can be used to

synthesize a homogeneous virtual transformation for an input. Relying this prior

and atmospheric scattering model (ASM), a fast image dehazing method called

IDGCP is developed, which converts single image haze removal into multiple

images haze removal task.

Unlike the IDGCP, another solution for accelerating dehazing (VROHI) is to

utilize a low complexity model, i.e., the additive haze model (AHM), to simulate

the hazy image. AHM is used on remote sensing data restoration, thus the first

step of VROHI is to modify the AHM to make it suitable for outdoor images. The

modified AHM enables to achieve single image dehazing by finding two constants

related to haze thickness.

To overcome the uneven illumination issue, the atmospheric light in ASM is

replaced or redefined as a scene incident light, leading to a scene-based ASM (Sb-

ASM). Based on this Sb-ASM, an effective image dehazing technique named IDSL

is proposed by using a supervised learning strategy. In IDSL, the transmission





estimation is simplified to simple calculation on three components by constructing

a lineal model for estimating the transmission.

According to previous Sb-ASM and the fact that inhomogeneous atmosphere

phenomenon does exist in real world, a pixel-based ASM (Pb-ASM) is redefined

to handle the inhomogeneous haze issue. Benefitting from this Pb-ASM, a single

image dehazing algorithm called BDPK that uses Bayesian theory is developed.

In BDPK, single image dehazing problem is transformed into a maximum a-

posteriori probability one.

To achieve high efficiency and high quality dehazing for remote sensing (RS)

data, an exponent-form ASM (Ef-ASM) is proposed by using equivalence infinites-

imal theorem. By imposing the bright channel prior and dark channel prior on

Ef-ASM, scene albedo restoration formula (SARF) used for RGB-channel RS im-

age is deduced. Based on Rayleighąŕs law, SARF can be expanded to achieve

haze removal for multi-spectral RS data.
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Chapter 1

Introduction

1.1 Funding

This study is derived from the National Natural Science Foundation (NSFC) “Research

on Multi-source Video Compressed Sensing Methods in Wireless Sensor Networks”, and

belongs to its sub-topic “Key technologies for fast defogging of images and videos”. Mean-

while, this study is also funded by Global Big Data Technologies Centre(GBDTC), U-

niversity of Technology Sydney, Australia. This study focuses on exploring the fast and

high-quality technique for single image haze removal, which aims to meet the real-time

performance of "smart cities" as much as possible under the premise of good user ex-

perience. Consequently, how to achieve the best balance between recovery quality and

processing efficiency for single image haze removal technique is the key of this study.

1.2 Motivation

With the sharp of artificial intelligence, lots of outdoor machine vision systems have been

widely used in military and livelihood. Among them, “smart city” [5,6] is a comprehensive

utilization of the internet of things and information processing technologies to sense key

1
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Figure 1.1: Several haze images captured by machine vision systems or cameras.

information of the city’s operating system, and then makes intelligent responses according

to various requirements. However, as an important perception source of “smart city”,

high resolution camera would suffer the interferences from turbid media in some bad

weathers. This reduce the imaging accuracy of the optical sensors, thereby resulting in the

reduction of visual quality of captured image, such as blurred contrast, color migration,

and shortened dynamic range [7, 8]. Although infrared camera can alleviate such low-

quality problems to some extent, the images it takes do not have rich color information.

In addition, high cost and cumbersome maintenance also restrict its application.

Fig 1.1 shows several different types of hazy images. It can be seen from this figure

that haze might interfere with machine vision systems applied in various industries, such

low-quality images usually cannot support the sufficient information to meet the needs of

applications or human eye. For example, many application systems in the fields of image

classification [9–11], autonomous driving [12–14], and target tracking [15, 16] require the

input images or videos that are taken in ideal weather, the low quality of which would

have a certain impact on the accuracy of subsequent research, analysis, identification, and

measurement results. In other words, the perception source affected by the haze seems

like a blinded eye, which not only degrades the quality of information received from real

world, but also is a great challenge to well operation of the "smart city". Therefore, image

dehazing technology has extremely significance for both the people’s livelihood and the

military.
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Currently related works may have the ability to dehaze for specific images, but there

are still two key issues remain unsolved. The first one is the long processing time attributed

to the involved refining tools and redundant computations, i.e., low real-time performance;

the second one is the existing prior knowledge employed in state-of-the-art approaches

cannot be suitable for all situations, such as the images with inhomogeneous haze or

with uneven illumination, leading to the vulnerable results and visual inconsistency (low

robustness capability). To overcome aforementioned problems, this dissertation develops

some new techniques deploying different strategy or theory.

1.3 Organisation of Thesis

Eight chapters are included in this dissertation. Chapter 1 is introduction, Chapter 2

illustrates the background and state-of-the-art of this dissertation. Several novel dehazing

techniques are developed in chapters 3 to 7 to address the facing problems of current

alternatives. In specific, Chapters 3 and 4 mainly focus on dehazing efficiency while

Chapters 5 to 7 are concentrate on the recovery quality. Finally, chapter 8 concludes this

dissertation.

Chapter 1: Introduction. This chapter firstly introduces the motivation of image or

video dehazing. Subsequently, it also presents the organization and contributions of this

dissertation. The related publication of author is listed in the last part of this chapter.

Chapter 2: Background and State-of-the-Art. This chapter reviews the background

and the state-of-the-art of image dedehazing, and points out the advantages and disad-

vantages of current available techniques.

Chapter 3: IDGCP: Image Dehazing Based on Gamma Correction Prior. This chapter

mainly focuses on the the processing speed of image dehazing. In IDGCP, an input hazy

image is preprocessed by the proposed gamma correction prior (GCP), resulting in a ho-
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mogeneous virtual transformation of the hazy image. Then, from the original input hazy

image and its virtual transformation, the depth ratio is extracted based on atmospheric

scattering model (ASM). Finally, a "global-wise" strategy and a vision indicator are em-

ployed to recover the scene albedo (haze-free result), thereby restoring the high-quality

hazy image from single hazy images.

Chapter 4: VROHI: Visibility Recovery for Outdoor Hazy Image Based on Modified

Additive Haze Model. This chapter still aims to attain a highly efficient image dehaz-

ing method for hazy outdoor images. According to the low-frequency feature (LFC) of

haze, additive haze model (AHM) is modified via gamma correction technique to make it

suitable for modeling outdoor images. Relying on modified AHM (MAHM), a simple yet

effective method called VROHI then is proposed to enhance the visibility of an outdoor

hazy image.

Chapter 5: IDSL: Image Dehazing with Supervised Learning. This chapter redefines

a scene-based ASM (Sb-ASM) to overcome the limitation of uneven illumination. Bene-

fitting from this Sb-ASM, a fast single image dehazing algorithm called IDSL is presented

by using a supervised learning strategy. In IDSL, by constructing a linear model under

the visual feature, the transmission can be directly estimated. Combining the transmis-

sion and a guided energy model (GEM), scene incident light and the scene albedo can be

restored via Sb-ASM. Moreover, an accelerating framework (AF) is provided to further

reduce the computational complexity of dehazing procedure.

Chapter 6: BDPK: Bayesian Dehazing Using Prior Knowledge. In order to better

deal with the inhomogeneous haze image, this chapter adopts a pixel-based strategy to

improve the traditional ASM, denoted this model as Pb-ASM. Based on this Pb-ASM, a

simple yet effective Bayesian dehazing algorithm (BDPK) is proposed based on multiple

prior knowledge. In BDPK, the haze removal optimization function is first deduced by

creating probability density function. Then, by combining the optimization function and
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the introduced alternating minimizing technique (AMT), visually realistic result and two

by-products can be obtained.

Chapter 7: Remote Sensing Image Haze Removal Using Gamma-Correction-Based

Dehazing Model. In this chapter, two visibility restoration formulas are proposed for RGB-

channel remote sensing (RRS) images and multi-spectral remote sensing (MSRS) images,

respectively. More specifically, a exponent-form ASM (Ef-ASM) is firstly approximated,

which can better address the non-uniform illumination problem in hazy images. Then, the

scene albedo restoration formula (SARF) used for RRS images is obtained by imposing

the existing prior knowledge on this RGDM, which enables us to simultaneously eliminate

the interferences of haze and non-uniform illumination. In subsequence, according to

Rayleigh’s law, an expanded restoration formula (E-SARF) is further developed for MSRS

data restoration.

Chapter 8: Conclusions and Future Work. This chapter briefly summarizes the conclu-

sions for different image dehazing approaches proposed in this dissertation, and describes

their shortcomings as well as the further work in the last part.

1.4 Contributions

The key contributions of this thesis are fast and robust image dehazing technology by using

redefined or approximated imaging model, as well as develops more advanced dehazing

mechanism. Specific contributions are outlined below:

1. A novel technique (IDGCP) to achieve highly efficiency image dehazing is developed

in Chapter 3. IDGCP utilizes the proposed gamma correction prior to decrease the un-

certain of ASM, which converts haze removal task as a global-wise optimization function.

Unlike previous methods, IDGCP only needs to determine one unknown constant without

any refining process to attain a high-quality restoration, thereby leading to significantly
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reduced processing time and computation cost.

2. A new and simple way (VROHI) to realize fast outdoor images haze removal is

presented in Chapter 4. In VROHI, AHM designed for hazy remote sensing data is

modified via gamma correction technique to make it suitable for modeling outdoor images.

Based on this modified AHM, a visibility recovery technique for single hazy images is

further developed. The key of VROHI is to excavate the low-frequency component (LFC)

of hazy image, and restore the scene albedo by fully utilizing the latent image feature to

constrain the MAHM, which enables to determine one unknown parameter rather than

estimating the transmission to achieve a haze-free result, thereby significantly improving

the execution efficiency of haze removal.

3. A novel method (IDSL) to attain high-quality recovery performance for uneven

illumination hazy image is developed in Chapter 5. It redefines the atmospheric light in

ASM as the scene incident light, which is able to simultaneously dehazing and exposure

for single images without the needs of introducing any post-proposing. More important-

ly, IDSL can directly calculate the transmission by using a liner model that is created

according to the visual feature.

4. A novel approach (BDPK) that merges multiple prior to address the issue of

inhomogeneous haze is presented in Chapter 6. BDPK is based on a pixel-based ASM

(Pb-ASM) revised by breaking the scattering constant assumption. The core idea of

BDPK is to convert the single image dehazing problem into a maximum a-posteriori

probability (MAP) one that can be approximated as an optimization function using the

existing priori constraints. To efficiently solve this optimization function, the alternating

minimizing technique (AMT) is introduced, which enables us to directly restore the scene

albedo.

5. Two novel scene albedo restoration formulas to simultaneously dehaze and de-

shadow for remote sensing data is presented in Chapter 7. A modified exponent-form ASM
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(Ef-ASM) with significantly enhanced robustness is proposed for fast RRS and MSRS

image dehazing. Then a scene albedo restoration formula (SARF) used for RRS images is

derived by combining the existing priori constraint and this RGDM. The propsoed SARF

is able to simultaneously exclude the interferences of haze and nonuniform-illumination

with less calculation load. According to Rayleigh’s law, an expanded restoration formula

(E-SARF) is proposed to restore the MSRS data.

1.5 Publications

A List of Publications, including both accepted and submitted, based on research con-

ducted during the author’s candidature is given below.

1. M.-Y. Ju, C. Ding, Y. jay Guo, and D. Y. Zhang, “IDGCP: Image Dehazing Based

on Gamma Correction Prior,” IEEE Transactions on Image Processing, vol. 29, pp.

3104-3118, 2020.

2. M.-Y. Ju, C. Ding, D. Y. Zhang, and Y. jay Guo, “BDPK: Bayesian Dehazing

Using Prior Knowledge,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 29, no. 8, pp. 2349-2362, Aug. 2019.

3. M.-Y. Ju, C. Ding, Y. jay Guo, and D. Y. Zhang, “Remote Sensing Image Haze

Removal Using Gamma-Correction-Based Dehazing Model,” IEEE Access, vol. 7,

pp. 5250-5261, 2019.

4. M.-Y. Ju, C. Ding, D. Y. Zhang, and Y. jay Guo, “Gamma-Correction-Based

Visibility Restoration for Single Hazy Images,” IEEE Signal Processing Letters, vol.

25, no. 7, pp. 1084-1088, July 2018.

5. M.-Y. Ju, C. Ding, Z. F. Gu, and D. Y. Zhang, “Single image haze removal based
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180-191, 2017.
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atmospheric scattering model,” The Visual Computer, vol. 33, pp. 1613ĺC1625,

2017.

7. M.-Y. Ju, Z. F. Gu, D. Y. Zhang, and J. Liu, “Single image dehazing via an

improved atmospheric scattering model,” IEICE Transactions on Information and

Systems, vol. E100, no. D(12), pp. 3068-3072, 2017.

8. M.-Y. Ju and D. Y. Zhang, “Image enhancement based on prior knowledge and

atmospheric scattering model,” Acta Electronica Sinica, vol. 45, no. 5, pp. 1218-

1225, 2017.

9. M.-Y. Ju, D. Y. Zhang, and Y. T. Ji, “Image haze removal algorithm based on

haze thickness estimation,” Acta Automatica Sinica, vol. 42, no. 9, pp. 1367-1379,

2016.



Chapter 2

Background and State-of-the-Art

This chapter briefly illustrate the influence of atmospheric scattering during the degra-

dation process of captured images, and introduces the traditional atmospheric scattering

model (ASM). Classical image enhancement, early image dehazing techniques, and the

state-of-the-art work are later reviewed, respectively. Several challenging aspects of image

dehazing are highlighted in the last part.

2.1 Background

2.1.1 Formation of Hazy Images

Haze is composed of tiny particles suspended in the atmosphere, e.g., water droplets,

aerosols, dust particles. In hazy weather, due to the influences of particles suspended in

atmosphere, images captured by camera usually have low contrast and color shift. The

reason of leading to this phenomenon is that these suspended particles and reflected light

have a strong interactive effect during the shooting process of camera system, so that the

scattering effect of particles in the light path propagation becomes more serious than that

of haze-free conditions. These interactions can be described as scattering, absorption,

9
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and radiation, where scattering is the most important factor of attenuating reflected light

[17, 18]. Consequently, for simplicity, only the scattering effect needs to be considered

when researching on degradation mechanism of the haze images [19].

2.1.2 Atmospheric Scattering Model

Physical description of scattering phenomenon is extremely complicated. The reflected

light encounters interference from different, irregular, and heterogeneous suspended par-

ticles, leading to the light intensity during the propagation process would be severely

reduced. Physically, each suspended particle in the atmosphere can act as an indepen-

dent scatterer, and several scatterers in the optical path consistently affect subsequent

particles. This process is very difficult to be simulated using a simple mathematical way.

For simplicity, atmospheric scattering model (ASM) in [20] was proposed to describe the

formation of a hazy image, which is expressed as

I(x, y) = A · ρ(x, y) · t(x, y) +A · (1− t(x, y)), (2.1)

where I represents the observed hazy image, A is the global atmospheric light, ρ is scene

albedo or the expected haze-free image, and t is the medium transmission. Assuming the

atmospheric particle distribution is homogeneous, i.e., the atmospheric medium is evenly

distributed throughout the whole image, the transmission t can be expressed as

t(x, y) = e−β·d(x,y), (2.2)

where d is the distance between the target scene and the camera (or scene depth), β is the

scattering coefficient assumed to be constant. In this model, the first term on the right

side of Eq. 2.1 is used to describe the direct impact of scene reflection light A · ρ from

suspended particles. This term is named as direct attenuation which decays exponentially

with the scene depth d. The second term called airlight, on the contrary, increases with the
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scene depth d. Furthermore, Narasimhan et al. [20] also set the conditions of using ASM:

1) Illumination is evenly distributed in whole image; 2) Particles suspended in atmosphere

are homogeneous. In most cases, hazy images can meet the above using conditions, which

is the main reason why the model is widely used in the field of image dehazing.

2.2 State-of-the-Art

The existing image dehazing technologies can be roughly divided into the following cat-

egories: image enhancement, extra-information based dehazing, fusion-based dehazing,

prior-based dehazing, and learning-based dehazing. In general, the recovery quality of

the last two categories is much better than the first three ones, because the first three

categories simply increase the contrast of the hazy image through some mathematical

transformations instead of physically dehazing. The last two categories is based on the

degradation mechanism of hazy images, real scene reconstruction is theoretically realized

by estimating the structural information and other relevant necessary imaging parameters.

2.2.1 Image Enhancement

It is well-known that image haze removal is an inherently ill-posed issue since measuring

scene depth is difficult for cameras. Directly employing traditional image enhancement

methods [21–29] to restore the contrast of hazy images is the most intuitive and simplest

way to recall the visibility in buried regions. However, these techniques are limited due

to the ignored degrading mechanism. For example, histogram equalization (HE) [21] im-

proves the global contrast of the input image by stretching the dynamic range for the

color channels, yet it lacks the capability of enlarging the local visibility in each region.

Although the adaptive histogram equalization (AHE) [22] overcomes the above defect,

the over-enhancement may be aroused and its large computational complexity has to
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be considered. Retinex methods [23–25] have made great progress through decades of

development. They realize better dynamic range compression and the tonal rendition.

Regrettably, the poor edge-preserving ability would give rise to halo artifacts in discon-

tinuous areas. The core idea of gamma correction [26] and nonlinear stretching operation

[27] is to revise individual pixel value without considering its neighbor content, thus their

enhanced results lack visual realism. Homogeneous filtering [28] jointly utilizes the fre-

quency filtering and gray-scale transformation to resume the target clarity of the input

image, but the recovery quality relies on the parameter initialization. Detail enhance-

ment [29] increases the high-frequency details by sharply highlighting the object contours

in the whole image. Undoubtedly, it is difficult to reach a better trade-off between the

over-sharpening of close-range regions and the weak sharpening of long-range ones.

2.2.2 Extra-information based Dehazing

This category makes use of the known information or multiple images to achieve haze

removal. Typically, Narasimhan et al. [20] proposed the haze removal strategy using

two images of the same scene taken in different atmospheric conditions. The premise

of using this method is that the original input should contain the infinite far-point and

near-point. Otherwise, over-saturation will be introduced into the small-depth areas. In

[30], Kopf et al. exploited the given geo-referenced digital terrain and urban models to

extract the scene depth, and then automatically conducted the haze removal. According

to the polarization characteristics, Schechner et al. [31, 32] utilized different polarization

angles from two of same scenes in order to remove the haze from the degraded images.

Generally, these approaches are capable of achieving satisfactory recovery results, but

these additional requirements must be hard to fulfill, which leads to their methods lack

practicality in many real applications.
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2.2.3 Fusion-based Dehazing

The strategy of fusion-based dehazing approaches [33–38] is to generate two or more

images by processing an input image with enhancement techniques, then to merge these

processed images to get a better restoration result. For instance, Ancuti and Ancuti [33]

developed a visibility recovery method based on Laplacian pyramid representation. In this

work, an input image was firstly preprocessed by white balance and contrast enhancement,

leading to two images with different properties. Then the two images were blended to a

haze-free result by using a Laplacian pyramid representation. To achieve a better recovery

quality, Choi et al. [34] introduced more image features to participate the fusion process.

Later in [35, 36], Galdran et al. proposed the perceptual color correction framework

(PCCF) [35] and the enhancement framework named STRESS [36], which performs image

dehazing from a single input. To obtain more realistic results, their team modified the

previous PCCF and further developed a fusion-based variational image-dehazing (FVID)

[37] to maintain high contrast in long-range regions while preserving reasonable content

in the close-range ones. Another fusion-based dehazing [38] technique was designed by

simply finding contrasted/saturated regions from some artificially underexposed versions

of hazy input. The main advantage of fusion-based methods is the high implementation

efficiency, but their performance would be deteriorated when dealing with the dark regions

in hazy image. This is due to the fact that the severe dark parts of the preprocessed images

are usually misjudged as the haze-free scenes.

2.2.4 Prior-based Dehazing

The core idea of prior-based dehazing [1, 3, 4, 39–56] is to utilize the potential prior or

assumption to bind the atmospheric scattering model (ASM) and then formulate the

dehazing task as an energy minimization one. For instance, Tan [39] successfully removed
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the haze cover in an input based on the fact that clear-day image has richer contrast

than the corresponding one polluted by haze. This method is very positive for dense hazy

images, but the resumed colors for misty scenes are prone to be over-saturation. Fattal [40]

assumed that surface shading and medium transmissions are uncorrelated in a local patch,

and the haze is eliminated by utilizing independent component analysis (ICA). Obviously,

this technique is challenged when the images contain less color information. Later in

[41], Fattal further derived a local model that explains the color-lines meaning in vague

region and used it to seek the more accurate transmission. Still, this approach may fail

with the mono-color images where the notion of color-lines is trivialized. The significant

contribution of the dark channel prior (DCP) [4] allows us to directly detect the rough haze

thickness, thereby recovering the realistic results by refining the initial transmission using

soft matting (SM) [42]. Unfortunately, this prior cannot fully suitable to the case where

the scene brightness is naturally similar to the airlight. Besides, DCP’s results always

appear too dark and this approach is time-consuming due to the complex SM. To improve

the recovery quality of the DCP, the dynamic repair strategy [1], the I2-norm-based DCP

[43], and the Laplacian-based mechanism [44] were proposed to boost the performance

of estimated transmission. Fisher’s linear discriminant-based scheme [3] was designed to

exclude the interference of localized light sources and the scene radiance constraint [45] was

provided to tackle the darkness problem of dehazed scenes. For efficiency, Huang1 et al.

[46] defined a hybrid DCP for circumventing halo effects in the recovered results, Gibson

et al. [47], Huang2 et al. [48], He1 et al. [29], Yu et al. [49] and Xiao et al. [50] sought

the replacements of SM to reduce the computational complexity, such as the median

filter, improved median filter [48], guided image filtering [29] and guided joint bilateral

filtering [49, 50]. From the geometric perspective of DCP, Meng et al. [51] presented

the dehazing algorithm with a boundary constraint and contextual regularization. This

method can thoroughly unveil the scene structures of interesting parts, yet it does not
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fundamentally solve the inherent shortcomings of DCP. The strategy proposed by Chen

et al. [52], which includes two modules designed using Bi-Histogram modification, is able

to produce the restored results with satisfactory visual quality. Nevertheless, the rebuilt

sky would suffer from serious color shift when the constant-airlight assumption is invalid.

Relying on the difference structure preservation prior, He2 et al. [53] computed the scene

transmission by assuming that each patch can be linearly represented to a dictionary. Lai

[54] introduced both theoretic and heuristic bounds to restrict the solution space, and

designed two objectives for scene priors to excavate the optimal transmission. Kim et

al. [55] estimated the transmission using the defined cost function that consists of the

contrast term and the information loss term, and its dehazing effect can be adjusted by

manually setting the coefficient involved in the function. Based on the color attenuation

prior (CAP), Zhu et al. [56] created a linear model and determined the parameters in

this model with a supervised learning method, which makes mining the depth structure

task more convenient. Regrettably, the recovery quality is not guaranteed due to the

unspecified scattering coefficient.

2.2.5 Learning-based Dehazing

The last category is deep-learning-based methods [1,4,41–44,57–60]. Benefitting from the

development of deep learning (DL) theory, haze removal can be realized by merging or

learning several haze-relevant features with the DL framework. For instance, a convolu-

tional neural network (CNN) based dehazing system, called DehazeNet, was proposed in

[41] by fully utilizing the existing image priors. In subsequence, a multi-scale CNN (M-

SCNN) was proposed in [4] to achieve a better recovery quality by learning more useful

features. However, these approaches need to introduce guided filter or fine-scale net to

repair the artifacts in the estimated rough transmission. To remedy this, Li et al. [42]

built a dehazing model called All-in-One Dehazing Network (AoD-Net) to directly restore
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the haze-free result without the needs of estimating the transmission. In [57], a gated

fusion network was proposed by learning confidence maps for three inputs processed from

the original input. Similar to the second category of dehazing method, this fusion network

also lacks the ability to recover the scenes misjudged as the haze-free. Moreover, most

deep-learning-based techniques are only trained by synthetic hazy datasets (e.g., NYU

Depth dataset [61] and Make3D dataset [62]), thus they may not uncover the latent con-

tents for the real-world images well, especially for images with heavy haze [29]. Although

a semi-supervised learning network [58] has been provided by training both synthetic and

real-world hazy images, this method still performs less effective when processing the image

suffers from severe haze, as discussed in [58].

2.2.6 Common Limitations

Basically, compared to image enhancement, extra-information based and fusion based de-

hazing, prior-based and learning-based dehazing behave a better recovery performance.

This is because the first three categories only highlight the contrast information without

considering the imaging mechanism of haze, while the two later categories are based on

ASM, and implement haze removal by estimating the parameters in ASM. Another differ-

ence that needs to be pointed out is prior-based dehazing can have a promising result for

images with heavy haze, but it may introduce the over-enhancement and over-saturation

in the mist images after haze removal. On the contrary, learning-based dehazing has the

ability to avoid such unfavorable phenomenon in the dehazed results, while haze residue

will be found in dense haze areas. The key reason is that there are not enough samples

collected from real-world to train the high-quality network for learning-based dehazing,

and hand-crafted priors for image dehazing cannot be satisfied with all different types

of images. Apart from the limitations mentioned in above, there are still two key issues

remain unsolved in these existing techniques. The first one is that the current image pri-
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ors or assumptions cannot work well on all conditions, which results in vulnerable results

and visual inconsistency for some special conditions, such as inhomogeneous haze image

and uneven illumination image. The second one is the long processing time attributed

to the involved refining tools and redundant computations, which reduces the real-time

performance of haze removal.

2.2.7 Methodology

It is well known that how to fairly evaluate our designed work is also a difficult issue.

To demonstrate the superiority or achievement of the new techniques proposed in this

dissertation and to better understand where the superiority comes from, qualitative and

quantitative comparisons were made between the new method and the state-of-art tech-

nologies. More specifically, subjective evaluation is to firstly assess the restored image by

the human vision, which is simple and reliable. To overcome the inherent shortcomings

of subjective evaluation, some widely used metrics are later employed to quantitatively

measure the quality of recovery. Generally, common metrics can be roughly divided into

two categories: non-reference metric and reference metric. The former is a blind evalua-

tion index method, which uses mathematical means to simply access the image in one or

more features, such as information entropy, average gradient, and average brightness. The

latter uses the ground truth image as a reference, and the difference between the dehazed

result and the corresponding reference is used to evaluate the image quality level, such as

peak signal-to-noise ratio, mean square error, and structural similarity.

2.3 Summary

This chapter firstly illustrated the formation reason of hazy images and the corresponding

imaging theory, i.e., ASM. Next, the advantage and disadvantage of existing work related
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to this thesis are summarized or outlined. Finally, the common limitations of current

techniques are summarized into two aspects, i.e.,low robust ability, high computational

complexity, and failure on inhomogeneous haze image and uneven illumination image. In

following chapters, several novel methods or strategies will be proposed to address these

problems.



Chapter 3

IDGCP: Image Dehazing Based on

Gamma Correction Prior

To solve low real-time performance issue of current methods, this chapter proposes a novel

and effective image prior, i.e., gamma correction prior (GCP). By imposing this GCP on

ASM, a fast dehazing method named IDGCP employing a global-wise strategy is proposed.

In IDGCP, when acquiring the transmission information, the input image is considered

as a whole block rather than dividing the image into several pixels [50, 63–68], patches

[40, 44, 51, 53, 56, 69, 70], scenes [71–73], or approximate objects [74–76] as illustrated in

Chapter 2. A step-by-step procedure of the proposed IDGCP is as follows. First, an

input hazy image is preprocessed by the proposed GCP, resulting in a homogeneous

virtual transformation of the hazy image. Then, from the original input hazy image and

its virtual transformation, the depth ratio is extracted based on atmospheric scattering

theory. Finally, a "global-wise" strategy and a vision indicator are employed to recover

the scene albedo, thereby restoring the hazy image.

19
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3.1 Gamma Correction Prior (GCP)

The image dehazing (IDGCP) in this chapter is based on the ASM proposed by Narasimhan

and Nayar [20] to describe the formation of hazy images. However, it is commonly known

that ASM-based dehazing is a highly under-constrained problem since the number of un-

knowns is much greater than the number of available equations. This section will introduce

a robust gamma correction prior (GCP) to reduce the uncertain of haze removal, which is

able to get a virtual misty result under homogeneous atmosphere from the original input.

3.1.1 Motivation

In [77], gamma correction (GC) strategy was proposed by Liu et al. to preprocess hazy in-

put image. Despite the fact that this valuable strategy can improve the overall brightness

of images, it suffers from a problem that the haze cover in hazy image is also processed

by GC without considering the scene depth information [71]. In specific, the preprocess

can be expressed by

Icp = (Ic)Γ, (3.1)

where c ∈ {R,G,B} is the color channel index, Ic is the color channel of the input I,

0 < Γ < 1 is the correction factor, and Ip is the preprocessed result. Assuming that Ip

meets the premise of using ASM, Eq. 3.1 can be transformed into

Ac
p·((ρc(x, y)− 1) · e−βp·d(x,y) + 1)

= (Ac)Γ · ((ρc(x, y)− 1) · e−β·d(x,y) + 1)Γ,

(3.2)

where βp and Ac
p are the scattering coefficient and atmospheric light, respectively, of the

color channel Icp. Obviously, the location of atmospheric light in a given image should

remain the same before and after the GC preprocess. Therefore, we let Ac
p = (Ac)Γ and
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subtract (Ac)Γ from each side of Eq. 3.2, which yields

(ρc(x, y)− 1) · e−βp·d(x,y)

= {(ρc(x, y)− 1) · e−β·d(x,y) + 1}Γ − 1.

(3.3)

Considering the fact that (ρc(x, y) − 1) · e−β·d(x,y) is close to 0 in general, especially for

dense hazy regions, Eq. 3.3 is then simplified according to the equivalent infinitesimal

theorem.
(ρc(x, y)− 1) · (e−βp·d(x,y) − Γ · e−β·d(x,y)) ≈ 0

⇒ βp ≈ β − ln(Γ)
d
.

(3.4)

Since the correction constant Γ is a constant and [ln(Γ) < 0], the obtained scattering

coefficient of the preprocessed image βp decreases with scene depth d. This indicates a fact

that the GC preprocess turns the homogeneous input image into an inhomogeneous virtual

output image, i.e., the spatial distribution of the atmospheric medium varies throughout

the image. In close-range regions with small d, βp is higher, which leads to a brighter result

than the homogenous case. In contrast, in long-range regions, the preprocessed results will

appear to be darker. This problem increases the complexity of the haze removal. Even

with a known scene depth, one would need to estimate the spatially variable scattering

values to achieve a high performance image dehazing.

3.1.2 GCP Model

Inspired by the above conclusion, a modified preprocessing method called gamma cor-

rection prior (GCP) is proposed. The main difference between GC [77] and GCP is the

fact that their outputs are inhomogeneous and homogeneous, respectively. The proposed

GCP model is described as

Ics = 1− (1− Ic)Γ, (3.5)

where Is is the virtual result. In this process, the hazy image I get inverted first into

1− I. Then it is processed by the GC and inverted back to get the virtual result. The
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Figure 3.1: Visual observation of hazy images I (top row) and the inverted results ac-

cordingly (1− I) (bottom row).

inverse strategy was firstly proposed in [78] and used in image enhancement [79,80] based

on an observation that the inverted low-light images look similar to hazy images. Inspired

by this, we made a further assumption that the inverted hazy image 1−I is also visually

very similar to low-light images (see Fig. 3.1). By inverting the image, the brighter

regions and the darker regions are swapped. Since the inverse strategy and the GC have

adverse effects on the scattering coefficient β with different scene depth, the GCP has a

potential to compensate the nonlinearity in GC and stabilize the scattering coefficient β.

A large amount of experiments were conducted to investigate the GCP’s ability to

stabilize β. In the experiments, the input I in ASM was replaced by Is to compute the

scattering values βs for each pixel in Is. Therefore, we have

βs(x, y) = − log(
(1− (1− Ic(x, y))Γ −Ac

s)

Ac
s · (ρc(x, y)− 1)

)/d, (3.6)

where Ac
s is the atmospheric light of the virtual results Ics . There are various methods can

be used to locate the atmospheric light. With the overall consideration of performance

and efficiency, the quad-tree subdivision method proposed in [64] was selected since it

can accurately locate the atmospheric light from the most haze-opaque region by combin-

ing the average grays and gradients based assessment criteria and quad-tree subdivision.
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Here we remark that one can also use other methods to estimate the atmospheric light

depending on the main concerns. As illustrated in Eq. 3.6, the ground depth information

(d) is required to calculate βs. However, it is very hard to get the depth information from

real world images. Therefore, in this work, the image samples were synthesized using the

depth maps and ground truth images in Middlebury Stereo Datasets [81–83] according to

ASM. This synthesis procedure is named as SMP in the following sections for the ease of

clarify.

(a)

(f) (g)

Sample 1

(f) (g)

GC

Sample 2

(b)

(c)(d) (e)

GCP GC GCP

(a) (b)

(c)(d) (e)

Figure 3.2: Illustration of the GC and GCP processes on two example images. (a) Ground

truth images. (b) Depth maps. (c) Synthesized images via SMP with Ac = 1 and β = 1.

(d) Obtained virtual results using GC with Γ = 0.5. (e) Obtained virtual results using

GCP with Γ = 0.5. (f) The scattering values of all pixels in (d). (g) The scattering

values of all pixels in (e).

Fig. 3.2 shows the simulated results of two samples using GC and GCP with Γ = 0.5,

as well as the computed scattering coefficients. According to Fig. 3.2(f) and 3.2(g),

GCP demonstrates a significantly enhanced ability of stabilizing the scattering coefficients

compared to that of GC. Fig. 3.3 illustrates the GCP process on a third sample with

different Γ values. It is observed that scattering coefficients of the outputs of the GCP
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Γ=0.2 

Ground Truth Synthesized 
Image Scene Depth

Γ=0.4 Γ=0.6 Γ=0.8 

Figure 3.3: Robustness evaluation of GCP with different values of Γ. Top row: Sam-

ple image. Middle row: Virtual results using GCP with different Γ. Bottom row:

Corresponding scattering coefficient values for all pixels.

always have a high level of stability which is independent to Γ values. Moreover, to

quantitatively evaluate the robustness of GCP, a statistic indicator is defined as

Ψ =

√
1

|Ω|
∑

(x,y)∈Ω

(βs(x, y)− βs)2, (3.7)

where βs is the average value of βs, Ω and |Ω| are the image index set and image resolution,

respectively. Generally, the smaller the value of Ψ is, the more stable the scattering

coefficients, which indicates that the GCP is more reliable. The calculated Ψ values

of 200 different samples processed by GCP are shown in Fig. 3.4(a), and the statistic

histogram is shown in Fig. 3.4(b). It is observed that 90% of the samples have small Ψ

values ≤ 0.3, which validates the reliability of the proposed GCP. It can be summarized

that the proposed GCP process overcomes the limitation of the GC since the homogeneity

of input images is well maintained in the output images.

It should be noted that, although the proposed GCP is a modification of GC, they have
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different targets. GC can and is only used to increase the contrast of a hazy image, whereas

GCP allows us to obtain a virtual misty image from a single hazy image. Combining the

input hazy image with the obtained virtual image, single image dehazing problem can be

converted into multiple image haze removal. The main benefit is to ease the uncertainty of

depth information, which significantly facilitates the subsequent image dehazing process

based on ASM.

(a) (b)

Figure 3.4: Statistics of the index Ψ. (a): The values of Ψ over 200 test samples. (b):

The statistical histogram corresponding to the left statistics.

3.2 Image Dehazing Based on GCP (IDGCP)

Based on the ASM proposed in [20] and the GCP described in the previous section, a

fast image dehazing method called IDGCP is developed based on a global-wise strategy.

The proposed method can extract the depth ratio efficiently by fully leveraging the latent

relation of the image structure, thereby attaining haze-free results. Only two major

modules are utilized in IDGCP, i.e., the depth ratio extraction module and the image
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recovery module.

3.2.1 Extracting Depth Ratio

The fundamental idea of IDGCP is to mine the depth structure information from the two

hazy images: one is the hazy input and the other is the virtual hazy image obtained from

GCP. The first step is to utilize GCP to get the virtual image Is from the original input

I. Then, two imaging equations for Is and I are obtained based on the ASM and the

structure invariance principle described in [20].

Ic(x, y) = Ac · ρ(x, y) · e−β·d(x,y) +Ac · (1− e−β·d(x,y))

Ics(x, y) = Ac
s · ρ(x, y) · e−βs·d(x,y) +Ac

s · (1− e−βs·d(x,y)).
(3.8)

By solving this equation set, the scene depth can be obtained as

d =
− ln max(Ac−Ic,ε1)

max(Acs−Ics ,ε2)
− ln Acs

Ac

β − βs
, (3.9)

where ε1 and ε2 are very small positive constants, ε1 is introduced to avoid the numerator

to exceed the function definition field, and ε2 is introduced to make sure the denominator

is not zero. It is further assumed that the weather condition does not change spatially,

thus we have

d =
1

β − βs
· d0 ∝ d0 = − ln

max(Ac − Ic, ε1)

max(Ac
s − Ics , ε2)

− ln
Ac
s

Ac
. (3.10)

Note that the depth ratio d0 is a known component sinceAc
s andAc can be easily obtained

[29]. In this work, we selected the blue channels IB and IBs for the calculation of d0. We

remark that similar results can also be obtained by adopting the red channels or the

green channels. Several examples of the calculated depth ratios are illustrated in Fig.

3.5, demonstrating a fact that the depth ratio maps obtained are sharp and exactly in

consistence with our intuition.
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Figure 3.5: Example images and the estimated depth ratio maps. Top row: Input hazy

images. Bottom row: Scene depth ratio maps obtained using Eq. 3.10.

3.2.2 Scene Albedo Recovery Using Global-wise Strategy

The dehazed image ρc can be obtained by substituting Eqs. 2.1 and 3.10 into ASM (Eq.

2.1), which yields

ρc =
Ic −Ac

Ac · e−
β

β−βs
·d0

+ 1. (3.11)

To avoid pixel overflow, it is set that 0 ≤ ρc ≤ 1. Therefore, the final expression used for

restoring the scene albedo can be rewritten as

ρc = dehaze(θ, Ic,Ac, d0)

= min(max(
Ic −Ac

Ac · e−θ·d0
) + 1, 0), 1),

(3.12)

where dehaze(·) is the abbreviation of albedo restoring function. Note that dehaze(·) is a

function of four parameters, where Ic is the input, Ac can be easily calculated according

to [64], d0 is the depth ratio obtained in the previous subsection, and θ = β/(β − βs) is

the only unknown parameter. Determining the right value of θ to get the transmission

map t = e−θ·d0 is critical to the dehazing quality. To estimate the value of θ with low

complexity but high accuracy, a global-wise optimization function is designed as

θ = argmin{
∑
c

f(dehaze(θ, (Ic) ↓n,Ac, (d0) ↓n))}, (3.13)

where f(·) represents a vision indicator designed via single or multiple image prior, and

↓n is a down-sampling operator with coefficient n. Numerous experiments show that
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generally a down-sampled image with an approximate size of [100 × 100] is good enough

to determine the value of θ since it still holds the original important features of the input

image. Therefore, in this work, the coefficient n is adaptively defined as

n =
max(w, l)

100
, (3.14)

where w and l are the width and length of input image, respectively. Considering that

the goal of image dehazing is to improve the visual contrast of the degraded image while

avoiding excessive loss of information [55], the vision indicator is defined as

f(In) = −
∑
c

φ(5(Inc)) + λ ·
∑
c

ϕ(Inc), (3.15)

where In is the image to be evaluated, 0 ≤ λ < 1 is the regulation parameter, φ(·) is

the mean operator, and ϕ(·) is an operator to compute the percentage of pixels that are

completely black or white. In Eq. 3.15, the first term ensures the image In has rich

texture information, and the second term is used to measure the lost information cost.

Note that Eq. 3.13 is a one-dimensional optimization function. In this work, Fibonacci

method (FM) is adopted to solve Eq. 3.13 since it is able to gradually narrow the search

interval for one-dimensional optimization problem until convergence condition is satisfied.

In specific, the initial interval and the final interval length are defined as [a1, a2] and

ε, respectively. Once the coefficient θ is determined, the scene albedo can be directly

recovered by Eq. 14. For clarity, the entire procedure of IDGCP is outlined in Algorithm

3.1.

It should be pointed out that all the other dehazing methods are based on pixel-wise,

patch-wise, scene-wise, nonlocal-wise, and learning-wise strategies. The proposed global-

wise strategy is the second key contribution in this paper, which enables us to attain a

high-quality restoration by only determining one unknown constant.
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Algorithm 1 IDGCP
Input: Hazy Input I

Pre-set parameters: ε1 = ε2 = 10−5, λ = 0.5, Γ = 0.5, [a1, a2] = [0, 6], ε = 0.1

Do the job:

1. Simulate the virtual image using GCP (Eq. 3.5).

2. Locate the atmospheric lights of the original input and the virtual image via quad-

tree subdivision method [64].

3. Extract the rough depth ratio d0 via Eq. 3.10.

4. Determine the constant θ via Eq. 3.13 with FM.

5. Restore the scene albedo via Eq. 3.12.

Output: Recovery result ρ.

3.3 Performance Evaluation

To demonstrate the superiority of IDGCP and to better understand where the superi-

ority comes from, a series of experiments were conducted and comparisons were made

between IDGCP and the state-of-the-art technologies. All the experiments were imple-

mented in MATLAB2010 environment on a PC with Intel(R) Core(Tm) i5-4210U CPU@

1.70GHz 8.00 GB RAM. The parameters used in the compared dehazing methods were

also optimized according to the corresponding references.

3.3.1 Initial Parameter Setup and Robustness Evaluation

As listed in Algorithm 3.1, there are several parameters that are initialized manually in

the proposed IDGCP. They are the positive constants ε1 and ε2, the correction factor Γ,
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the regulation constant λ, the FM’s initial interval [a1, a2], and the FM’s final interval

width ε. Note that the pre-set parameters illustrated in Algorithm 3.1 is an optimized

combination which works for all kinds of hazy inputs, which can be validated by the

subsequent experiments. Once their values are determined, it can be used on all images

straightforwardly. In this subsection, how the values of the parameters are chosen will be

described and their effects on the performance will be discussed.

The parameters ε1 and ε2 are introduced only to ensure that Eq. 3.10 remains valid.

As long as they are small positive constants, their values have no effect to the final results.

In this work, both ε1 and ε2 are set to be 10−5. The correction factor Γ is a parameter of

the proposed GCP (see Eq. 3.5). According to the previous analysis in subsection 3.1.2

and the experiment results illustrated in Fig. 3.3, the scattering coefficients βs of the

output virtual image always exhibit a high level of stability throughout the image, which

is independent to Γ values. As long as βs can be seen as a constant, the GCP is valid.

Although different values of Γ leads to different scattering coefficients βs (see Fig. 3.3), it

almost has no effect on the quality of the final dehazed results. Fig. 3.6 shows the IDGCP

dehaze results on an example images with different Γ values. During the experiment, the

other parameters were fixed at the values illustrated in Algorithm 3.1. As shown in the

figure, there is barely any difference between the dehazed results when Γ has different

values. However, different values of Γ lead to different values of θ (Eq. 3.13) and affect

the processing time. The processing time is slightly different with different values of Γ

because the FM used to determine the value of θ needs different numbers of iterations.

For example, as shown in Fig. 3.6, when Γ = 0.6, the number of iteration to find θ is 8;

when Γ = 0.8, the number of iteration to find θ is 9. However, the Γ value’s effect on the

processing time is minor. In this work, Γ is set to be 0.5.

The regulation constant λ is introduced in the vision indicator (Eq. 3.15) to correctly

determine the value of θ. To investigate how λ affects the recovery performance, a recovery
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Γ=0.2 Γ=0.4 Γ=0.6 Γ=0.8

Hazy Imge

Number of iteration: 8
Time Cost: 0.887

Number of iteration: 8
Time Cost: 0.868

Number of iteration: 8
Time Cost: 0.873

Number of iteration: 9
Time Cost: 0.935

Estimated 
θ=1.645

Estimated 
θ=2.107

Estimated 
θ=2.950
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Figure 3.6: IDGCP robustness evaluation of the pre-set parameter Γ on an example hazy

images. Top: Curves of f with respect to θ using different values of Γ. Bottom: Results

of IDGCP with different values of Γ.

quality test was conducted with different values of λ. Fig. 3.7 shows the results restored

via IDGCP from three different types of hazy images with different values of λ when other

parameters are fixed at the values listed in Algorithm 3.1. As shown in the figure, too small

λ results in over-saturation in the mist image, whereas too large λ can not completely

uncover the scene content in the image with dense haze. As a tradeoff, λ = 0.5 is selected.

Experiments on numerous sample images demonstrate that once Γ and λ are fixed,

the resultant θ values of the images will always lie in a specific confidence interval. When

Γ = 0.5 and λ = 0.5, the confidence interval is [0, 6]. For example, as shown in Fig. 3.7,

the θ values of the three typical images are 0.043, 1.463, and 4.64. More test results can

be found on the authors’ website1. Therefore, to reduce the processing time of IDGCP,

the initial interval and final interval width used in FM are set to be [a1, a2] = [0, 6] and

ε = 0.1, respectively.
1https://www.researchgate.net/profile/Mingye_Ju

https://www.researchgate.net/profile/Mingye_Ju
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Case 1: 
Haze-free Image

 λ=0

 λ=0.25

 λ=0.5

 λ=0.75

 θ =0.995

 θ =0.140

 θ =0.043

 θ =0.00

Case 2: 
Misty Image

 λ=0

 λ=0.25

 λ=0.5

 λ=0.75

 θ =2.455

 θ =1.823

 θ =1.463

 θ =1.047

Case 3: 
Dense Haze Image

 λ=0

 λ=0.25

 λ=0.5

 
λ=0.75

 θ =5.685

 θ =5.030

 θ =4.642

 θ =4.126

Figure 3.7: IDGCP robustness evaluation of the pre-set parameter λ on three example

images.

3.3.2 IDGCP Performance Demonstration

3.3.2.1 Evaluation of IDGCP on different sample images

First, several sample images were selected from [40] to test the performance of IDGCP. The

original sample images, the restored results, and the transmission maps are depicted in

Fig. 3.8 to intuitively demonstrate the capability of IDGCP. As observed in the figure, the

proposed IDGCP thoroughly removes the haze and unveils reasonable scene details in hazy

regions, while the transmission maps are quite consistent with the objective reality of the

real world. Although these estimated transmission maps seem to have a few undesirable

or illogical texture details, the visual quality of the recovered results shown in Fig. 3.8

is already more than sufficient for most cases. Here we remark that further blurring the
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Figure 3.8: Image restoration results using the proposed IDGCP.

texture details in transmission maps can improve the restoration quality. However, in this

work, the blurring step is omitted as the quality is already satisfactory and the efficiency

is the main concern.

3.3.2.2 Evaluation of the GCP

The first step of IDGCP is to obtain the depth ratio using GCP. A sharp depth ratio is the

premise of the final accurate restoration. In Fig. 3.9, we compare the obtained scene depth

from GCP and that from the widely used color attenuation prior (CAP) [56]. According

to the figure, although CAP has a better local-constant feature than GCP (owing to the

abandoned blurring step and the ignored locally constant assumption in IDGCP), it is

not able to achieve a balance between the over-saturation problem in close-range regions

and a complete haze removal in long-range regions by changing the scattering coefficient

settings (see the zoom-in patches in Figs. 3.9(c) to 3.9(f)). In contrast, GCP is able to

solve this problem and achieve satisfactory results by selecting an appropriate value of

constant θ (see the zoom-in patches in Fig. 3.9(k)).
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(a)

(b)

(g)

(c) (d) (e) (f)

(h) (i) (j) (k)

β= 1 β= 1.2 β= 1.4 β= 1.25

θ = 2 θ = 2.5 θ = 3 θ = 3.28

CAP

GCP

Figure 3.9: Comparison of the scene depth obtained by the widely used CAP proposed

in [1] and by the proposed GCP. (a): Input hazy image. (b): Depth map obtained via

CAP. (c)-(f): Recovered images with different scattering coefficients of β =1, 1.2, 1.4,

and 1.25, respectively. β = 1.25 was determined via the proposed vision indicator. (g):

Depth map obtained via GCP. (h)-(k): Recovered images with different constants of

θ = 2, 2.5, 3, and 3.28, respectively. θ = 3.28 was determined via the proposed global

optimization strategy.

3.3.2.3 Evaluation of the global-wise strategy

The pixel-wise, patch-wise, scene-wise, and nonlocal-wise strategies that are designed for

haze removal, as aforementioned, involve enormous redundant computations due to the

spatial similarity in natural image. Fig. 3.10 illustrates the dehazing procedure and the

associated time cost of the proposed IDGCP (global-wise) and other recently published

works, including FID [50] (pixel-wise), DCP [4] + GF [29] (patch-wise), DIM (scene-

wise) [71], and NID (nonlocal-wise) [74]. For fairness of comparison, the redefined scene

luminance of DIM was replaced by the atmospheric light, and the atmospheric light of

FID, DCP, DIM, NID, and IDGCP were set to have the same value in initialization. As

observed in Fig. 3.10, it is noticed that the transmission maps (or depth maps) estimated

via pixel-wise, patch-wise, scene-wise, and nonlocal-wise strategies fail to preserve the edge
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Pixel-wise StrategyMedian Filtering and Guided 
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Patch-wise StrategyGuided Image Filtering   
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Global-wise StrategyIDGCP
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Time Cost: 1.9s
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Transmission Bound Regularization 

and Smooth  Filtering   NID

Figure 3.10: Overview of image dehazing procedures using FID, DCP + GF, DIM, NID,

and the proposed IDGCP. (Note that the atmospheric light is regarded as a known con-

stant here).

structure of the original depth or contain many unreasonable texture details, which means

that a subsequent refine-transmission step is required. In comparison, IDGCP utilizes the
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global-wise strategy, which only needs to estimate one unknown constant. This leads to

a significant reduction in processing time and computation cost. More importantly, since

an entire image has more information than a part of the image, the global-wise strategy

can get a more visually comfortable result (as highlighted by red circles in Fig. 3.10).

3.3.3 Qualitative Comparison

3.3.3.1 Comparison with state-of-the-art dehazing techniques on challenging

real-world images

Almost all the mainstream dehazing techniques are able to get satisfactory restoration

results from general outdoor hazy images as discussed in [65]. Sometimes it is hard to

tell the differences of the restoration quality using different techniques. In this work,

we adopted five widely used challenging real-world benchmark images (collected in [56])

with large white or gray scenes to facilitate the comparison as shown in Fig. 3.11. The

selected pictures are challenging to dehaze because most of the algorithms are sensitive to

the gray-white color. The five hazy images are given in Fig. 3.11(a). The dehazed results

using DEFADE (fusion-wise) [34], FVR (pixel-wise) [63], BCCR (patch-wise) [51], IDAET

(scene-wise) [73], IDHL (nonlocal-wise) [75], MSCNN (learning-wise) [69], DehazeNet

(learning-wise) [84], and the proposed IDGCP (global-wise) are illustrated in Figs. 3.11(b)

to 3.11(i), respectively. Some zoom-in detailed are shown in Fig. 3.11(j) for a clearer

comparison.

In Fig. 3.11(b), it is observed that DEFADE can recognize rough haze regions and

increase visual visibility for most of the hazy samples, but its performance is deteriorated

when dealing with dark regions (highlighted in the zoom-in subfigure). This is attributed

to the fact that the severe dark aspects of the preprocessed images play a dominate role

when performing the multi-scale fusion operation. As shown in Fig. 3.11(c), FVR is able
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to recover the hidden details of hazy regions, whereas the restoration scenes are quite

deviate from the real ones that expected. The reason is that the atmospheric veil used

in FVR is a particular case of DCP, and the overestimation transmission problem gets

more severe. In addition, for the third picture, halo artifact appears near the depth jumps

(see the corresponding zoom-in part in Fig. 3.11(j)). This is due to the poor structure-

preserving performance of the median filter. Similarly, we notice that BCCR has the same

drawback, as shown in Fig. 3.11(d), because of the fact that the inherent defect of DCP is

not addressed and the noise amplification phenomenon still exists in the white regions of

the images (as highlighted in Fig. 3.11(j)). For IDAET as shown in Fig. 3.11(e), it fails

to attain promising results for the dense regions. The reason is that the dense regions

are misjudged as “sky" by the transmission compensation module used in this method.

IDHL avoids the haze residue for the dense regions by introducing the lower bound of

transmission, as seen in Fig. 3.11(f). However, the over-saturation was unfortunately

introduced in recovered result (see the purple patch in Fig. 3.11(j)). This may be caused

by the detection failure of similar colors. Although MSCNN and DehazeNet can avoid

the over-enhancement problem to some extent (see Fig. 3.11(g) and Fig. 3.11(h)), haze

residue can be found in their dehazed results (detailed in the yellow and green patches).

This is mainly attributed to the fact that the training samples for the deep dehazing

methods are usually artificially synthesized images rather than real-world images, thus

limiting the performance of the learning-wise dehazing methods. Compared with these

state-of-the-art techniques, IDGCP is free from over-enhancement, halo effect, and over-

saturation problems that degrade the image quality. As displayed in Fig. 3.11(i), the sky

regions and the clouds in the recovery images are very natural, and the texture details of

the targets are well enhanced.
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      (j) Zoom-in details

(i) 
IDGCP

(h) 
DehazeNet

(g) 
MSCNN

(f) 
IDHL

(e) 
IDAET

(b) 
DEFADE

(d) 
BCCR

(c) 
FVR

(a) 
Hazy Image

Figure 3.11: Qualitative comparison between the proposed IDGCP and other state-of-

the-art techniques on five benchmark images.
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Hazy Image FVR BCCRDEFADE IDAET IDHL MSCNN DehazeNet IDGCP Ground Truth

Figure 3.12: Qualitative comparison between the proposed IDGCP and other state-of-

the-art techniques on synthetic images.

3.3.3.2 Comparison with state-of-the-art dehazing techniques on synthesized

images

Assessing dehazing techniques is a very tricky task since it is difficult to get haze-free

reference images from real-world. The comparisons between IDGCP and state-of-the-art

techniques were further conducted on the Realistic Single Image Dehazing (RESIDE)

dataset [85] consisting of both hazy images and the corresponding haze-free images. Figs.

3.12(a) and 3.12(j) give the hazy images and the corresponding ground truth images,

respectively. Figs. 3.12(b) to 3.12(i) show the recovered results based on the synthesized

hazy images using DEFADE, FVR, BCCR, IDAET, IDHL, MSCNN, DehazeNet, and

IDGCP, respectively. In Figs. 3.12(b) to 3.12(d), the restored results using DEFADE,

FVR, and BCCR can clearly indicate the target contour for the given examples, but

their restored colors are generally over-saturated (see the festival image and the building
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image). As shown in Figs. 3.12(e) and 3.12(f), the over-enhancement still exists in the

festival images after the dehazing process of IDAET and IDHL. According to Figs. 3.12(g)

and 3.12(h), MSCNN and DehazeNet are capable of producing the haze-free results with

vivid color and necessary details for mist scenes. However, they lack the ability to uncover

the details for the scenes with dense haze (see the city image). In comparison, IDGCP’s

results do not show any negative effects and can maintain the original tones of most scene

targets as shown in Fig. 3.12(i).

3.3.4 Quantitative Comparison on Synthetic Images

In order to guarantee the fairness of the qualitative comparison in Fig. 3.12, quantitative

comparisons were made on four commonly used evaluation indexes. The selected per-

formance indexes are fog aware density evaluator (FADE) [34], edges newly visible after

restoration (e) [86], structural similarity (SSIM) [87], and mean square error (MSE). The

calculated values of these indexes for the four images shown in Fig. 3.12 are summarized

in Table 3.1. Note that a larger e or a smaller FADE represents a lower perceptual haze

density; a larger SSIM means a better structure similarity between the dehazed result

and the ground truth image; a lower MSE indicates that the recovered image is more

acceptable. It can be concluded from the table that the proposed IDGCP has the high-

est average value of SSIM and the lowest average value of MSE among all the methods,

which means that IDGCP’s results are more similar to the ground truth compared with

the results obtained by other methods. Although IDGCP has a higher average value of

FADE and a lower average value of e than FVR, BCCR, and IDHL, the results produced

by these methods appear to be over-saturated and too dark. This could further reduce

the perceptual fog density of the dehazed images and increase the pseudo-edge of scene

targets.
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Table 3.1: Quantitative Comparison of Dehazed Images Shown in Fig. 3.12 using FADE,

e, SSIM, and MSE
Test

Criterion

Image DEFADE FVR BCCR IDAET IDHL MSCNN DehazeNet IDGCP

FADE

Gugong 0.4201 0.5012 0.3947 0.6571 0.5983 0.7556 1.1620 0.5655
Road 0.4514 0.6388 0.4344 0.6524 0.5879 0.8593 0.5460 0.5201
Traffic 1.6470 0.6795 0.7824 1.1191 1.0212 2.1235 1.5703 1.1876
Festival 0.2656 0.3636 0.3702 0.6231 0.4159 0.5160 0.7604 0.6313
City 0.9992 0.4355 0.3906 0.6948 0.3916 1.1996 0.8427 0.5231

Building 0.2592 0.2892 0.3412 0.4891 0.3904 0.7444 0.2901 0.4580
FADE mean value 0.6738 0.5816 0.4522 0.7059 0.5675 1.0331 0.8619 0.6476

e

Gugong 0.4210 0.6115 0.8995 0.4738 0.5727 0.4249 0.4186 0.5208
Road 1.5946 2.2091 1.8563 1.1783 1.1941 0.6083 1.6055 1.3358
Traffic 0.6102 1.4777 1.9566 1.7857 1.6927 0.4664 1.4089 1.0192
Festival 0.2172 0.5007 0.2724 0.1104 0.2033 0.1522 0.0887 0.0455
City 2.1011 2.8050 3.7393 2.2515 3.5591 1.5653 2.4471 3.4696

Building 0.6383 0.7569 0.8233 0.5159 0.8672 0.1910 0.2310 0.3393
e mean value 0.9304 1.3935 1.5912 1.0526 1.3482 0.5680 1.0333 1.1217

SSIM

Gugong 0.8396 0.8399 0.8572 0.8451 0.9030 0.9069 0.9474 0.9270
Road 0.8593 0.8137 0.8548 0.8339 0.9124 0.8941 0.8923 0.9538
Traffic 0.9097 0.7467 0.8929 0.8658 0.9358 0.8384 0.9615 0.9332
Festival 0.6828 0.8844 0.9158 0.8934 0.9229 0.8909 0.9829 0.9724
City 0.3964 0.3292 0.2796 0.3161 0.2712 0.3993 0.3913 0.3713

Building 0.8357 0.7455 0.8053 0.8305 0.7510 0.8534 0.8543 0.9192
SSIM mean value 0.7539 0.7266 0.7676 0.7641 0.7827 0.7972 0.8383 0.8462

MSE

Gugong 0.0343 0.0345 0.0200 0.0470 0.0088 0.0080 0.0041 0.0072
Road 0.0084 0.0201 0.0201 0.0197 0.0138 0.0087 0.0106 0.0052
Traffic 0.0096 0.0517 0.0286 0.0097 0.0090 0.0208 0.0025 0.0061
Festival 0.0747 0.0199 0.0242 0.0437 0.0163 0.0156 0.0025 0.0036
City 0.0378 0.0782 0.0654 0.0526 0.0651 0.0479 0.0309 0.0340

Building 0.0140 0.0335 0.0531 0.0471 0.0535 0.0147 0.0159 0.0083
MSE mean value 0.0298 0.0397 0.0352 0.0366 0.0278 0.0193 0.0111 0.0107

3.3.5 Comparison of Processing Time

Except the high restoration quality, the most significant advantage of the proposed IDGCP

is the low computation complexity thus reducing processing time. Eqs. 3.5, 3.10, 3.13

and the quad-tree subdivision method [64] used in IDGCP are all simple operations, and

the main calculation cost of IDGCP is the gradient operation to determine the unknown

constant θ. Therefore, given an image of size l×w, the theoretical complexity of IDGCP is

only O( 100·l·w
max(w,l)

). To demonstrate the efficiency of IDGCP, a comparison of the processing
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Figure 3.13: Comparison of the processing time of dehazing two example images with

tunable resolutions using the proposed IDGCP and other states-of-the-art techniques.

time between different techniques dealing with images with different resolutions is shown

in Fig. 4.11. To ensure the fairness of the comparison, two pictures (the “road" and

“festival" images shown in Fig. 3.12) with tunable resolutions were used in comparison

and all the tests were performed five times to get the average time cost. It can be easily

concluded from Fig. 4.11 that IDGCP is significantly faster than all the other techniques

regardless of the resolution of the images.

Overall, the comparison results shown in Figs. 3.8 to 4.11 and Table 3.1 demonstrate

that the proposed IDGCP outperforms most of the state-of-the-art methods in terms

of haze removal, color restoration, and processing time while avoiding almost all of the

negative effects.

3.4 Conclusion

In this chapter, a very simple yet powerful gamma correction prior (GCP) was proposed,

leading to an extremely efficient single image dehazing method called IDGCP. The pro-

posed GCP allows us to approximately simulate a homogeneous misty image from an
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input hazy image. Based on this prior and ASM, IDGCP was developed to overcome the

low real time performance and low robustness ability of available techniques. Different

from previous works, IDGCP converts single image dehazing into multiple images haze

removal task. The benefit is to ease the uncertainty of depth information, so that the haze

removal task can be redefined as a global-wise optimization function to determine only

one unknown constant. IDGCP can obtain a high-quality transmission map without any

refining process, which significantly reduces the processing time. A series of experimental

results demonstrate that IDGCP achieves noticeably higher efficiency and outstanding

dehazing ability compared to the state-of-the-art techniques.





Chapter 4

VROHI: Visibility Recovery for

Outdoor Hazy Image Based on

Modified Additive Haze Model

This chapter also aims to provide a highly efficient image dehazing method for hazy out-

door images. Unlike the IDGCP proposed in chapter 3, the technique proposed in this

chapter is based on an additive haze model (AHM) which has a potential to increase the

efficiency of the dehazing procedure. In this chapter, according to the low-frequency fea-

ture (LFC) of haze, AHM is modified via gamma correction technique to make it suitable

for modeling outdoor images. Based on this modified AHM (MAHM), a simple yet effec-

tive method called VROHI is proposed to enhance the visibility of an outdoor hazy image.

In specific, a low complexity LFC extraction method is designed by utilizing characteris-

tic of the discrete cosine transform. Subsequently, by constructing the linear function of

unknown parameters and imposing the saturation prior on MAHM, the image dehazing

problem can be derived into a global optimization function. To overcome the problem

of visual darkness and color cast, the dehazed result is later enhanced by correcting its

45
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atmospheric light.

4.1 Modified Additive Haze Model

Additive haze model (AHM) proposed in [2] is used to describe remote sensing (RS)

images in machine vision and computer graphics. This model is expressed as

DN i
observed(x, y) = DN i(x, y) +HRi(x, y), (4.1)

where (x, y) is image coordinate, i is band index, DN observed is multi-spectral RS data

captured by satellite, DN is expected surface radiance, and HR is haze contribution.

Unlike the RS data containing both visible bands and additional infrared bands, only

three visible RGB bands are included in outdoor images, which means AHM can be

further optimized to reduce its complexity.

According to Rayleigh’s law [19], the interference of haze depends on the wavelength

of light. Since the wavelength variation between the RGB bands for outdoor images is

much smaller than that in the multi-bands for RS images, here we assume that the haze

contribution to the RGB bands of outdoor images is similar. Consequently, when using

AHM to represent RGB bands outdoor hazy images, we propose to use a haze thickness

map (HTM) H to replace HRi in Eq. 4.1. This then leads to:

Ic(x, y) = J c(x, y) +H(x, y), (4.2)

where c ∈ {r, g, b} is color channel index, I is outdoor image contaminated by haze,

and J is haze-free scene albedo. In [88], Li et al. verified that haze is highly related to

the illumination component and is concentrated in the low-frequency band of an input

image. There exists a quasi-linear relationship between the HTM and the low-frequency

component (LFC) of the input image. Here, by considering the quasi-linear relationship
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and based on an observation of the haze distribution characteristic of numerous hazy

images, gamma correction (GC) is used to relate the HTM with the LFC, i.e.,

H(x, y) = σ · (Lf (x, y))γ, (4.3)

where Lf is the LFC of the input image, γ ∈ [0, 1] is the GC parameter to adjust the

haze distribution, and σ ∈ [0, 1] is a constant related to the haze density. By accurately

extracting the LFC and properly setting the values of σ and γ, one is able to get accurate

HTM from the LFC of hazy image, which is the premise of subsequent high-quality haze

removal.

Combining Eq. 4.2 and Eq. 4.3, a modified AHM (MAHM) for outdoor image dehazing

can be obtained as

J c(x, y) = Ic(x, y)− σ · (Lf (x, y))γ. (4.4)

According to MAHM, the key of image dehazing is to mine LFC and estimate the two

constants σ and γ from the input hazy image I, which will be presented in the next

section.

4.2 Proposed VROHI

In this section, based on the MAHM described in the previous section, a fast visibility

recovery method called VROHI is developed for outdoor hazy images. The proposed

VROHI consists of two major modules, i.e., global-optimization-based dehazing module

and atmospheric light correction (ALC) module.

4.2.1 Global-Optimization-Based Dehazing

1) Extraction of LFC: According to Rayleigh’s law [19], the blue channel of a hazy

outdoor image Ib is more susceptible to the interference of haze compared to the red and
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Figure 4.1: The working mechanism of Eq. 4.5.

green channels. Therefore, here we attempt to excavate the LFC from Ib. Directly em-

ploying image blur tools with edge protection, e.g., guided filter (GF) [29], joint bilateral

filter(JBF) [50], and guided total variation (GTV) [71], is the most intuitive way to cal-

culate the LFC. However, these techniques all need complex convolution operators to get

the filter weights for each pixel in whole image, which would reduce the computational

efficiency of haze removal. To this end, a low complexity discrete cosine transform based

LFC extraction method is proposed. Specifically, this procedure can be expressed by
F ′ = f

(
Ib
)

FL (x, y) =

{
W (x, y) · F ′ (x, y) , 0 ≤ x ≤ s, 0 ≤ y ≤ s

0, else

Lf = f−1 (FL)

(4.5)

where f (·) and f−1 (·) are the discrete cosine transform (DCT) operator and inverse DCT

(IDCT) operator, F ′ is the discrete cosine domain (DCD) of Ib obtained via DCT, FL is

the weighted F , s is the size of a square patch selected on F ′ for weighting, and W is the

introduced weighting factor.
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For clarity, the working mechanism of Eq. 4.5 is illustrated in Fig. 4.1. The first step

is to obtain the blue channel from input image. Then DCD of Ib is obtained using DCT.

In subsequence, a square patch with the size of s at the upper left corner in the DCD

is selected. This is due to the fact that the LFC data are mainly concentrated at the

upper left corner in F ′. Since the data should be more reliable for extracting LFC if it is

more closer to the upper left corner [89], to improve the reliability, a weighting function

is defined as

W (x, y) = 1− x+ y

2 · s
(4.6)

Finally, the LFC is extracted from the weighted F through IDCT.

To demonstrate the superiority of the proposed LFC extracting method, Fig. 4.2

illustrates the LFCs extracted by GF, JBF, GTV, and the proposed method. As observed

in the figure, the obtained results are similar but the proposed method consumes much

less time.

Time Cost: 0.0731sTime Cost: 0.1884s Time Cost: 0.2414s
Blue Channel Result of GF Result of JBF Result of Proposed Method

Time Cost: 0.7754s
Result of GTV

Figure 4.2: Comparison of LFC extraction effect between different operators.

2) Estimation of σ and γ: In general, mist images usually have sharper haze distri-

bution than images with heavy haze, as shown in Fig. 4.3(a). In other words, images with

high haze density (large σ value) tends to have fatter haze distribution; images with low

haze density (small σ value) tends to have sharper haze distribution. Meanwhile, recall

the characteristic of GC as shown in Fig. 4.3(b), i.e., given the input (L in Eq. 4.3),

the smaller the γ, the fatter the output (H). This leads to a conclusion that there exists
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an inverse proportional relationship between σ and γ (the larger the σ, the smaller the

γ), when using Eq. 4.3 to model the HTM of a hazy image. There is no doubt that the

HTM estimation can be significantly simplified if the relationship between σ and γ can

be fitted with a linear equation. Considering that γ ∈ [0, 1] and σ ∈ [0, 1], a following

linear function is proposed as

γ = 1− κ · σ (4.7)

where κ is a parameter introduced to adjust this linear expression to achieve higher

accuracy. Substituting Eq. 4.5 and Eq. 4.7 into Eq. 4.4, the recovery formula can be

expressed as

J c = Ic − σ ·
(
f−1 (FL)

)1−κ·σ (4.8)

To avoid pixel overflow, the scene radiance Jc is constrained at the interval [0, 1].

Therefore, the expression used for restoring the scene radiance can be rewritten as

J c = V R
(
κ, σ, I, f−1 (FL)

)
= min

(
max

(
Ic − σ ·

(
f−1 (FL)

)1−κ·σ
, 0
)
, 1
) (4.9)

where V R (·) is the abbreviation of scene radiance restoring function. Note that V R (·) is

a function of four parameters, where I is the input, FL can be calculated via Eq. 4.5, κ

is the empirical parameter, and σ is the only unknown constant related to haze density.

To estimate the value of σ accurately, a saturation prior [90] based global optimization

function (GOF) is designed as

σ = ω · argmin
{
θ − φ

(
V R

(
κ, σ, I, f−1 (FL)

))}
(4.10)

where φ (·) is saturation operator, θ is average saturation of high-quality image, and ω

is introduced to adaptively keep a small amount of haze for distant scenes to make the

dehazed results appear to be more natural. In contrast to currently used pixel-wise, patch-

wise, scene-wise, and non-local-wise strategies, the designed GOF is capable of making up
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the limitation of saturation prior. This is due to the fact that the information of the whole

image is richer than that of a patch or scene, thus global optimum results instead of local

ones can be obtained. Considering that Eq. 4.10 is also a one-dimensional optimization

function, Fibonacci method (FM) is adopted to solve Eq. 4.10 since it is able to gradually

narrow the search interval for one-dimensional optimization problem until convergence

condition is satisfied. In specific, the initial interval and the final interval length are

defined as [0, 1] and 0.05, respectively. Once θ is determined via the GOF with golden

section method (GFM), the scene radiance can be directly recovered by Eq. 4.9. Taking

the hazy images in Fig. 4.3(a) as examples, the HTMs and recovery results using the

proposed method are shown in Figs. 4.3(c) and 4.3(d), respectively. It can be observed

from these results that the estimated HTMs are in line with intuition, and the haze cover

in hazy images can be thoroughly removed. Regrettably, the result restored via MAHM

is too dark and has a lower contrast than original hazy image. This is since MAHM can

only exclude the haze contribution from hazy input, while it lacks the ability to highlight

the textures and profiles blurred by haze, thus dehazed result using MAHM needs to be

further improved.
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Figure 4.3: (a): Outdoor hazy images. (b): Curves of haze distribution with different

values of γ. (c): HTMs (σ · Lγ). (d): Recovery Results. (e): Results enhanced by ALC.
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4.2.2 Atmospheric Light Correction (ALC)

(a) (b)

y

m

x

Figure 4.4: Two examples of the weighting map used for locating atmospheric light. (a):

Hazy images. (b): Weighting maps obtained via Eq. (11).

To address the visual darkness problem and the interference of color cast caused by

ambient light, an effective ALC technology is developed. In specific, since the atmospheric

light is usually located in the sky region or dense haze regions, a weighting map for locating

atmospheric light is defined as

W ′ (x, y) =
(

1− y

m

)
·H (x, y) (4.11)

where m is the image height. Figs. 4.4(a) and 4.4(b) illustrate two examples of hazy im-

ages and their weighting maps to locate the atmospheric light. With the defined weighting

function, the pixels with smaller y value (more close to the sky region) and large haze

thickness are assigned to have larger weighting factors. The pixels having the top 0.1%

weighting factors are highlighted in yellow in Fig. 4.4(b). Then, from the highlighted

area, the pixel with the highest intensity in the hazy input is selected. This intensity of

selected pixel is defined as the intensity of the atmospheric light Ac, thus the obtained
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Table 4.1: Dehazing procedure of VROHI.
Input Hazy Image I

Initial parameters ω = 0.95, s = 100, κ = 0.4, θ = 0.103

Dehazing procedure

1: Calculate the weight W via Eq. 4.6;
2: Extract the LFC via Eq. 4.5 using the W;
3: Determine the constant σ via Eq. 4.10 with GFM;
4: Restore the scene radiance J via Eq. 4.09;
5: Compute the wight map W′ via Eq. 4.11;
6: Locate the atmospheric light of J based on W′;
7: Enhance the scene radiance as Je via Eq. 4.12.

Output Recovery result Je

scene radiance can be transformed to

J ce (x, y) =
J c (x, y)

Ac
(4.12)

where J ce is the final high-quality recovery result. By comparing the results with and

without ALC as respectively shown in Figs. 4.3(d) and 4.3(e), it can be observed that

the proposed ALC module effectively improves the overall contrast and truly restitute the

original color.

For clarity, the step-by-step procedure of VROHI is outlined in Table 4.1. Note that

the values of the pre-set parameters given in Table 4.1 are optimized results considering

different scenarios. One does not need to re-estimate these parameters when using the

VROHI for image dehazing. Also, it is noted that, in this dehazing procedure, steps 1,

2, 4∼7 are all simple operations and step 3 can be directly solved via GFM with low

computational overhead, which guarantees a high efficiency of VROHI.

4.3 Experiments

To evaluate VROHI, each module of VROHI is further assessed by experiments. Then,

qualitative and quantitative comparisons are made between the proposed VROHI and



54
Chapter 4. VROHI: Visibility Recovery for Outdoor Hazy Image Based on Modified

Additive Haze Model

other state-of-the-art technologies to demonstrate its superiority. In specific, we tested

VROHI on various challenging hazy images and compared the results with those obtained

from some well-known algorithms including HR [2], DCP [4], MSF [33], DehazeNet [84],

BCCR [51], NLD [75], CAP [56], DEFADE [34], MSCNN [69], and AoD-Net [70]. Among

these methods, HR is used for proving the accuracy of HTM model, DCP, MSF, and

DehazeNet are included in the comparison to validate the performance of the proposed

global-optimization-based strategy, and the rest algorithms are tested for qualitative and

quantitative comparisons of the image dehazing capability.

In this work, experiments1 were conducted by MATLAB2016b on a PC with Intel(R)

Core (Tm) i7-8700 CPU@ 3.20 GHz 16.00 GB RAM. Note that the codes of DehazeNet,

BCCR, NLD2, CAP, DEFADE, and MSCNN are downloaded from the authors’ web-

sites. The codes of HR, MSF and DCP are not publicly available, but they are easy to

implement.

4.3.1 Initial Parameter Setup

There are four parameters that need to be initialized in the proposed VROHI, i.e., ω,

θ, s, and κ. In this work, the value of ω is set to be 0.95 as suggested in [23]; the

value of θ is selected to be 0.103 according to saturation prior [48]. Only s and κ are new

parameters introduced in this work. To find appropriate values for them, the performance

test of VROHI on two examples with different combinations of s and κ was conducted,

as illustrated in Fig. 4.5. It can be concluded from this figure that smaller value of s can

produce more realistic colors, and the smaller value of κ is able to lead to stronger haze

removal ability. However, too small value of s may introduce halo artifact and black effect
1The MATLAB code of VROHI is available on the authors’ website: https://www.researchgate.

net/profile/Mingye_Ju
2Due to the unspecific gamma factor and atmospheric light in NLD, we estimated the atmospheric

light via [4] and initialized the value of gamma factor to be 1 for NLD

https://www.researchgate.net/profile/Mingye_Ju
https://www.researchgate.net/profile/Mingye_Ju
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in the depth jumps (see the zoom-in red patches), and too small value of κ also introduce

over-saturation problem in close-range scene (see the blue patches). As a tradeoff, we

chose s = 100 and κ = 0.4 in this work since they can achieve the best visual quality.

Once the parameters in VROHI are determined, it can be used on all types of images

straightforwardly. In following experiments, the recovered results of VROHI are all based

on the combination of the determined parameters, as listed in the Tab. 4.1.
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Mist Example Dense Haze Example

Figure 4.5: Image dehazing using VROHI with different combinations of s and κ while ω

is fixed at 0.95 and θ is fixed at 0.103.

4.3.2 VROHI Performance Demonstration

4.3.2.1 Evaluation of HTM

An accurate HTM is the premise of the final high-quality dehazing. In HR [2], the HTM

is estimated by employing the widely-used dark channel prior (DCP). Fig. 4.6 shows the

comparison between the HTM excavated via VROHI and that obtained via HR on two



56
Chapter 4. VROHI: Visibility Recovery for Outdoor Hazy Image Based on Modified

Additive Haze Model

(a)

(c) (d)

(f) (g)

(a)

(c) (d)

(f) (g)

(b)

(e)

(b)

(e)

Dehazed ResultHTM Result after ALC

H
R

V
R

O
H

I
H

R
V

R
O

H
I

Dehazed ResultHTM Result after ALC

Figure 4.6: Comparison of the HTM obtained by [2] and by the proposed VROHI. (a):

Hazy images. (b): HTM estimated via [3]. (c): Dehazed Results via MAHM using (b).

(d): Enhanced results via ALC based on (c). (e): HTM estimated via the proposed

VROHI. (f): Dehazed Results via MAHM using (e). (g): Enhanced results via ALC

based on (f).

example hazy iamges. As can be seen from this figure, both HR and VROHI can excavate

an accurate HTM and achieve a realistic recovery result for the first example. However,

due to the limitation of DCP, HR is not able to deal with the bright and smooth regions

for the second example, as shown in the yellow patch in Fig. 4.6(c). Moreover, this error

restoration leads to information loss in the result enhanced by the ALC, as shown in the

blue patch in Fig. 4.6(d). In contrast, VROHI’s HTM can effectively address this issue

and accurately reflect the haze distribution, thereby exhibiting a better visual quality.
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4.3.2.2 Evaluation of Global-Optimization-Based Dehazing

As aforementioned, there are mainly three categories of image algorithms that are pro-

posed to enhance the visibility of images captured in hazy weather. They are the ASM-

based, multi-scale-fusion-based, and deep-learning-based methods. Fig. 4.7 illustrates the

processing procedure and the associated running time of the proposed VROHI (global-

optimization-based) and three representative techniques, including DCP (ASM-based)

[4], MSF (multi-scale-fusion-based) [?], and DehazeNet (deep-learning-based) [84]. As

illustrated in Fig. 4.7, the proposed VROHI only needs to determine one unknown con-

stant while the other methods need to employ complex tools (such as guided filter and

Laplacian-pyramid operator) to realize the haze removal. As a consequence, the proposed

global-optimization-based VROHI takes a much shorter time to recover the hazy input.

4.3.2.3 Evaluation of VROHI on different sample images

After evaluating the embedded HTM modeling module and global-optimization strategy,

the proposed VROHI was then tested on various types of outdoor hazy images obtained

from well-known references [71,84]. Fig. 4.8 shows the original hazy images, the calculated

HTMs, and the corresponding dehazed results to intuitively demonstrate the robustness of

VROHI. It can be observed from this figure that VROHI can accurately estimate the HTM

and thoroughly remove the haze from the input image, no matter whether the atmospheric

particle distribution is homogeneous or inhomogeneous. Moreover, without introducing

any additional post-processing as suggested in [91, 92], VROHI still successfully avoids

the over-enhancement in the sky regions and the over-saturated in the mist regions.
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Figure 4.7: Overview of image dehazing procedures using DCP, MSF, DehazeNet, and

the proposed VROHI.
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Figure 4.8: Visibility recovery result of VROHI on different types of outdoor hazy images.

Top: Hazy images. Middle: Calculated HTMs. Bottom: Results recovered via VROHI.

4.3.3 Qualitative Comparisons with State-of-the-art Technologies

4.3.3.1 Comparison on challenging real-world images

Being able to handle hazy images with complex environment, for example, mist, heavy

haze, non-uniform haze, and white-gray scene, is a significant but challenging task for

dehazing techniques. Fig. 4.9 compares the processing results of BCCR (ASM-based)

[51], NLD (ASM-based) [75], CAP (ASM-based) [56], DEFADE (multi-scale-fusion-based)

[34], MSCNN (deep-learning-based) [69], AoD-Net (deep-learning-based) [70], and the

proposed VROHI (global-optimization-based) on six challenging outdoor images.

As shown in Figs. 4.9(b) and 4.9(c), both BCCR and NLD can uncover the texture

details for all the given images. However, they cannot well handle the regions where the

brightness of scene targets is inherently similar to the atmospheric light. In particular,

the colors in the recovered rocky areas are completely deviated from the real situation

that expected (see the fifth example). For CAP as shown in Fig. 4.9(d), although it can

avoid the above negative problems, its dehazing strength is very weak. This is due to

the fact that scattering coefficient used in CAP is simply set as a fixed constant. In Fig.

4.9(e), DEFADE is able to thoroughly exclude the haze for most given images, but its
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Figure 4.9: Qualitative comparison between some state-of-the-art techniques and the

proposed VROHI on different kinds of challenging hazy images. (a): Hazy images. (b):

BCCR. (c): NLD. (d): CAP. (e): DEFADE. (f): MSCNN. (g): AoD-Net. (h): VROHI.
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recovery scenes appear to be darker than they should be. Besides, in the dark regions, the

dehazed results using DEFADE suffers from information loss (see the fourth example).

As seen in Fig. 4.9(f) and 4.9(g), the results obtained via MSCNN and AoD-Net are

very visual compelling for mist scenes, whereas they lack the ability to restore to hidden

textures for the scenes with heavy haze (see the second example). Moreover, all these

comparable methods are not suitable to deal with the image with non-uniform haze (see

the third example). The scenes with thick haze in the original picture are still surrounded

by some mist in the dehazed results. In comparison, VROHI is able to achieve more

realistic haze-free results without these negative visual effects, as shown in Fig. 4.9(h).

Here we remark that, even the atmospheric light of results dehazed by these compared

methods is also revised to be one using the proposed ALC module, the results produced

by VROHI still hold the best visual quality (see the last example).

4.3.3.2 Comparisons on synthetic images

Despite the fact that the proposed VROHI is capable of achieving the best recovery

results on real-world images, the comparison shown in Fig. 4.9 might be unfair since

it is hard to capture haze-free scenes as the corresponding references of the real-world

hazy images. Therefore, we further conducted a comparison between VROHI and state-

of-the-art techniques on some sample images from the Realistic Single Image Dehazing

(RESIDE) dataset [85], which includes both the hazy images and the corresponding haze-

free images. Figs. 4.10(a)∼11(h) show the hazy images and the recovered results based

on the synthesized images using BCCR, NLD, CAP, DEFADE, MSCNN, AoD-Net, and

the proposed VROHI, respectively. The corresponding ground truth references are given

in Fig. 4.10(i) to facilitate this comparison.

As observed in Figs. 4.10(b) and 4.10(c), the restored results using BCCR and NLD

can clearly indicate the target contour for all the given examples, but the restored colors
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are generally over-saturated (see the first and fourth examples). In addition, there is also

an over-enhancement problem in the sky region (see the third example). As shown in Fig.

4.10(d), the haze still remains in the second and last examples after the dehazing process

of CAP. According to Fig. 14.10(e), DEFADE achieves a visually pleasing result for most

examples, but cannot deal with the fourth example well. As seen in Figs. 4.10(f) and

4.10(g), MSCNN and AoD-Net are capable of attaining the haze-free results with vivid

color and necessary details for mist scenes. However, haze residue can be found in the

second and last examples. Compared to these methods, VROHI is able to moderately

uncover the contents and contours from vague scenes. More importantly, VROHI’s results

do not lead into any negative effects and can maintain the tones of ground truth images,

as demonstrated in Fig. 4.10(h).

4.3.4 Quantitative Comparisons with State-of-the-art Technolo-

gies

Qualitative comparison depends on individual’s subjective judgment, which may cause

differences in judgment among different viewers. Therefore, widely-recognized metrics

including the fog aware density evaluator (FADE) [34], the mean ratio of the gradients

at visible edge (r) [86], the ratio of new visible edges (e) [86], and the mean square

error (MSE) are used to quantitatively evaluate the proposed VROHI and aforementioned

techniques. In general, a smaller FADE indicates a stronger restoration ability, larger r

and e stand for a richer information contained in the recovery results, and a smaller MSE

means that the dehazed result is closer to the corresponding real scene. The values of the

assessment metrics on the dehazed results shown in Fig. 4.10 are summarized in Table

4.2. It can be concluded from the figure that VROHI achieves the best scores of FADE,

r, and e for the examples E2, E3, and E5. This indicates that VROHI has the ability to

restore richer information and remove more haze from single input image. Despite the
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Figure 4.10: Qualitative comparison between the proposed VROHI and other state-of-

the-art techniques on synthetic images. (a): Hazy Images. (b): BCCR. (c): NLD. (d):

CAP. (e): DEFADE. (f): MSCNN. (g): AoD-Net. (h): VROHI. (i): Ground Truth

Images.

fact that BCCR and NLD have the better scores of FADE, r, and e than VROHI for the

remaining examples, the images dehazed via these methods appear to be over-enhanced.

This might leads to some unreasonable edges, e.g., in the sky regions of the first example.

For MSE, the score of VROHI is not the best compared with other techniques. In VROHI,

the atmospheric light is corrected to be 1, which makes the average brightness of the final

restored scene radiance might be larger than that of the corresponding ground truth. This

makes the dehazed results obtained by VROHI exhibits a clearer scene than the ground

truth image, thus leading to a larger MSE value. Although there is a discrepancy between

the ground truth and the dehazed result obtained by VROHI, the resultant clearer scene

is not a drawback.
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Table 4.2: Quantitative Comparison of Recovery Images Shown in Fig. 4.10 using r̄, e,

FADE, and MSE.
Metrics Examples BCCR NLD CAP DEFADE MSCNN AoD-Net VROHI

r̄

E1 3.7767 2.3792 1.8308 1.5697 1.5930 1.5257 2.3403
E2 1.9603 2.0151 1.6435 1.8490 1.3445 1.2234 3.7464
E3 1.7352 1.5047 1.4140 1.8790 0.9982 1.2079 1.9099
E4 1.6842 1.5410 1.4206 1.6492 1.0953 1.2081 2.2405
E5 2.5712 3.5672 1.6997 1.6405 1.5819 1.4241 4.2017

r̄ mean value 2.3455 2.2015 1.6017 1.7175 1.3226 1.3178 2.8878

e

E1 0.9554 0.4320 0.3840 0.3511 0.3576 0.3350 0.3978
E2 1.5276 1.8290 1.4496 1.0190 0.6038 1.4896 1.8479
E3 0.6079 0.4665 0.4532 0.5688 0.1534 0.5342 0.6258
E4 0.2185 0.1471 0.1209 0.0721 0.0697 0.0994 0.1327
E5 3.5516 3.6450 3.1755 2.7531 2.2544 3.0072 3.8867

e mean value 1.3722 1.3039 1.1166 0.9528 0.6878 1.0931 1.3782

FADE

E1 0.3683 0.5816 0.9374 1.2254 1.1191 1.1733 0.5083
E2 0.6667 0.7886 1.4090 1.1286 1.2724 1.0986 0.4124
E3 0.5877 0.5972 0.6752 0.6278 0.8071 1.0885 0.4947
E4 0.2732 0.2562 0.3568 0.2580 0.5099 0.4158 0.2830
E5 0.5695 0.6592 1.3986 1.3055 1.5745 1.6388 0.5184

FADE mean value 0.4931 0.5766 0.9554 0.9091 1.0566 1.0830 0.4434

MSE

E1 0.0422 0.0314 0.0041 0.0116 0.0041 0.0017 0.0060
E2 0.0480 0.0449 0.0310 0.0316 0.0389 0.0436 0.0359
E3 0.0296 0.0157 0.0111 0.0133 0.0065 0.0140 0.0138
E4 0.0211 0.0277 0.0064 0.0141 0.0044 0.0062 0.0151
E5 0.0414 0.0340 0.0051 0.0103 0.0090 0.0109 0.0068

MSE mean value 0.0365 0.0307 0.0116 0.0162 0.0126 0.0153 0.0155

4.3.5 Efficiency Comparisons

Apart from the restoration quality, the computational complexity is another critical metric

for image dehazing technique. Taking the first two hazy images in Fig. 4.10 as test

examples, we further give a comparison of the running time between aforementioned

methods and VROHI with different resolutions, as shown in Fig. 4.11. Please note

that AoD-Net is implemented in Pycaffe and the remaining techniques are carried out

in Matlab, thus we did not show the running time of AoD-Net for fairness. Due to

the employed global-optimization-based strategy, it is not surprising that the proposed

VROHI exhibits significantly shorter processing times compared to other techniques. It

is more appealing that the time cost curve of VROHI has the smallest slope among
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Figure 4.11: Comparison of the running time of the states-of-the-art techniques and the

proposed VROHI.

those of different algorithms. This illustrates that, as the image resolution increases, the

superiority of the proposed VROHI over other techniques, i.e., faster processing, becomes

more significant.

4.4 Conclusion

In this chapter, a modified additive haze model (MAHM) is introduced for fast hazy

image restoration. Based on this MAHM, a visibility recovery technique for single hazy

images called VROHI is further developed. By combining the low-frequency component

of hazy image and the saturation prior, VROHI only needs to determine one unknown

constant to achieve visibility recovery, and can work well on both mist, heavy haze,

inhomogeneous haze, and gray white scene images. In addition, all the operators used

in VROHI have lower computational complexity than the tools employed in the state-of-

the-art approaches, which makes it a superior candidate for real-time systems. Moreover,
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an atmospheric light correction (ALC) module is employed to compensate the quality

degradation due to using simplified models, which is later proved to be very effective

and does not increase the processing time much. Experiments demonstrate that VROHI

achieves an outstanding restoration quality and higher efficiency compared to the state-

of-the-art techniques.



Chapter 5

IDSL: Image Dehazing with Supervised

Learning

To address the issue of uneven illumination, this chapter proposes a scene-based ASM

(Sb-ASM) by redefining the atmospheric light as scene incident light. Relying on this

Sb-ASM, a fast image dehazing technique named IDSL is later presented by employing a

supervised learning strategy. In IDSL, according to visual feature of hazy image, a linear

model (LM) between transmission and three known components (luminance, saturation,

and gradient) is firstly created. Then the supervised learning is employed to determine the

unknown parameters in this model. Combining the transmission estimated by LM with a

guided energy model (GEM), the incident light for each scene can be accurately obtained,

thereby restoring the high-quality scene albedo via Sb-ASM. Furthermore, a Gaussian-

Laplacian pyramid based dehazing framework is designed to accelerate the computational

speed.

67
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Figure 5.1: An example: hazy image with uneven illumination.

5.1 Scene-based ASM (Sb-ASM)

As mentioned in the Chapter 2, although many ASM-based dehazing studies achieve

significantly progress, the restoration effect for images with uneven illumination is not

compelling. For instance, the shadow scene in Fig. 5.1 is not directly exposed by the

atmospheric light, and it is only covered with the faint indirect radiation from ambient

light; This means the fixed atmospheric light assumed in ASM might yield some incorrect

results for such cases. To this end, we intend to redefine the atmospheric light as scene

incident light which varies between independent scenes. This leads to a novel scene-based

ASM (Sb-ASM):

I (x, y) = L (i) · ρ (x, y) · t (x, y) +L (i) · (1− t (x, y)) , (x, y) ∈ Ω(i) (5.1)

where Ω(i) and L (i) represent the pixel coordinate set and the value of incident light in

ith scene, respectively. It should be point out that, although Sb-ASM can better model

for the hazy images with uneven illumination, it increases the uncertain of haze removal
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because of the fact that global atmospheric light has been redefined by variable incident

light.

5.2 Proposed IDSL

5.2.1 Linear Model for Transmission Estimation

Sb-ASM appears to be more complex compared to ASM, thus acquiring the imaging pa-

rameters in Sb-ASM is a seriously ill-posed problem. Fortunately, luminance Ī, saturation

Iσ, and gradient ∇I of input image I are increased or decreased along with the change

of the scene depth. This facilitates us to propose:

Q (x, y) =exp
(
−α · (∇I (x, y))2) · exp(−η · (1− Ī (x, y)

)2
)

· exp
(
−γ · (Iσ (x, y))2) (5.2)

where α, η, and γ are unknown coefficients. Relying on the fact that the transmission is

inversely proportional to the haze density, a linear model on transmission is constructed

as:

t (x, y) = 1−λ·Q (x, y) = 1−λ·exp
(
−α · (∇I (x, y))2 − η ·

(
1− Ī (x, y)

)2 − γ · (Iσ (x, y))2
)

(5.3)

where λ is also an unknown coefficient. For convenience, Eq. 5.3 is rewritten into

G (x, y) = log (λ) + α · B (x, y) + η · C (x, y) + γ ·D (x, y) (5.4)

where G (x, y) = log (1− t (x, y)), B (x, y) = −(∇I (x, y))2, C (x, y) =
(
1− Ī (x, y)

)2,

and D (x, y) = (Iσ (x, y))2. In order to accurately learn the unknown coefficients, it is

necessary to create a training model and collect a large amount of training samples. Re-

ferring to [93], the training model corresponding Eq. 5.4 can be described using quadratic
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loss function by

E =
n∑
i=1

|li|∑
x=1

|wi|∑
y=1

(Gi (x, y)− log (λ)− α · Bi (x, y)− η · Ci (x, y)− γ ·Di (x, y)) (5.5)

where n is the number of training samples, and |li|, |wi|, Gi, Bi, Ci, Di denote height,

width and corresponding values of G, B, C, D in the ith sample, respectively. Followed

by [93], Eq. 5.5 can be constructed using a matrix form, that is

E = (Φ−ΨX)T (Φ−ΨX) (5.6)

where

Ψ =



1 B1 (1, 1) C1 (1, 1) D1 (1, 1)
...

...
...

...
1 B1 (l1, w1) C1 (l1, w1) D1 (l1, w1)

1 B2 (1, 1) C2 (1, 1) D2 (1, 1)
...

...
...

...
1 Bn (ln, wn) Cn (ln, wn) Dn (ln, wn)


X =


log (λ)

α

η

γ

Φ =



G1 (1, 1)
...

G1 (l1, w1)

G2 (1, 1)
...

Gn (ln, wn)


(5.7)

According to multivariate differentiation theory, the optimal solution of Eq. 5.6 must be

the stagnation point of E, thus we have

∂E

∂X
= ΨT (Φ−ΨX) = 0⇒ X =

(
ΨTΨ

)−1
ΨTΦ (5.8)

To find the optimal solution, we collected several various types of hazy images from

flickr.com and several other image search engines using 50 most popular tags annotated by

the flickr users. Among these collected images, we select 1,000 images and manually cut

out the sky regions to serve as training samples. Note that the selected samples contain

different scenes, different haze density, different weather, etc. Here it should be remarked

that different sample sets may lead to different optimal solutions, thus a training sample

dataset composed of multiple images with different attributes is beneficial to train the

optimal solution. After collecting images, the transmission for each sample is estimated
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using [4]. With these samples, the unknown coefficients can be directly learned from Eq.

4.8. Through experiments, the final learning results are that λ = 0.8191, α = 2.6560,

η = 3.0507, and γ = 2.3801. Once these unknown coefficients have been determined,

they can be used to compute the transmission map by the Eq. 5.3 for any hazy images.

Fig. 5.2 shows the transmission estimated by approach proposed in IDSL. As observed,

despite the depth structure of estimated transmission maps are sharp and consistent with

the relevant original images, excessive texture details do still exist in these transmission

maps, which is not expected for haze removal [63]. Therefore, the guided filter [4] is used

to further eliminate these details while maintaining the original depth structure.

Figure 5.2: Example images and the estimated depth maps. Top: Input hazy images.

Middle: Transmission maps estimated using Eq. 5.3. Bottom: The blurred outputs

obtained using [4].

5.2.2 Estimation of Scene Incident Light

Different from atmospheric light, scene incident light needs to be firstly estimated for each

independent scene. So it is necessary to segment the input image into separated parts.
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(a) (b) (c) (d)

Figure 5.3: The scene incident light estimation procedure. (a) Input hazy images. (b)The

segmentation results (the identical color indicates the same scene). (c) The scene incident

light (consist of three color components) before edge enhancement. (d) The scene incident

light (consist of three color components) after edge enhancement.

According to [71], the fuzzy C-means [94] is used to segment the blurred transmission t̃:

U = argmin

{
cn∑
i=1

res∑
j=1

µi ·
[
t̃ (j)

]2 · [t̃ (j)− vi
]2} (5.9)

where µi denotes the membership function, m = 2 is the weighted index, and cn = 3 is

the number of target clusters, vi is the center of ith cluster, res is the resolution of input

image, and U denotes the fuzzy matrix of t̃. With this result, the incident light Lc (i) for

the ith scene can be directly estimated using [4]. Unfortunately, the cluster operator may

fail to preserve the edge structure of the original image (see Figs. 5.3(a,b)). To address

this issue, a guided energy model (GEM) for enhancing the edge of scene incident light is

proposed

L̃c = argmin

{∥∥∥Lc − L̃c∥∥∥2

2
+ θ ·

∥∥∥∇L̃c −∇R∥∥∥2

2

}
(5.10)

where θ = 0.5 is the regularization parameter. The first term imposes that Lc and L̃c

should be similar, and the second term ensures that the edge features in L̃c correspond
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to the guiding image R = Ī. According to [65], the iterative form of Eq. 5.10 can be

expressed as

L̃cj (x, y) =

Lc (x, y)− θ ·

( ∑
(x′,y′)∈N(x,y )

(
L̃cj−1 (x′, y′)−R (x′, y′)

)
+ |N | · R (x, y)

)
(1− θ · |N |)

(5.11)

where L̃cj denotes the jth iteration result, N (x, y) is a 15 × 15 local patch centered at

(x, y), and |N | is the number of pixels in N (x, y). Figs. 5.3(c,d) show the scene incident

light before and after the edge enhancement. It is obvious that this scene incident light

after enhancement conforms more closely to the realistic distribution of ambient light

than does a fixed atmospheric light.

5.2.3 Image Restoration

Now that both scene incident light L̃c and transmission map t̃ are determined, scene

albedo in each color channel ρc can be recovered via Sb-ASM (Eq. 5.1) as

ρc =
Ic − L̃c ·

(
1− t̃

)
L̃c · t̃

(5.12)

Simultaneously, to avoid producing too much noise, the transmission t̃ is restricted to

a lower bound t0. Accordingly, the final recovery formula of the scene albedo can be

expressed as

ρc =
Ic − L̃c ·

(
1−max

(
t̃, t0
))

L̃c ·max
(
t̃, t0
) (5.13)

5.2.4 Accelerating Framework

It is obvious that haze mainly affects the low frequency component of the hazy image.

This means dehazing for whole image might involve a large number of redundant compu-

tations. To this end, a Gaussian-Laplacian pyramid based accelerating framework (AF)

is proposed. The step-by-step of AF is described as following:
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Step 1: Decompose the hazy image I into low frequency component Il and high

frequency component I1
h, I

2
h, ..., I

k
h via the Gaussian-Laplacian pyramid.

Step 2: Dehaze the low frequency component Il using the proposed IDSL, and its

recovery result is denoted as Il−dehazed.

Step 3: Enhance the high frequency component by

Ĩ ih = δ · (k − i) ·
((

max

(
1− ζ

ξ

))
↓2·i + 1

)
· I ih, i ∈ {1, 2, . . . . . . , k} (5.14)

where ξ is just noticeable difference (JND) of luminance component [95], ζ is the actual

pixel difference, and δ = 2 is the empirical parameter.

Step 4: Reconstruct the haze-free image via pyramid reconstruction with I1
h, I

2
h, ..., I

k
h

and Il−dehazed. Fig. 5.4 reveals the recovery results of IDSL both with and without AF.

As a tradeoff, k = 3 is selected in IDSL.

Figure 5.4: Dehazing results with and without the AF (with different values of k).

5.3 Experimental Comparison and Analysis

In the following experiments, all the algorithms are implemented in the Matlab (R2014a)

environment on a PC with Intel(R) Core(TM) i5-4300M CPU with 2.60GHz and 8.00 GB

RAM. The parameters of our proposed IDSL are set as described in above.
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(a)

(b)

(c)

(d)

Figure 5.5: Dehazing Performance of IDSL. (a) Hazy images. (b) The estimated scene

incident light (enlarged 16 times). (c) The estimated transmission maps (enlarged 16

times). (d) Dehazing results using IDSL.

5.3.1 Recovery Quality

Without loss of generality, different types of hazy images are picked and the performance

of IDSL is tested on them. Some of the results are shown in Fig. 5.5; Fig. 5.5(a)

displays several hazy images, Figs. 5.5(b) and 5.5(c) show the corresponding estimated

scene incident light and transmission map, respectively; Fig. 5.5(d) presents the results

resorted by the proposed IDSL. As can be seen, the haze cover in these images is removed

completely and most of the scene objects can be noticed clearly, the overall contrast is

also significantly increased, while the estimated transmission and scene incident light are

both consistent with our intuitions.
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5.3.2 Qualitative Comparison on Real-World Images

Although most current techniques are able to generate good results for single input images,

it is hard to compare them visually. For fair comparison, we carried out the test among

different methods on some challenging real-world images including images with mist,

dense haze, gray-white region, sky region and uneven illumination. Fig. 5.6 shows the

comparison of dehazing results with the ten state-of-the-art dehazing techniques [34, 56,

63, 69, 84, 96, 97] on challenging real-world images. Fig. 5.6(a) depicts the hazy images

to be dehazed. Figs. 5.6(b-k) show the results of the methods of DEFADE [34], FVR

[63], A-DCP [96], NC [97], CAP [56], DehazeNet [84], MSCNN [69], respectively. The

results of the IDSL are given in Fig. 5.6(l). As can be seen from Fig. 5.6(b), DEFADE’s

results are not visually compelling since the results are generated using a multi-scale fusion

strategy and the image degradation mechanism is not taken into account (for instance,

the recovered color of the human face in the first image and the rocks in the third image

are significantly inconsistent with their appearances should be). In Fig. 5.6(c), the

results using FVR can recover abundant texture details; however, the visual effect is over-

enhanced (see the rocks of the third image). The reason is that the estimated atmospheric

veil is an extreme case based on the DCP and the problem of overestimating transmission

is inevitable. Moreover, halo artifacts appear nearby to the depth jumps (see the details

demonstrated in the yellow box of the second image) due to the poor edge-preserving

behavior of the median filter used in [63]. In contrast, A-DCP can significantly improve

the visual effect of the haze images, but the color shift phenomenon still exists in the

region with white objects (see the green box of the fourth image in Fig. 5.6(d)) because

the dark channel has bright values near such objects. In Fig. 5.6(e), it can be noticed

that the image recovered using NC generally looks dim, since the haze removal magnitude

which is determined via a negative correction strategy would lead to the over-decreasing
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5.6: Qualitative comparison of different methods on real-world images. (a) Hazy

images. (b) DEFADE. (c) FVR. (d) A-DCP. (e) NC. (f) CAP. (g) DehazeNet. (h)

MSCNN. (i) IDSL.
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of the true scene brightness (see the third image). As we discussed in above, the fixed

scattering coefficient does not always conform to the real world, and for this reason, the

dehazing results of CAP are not quite satisfactory for dense hazy image (see the zoom-in

of Fig. 5.6(f)). As we can observe in Figs. 5.6(g,h), DehazeNet and MSCNN can avoid

the over-enhancement for the sky regions using the machine learning framework, but the

dehazing effect for the non-sky regions is relatively weak, which may be caused by the

insufficient training samples. Compared with the results of these techniques, IDSL has

better performance in terms of haze removal ability, color fidelity and visual effect (see

Fig. 5.6(i)). Furthermore, as depicted in the last row of Fig. 5.6, IDSL outperforms the

other algorithms in aspect of overall contrast.

5.3.3 Qualitative Comparison on Synthetic Images

To verify the effectiveness on complete images, the proposed IDSL is also tested on syn-

thesized hazy images from stereo images with a known depth map, and compared with the

ten method mentioned above. We choose 6 pairs of stereo images from the Middlebury

Stereo Dataset [81–83] and D-HAZY Dataset [85]. The hazy images are synthesized from

the haze-free images using the known depth maps and ASM, as shown in Fig. 5.7(a).

The dehazing results of different approaches are shown in Fig. 5.7(b-l). Fig. 5.7(m) gives

the ground truth images for comparison. As we can see in Fig. 5.7(b-c), the results of

DEFADE and FVR are subject to significant over-enhancement and tend to be darker

than the ground truth images. the results using A-DCP are more consistence with the

ground truth images, but the color shift appears in the white desk of the last image of

Fig. 5.7(d). As shown in Fig. 5.7(e), NC can enhance details of hazy images and can

achieve fine effect generally. However, for the desk image, the floor looks too dark and

haze remains in the upper part. By observing the images in Fig. 5.7(f-h), we can find

that the results of CAP, DehazeNet, and MSCNN are still covered with mist. For ex-
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(a) (b) (c) (d) (e) (g) (g) (h) (i) (j)

Figure 5.7: Results on Synthetic images for which the ground truth images are known.

(a) Hazy images. (b) DEFADE. (c) FVR. (d) A-DCP. (e) NC. (f) CAP. (g) DehazeNet.

(h) MSCNN. (i) IDSL. (j) Ground Truth.

ample, the texture details of the laundry image and the reindeer image are still blurred,

especially within the zoom-in patches. In contrast, the results dehazed by IDSL maintain

the original tone of the true scene, avoid the over-enhancement and recover more vivid

color than the relevant ground truth images (see Fig. 5.7(i,j)).

5.3.4 Quantitative Comparison

To quantitatively assess and rate these algorithms, six well-known evaluation indexes

are employed in this work. Fog Aware Density Evaluator (FADE) predicts the visibility

on a hazy scene without reference to a corresponding haze-free image, and it correlates

well with human judgments of haze density [34]. Structural similarity (SSIM) image

quality assessment index evaluates the ability to preserve the structural information of the

algorithms [87]. Mean squares error (MSE) indicates the average difference between the

recovered image and the reference ground truth image. According to [86], the percentage
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of new visible edges e represents edges that are newly visible after restoration, the contrast

restoration quality r̄ measures the mean ratio of the gradients at the visible edges, and

the saturation Σ computes the percentage of pixels that become completely black or

completely white after restoration. In general, the smaller value of FADE implies the lower

perceptual haze density; a higher SSIM means better structure similarity between the

recovered image and the ground truth image; a lower MSE represents that the recovered

image is more acceptable; a higher value of e and a value of Σ closer to zero imply better

performance, and a higher value of r̄ implies stronger recovery of the local contrast.

The corresponding assessment results are listed in Table 5.1. In summary, IDSL

usually achieves the smallest value of FADE, the highest value of r̄ and e, and the second-

highest value of SSIM, as well as the saturation Σ is nearly close to zero; but the MSE

value of our algorithm is relatively higher than others, whereas this does not imply the

poor performance for IDSL, since it has the illumination compensation ability which may

cause the difference between the dehazing result and the relevant ground truth image.

The computational complexity is another important evaluation factor for a dehazing

algorithm. In Fig. 5.8, we give the computational time comparison of different methods

using Fig. 5.7 (with different resolutions). As we can see, IDSL is much faster than those

of DEFADE, FVR, DehazeNet and slightly faster than A-DCP, NC, CAP, MSCNN and it

has high efficiency even when the resolution of the input image is large. This advantage of

efficiency mainly benefits from the proposed linear model for the transmission estimation

and the designed AF. Overall, the qualitative and quantitative comparison results in Figs.

5.6, 5.7 and Table 5.1 demonstrate that IDSL has advantages over other state-of-the-art

dehazing methods in terms of haze removal, visibility improvement, and illumination

compensation, while avoiding most of the negative effects.
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Table 5.1: Quantitative comparison of the dehazing results shown in Fig. 5.7 using FADE,

SSIM, r, Σ, e, and MSE
Index Image DEFADE FVR A-DCP NC CAP DehazeNet MSCNN IDSL

FADE

art 0.30 0.16 0.22 0.14 0.33 0.36 0.37 0.14
laundry 0.36 0.26 0.32 0.25 0.47 0.54 0.48 0.19
reindeer 0.62 0.35 0.45 0.37 0.68 0.86 0.99 0.28
desk 0.35 0.84 0.46 0.38 0.69 0.96 0.99 0.31

SSIM

art 0.83 0.78 0.85 0.76 0.85 0.84 0.77 0.84
laundry 0.78 0.85 0.90 0.89 0.88 0.87 0.82 0.90
reindeer 0.70 0.81 0.67 0.71 0.67 0.63 0.56 0.81
desk 0.73 0.77 0.81 0.71 0.83 0.83 0.79 0.81

MSE

art 0.46 0.152 1.03 0.08 1.18 1.35 2.48 5.37
laundry 0.15 0.19 2.97 1.01 4.02 4.18 6.24 5.72
reindeer 4.51 0.61 8.91 3.43 8.61 9.84 12.58 7.20
desk 0.46 0.70 0.29 0.85 2.07 2.63 3.63 2.47

r

art 1.30 1.84 1.72 1.44 1.26 1.23 1.40 2.27
laundry 1.52 2.48 2.44 2.21 1.87 1.68 2.11 3.61
reindeer 1.78 2.23 2.19 1.74 1.63 1.54 1.66 3.24
desk 1.88 1.54 1.91 2.05 1.83 1.53 1.54 4.12

e

art 0.31 0.74 0.30 0.30 0.21 0.20 0.22 0.49
laundry 1.01 1.31 0.78 0.76 0.62 0.56 0.58 1.37
reindeer 1.48 2.71 1.39 1.46 1.09 0.84 0.74 1.98
desk 2.51 2.42 2.59 2.21 2.19 1.76 0.56 3.06

Σ

art 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
laundry 0.01 0.00 0.01 0.03 0.00 0.00 0.00 0.00
reindeer 0.00 0.00 0.02 0.06 0.00 0.00 0.00 0.00
desk 0.04 0.00 0.02 0.01 0.00 0.00 0.00 0.02
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Figure 5.8: Time comparison of different algorithms using Fig. 5.7 (with different resolu-

tions)
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5.4 Conclusions

Atmospheric scattering model (ASM) is formulated under the even illumination assump-

tion, which might be invalid under some particular scenarios. In this chapter, a scene-

based ASM (Sb-ASM) is proposed by replacing atmospheric light as the scene incident

light. Taking Rb-ASM as the imaging theory of hazy images, a fast single image dehazing

algorithm named IDSL has been later presented. In IDSL, the transmission estimation

process is coverted to a linear operation on the three known components related to the

hazy image, which significantly reduces the computation efficiency of haze removal. Based

on the proposed GEM, the the scene incident light can be easily obtained, thereby recover-

ing the scene albedo via Rb-ASM. Besides, an AF that uses Gaussian-Laplacian pyramid

is further provided to improve the computational efficiency. Experimental results demon-

strate that IDSL achieves dramatically high efficiency and outstanding dehazing effects.





Chapter 6

BDPK: Bayesian Dehazing Using Prior

Knowledge

In this chapter, a pixel-based ASM (Pb-ASM), which is extremely adaptable for various

practical scenarios, is proposed to overcome the issue of inhomogeneous haze. Benefit-

ing from this Pb-ASM, a Bayesian dehazing dehazing algorithm (BDPK) is developed by

merging the prior knowledge. The strategy of BDPK is to convert the single image dehaz-

ing task into a maximum a-posteriori probability (MAP) model that can be approximated

as an optimization function using the existing priori constraints. To efficiently solve this

optimization function, the alternating minimizing technique (AMT) is introduced, which

enables us to directly restore the scene albedo from optimization function.

6.1 Pixel-based ASM (Pb-ASM)

Besides the uneven illumination limitation described in Chapter 5, ASM also lacks the

capability to deal with the images with inhomogeneous haze. The key reason is that the

scattering coefficient is set to be a constant. Actually, β0 − constant assumption would

face the difficulties when processing the inhomogeneous haze cases (see Fig. 6.1). Accord-

85
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ingly, we break this plausible assumption, i.e., redefine the constant β as the scattering

distribution β0 that varies along with the pixel coordinate. Based on above analysis, a

more reliable pixel-based ASM (Pb-ASM) is obtained as

I (x, y) = L (i) · ρ (x, y) · e−β(x,y)·d(x,y) +L (i) ·
(
1− e−β(x,y)·d(x,y)) , (x, y) ∈ Ω(i) (6.1)

where β (x, y) represents the scattering value for pixel coordinate (x, y). Note that the

atmospheric light in Pb-ASM is replaced scene incident light defined in Rb-ASM, which

aims at simultaneously overcoming the problems of uneven illumination and inhomoge-

neous haze. Although Pb-ASM is more in line with the real world compared to ASM and

Sb-ASM, it is a more challenge task when using the proposed model to dehaze because

the available structure information is significantly insufficient.

 Homogeneous Case 

Atmospheric lightDirect Attenuation Component

Scene Reflection Light
Atmospheric light
Scattering Component

Atmospheric lightDirect Attenuation Component

Scene Reflection Light

 Inhomogeneous Case 

Atmospheric light
Scattering Component

(a) (b)

(c) (d)

Figure 6.1: (a) Homogeneous atmosphere case. (b) Atmosphere scattering model il-

lustrated for homogeneous case. (c) Inhomogeneous atmosphere case (Distribution of

suspended particles varies among the different color boxes). (d) Atmosphere scattering

model illustrated for inhomogeneous case.
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6.2 Proposed BDPK

As we explained in Chapter 2, the success of single image haze removal depends on the

validity of the prior knowledge, whereas the limitations of the aforementioned priors are

inevitable in some exceptional circumstances. To this end, a Bayesian theory based image

dehazing technique called BDPK is developed. It can compensate for these shortcomings

and deal with the inhomogeneous haze image by fully leveraging the latent relationships

of the image priors, and thereby recover the more visually comfortable results.

6.2.1 MAP Model

Motivated by [98–100], the key step of BDPK is to factorize the hazy image I into scene

albedo ρ, scene depth d and scattering distribution β for each pixel across the entire

input. To avoid Pb-ASM, i.e., Eq. 6.1, being nonnegative, we first reverse it as

L (i)− I (x, y) = L (i) · (1− ρ (x, y)) · e−β·d(x,y), (x, y) ∈ Ω(i) (6.2)

Afterwards, taking the logarithm operation of each side in Eq. 6.2 yields

ln (L (i)− I (x, y)) = ln (L (i) · (1− ρ (x, y)))− β (x, y) · d (x, y) , (x, y) ∈ Ω(i) (6.3)

Considering the noise from sensors is another important degradation factor [99] and let-

ting I ′ (x, y) = ln (L (i)− I (x, y)), ρ′ (x, y) = ln (L (i) · (1− ρ (x, y))), Eq. 6.3 can be

simplified as

I ′ (x, y) = ρ′ (x, y)− β (x, y) · d (x, y) + n (x, y) (6.4)

where n denotes additive noise. If incident light L has been estimated using the method

described in Chapter 5, we can regard I ′ as the “new hazy image” since it is a known

component and contains all the information of I. Similarly, ρ′ can be considered as the
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“haze-free image”. According to Bayesian theory, the posterior probability constituted by

all parameters in Eq. 6.4 can be described as

p (ρ′, β, d| I ′) =
p (I ′|ρ′, β, d) · p (ρ′| β, d) · p (β| d) · p (d)

p (I ′)
(6.5)

where p (I ′) is a determined constant due to the given I ′. Moreover, it can be noticed

that ρ′, β, and d are totally uncorrelated in the real world. Therefore, equation Eq. 6.5

is further equivalent to

p (ρ′, β, d| I ′) ∝ p (I ′|ρ′, β, d) · p (ρ′| β, d) · p (β) · p (d) (6.6)

To restore the “haze-free image” ρ′, we take the logarithm operation of each side in 6.6 and

then maximize its posterior probability. Accordingly,the maximum a posteriori probability

(MAP) model for haze removal can be expressed as

arg max {p (ρ′, β, d| I ′)}

∝ arg min {− ln (p (I ′|ρ′, β, d))− ln (p (ρ′))− ln (p (β))− ln (p (d))}
(6.7)

where we have explicitly illustrated the inner relationship among all the probability density

functions of imaging factors in Eq. 6.6. This is premise for approximating the optimization

function of image haze removal.

6.2.2 Model Approximation

MAP model for haze removal is given, but it is a fundamentally under-constrained prob-

lem due to the insufficient available information. Fortunately, some image priors have

been explored. This inspires us to design each probability density function (PDF) to ap-

proximate an optimization function corresponding to Eq. 6.4, which enables us to directly

restore the scene albedo.

Definition I: To alleviate the model’s complexity, we assume the additive noise n is

white Gaussian noise. Additionally, based on the fact that the relationship among all the
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parameters is constrained to Eq. 6.3 [Model Constraint Prior], we might as well define

p (I ′| ρ′, β, d) = e
−‖

I′−ρ′+β·d‖22
λ1 (6.8)

where λ1 is the variance of the exponential power distribution (Please note that the

subsequent parameters λ2, λ3 and λ4 have the same meaning as λ1). The above PDF

restricts the solution space of all unknown components and thus ensures the authenticity

of the recovery result.

Definition II: Haze-free images possess higher visibility than the corresponding hazy

ones [39], which indicates that richer image contrast information results in a higher prob-

ability that the scene is a real scene [Contrast Prior]. Following this hypothesis, the PDF

of ρ′ is defined as

p (ρ′) = e
−‖(

F−∇ρ′)‖22
λ2 (6.9)

where F is the maximum upper limit of ∇ρ′. In addition to the highlighted pure-white

objects, we roughly generalize that ∇ρ′ ∈ [0, 4.6] due to L (i) · (1− ρ (x, y)) ∈ [0.01, 1]

in general. Thus, we set F = 5. Although the contrast prior could basically reflect the

objective discipline of the scene albedo, the results recovered by Tan [39] indicate that

solely stressing the enhanced of visibility in the degraded image may lead to the over-

saturated phenomenon. To address the limitation of the contrast prior used in the PDF

(Eq. 6.9), an esthesia matrix on haze density is introduced. It is expressed as

W = e−
(Ī−1)2

σ · e−
(Iσ)2

σ (6.10)

where σ = 0.3 is a prescribed coefficient, Ī and Iσ are the brightness component and

saturation component of input I, respectively. It is obvious that the quantization value

of the matrix is proportional to scene brightness and inversely proportional to saturation,

which conforms to human visual perception (HVP) for natural haze [56]. Taking this

esthesia matrix (Eq. 6.10), the final PDF of ρ′ can be rewritten as

p (ρ′) = e
−W · ‖

F−∇ρ′‖22
λ2 (6.11)
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where W is able to flexibly control the contrast weights for all pixels with respect to the

HVP. Generally, a thicker haze density results in a greater contrast weight. This strategy

promises the restoration quality for dense hazy scenes and avoids the over-enhancement

of the misty ones.

Definition III: A “good” depth map should preserve the overall depth structure

consistent with the original hazy image. Hence, the PDF of d can be defined as

p (d) = e
−γ1·‖d−d‖

2
2−γ2‖∇d‖

2
2−γ3·‖∇d−∇I‖22

λ3·(γ1+γ2+γ3) (6.12)

where γ1, γ2, and γ3 are weight coefficients and find represents the initial estimation of

the scene depth. Referring to [98, 101], the minimal component of I can be regarded as

the closest depth, thus we initialize this component as the initial depth, that is

d̃ = min
c∈{R,G,B}

(Ic (x, y)) (6.13)

where c denotes color channel index and Ic is a color channel of I.

Definition IV: Similar to scene depth, we notice that the scattering distribution

equally shares the original spatial structure and local smoothing feature (see Fig. 6.1(c)).

Based on this observation, the PDF of β is defined as

p (β) = e
−γ4·‖β−β‖

2
2−γ5‖∇β‖

2
2−γ6·‖∇β−∇I‖

2
2

λ4·(γ4+γ5+γ6) (6.14)

where γ4, γ5, and γ6 are weight coefficients and β represents the initial estimation of the s-

cattering distribution. Here, two different atmospheric conditions are required to be taken

into account: 1) Regarding the homogeneous case, we set β = 1, which has been proven

to be ample for most situations [56]; 2) The brightness of pixels in an inhomogeneous

image usually sharply varies along with the change of the concentration of atmospheric

particles (see Fig. 6.1(c)). Thus, we initialize the estimation β̃ = Ī for inhomogeneous

case.
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Optimization Function: Substituting the created PDFs (Eq. 6.8, Eq. 6.11, Eq.

6.12, and Eq. 6.14) into the MAP model (Eq. 6.7), the optimization function for haze

removal can be approximated as

arg min {p (ρ′, β, d| I ′)}

= arg min (θ1 · ‖I ′ − ρ′ + β · d‖2
2 + θ2 ·W · ‖F −∇ρ′‖2

2 + θ3 ·
∥∥∥d− d̃∥∥∥2

2
+ θ4 · ‖∇d‖2

2

+θ5 ·
∥∥∇d−∇Ī∥∥2

2
+ θ6

∥∥∥β − β̃∥∥∥2

2
+ θ7 ‖∇β‖2

2 + θ8

∥∥∇β −∇Ī∥∥2

2
)

(6.15)

where θ1 = 1
λ1
, θ2 = 1

λ2
, θ3 = γ1

λ3(γ1+γ2+γ3)
, θ4 = γ2

λ3(γ1+γ2+γ3)
, θ5 = γ3

λ3(γ1+γ2+γ3)
, θ6 =

γ4

λ4(γ4+γ5+γ6)
, θ7 = γ5

λ4(γ4+γ5+γ6)
, and θ8 = γ6

λ4(γ4+γ5+γ6)
are regular parameters. Minimizing

Eq. 6.15 is computationally intractable because of too many unknown components. In

the following section, we will introduce an efficient optimization technique to obtain ρ′,

β and d.

6.2.3 Effective Recovering

Instinctively, we employ the alternating minimizing technique(AMT) [102] to solve the

optimization function (Eq. 6.15). The core idea of AMT is to alternatively minimize β,

d, and ρ′ by assuming that the other components are known. This process is repeated

until they converge. Specifically, Eq. 6.15 is first separated into three independent sub-

problems, which are expressed as

d = arg min

{
θ1 · ‖I ′ − ρ′ + β · d‖2

2 + θ3 ·
∥∥∥d− d̃∥∥∥2

2
+ θ4 · ‖∇d‖2

2 + θ5 ·
∥∥∇d−∇Ī∥∥2

2

}
(6.16)

β = arg min

{
θ1 · ‖I ′ − ρ′ + β · d‖2

2 + θ6

∥∥∥β − β̃∥∥∥2

2
+ θ7 ‖∇β‖2

2 + θ8

∥∥∇β −∇Ī∥∥2

2

}
(6.17)

ρ′ = arg min
{
θ1 · ‖I ′ − ρ′ + β · d‖2

2 + θ2 ·W · ‖F −∇ρ′‖2
2

}
(6.18)

To accelerate the calculation, the gradient approximation method [71] is selected to resolve

sub-problems (Eq. 6.16, Eq. 6.17, and Eq. 6.18). Then, their optimal solutions after the



92 Chapter 6. BDPK: Bayesian Dehazing Using Prior Knowledge

jth iteration can be computed as

d(j) =
−θ1 · β(j−1) ◦M1 +

∑
· (θ4 + θ5) ·M3 + θ3 · d̃+M5

θ1 ◦ β(j−1) ◦ d(j−1) +
∑

2 · (θ4 + θ5) + θ3

(6.19)

β(j) =
−θ1 · d(j−1) ◦M1 +

∑
· (θ7 + θ8) ·M2 + θ6 · β̃ +M6

θ1 ◦ d(j−1) ◦ d(j−1) +
∑

2 · (θ7 + θ8) + θ6

(6.20)

ρ′(j) =
θ1 ·
(
I ′ + β(j−1) ◦ d(j−1)

)
+ θ2

∑
· (M4 + F )

θ1 + θ2 ·
∑

2 ·W
(6.21)

where M1 = I ′ − ρ′(j−1), M2=β(j−1) ⊗ Λ, M3=d(j−1) ⊗ Λ, M4=ρ
′
(j−1) ⊗ Λ, M5=θ5 · Σ ·(

Σ · I − Ī ⊗ Λ
)
, M6 = θ8 · Σ ·

(
Σ · I − Ī ⊗ Λ

)
, ◦ and ⊗ represent element-wise multipli-

cation and convolution operator respectively. Λ = [0, 1, 0; 1, 0, 1; 0, 1, 0] is the convolution

kernel and Σ = 4 is the sum of elemental value in Λ. It should be noted that, the

mathematical meaning of PDFs (Eq. 6.12 and Eq. 6.14) constructed using the structure

prior are very similar to those of the guided image filter [29], the guided joint bilateral

filter [50], and the guided total variation model [71]. However, the corresponding solu-

tion formulas (Eq. 6.19 and Eq. 6.21) are not the simple filtering process due to the

interaction of each imaging parameter during the iteration procedure. Once the stop cri-

terion
∥∥ρ′j − ρ′j−1

∥∥
1
/
∥∥ρ′j∥∥1

≤ η or the maximal number of iterations jmax is satisfied, the

iteration is terminated and the scene albedo can be restored as

ρ′ (x, y) =
L (i)− eρ′(x,y)

L (i)
(6.22)

To achieve a better balance between accuracy and efficiency, we empirically provide the

parameters for different atmospheric conditions as listed in Table 6.1. Fig. 6.2 shows two

dehazing examples of homogeneous and inhomogeneous atmospheres using our BDPK by

setting jmax ∈ (5, 10, 15) with η = 0. It can be noticed that, increasing the number of

iterations, more thoroughly removes the haze, and the scattering distribution map as well

as scene depth are more in accordance with our intuitions. Interestingly, we do not state

that the scattering value is correlated with altitude, even though the left scattering map
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jmax=5 jmax=15jmax=10

Homogeneous 
Image

Low                                High Low                                High

Inhomogeneous 
Image

jmax=5 jmax=15jmax=10

Figure 6.2: Two dehazing examples of different types of hazy images using our BDPK by

setting the jmax ∈ {5, 10, 15} with η = 0. Top: The scattering distribution maps (Best

viewed in color). Middle: The scene depth maps (Best viewed in color). Bottom: The

restored haze-free images.

Table 6.1: The empirical parameters of different atmospheric conditions used in BDPK
Condition θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Homogeneous 3 0.1 0.5 0.5 + (j − 1) 0.5 0.5 0.5 + (j − 1) 0.5

Inhomogeneous 3 0.3 0.5 0.5 + 2 · (j − 1) 0.5 0.5 0.5 + 2 · (j − 1) 0.5

estimated by BDPK in Fig. 6.2 obviously is affected by gravity [103]. This precise result

illustrates that our BDPK has the ability to merge the advantages of all introduced priors

by reasonably selecting a set of regular parameters.

6.3 Experimental Comparison and Analysis

In this section, the relevance analyses of all priors introduced in BDPK are first illustrated

experimentally. Next, we test BDPK on various hazy images and compare with the well-

known techniques, including BD [101], BFCD [99], SIBF [100], OCE [55], MCP [39],

MPE [30], FVR [63], DCP [4], SIIM [71], BCCR [51], CAP [56], and DN [85]. Among
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Table 6.2: The regular parameters used in BDPK for the recovery results shown in Fig.

6.3.
Recovery Results θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Fig. 6.3A 0 0.1 0.5 0.5 + (j − 1) 0.5 0.5 0.5 + (j − 1) 0.5

Fig. 6.3B 3 0 0.5 0.5 + (j − 1) 0.5 0.5 0.5 + (j − 1) 0.5

Fig. 6.3C 3 0.1
0 0 0

0.5 0.5 + (j − 1) 0.5
set d = d̃ directly

Fig. 6.3D 3 0.1 0.5 0.5 + (j − 1) 0.5
0 0 0

set β = β̃ directly

Fig. 6.3E 3 0.1 0.5 0.5 + (j − 1) 0.5 0.5 0.5 + (j − 1) 0.5

Fig. 6.3F 0 0.3 0.5 0.5 + 2 · (j − 1) 0.5 0.5 0.5 + 2 · (j − 1) 0.5

Fig. 6.3G 3 0 0.5 0.5 + 2 · (j − 1) 0.5 0.5 0.5 + 2 · (j − 1) 0.5

Fig. 6.3H 3 0.3
0 0 0

0.5 0.5 + 2 · (j − 1) 0.5
set d = d̃ directly

Fig. 6.3I 3 0.3 0.5 0.5 + 2 · (j − 1) 0.5
0 0 0

set β = β̃ directly

Fig. 6.3J 3 0.3 0.5 0.5 + 2 · (j − 1) 0.5 0.5 0.5 + 2 · (j − 1) 0.5

these techniques, the Bayesian-based BD, BFCD, and SIBF are selected for verifying

the rationality of the optimization function designed in BDPK. The remaining methods

qualitative and quantitative compared. The parameters involved in BDPK are initialized

as follows: jmax = 25, η = 103, and the remainder are set as described in Section III

(Please note that the initialization of β̃ requires user intervention).

6.3.1 Relevance Test of Introduced Priors

In BDPK, three priori constraints are introduced for approximating the optimization

function of haze removal. To check that all PDFs contained in BDPK can effectively be

restrained to recover a realistic haze-free scene, we carry out the relevance test for BDPK

by changing the regular parameters or redefining the PDF as a constant component. Fig.

6.3 shows the recovery results of BDPK with the different initialization states displayed

in Table 6.3. Through comparison, we find the model constraint prior is particularly
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Figure 6.3: The relevance test with different initialization states listed in Table 6.3.

important for BDPK due to its influence on the constrained solution space. The contrast

prior [39] is used to highlight the visual clarity of the vague image. The structure prior [71]

imposes the scene depth and the scattering distribution has the efficacy to compensate

for the interference of color distortion and remove the haze more thoroughly. It should

be noted that although the structure prior used in BDPK is able to rectify the color

distortion problem to a large extent (see Fig. 6.3G to 6.3J), the final result dehazed by

BDPK shown in Fig. 6.3J still exhibits slight color shift. This is due to the fact that the

incident light of each scene calculated via [71] would encounter estimation failure when

the scene contains a bright target with large size. Meantime, the convolution operation
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employed in formulas (Eq. 5.19, Eq. 5.20, and Eq. 5.21) might introduce some halo

artifacts into depth discontinuities of recovery results, but this interference is visually

negligible and does not deteriorate the recovery quality of BDPK.

6.3.2 Example Results Using BDPK

To validate the robustness of the proposed BDPK, several types of hazy images are select-

ed from previous research [4,56] and we process them with our BDPK. The corresponding

recovery results shown in Fig. 6.4 greatly reveal the scenic structures in vague regions

and improve the global contrast of hazy inputs, regardless of homogeneous and inhomo-

geneous weather conditions. Furthermore, BDPK is also equipped with the illumination

compensation capability (ICC) (see the last group example). We believe the above supe-

rior performance mainly benefits from the universality of Pb-ASM and the accuracy of

the optimization function.

Figure 6.4: Image dehazing results using BDPK. For each group: the above is the hazy

image and the bottom is the restored result by BDPK.
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6.3.3 Qualitative Comparison with Bayesian-based Techniques

To our best knowledge, there are three Bayesian-based methods for single image haze

removal. They are BD, BFCD, and SIBF. The posterior probabilities used in BD were

built using the gradient distribution prior and spatial smooth prior to restore the scene

albedo with the canonical expectation maximization algorithm. Based on BD, BFCD

further considered the noise factor into the degradation model and employed the BM3D

[104] as well as the probability density function of transmission to simultaneously remove

the haze and noise. In SIBF , the minimization function for restoring the degraded

images was constructed by imposing the sparse prior on both the recovery result and

the transmission map. To prove that the BDPK has better properties than the existing

Bayesian-based works, the comparison between these similar methods and BDPK is given

in Fig. 6.5. Compared with the hazy image and the dehazed results (which are downloaded

in [100]), the visual quality of each restored image shows different degrees of improvement,

and all the methods can somewhat relieve the influence of haze. As shown in the first row

in Fig. 6.5, BD can realize deep dehazing, but the over-enhancement often occurs in the

fat areas that have slight textural details. In particular, the rocky areas in the recovered

result are quite dark (see the yellow box). Likewise, due to the employed factorial Markov

random fields [105], the halo artifact occurs in the red box. Similarly, BFCD suffers from

over-saturation and produces much noise in the sky part (see the yellow box of the second

row in Fig. 6.5). While SIBF rules out the interference of the above negative problems,

the dehazing degree is visually weak (see the third row in Fig. 6.5). Conversely, BDPK’s

results have gentle sharpness and contrast, as well as the recovered color always looks

very natural.
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Hazy Image Result of BD Result of our BDPK

Hazy Image Result of BFCD Result of our BDPK

Hazy Image Result of SIBF Result of our BDPK

Figure 6.5: Comparison with the Bayesian-based works BD, BFCD, and SIBF.

6.3.4 Qualitative Comparison with Well-Known Techniques on

Real-world Images

1) First Group: In Fig. 6.6, OCE, MCP, and MPE are processed with the two benchmark

images. The reason that these methods were selected for comparison is that the recovery

results are easily downloaded from Kim’s websites. As we observed, OCE’s results clearly

show the object itself in the misty scene. However, since the control factor used in the

cost function [55] is empirically set as a constant, the strength of the removed haze in

the dense haze region is unstable compared to MCP, MPE and BDPK. For MCP, it can

completely reveal the target contour for the given examples, yet the over enhancement

was unfortunately introduced. Taking advantage of the given depth information, MPE

successfully removes all the haze cover in the degenerated images. However, due to the

constant atmospheric light defined in ASM, the visual clarity of recovered dark areas

lacks competitiveness compared to BDPK (see the yellow box in the first row of Fig. 6.6).
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Through comparison, our resumed images are more distinct and clear, have a stronger

sense of stereovision, and can address all of the above unfavorable effects.

Figure 6.6: Comparison with well-known image restoration techniques. From left to

right: Hazy images, OCE, MCP, MPE, BDPK.

2) Second Group: As is known, almost all the dehazing techniques are able to restore

ideal results on general outdoor hazy images, it is very difficult to illustrate the superiority

of the BDPK for restoration quality. Therefore, we focus on eight challenging real-world

hazy images as the test samples of the second group, including the images with large gray

scenes, misty haze, dense haze, uneven illumination and inhomogeneous atmosphere. Fig.

6.7 shows the qualitative comparison with six representative algorithms and BDPK on

these challenging images. Fig. 6.7(a) depicts different types of hazy images to be dehazed,

Figs. 6.7(b-h) show the restored results of FVR, DCP, SIIM, BCCR, CAP, DN, and

BDPK, respectively. The recovery results corresponding to these representative methods

shown in Fig. 6.7 are produced with the available MATLAB codes downloaded from

the authors’ websites in the MATLAB2010 environment on the same PC with Intel(R)

Core(Tm) i5-4210U CPU @ 1.70GHz 8.00 GB RAM. This ensures the fair comparison.

As shown in Fig. 6.7(b), FVR recovers most of the scenic details and can be imple-

mented in real time due to the linear complexity. However, FVR’s results seriously suffer
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from over-enhancement since the inherent problem of overestimating the transmission is

inevitable (see the second image). Furthermore, owed to the median filter with poor edge

preserving properties, the halo artifacts appear near the depth discontinuities (see the

zoom-in patch of the fifth image). Although DCP has mostly promising results (see Fig.

6.7(c)), the color distortion still emerged in the sky regions (see the fourth image). This

is since the accuracy of the estimated transmission mainly relies on the validity of DCP,

which may be invalid when the scene’s brightness is similar to the atmospheric light. For

SIIM, this method could achieve impressive visual effects for most examples. However, its

results might have adverse visual effects in dark regions with vague classification features

(see the zoom-in patch of the fifth image in the Fig. 6.7 (d)). BCCR’s results can fully

eliminate the haze and unveil the scenic surface for all hazy targets. Regrettably, the de-

hazing results accompanied by over-saturation are bound to make the visual effect appear

unrealistic. As we observe in Fig. 6.7(e), the rebuilt color in the sky region is significantly

distorted, especially in the fourth and seventh images. In Fig. 6.7(f), although CAP

avoids the halo artifacts and the over enhancement, the haze residual is obvious in the

sixth image because simply regarding the scattering coef?cient as a fixed constant may

not suitable for all situations. As displayed the first four images in Fig. 6.7(g), DN is

capable of generating the restored results with vivid color and necessary details. Never-

theless, it does not work well for dense hazy images, as the corresponding results of ten

appear shrouded by a small amount of haze (see the sixth image). The reason might be

explained as follows. DehazeNet is designed only for transmission estimation and it lacks

the contrast enhancement ability. On the other hand, the image pairs that are selected to

train DehazeNet are artificially synthesized images rather than real-world images, which

makes DehazeNet has a limited capability on dealing with real-world hazy images. Apart

from the above-mentioned problems, these dehazing techniques still share two common

limitations: 1) These methods (except for SIIM) lack the ICC and thus cannot appropri-
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6.7: Experimental results of different methods on eight real-world hazy images. (a)

Hazy Image. (b) FVR. (c) DCP. (d) SIIM. (e) BCCR. (f) CAP. (g) DN. (h) BDPK.

ately handle hazy images under uneven illumination (see the seventh row in Fig. 6.7) and

2) These methods may fail in the cases that the atmosphere is inhomogeneous (see the

eighth row in Fig. 6.7). On the contrary, we notice that BDPK is completely unaffected

by these limitations and can produce the realistic haze-free images while avoiding the halo

artifacts, over-enhancement, over-saturation and the color distortion (see Fig. 6.7(h)).



102 Chapter 6. BDPK: Bayesian Dehazing Using Prior Knowledge

6.3.5 Comparison with Well-Known Techniques on Synthetic Im-

ages

Assessing the recovery techniques for a single hazy image is a difficult task because the

haze-free reference images could not be provided in the real-world. To verify the utility

on complete images, the six representative techniques and BDPK are compared on the

synthesized hazy images collected in the D-HAZY dataset [85], in which the corresponding

ground truth reference images are known. In Fig. 6.8, we show the results processed with

different methods on these synthesized images. Fig. 6.8(a) depicts the hazy images with

names ‘Piano’, ‘Couch’, ‘Jadeplant’, ‘Room’, ‘Shelves’, ‘Sticks’, ‘Bicycle’ and ‘Vintage’.

Fig. 6.8 (b) provides the ground truth images for fair comparison. Figs. 6.8(c-i) exhibit

the results of FVR, DCP, SIIM, BCCR, CAP, DN, and BDPK, respectively.

As seen in Fig. 6.8(c), FVR’s results usually look much darker than the ground

truth images, and the halo artifacts can be found in the depth discontinuities (see the

jadeplant image). For DCP, as shown in Fig. 6.8(d), the recovered images achieve a good

compromise between haze removal degree and target clarity. However, the ground of the

bicycle image shows its inaccuracies. In Figs. 6.8(e,f), the results restored by BCCR and

SIIM are visually compelling, yet the restored colors might be more over-saturated than

they should be, especially in the sticks image. By observing Figs. 6.8(g,h), we notice

that CAP and DN are very positive for the given misty examples, while their dehazed

results for the other hazy images are still surrounded by a small amount of mist (see

the playroom image and piano image). Different from these techniques, BDPK’s results

do not possess the unpleasing effects and they maintain the original tones of the scene

targets. This further illustrates the outstanding performance of BDPK compared to these

techniques in terms of the human visual perspective.
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Figure 6.8: Experimental results of different methods on eight synthesized images. (a)

Hazy Image. (b) Ground Truth. (c) FVR. (d) DCP. (e) SIIM. (f) BCCR. (g) CAP.

(h) DN. (i) BDPK.

6.3.6 Complexity

The computational complexity is another critical assessment factor for the dehazing tech-

nique. Through analyzing, it can be inferred that the main computational overhead con-

sumed in BDPK is the iteration module. Each iteration procedure mainly contains three

convolution operations and other low-complex operations. Ignoring these simple calcula-

tions, for the given image with resolution res and the determined convolution kernel Λ,

the theoretical complexity of BDPK is only O (res · |Λ|) ·ja (|Λ| is the number of elements

in Λ and ja is the actual iteration number). Despite this, it may be more intuitive to see

how many iterations are needed to empirically converge. Fig. 6.9(a) plots eight iteration
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Figure 6.9: (a): The convergence speed of the proposed BDPK in this work. The im-

ages used in this experiment are shown in Fig. 6.8. (b): Time comparison of different

techniques with varying image sizes.

curves for the images shown in Fig. 6.8. From these plots, we notice that the changing

trends of the eight plots are similar to each other, and the actual iteration number is

approximately 10 iterations for all tests. Fig. 6.9(b) gives the comparison between FVR,

DCP, SIIM, BCCR, CAP, DN, and the proposed BDPK in terms of time costs (In the

same PC described above, all the calculation times are recorded by running the authors’

codes or the projects simulated by us on the hazy images with different resolutions). As

we expected, the BDPK proposed in this work is much faster than FVR, DN, SIIM, DCP

and BCCR, as well as is very close to the CAP with high efficiency. Even when the given

hazy image is very large, BDPK still achieves high-speed processing.

6.4 Discussion and Conclusion

According to our previous Sb-ASM and the observation of atmospheric particles distri-

bution, this chapter redefined a novel atmospheric scattering model (Pb-ASM) to over-

come the issue of inhomogeneous haze. Afterwards, a single image dehazing algorithm

called BDPK was further proposed based on this Pb-ASM. Unlike previous works, the
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key contribution of BDPK is to convert the haze removal into an optimization function

by combining Bayesian theory and prior knowledge. This allows us to directly restore

the scene albedo using an alternating minimizing technique (AMT). Experimental results

demonstrate the superiority of the proposed BDPK in terms of the dehazing effectiveness

and the robustness compared with the state-of-the-art techniques.





Chapter 7

Remote Sensing Image Haze Removal

Using Gamma-Correction-Based

Dehazing Model

The main problems related to single image haze removal have been solved in previous

chapters. This chapter focuses on fast remote sensing data (RS) restoration because

RS images are more likely to be interfered by haze. In this chapter, a exponent-form

ASM (Ef-ASM) with significantly enhanced robustness is introduced. Then, a scene

albedo restoration formula (SARF) used for RGB-channel RS (RRS) images is derived

by combining the existing priori constraint and this Ef-ASM. The propsoed SARF is able

to simultaneously exclude the interferences of haze and non-uniform-illumination with

less calculation load. Finally, according to Rayleigh’s law, a proportional function of

gamma variables corresponding to different wavelengths is established, which enables us

to deduce an expansion restoration formula (E-SARF) for multi-spectral RS (MRS) data.

With the proposed E-SARF, the haze in each band can be successfully removed regardless

of uniform haze and non-uniform haze.

107
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Dehazing Model

Figure 7.1: Left: Changing rate of the scene albedo corresponding to the ASM. Right:

Changing rate of the scene albedo corresponding to Ef-ASM

7.1 Exponent-form ASM (Ef-ASM)

Chapter 3 analyzed that the failure reason for using gamma correction (GC) dehazing

is attributed to the fixed coefficient Γ, that is to say a smaller scene depth leads to a

stronger dehazing strength and vice versa. Following a simple derivation, the variable Γ̌

to ensure β can be written as

Γ̌ = eβ·d(x,y), (7.1)

where β and d are the scattering coefficient and scene depth, respectively. Referring

to pervious Sb-ASM and Pb-ASM, uneven illumination problem can be addressed by

dividing the scene incident light L into the corresponding color channels. Accordingly, a

more concise exponent-form ASM (Ef-ASM) for haze removal is defined as

ρ =

(
I

L

)Γ̌

=

(
I

L

)eβ·d
(7.2)

where Ef-ASM bridges the relationship between GC and traditional ASM. The benefit

of using Ef-ASM is that it has a slower response of scene albedo with respect to its
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independent variable compared to that of ASM [20], as shown in Fig. 7.1. This relieves

the sharp change of pixel values in the edge-discontinuities regions, thus avoiding the

halo/blocking artifacts.

7.2 Methodology

7.2.1 SARF for RRS Images

In this subsection, a scene albedo restoration formulae (SARF) is proposed for RGB-

channel remote sensing (RRS) images. To simplify the subsequent refining process and

address the non-uniform illumination problem, SARF is employed the Ef-ASM instead of

Sb-ASM, Pb-ASM, or ASM to model RS data. In specific, following a simple derivation,

Ef-ASM can be rewritten into

ln(ρ(x, y)) = Γ̌ · (ln(I(x, y))− ln(L(x, y))) (7.3)

Then, we assume that the ambient light of logarithmic domain ln(L(x, y)) and gamma

variable Γ̌ in a local patch Ω(x, y) are both constant, and are denoted by L̃ and Γ̃,

respectively. Taking the min operation and max operation on Eq. 7.3 yields{
dark(ln(ρ)) = Γ̃ · dark(ln(I))− Γ̃ · L̃

bright(ln(ρ)) = Γ̃ · bright(ln(I))− Γ̃ · L̃,
(7.4)

where 

dark(ln(ρ(x, y)))

= min
c∈{R,G,B}

( min
(x′,y′)∈Ω(x,y)

(ln(ρc(x′, y′))))

dark(ln(I(x, y)))

= min
c∈{R,G,B}

( min
(x′,y′)∈Ω(x,y)

(ln(Ic(x′, y′))))

bright(ln(ρ(x, y)))

= max
c∈{R,G,B}

( max
(x′,y′)∈Ω(x,y)

(ln(ρc(x′, y′))))

bright(ln(I(x, y)))

= max
c∈{R,G,B}

( max
(x′,y′)∈Ω(x,y)

(ln(Ic(x′, y′))))

(7.5)
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Since ln(·) is monotonically increasing function, Eq. set 7.5 is equivalent to

dark(ln(ρ(x, y))) = ln(dark(ρ(x, y)))

= ln( min
c∈{R,G,B}

( min
(x′,y′)∈Ω(x,y)

(ρc(x′, y′))))

dark(ln(I(x, y))) = ln(dark(I(x, y)))

= ln( min
c∈{R,G,B}

( min
(x′,y′)∈Ω(x,y)

(Ic(x′, y′))))

bright(ln(ρ(x, y))) = ln(bright(ρ(x, y)))

= ln( max
c∈{R,G,B}

( max
(x′,y′)∈Ω(x,y)

(ρc(x′, y′))))

bright(ln(I(x, y))) = ln(bright(I(x, y)))

= ln( max
c∈{R,G,B}

( max
(x′,y′)∈Ω(x,y)

(Ic(x′, y′))))

(7.6)

Bright channel prior (BCP) [106] and translational dark channel prior (TDCP) [107] are

the statistics of high-quality images that is based on the key observation that – in most

local patches in such images, at least one color channel exists pixels with high intensity

close to one and with low intensity close to C. Formally, they can be described as bright(ρ(x, y)) = max
c∈{R,G,B}

( max
(x′,y′)∈Ω(x,y)

(ρc(x′, y′))) −→ 1

dark(ρ(x, y)) = min
c∈{R,G,B}

( min
(x′,y′)∈Ω(x,y)

(ρc(x′, y′))) −→ C.
(7.7)

Accordingly, combining Eq. sets 7.4, 7.5, 7.6, the gamma variable and ambient light are

computed as {
Γ̌ ≈ Γ̃ = ln(C)

ln(dark(I))−ln(bright(I))

L ≈ eL̃ = bright(I)
(7.8)

Substituting Eq. set 7.8 into Eq. 7.3, the scene albedo can be easily restored by

ρ = (
I

bright(I)
)

ln(C)
ln(dark(I))−ln(bright(I)) (7.9)

Note that the min and max operations are both based on the local-constant assumption,

some block effects might appear in the dark(I) and bright(I). Thanks to the less sensitive

feature of scene albedo in Ef-ASM, we are able to use a mean filter with low complexity

to relieve the block effects. Therefore, the SARF for RRS images is derived as

ρ = (
I

mean(bright(I))
)

ln(C)
ln(mean(dark(I)))−ln(mean(bright(I))) (7.10)

where mean(·) represents the mean filter operator.



7.2 Methodology 111

7.2.2 Expansion of SARF for MRS data

To achieve haze removal for multi-spectral remote sensing (MRS) data, an expansion

strategy for SARF is further proposed. Intuitively, we firstly normalize the input MRS

image IMRS = I ′MRS/2
b ∈ [0, 1] (I ′MRS is the original MRS data and b is the bit depth

of pixels contained in I ′MRS). Then, adopting the derivation process similar to that of

SARF, gamma variable Γ̌MRS, ambient light LMRS and scene albedo ρjMRS of jth band in

IMRS can be derived as
Γ̌MRS ≈ ln(C)

ln(mean(dark(IMRS)))−ln(mean(bright(IMRS)))

LMRS ≈ mean(bright(IMRS))

ρjMRS = (
IjMRS

LMRS
)Γ̌MRS

(7.11)

where IjMRS is the jth band in IMRS, dark(IMRS) and bright(IMRS) are computed via

dark(IMRS(x, y)) =

min
j∈{1,2,...,n}

( min
(x′,y′)∈Ω(x,y)

(IjMRS(x′, y′)))

bright(IMRS(x, y)) =

max
j∈{1,2,...,n}

( max
(x′,y′)∈Ω(x,y)

(IjMRS(x′, y′)))

(7.12)

Since Landsat 8 OLI data ate freely available in website [https://earthexplorer.usgs.gov],

thus the experiment for MRS images haze removal is based on the collected Landsat 8

OLI data (its band information is listed in Table 7.1). Please note that the band 9 in

Landsat 8 OLI image is used for detecting cloud distribution, it does not record the real

information of earth surface. Therefore, in this work, haze removal is only performed in

the remaining eight bands. Fig. 7.2 gives a recovery result via Eq. 7.11 on a hazy Landsat

8 OLI image. As can be seen, although the texture details of bands 5, 6, 7 have been

enhanced markedly, the recovery scenes of bands 1, 2, 3, 4, 8 still exist the haze residue

phenomenon, especially in the true color combined by bands 4, 3, 2. This is because the

influence of haze is reduced gradually with the wavelength increasing, which implies these

bands with different wavelengths should adopt the different gamma variables to exclude
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the interference of haze. To solve this issue, a repair mechanism for Eq. 7.11 is provided.

First, based on the proposed Ef-ASM, the gamma variable Γ̌jMRS of jth band in a MRS

image IMRS is defined as

Γ̌jMRS = eβ
j
MRS ·dMRS (7.13)

where βjMRS is scattering coefficient of jth band, and dMRS is scene depth of IMRS. Taking

logarithm operation of each side in Eq. 7.13 yields

ln(Γ̌jMRS) = βjMRS · dMRS (7.14)

According to Rayleigh’s law [19, 20], the relationship between the scattering coefficient

and the wavelength is expressed as

βjMRS ∝
1

(λjMRS)γ
(7.15)

where γ ∈ [0, 4] depending on the particle size suspended in the atmosphere, λjMRS is the

center wavelength of band j. Substituting Eq. 7.15 into Eq. 7.14, we can get

ln(Γ̌jMRS) ∝ 1

(λjMRS)γ
· dMRS (7.16)

Then, the relationship of ln(Γ̌MRS) between any two bands j1, j2 in MRS image IMRS

can be described as

ln(Γ̌j1MRS)

ln(Γ̌j2MRS)
= (

λj2MRS

λj1MRS

)γ ⇒ Γ̌j1MRS = e
(
λ
j2
MRS

λ
j1
MRS

)γ ·ln(Γ̌
j2
M_RS)

j1 and j2 ∈ {1, 2, ..., n}

(7.17)

where Γ̌j1MRS, λ
j1
MRS and Γ̌j2MRS, λ

j2
MRS are the gamma variables and wavelengths of band j1

and band j2, respectively. Once the gamma variable of any one band has been determined,

the gamma variables of remaining bands can be accurately calculated via Eq. 7.17. In

Eq. 7.11, gamma variable Γ̌MRS is computed from all the bands contained in MRS images.
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Table 7.1: Spectral Bands and the corresponding wavelengths of Landsat 8 OLI with

12-bit radiometric resolution (µm).
Spectral Band Wavelength Range Center Wavelength
Band1–Coastal 0.433-0.453 0.443
Band2–Blue 0.450-0.515 0.4825
Band3–Green 0.525-0.600 0.5625
Band4–Red 0.630-0.680 0.655

Band5–Iear Infrared 0.845-0.885 0.865
Band6–Short Wavelength Infrared 1.560-1.660 1.61
Band7–Short Wavelength Infrared 2.100-2.300 2.2

Band8–Panchromatic 0.500-0.680 0.59
Band9–Cirrus 1.360-1.390 1.375

D
ehazed B

ands

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 True Color

H
azy B

ands

Figure 7.2: Limitation of setting same transmission for all bands in MRS data (True color

is combined by bands 4, 3, 2).

Based on this fact, here we assume that the wavelength λMMRS matching to Γ̌MRS equals

the average value of all the bands’ center wavelengths. Accordingly, Eq. 7.17 can be

transformed as

Γ̌jMRS = e
(
λ
M
MRS

λ
j
MRS

)γ ·ln(Γ̌MRS)

j ∈ {1, 2, ..., n} (7.18)

Combining Eq. 7.11 and Eq. 7.18, the expanded recovery formula (E-SARF) for MRS

data is proposed as

ρjMRS = (
IjMRS

LMRS

)e
(
λ
M
MRS

λ
j
MRS

)γ ·ln(Γ̌MRS)

j ∈ {1, 2, ..., n} (7.19)
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where γ is set according to [108].

7.3 Experimental Results

In this section, the performance analysis of different parameters used in proposed SAR-

F and E-SARF was first illustrated experimentally, and then comparisons between the

proposed methods (SARF and E-SARF) and other well-known techniques were con-

ducted from both qualitative and quantitative perspectives to assess the performance.

Experiments were implemented by MATLAB2010 on a PC with Intel(R) Core(Tm) i5-

4210UCPU@ 1.70GHz 8.00 GB RAM. In our experiments, the hazy RRS images were

downloaded from Google Earth or other satellite sources, and the MRS data were collect-

ed in website [https://earthexplorer.usgs.gov].

7.3.1 Parameter Analysis

In the proposed SARF and E-SARF, the patch size of DCP S1, the patch size of BCP

S2, and the mean filter size S3 need to be initialized manually. To investigate that how

the parameters affect the dehazing performance, we conducted recovery quality test for

SARF and E-SARF by adjusting these corresponding parameters. Fig. 7.3(a) shows

the results restored via SARF on a RRS image with different patch sizes S1 and S2.

It can be concluded from this figure that a smaller patch size leads to stronger haze

removal ability and more adequate light compensation. However, too small patch size

also arouses the adverse over-enhanced and over-saturated in processing results. Through

comparison, the dehazed result using patch sizes S1 = S2 = 15 obtains the best visual

quality. Fig. 7.3(b) illustrates the influences of filter size S3 on dehazing performance.

As can be seen, too small filter size would result in the over-saturated in yellow rocks,

while too large size can not completely uncover the scene contents in the region with
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dense haze. In contrast, the recovery result using filter size S3 = 65 is able to achieve

a better balance in terms of visual quality. The above conclusion is also suitable to E-

SARF, and the corresponding experimental results can be found in author’s homepage:

https://www.researchgate.net/profile/Mingye_Ju. According to the above analysis, the

patch sizes of DCP and BCP were set as S1 = S2 = 15, and the mean filter size S3 was

initialized as 65 in following experiments.

S1=25, S2=25

S3=35 S3=95S3=65

(a) Performance influence of the different patch sizes of DCP and BCP

(b) Performance influence of the different sizes of mean filter

Hazy RRS Image

S1=25, S2=15S1=25, S2=5

S1=15, S2=25S1=15, S2=15S1=15, S2=5

S1=5, S2=25S1=5, S2=15Hazy RRS Image

Figure 7.3: Performance Analysis of different parameters used in SARF.
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(a) RRS Image (f) SARF(d) SID (e) DHIM(b) DehazeNet (c) DEFADE

Mist  

Dense Haze   

Non-uniform 
Haze  

Case A: Non-uniform 
llumination  

Case B: Non-uniform 
llumination  

Figure 7.4: Qualitative comparison between state-of-art RRS image dehazing techniques

and the proposed SARF.

7.3.2 Comparison between State-of-the-art Techniques and SAR-

F on RRS Images

7.3.2.1 Qualitative Comparison

Being able to handle hazy RRS images with complex environment, for example, heavy

haze, non-uniform haze and non-uniform illumination, is also compulsory but challenging

for dehazing techniques. Therefore, five challenging RRS images are picked for facilitating

the comparison between SARF and the sate-of-the-art methods, as shown in Fig. 7.4(a).

Figs. 7.4(b∼f) give the results dehazed via DehazeNet [85], DEFADE [34], SID [109],

DHIM [107], and the proposed SARF.

As we observed in Figs. 7.4(b,c), DehazeNet and DEFADE mainly used for convention-
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al hazy outdoor images lack any competitiveness compared to the remaining specialized

approaches that used for RRS images, their dehazing results for given RRS images always

suffer from over-saturated or haze residue problem. The main reason can be attributed

to the prior knowledge or the haze features used in DehazeNet and DEFADE are discov-

ered from hazy outdoor images rather than those of RRS images. In Figs. 7.4(d,e), due

to inaccurate estimation of atmospheric light, the dehazed images via SID and DHIM

unfortunately lead into over-saturated in bright regions, thus the original information in

the corresponding scenes is lost (see the red circles). Morevoer, SID cannot handle the

non-uniform haze situation well. The part with thick haze in the recovered results is still

surrounded by some mist. Apart from the aforementioned problems, these techniques all

lack the light compensation ability for shadow scene, the texture details in the recovered

low-illumination regions still appear quite blurry (see the last two examples). Different

from these methods, SARF is free from the above negative interferences, and can reveal

richer target contours regardless whether the haze and illumination are non-uniform or

uniform.

7.3.2.2 Quantitative comparison

To avoid the subjective bias of the above quality comparison, the dehazed results are

also assessed quantitatively. In this work, three widely-recognized non-reference indexes,

namely fog aware density evaluator (FADE) [34], mean ratio of the gradients at visible

edge (r̄) [86], and new visible edge ratio (e) [86] were employed to quantitatively evaluate

the proposed method and other techniques. In general, the lower FADE indicates the

stronger dehazing ability, the greater r̄ and e indicate the richer information contained

in the recovery results. The state-of-art techniques and the proposed SARF are assessed

by these indexes on dealing with the hazy images shown in Fig. 7.4. The values of the

assessment indexes are summarized in Table 7.2. It can be concluded from the table
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Table 7.2: Quantitative comparison between state-of-art techniques and the proposed

SARF on RRS images shown in Fig. 7.4

Examples Metric DehazeNet DEFADE SID DHIM SARF

Mist

e -0.098 -0.1842 -0.0347 0.0065 0.0314
r̄ 1.0984 1.3105 1.0115 1.0944 1.6131

FADE 0.1841 0.0786 0.1952 0.1899 0.2909

Dense Haze

e -0.0996 0.0209 4.5629 4.4178 4.8252
r̄ 1.2052 1.0081 8.6074 8.3976 14.6976

FADE 5.1999 7.8503 0.8298 0.9745 0.3854

Non-uniform Haze

e 0.1386 0.1481 0.0886 0.1657 0.2817
r̄ 1.0326 1.716 1.6766 1.7185 2.4215

FADE 0.2366 0.2954 0.2862 0.2493 0.364

Case A

e 0.3309 0.2875 0.2275 0.2475 0.335
r̄ 1.6654 1.6517 1.2067 1.1971 2.5002

FADE 0.6929 0.7141 0.4543 0.3908 0.2412

Case B

e 0.0257 -0.1942 0.0734 0.0657 0.1614
r̄ 1.636 2.9961 1.5414 1.7398 1.7511

FADE 0.4865 1.0688 0.3551 0.3315 0.3186

that the proposed SARF has the highest values of r̄ and e for all the given examples,

which validates that SARF removes the haze more completely and uncovers clearer scenes.

However, for the first and third examples in Fig. 7.4, the FADE’s values of SARF are

larger than others. This is due to the fact that the results restored by SARF have brighter

scene contents, which is misidentified as haze by FADE. Moreover, another significant

advantage of the proposed SARF is its high efficiency and real-time performance. SARF

only contains the simple min, max, and mean filters, and these operations can be further

accelerated via box filter [29]. Thus the theoretical complexity of SARF is only O(m,n)

where m and n are image high and width, respectively. Table 7.3 further summarized the

time cost on dehazing the first image in Fig. 7.4 with different resolutions by different

dehazing techniques as an example. It is demonstrated that SARF exhibits a significantly

faster calculation time compared to other techniques.
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Table 7.3: Processing time of state-of-art techniques and SARF on RRS images with

different resolution (s)
Image Size DehazeNet DEFADE SID DHIM SARF
189×385 1.9263 18.3517 1.1423 1.3880 0.1626
378×769 7.2718 59.3939 1.3637 1.7931 0.3622
576×1153 13.2079 159.0901 1.5603 2.1864 0.6662
756×1538 23.8423 227.5452 1.9924 3.1024 1.2053
945×1922 34.5520 334.3812 2.2588 4.2121 1.9233
1890×3844 110.6243 1153.5121 2.7327 9.9121 2.5233

7.3.3 Comparison between State-of-the-art Techniques and E-

SARF on MRS Data

7.3.3.1 Qualitative Comparison

To check the utility of E-SARF proposed in this paper, we compare it with three dehazing

algorithms used for MRS images, including IMCR [110], P-DCP [111] and HR [2]. Fig. 7.5

shows the experimental instances on the hazy Landsat 8 OLI images using the proposed

E-SARF and three compared techniques. In each case of Fig. 7.5, the first row is the

MRS image, and the remaining four rows are the dehazing results of IMCR, P-DCP, HR

and E-SARF, respectively.

By observing these comparison results in Fig. 7.5(b), it can be noticed that IMCR

is able to uncover the reasonable texture details for most bands, but it cannot deal with

the scenes with non-uniform haze (see case B). In Fig. 7.5(c), the results produced via

P-DCP always emerge adverse spectral distortions or mist residue in its dehazed bands.

This is because P-DCP sets the transmission maps of all bands as same component, thus

neglects the effect of wavelength on haze interference. Moreover, P-DCP also lacks the

ability to handle the case with non-uniform haze (see case B). Although HR is capable

of eliminating the haze and unveil the scenic surface for given examples, the too dim
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restored textures are bound to make the visual effect appear unrealistic (see Fig. 7.5(d)).

In contrast, E-SARF’s results have gentle sharpness and contrast for each band, as well

as the hue in recovered true color combined by bands 4, 3, 2 always looks very nature.

Table 7.4: Quantitative comparison between state-of-art techniques and the proposed

E-SARF on MRS images shown in Fig. 7.5
Examples Metric IMCR P-DCP HR E-SARF

Case A

e 2.0722 1.3471 1.5241 2.1457
r̄ 3.5945 1.2701 1.3371 3.7323

FADE 0.6545 0.9642 0.4749 0.5922

Case B

e 2.3217 2.0233 2.2035 2.7209
r̄ 3.4048 1.475 1.5555 3.5441

FADE 0.7519 1.2105 0.5451 0.6832

Table 7.5: Processing time of state-of-art techniques and E-SARF on MRS images with

different resolution (s)
Image Size IMCR P-DCP HR E-SARF
935×879×9 8.6728 3.3135 2.257 1.834

1870×1757×9 35.9198 6.2983 5.799 3.4701
2805×2636×9 105.4598 13.474 8.8706 6.2077
3740×3514×9 252.7485 29.7514 18.0837 16.5727
4675×4393×9 538.1793 70.8266 40.7123 35.3377

7.3.3.2 Quantitative comparison

Using the three aforementioned non-reference metrics, namely FADE, r̄, and e, as the

test criteria for quantitatively evaluating these dehazing algorithms for MRS data. The

quantitative scores of these metrics corresponding to the recovered results in Fig. 7.5

are depicted in Table 7.4. Please note that values of r̄ and e listed in Table 7.4 are the

mean of assessed value of all the dehazed bands, and FADE’s values were calculated from

the true colors combined by bands 4, 3, 2. Analyzing these data, it can be found that

the scores of r̄ and e of E-SARF outperform the the remaining methods in the given
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experimental examples, which fully proves that the proposed E-SARF can gain the richer

scene textures. However, as we discussed in above, FADE mistakenly judges the brighter

scenes caused by light compensation ability as the dense haze ones, which leads to FADE’s

values of the proposed E-SARF are larger than those of HR. The running times of the

three comparison algorithms and E-SARF on the first example (with different resolutions)

shown in Fig. 7.5 are listed in Table 7.5. As we expected, E-SARF proposed in this work

is much faster than IMCR and P-DCP, as well as is slightly faster than the HR with high

efficiency.

7.4 Conclusion

In this chapter, a robust exponent-form ASM (Ef-ASM) is proposed to describe the images

degraded by haze, fog, and shadow. Combining this Ef-ASM and the existing prior knowl-

edge, a scene albedo restoration formula (SARF) for RGB-channel remote sensing (RRS)

images is derived. Then, an expansion restoration formula (E-SARF) for multi-spectral

remote sensing (MRS) data is further provided according to Rayleigh’s law. Qualita-

tive and quantitative comparisons between the proposed methods (SARF and E-SARF)

and other state-of-arts techniques are conducted. It is demonstrated that the proposed

methods not only thoroughly removes the haze or fog in such images, but also effective-

ly excludes the interference of non-uniform illumination. More importantly, SARF and

E-SARF perform much faster than other comparable dehazing techniques which makes

them the excellent candidates for real-time applications.
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Figure 7.5: Qualitative comparison between state-of-art MRS image dehazing techniques

and the proposed E-SARF.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation focuses on exploring a high efficiency and strong robust single image

haze removal technique to meet the demands of outdoor vision systems that need high-

quality input. Initially, formation mechanism of hazy image and atmospheric scattering

model (ASM) used in computer vision are briefly illustrated. Through in-depth study

of the state-of-the-art methods, three challenging yet promising issues related to image

dehazing are summarized, i.e., low robustness, low real-time performance, and failure

on images with inhomogeneous haze image and uneven illumination. Motivated by this,

five simple and effective visibility recovery techniques are presented to fully bridges the

research gap on the above problems. The main contributions in this include the following

five aspects:

1. For efficiency, based on the proposed gamma correction prior, IDGCP (ASM-

based) converts single image dehazing problem into multiple images haze removal one.

The benefit is to ease the uncertainty of depth information, so that the haze removal task

can be redefined as a global-wise optimization function to determine only one unknown

123
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constant. Furthermore, IDGCP is able to obtain high-quality transmission map without

any time-consuming refining process, which further reduces the processing time.

2. Another technique for accelerating dehazing (VROHI) is to make full use of imaging

model used in remote sensing data restoration, i.e., additive haze model (AHM), to sim-

ulate the hazy image. In specific, by combining the low-frequency feature of hazy image

and the saturation prior, VROHI only needs to determine two unknown constants rather

than estimating the highly uncertain transmission to achieve a haze-free result, thereby

significantly increasing the execution efficiency of haze removal.

3. To solve the uneven illumination issue, Sb-ASM-based IDSL firstly attempts to

redefine the atmospheric light in imaging model as scene incident light to better model

the hazy scenes. Meanwhile, IDSL simplifies the imaging parameter estimation process

by constructing a lineal model for modeling the transmission, thus it is able to remove

the haze from hazy images with low computational overhead.

4. To solve the inhomogeneous haze issue, Pb-ASM-based BDPK is proposed to by

transforming the single image dehazing problem into a maximum a-posteriori probability

(MAP) one. In this method, we employed the low complexity alternating minimizing

technique to solve this MAP, which ensures the processing speed of haze removal. Thanks

to the powerful Bayesian theory, BDPK is capable of producing a high-quality recovery

result on inhomogeneous-haze images by merging the advantage of some multi-priors.

5. To achieve high efficiency dehazing for remote sensing (RS) data, SARF is proposed

according to an exponent-form ASM (EASM) which is modified according to equivalence

infinitesimal theorem. The key advantage of SARF is that its low complexity and it

can simultaneously eliminate the interferences of haze and non-uniform illumination for

RS images. More importantly, according to Rayleighąŕs law, SARF can be expanded

to achieve haze removal for multi-spectral RS (MRS) data. Using the expanded SARF

(E-SARF), the spatially varying haze in each band can be thoroughly removed without
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using any extra information.

8.2 Future Work

Although several advanced single image dehazing approaches have been developed in this

dissertation, there are still some interesting work that should be done on in the future:

1. In Chapter 4, VROHI was developed to achieve ultra-high efficiency while maintain-

ing good restoration quality for most scenes. Previous experimental results show

that this goal has been well achieved. However, VROHI also has a drawback, i.e., it

lacks the ability to deal with images captured in night with low light intensity. This

is because VROHI employs the atmospheric light correction (ALC) to enhance the

visual quality, which is suitable for day-time images illuminated by natural light.

However, in night-time images, the light usually come from a point source, thus

ALC is not suitable. Moreover, the saturation prior employed in VROHI was sum-

marized from the statistics of thousands of daytime images, thus cannot be directly

used for night-time images. In the future, VROHI needs to be further improved to

better deal with night-time images.

2. In Chapter 5, the transmission in each training sample used in IDSL is obtained by

employing the dark channel prior (DCP) descried in [4]. However, DCP cannot fully

suitable to the case where the scene brightness is naturally similar to the airlight,

which would lead to IDSL also lacks the ability to deal with the images with gray-

white scenes. Therefore, in the future, an adaptive adjustment of transmission is

desired to overcome this limitation.

3. In Chapter 6, atmospheric conditions are required to be artificially determined in B-

DPK. Therefore, seeking an adaptive approach to detect the atmospheric conditions
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in hazy images is of practical significance. Moreover, considering that the weights

involved in alternating minimizing technique (AMT) are empirically determined, a

learning-based strategy is a good choice to pursue a set of optimal coefficients that

can achieve a better balance between dehazing quality and computational efficiency.
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