

Dynamic Behaviour of Long-Span Timber Ribbed-Deck Floors

by Bella Maria Basaglia

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Dr Rijun Shrestha, Prof Jianchun Li and Prof Keith Crews

University of Technology Sydney
Faculty of Engineering and Information Technology

August 2019

Certificate of Original Authorship Template

Graduate research students are required to make a declaration of original authorship when they submit the thesis for examination and in the final bound copies. Please note, the Research Training Program (RTP) statement is for all students. The Certificate of Original Authorship must be placed within the thesis, immediately after the thesis title page.

Required wording for the certificate of original authorship

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Bella Maria Basaglia declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and IT at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note:

Signature: Signature removed prior to publication.

Date: 27/09/20

"And once the storm is over, you won't remember how you made it through, how you managed to survive. You won't even be sure, whether the storm is really over. But one thing is certain. When you come out of the storm, you won't be the same person who walked in. That's what this storm's all about."

Haruki Murakami

To my mother, Papa, jiji-san and baba-san

Acknowledgements

This PhD could not have been completed without the patience, friendship and unconditional support provided by a great number of people. Each person has contributed in moulding and shaping me, and at times mending my cracks, as I undertook this research journey; like a potter to their clay.

Firstly, I would like to express my deepest appreciation to my principal supervisor Dr Rijun Shrestha for his unwavering support and guidance over the last four and a half years. I could not thank him enough for his generous time and genuine care for my well-being, particularly as I was writing up my thesis. I would also like to thank my co-supervisor Professor Keith Crews who, despite often being in a different city to me, always took the time to support and encourage me both in research and professionally. My utmost gratitude is also forwarded to my second co-supervisor, Professor Jianchun Li, who provided invaluable guidance particularly during the human walking load model stage. His enthusiasm and fatherlike mentorship at our weekly meetings provided me with inspiration and energy to 'pick up my candle' and delve deeper into the dark tunnel that is 'research'. I am also grateful for the technical guidance provided by Dr Sardar Malek as I developed my numerical model.

I gratefully acknowledge the financial assistance provided by the Forest and Wood Products Australia from which this project could not be possible without. The time provided by members of the industry and in particular, Andrew Dunn, were instrumental in giving this project a practical edge.

The timber floors would not have been fabricated and tested without the help of the Structures Laboratory staff including Rami Haddad, Muller Hailu, Dave Dicker, Kevin Fung, Laurence Stonard and Richard Turnell. Their 'can-do' attitude and assistance during my experimental stage made the experience enjoyable and extremely memorable. Special thanks goes to Peter Brown who was always on hand to help me with my testing equipment.

I wish to express my sincere gratitude to Professor Yutaka Yokoyama who welcomed me

into his laboratory group at Tokyo Institute of Technology for five months in 2017.

Professor Yokoyama's technical guidance expanded and enriched my research in ways I

could not have imagined. This experience was truly one of my fondest memories of my

PhD and I could not have found a better group to have had that experience with in Japan.

I am grateful for the friendship of my university comrades, particularly Kirsten Lewis, Le

Hong Thuy Nguyen, John Phung, Van Vu Nguyen and Federico Volpin. Although we

may have been researching different areas, I found great comfort in their support during

the highs and lows of research.

This journey would not have been possible without the understanding and encouragement

from my personal friendships. In particular, I would like to thank my close friends Bec

Reel, Amanda Hanna and Emily Choi who always listened to my stresses with intent and

care. I also appreciate the advice from Ian Fraser who has been somewhat like a father

figure and always supported me in my life decisions. I would also like to express my

appreciation for my partner, Noah Homayed, who gave me a shoulder to cry on when

things weren't going as planned and lifted me back up with his constant words of

encouragement.

Lastly, I would like to express my deepest love and appreciation for my family: my

mother, Papa, my grandmother (baba-san) and grandfather (jiji-san). My mother's endless

care and emotional support for me is something I could never repay. I just hope that I can

make her proud and to answer her question 'Yes, I have finally finished!'. To my Papa,

baba-san and jiji-san, who sadly were not able to see me complete: I know you were there

in spirit and appreciate your presence throughout this journey. This thesis is dedicated to

you.

Bella Basaglia

August, 2019

iv

List of Publications

Conference Papers

- Basaglia, B., Lewis, K., Shrestha, R., Crews, K., (2015), 'A comparative life cycle assessment approach of two innovative long span timber floors with its reinforced concrete equivalent in an Australian context', *International Conference on Performance-based and Life-cycle Structural Engineering*, 9 11 December 2015, Brisbane, Australia (presented)
- 2. Lewis, K., <u>Basaglia, B.</u>, Shrestha, R., Crews, K., (2015), 'Innovation in the design of cross laminated timber for long span floors', *International Conference on Performance-based and Life-cycle Structural Engineering*, 9 11 December 2015, Brisbane, Australia
- 3. Hough, R., <u>Basaglia, B.</u>, Passerini, S., (2016), 'Design and construction of a novel stacked glulam wall structure', *World Conference on Timber Engineering*, 22 25 August 2016, Vienna, Austria
- 4. Lewis, K., <u>Basaglia, B.</u>, Shrestha, R., Crews, K.,(2016), 'The use of cross laminated timber for Long span flooring in commercial buildings', *World Conference on Timber Engineering*, 22 25 August 2016, Vienna, Austria
- Basaglia, B., Shrestha, R., Crews, K., Yokoyama, Y., (2018), 'Vibration Response of a Long-Span LVL Floor: Comparison Between Japanese and Australian Assessment Measures', World Conference on Timber Engineering, 20 23 August 2018, Seoul, Republic of Korea (presented)

Journal Articles

1. <u>Basaglia, B., Li, J., Shrestha, R., Crews, K., Forthcoming.</u> 'Response prediction to walking-induced vibrations of a long-span timber floor', ASCE Journal of Structural Engineering. 10.1061/(ASCE)ST.1943-541X.0002888

List of Notations

[] Matrix

{ } or x Curly brackets or bold parameters indicate vectors

[M] Mass matrix

[K] Stiffness matrix[C] Damping matrix

 α_i ; α_i^s DLF of the *i*-th harmonic and subharmonic, respectively.

 $\bar{\alpha}_i(\bar{f}_j); \bar{\alpha}_i^s(\bar{f}_j^s)$ Normalised dynamic load factor for *i*-th harmonic and

subharmonic, respectively – in Živanović et al. (2007b) load

model (Chapter 5)

 δ Joist mid-span deflection due to point load P applied at

centre of joist

 δ_c , δ_{mid} Floor mid-span deflection due to point load P applied in the

centre of the floor

 $\theta(\bar{f}_i)$; $\theta(\bar{f}_i^s)$ Normalised phase angle for harmonic and subharmonic,

respectively – in Živanović et al. (2007b) load model

(Chapter 5)

 $\mu_{e,n}$; $\mu_{r,n}$ Mass-normalised mode shape amplitudes of mode n at

excitation and response nodes, respectively.

 ξ Damping ratio

 $\rho, \rho_m, \text{DENS}$ Density (kg/m³)

 ρ_r Resonant build-up factor

σ Standard deviation

au Integration time constant for running root-mean-square

average (s)

 ϕ_i Phase angle of the *i*-th harmonic

 $\varphi_{FE,i}$; $\varphi_{FE,j}$ Numerically obtained mode shape vector for mode *i* and *j*,

respectively.

 $\varphi_{exp,i}$; $\varphi_{exp,j}$ Experimentally obtained mode shape vector for mode i and j,

respectively.

 $\{\psi_n\}$ Eigenvector of mode n

 ω Circular natural frequency (rad/s)

Circular frequency of the *i*-th harmonic load component ω_i

Eigenvalue or circular frequency of mode *n* ω_n

Damped circular frequency (rad/s) ω_D

Mean value of weight normalised force (Chapter 5) A_0

Dynamic load factor for the *i*-th harmonic – single footfall A_i

trace (Chapter 5)

MTVV from weighted acceleration response (m/s²) a_{MTVV}

Frequency-weighted peak acceleration (m/s²) $a_{w,p}$

Frequency-weighted RMS acceleration (m/s²) $a_{w.rms}$

Frequency-weighted acceleration at time $t \text{ (m/s}^2)$ $a_w(t)$

 $a_{w,rms}(t_0)$ Rolling frequency-weighted RMS acceleration (m/s²) at

instantaneous time of observation t_0

b Floor width

d

С Damping constant Critical damping CcrDiameter of screw

 DLF_i Dynamic load factor of the *i*-th harmonic

Flexural rigidity in the joist and cross-joist direction, D_x ; D_y

respectively (Nm) – in Hu and Chui equation (2004)

 D_{xy} Shear rigidity of the multi-layered floor deck and torsion

rigidity of the joist (Nm) – in Hu and Chui equation (2004)

Ē Mean modulus of elasticity

 \overline{E}_{i} Mean modulus of elasticity of the joist

Estimated VDV as per BS 6472-1 (1984); as per Ellis (2001) eVDV; $eVDV_E$

Equivalent flexural rigidity of the floor structure about an $(EI)_l$; $(EI)_b$

axis perpendicular and parallel to the beam direction,

respectively.

ANSYS notation for modulus of elasticity in element x-, y-EX; EY; EZ

and z-axes, respectively.

Cyclic frequency (Hz) f

Bending strength (N/mm²) f'b

Compression parallel to grain (N/mm²) f'c

 f_i^{FE} Numerically obtained natural frequency for mode i (Hz)

 f_i^{exp} Experimentally obtained natural frequency for mode i (Hz)

 $\bar{f_j}$ Frequency ratio between the current frequency line and pace

frequency – in Živanović et al. (2007b) load model (Chapter

5)

 f_{joist} ; f_{girder} Natural frequency of the joist and girder, respectively (Hz).

 f_n ; f_i Cyclic frequency or natural frequency of mode n or i (Hz)

 f_p Pace frequency or walking frequency (Hz)

 f_s Sampling frequency (Hz) f's Shear in beams (N/mm²)

f't Tension parallel to grain (N/mm²)

 $F(\omega)$ Fourier transform of the excitation (input) signal

F(t) Time varying force

F(x) Objective function (Chapter 4)

G Modulus of rigidity g Gravity (9.81 m/s²)

g(x) Constraint vector (Chapter 4)

GXY; GXZ; GYZ ANSYS notation for shear modulus in x-y, x-z and y-z

planes, respectively.

 $H(\omega)$ Frequency response function for the input and output signals

 $H_1(\omega)$; $H_2(\omega)$ FRF estimators

I Moment of inertia

 I_{eff} Effective impulse (Ns)

 I_i Moment of inertia of the joist member

k Stiffness (N/m) K_{ser} Slip modulus

KTx; KTy; KTz Support stiffness for spring elements in the x-, y- and z-

directions, respectively.

L, l Length, floor span

m Mass (kg)

 m_a Mass per unit area (kg/m²) m_l Mass per unit length (kg/m) M_n Modal mass of mode n (kg)

 m_s Mass per unit area of floor sheathing (kg/m²)

 MAC_{ij} Modal assurance criterion between mode i and j

 $NF_{ERROR,i}$ Natural frequency error for mode i

n Mode number

 n_{40} Number of eigenmodes with eigenfrequencies lower than 40

Hz for unit impulse calculation in Eurocode 5

 n_j Number of joists

P 1 kN point load (kN)

PRXY; PRXZ; PRYZ ANYS notation for Poisson's ratio in x-y, x-z and y-z planes,

respectively.

 P_j Parameter j for sensitivity study (Chapter 4)

Q Walker weight (N)

 R_i Response *i* for sensitivity study (Chapter 4)

s Spacing

 S_{ii} Sensitivity coefficient for each target response R_i to a certain

change in parameter P_i

 $S_{n,ij}$ Normalised sensitivity coefficient for each target response R_i

to a certain change in parameter P_i

t Time (s)

T Duration of response measurement or exposure period (s)

 T_f Duration of a single footfall (s)

 t_{RMS} Period of $1/f_p$ from which RMS response is calculated

(Chapter 5)

 $u_{vel,max}$ Maximum unit impulse velocity response (m/Ns²)

 v_{MTVV} MTVV from integrated velocity response (m/s)

 v_{rms} Root-mean-square velocity response (m/s)

w Maximum instantaneous vertical deflection caused by a

vertical concentrated static force F applied at any point on

the floor

 $W_{f,i}$ Weighting factor for the NF_{ERROR} of mode i (Chapter 4)

 $w_{\varphi,i}$ Weighting factor for the MAC_{ERROR} for mode i (Chapter 4)

 w_l Load per unit length

 W_m ; W_b ; W_k Frequency-weighting curves provided in ISO 2631-2 (2003),

BS 6471-1 (2008a), and ISO 2631-1(1997), respectively.

 $X(\omega)$ Fourier transform of the response (output) signal

 x_{min} ; x_{max} Lower and upper constraints for design variable x (Chapter 4)

 x_u Updated parameter from model updating (Chapter 4)

y(t) Time varying displacement (m)

 $\dot{y}(t)$ Time varying velocity (m/s)

 $\ddot{y}(t)$ Time varying acceleration (m/s²)

List of Acronyms

ASD Auto-spectral density

CE Complex exponential

CLT Cross-laminated timber

CoV Coefficient of variance

DAQ Data acquisition

DFT Discrete Fourier transform

DLF Dynamic load factor

DMF Dynamic magnification factor

DOF Degree-of-freedom

EMA Experimental modal analysis

ESPA Equivalent sinusoidal peak acceleration

EWP Engineered wood product

FE Finite element

FFT Fast Fourier transform

FRF Frequency response function

FS Footstep

FT Fourier transform

IRF Impulse response function

LSCE Least-squares complex exponential

LSFD Least-squares frequency domain

LVL Laminated veneer lumber

MAC Modal assurance criterion

MDOF Multi-degree-of-freedom

MoE Modulus of elasticity

MPC Modal phase collinearity

MPD Modal phase deviation

MTVV Maximum transient vibration value

OSB Oriented strand board

OS-RMS₉₀ One-step RMS for the 90th percentile (HIVOSS guide)

PR Pin-roller

RF Response factor

RMS Root-mean-square

SDOF Single-degree-of-freedom

SFT Single footfall trace

SIMO Single-input, multiple-output

SISO Single-input, single-output

SRSS Square-root sum of squares

VDV Vibration dose value

Table of Contents

Ackno	wled	gements	iii
List of	Pub	lications	v
List of	Nota	ntions	vi
List of	Acro	onyms	xi
Table (of Co	ontents	xiii
List of	Figu	res	xix
List of	Tab	les	xxvii
Abstra	ct		xxx
СНАР	TER	1 INTRODUCTION	1
1.1	Ba	ckground	1
1.	1.1	Timber as a structural material.	1
1.	1.2	Long-span timber floors	4
1.2	Re	search problem	7
1.3	Re	search objectives	9
1.4	Re	search scope	10
1.5	Str	ucture of thesis	11
CHAP	TER	2 LITERATURE REVIEW	14
2.1	Int	roduction	14
2.2	Fu	ndamentals of vibration theory and experimental modal analysis	15
2.2	2.1	Forced vibration of a damped single degree-of-freedom system	15
2.2	2.2	Forced vibration of a damped multi degree-of-freedom system	18
2.2	2.3	Experimental Modal Analysis	18
2	2.4	Computing the frequency response functions	22
2.2	2.5	Curve fitting methods	25
2.3	Hu	mans as vibration source for floors	27

2.3.1	Gait cycle	28
2.3.2	Ground reaction force	29
2.3.3	Modelling of human walking	30
2.4 Ti	mber floors as a transmission path	38
2.4.1	Support conditions	39
2.4.2	Orthotropic behaviour	41
2.4.3	Damping	43
2.4.4	Connections between adjacent cassettes	47
2.5 Hu	uman sensitivity to vibrations	49
2.5.1	Measurable quantities	49
2.5.2	Early works on vibration perception thresholds	53
2.5.3	Standardisation of human perception	54
2.5.4	Annoyance	56
2.6 Vi	bration serviceability design procedures and criteria	58
2.6.1	Procedures and criteria for timber floors	59
2.6.2	Procedures and criteria for other floors	74
2.7 Co	oncluding remarks	79
СНАРТЕБ	R 3 DYNAMIC TESTING METHODS	82
3.1 In	troduction	82
3.2 Th	ne timber cassette floor	83
3.2.1	Design of the floor	83
3.2.2	Fabrication	86
3.2.3	Determination of material properties of LVL	88
3.3 Ex	xperimental Program	90
3.3.1	C1: single cassette tests	90
3.3.2	C2: double cassette tests	95
3.4 Ex	sperimental set-up and testing procedure	97

	3.4	1.1	Test instrumentation and set-up	97
	3.4	1.2	Impact hammer tests	99
	3.4	1.3	Walking tests	101
	3.5	Coı	ncluding remarks	105
C	СНАРТ	ΓER	4 MODAL PROPERTIES OF LONG-SPAN TIMBER RIBBED-	DECK
F	LOOI	R: Tl	EST RESULTS AND FINITE ELEMENT MODEL	107
	4.1	Intr	oduction	107
	4.2	Fin	ite element modelling approach	108
	4.2	2.1	General modelling considerations for ribbed-deck floors	108
	4.2	2.2	Preliminary investigation of appropriate element type	111
	4.2	2.3	Modelling approach validation of ribbed-deck floor	117
	4.3	Imp	oact hammer test results	123
	4.4	Init	ial finite element model	127
	4.4	1.1	Experimental boundary condition	127
	4.4	1.2	Design boundary condition	131
	4.5	Fin	ite element model updating of initial model	132
	4.5	5.1	Correlation analysis for model updating	133
	4.5	5.2	Correlation between initial FE model and experimental results	134
	4.5	5.3	Forming the objective function for automatic model updating	135
	4.5	5.4	Updating parameter selection	136
	4.5	5.5	Updated FE model	141
	4.6	Coı	ncluding remarks	144
C	СНАРТ	ΓER	5 WALKING-INDUCED VIBRATION OF LONG-SPAN TIME	MBER
R	RIBBE	D-D	ECK FLOOR	146
	5.1	Intr	oduction	146
	5.2	Wa	lking load models	147
	5.2	2.1	Response evaluation procedure	149

5	5.2.2	Load Model 1	150
5	5.2.3	Load Model 2	154
5	5.2.4	Load Model 3	157
5.3	Co	mparison of simulated and measured results	160
5	5.3.1	Maximum response	162
5	5.3.2	Distribution of floor response	172
5.4	Dis	scussion	174
5.5	Co	ncluding remarks	176
CHA	PTER	6 FACTORS AFFECTING DYNAMIC BEHAVIOUR OF L	ONG-
SPAN	TIM	BER RIBBED-DECK FLOORS	178
6.1	Int	roduction	178
6.2	Inf	luence of elastomer at support	180
6	5.2.1	Modal properties	180
6	5.2.2	Floor response to walking	184
6.3	Inf	luence of higher ratio of utilisation of elastomer	190
6	5.3.1	Modal Properties	190
6	5.3.2	Floor response to walking	194
6.4	Inf	luence of cassette-to-cassette connections	199
6	5.4.1	Modal properties	200
6	5.4.2	Floor response to walking	203
6.5	Do	uble cassette finite element model	210
6	5.5.1	Model overview	211
6	5.5.2	Preliminary investigation of screw connections between adjacent ca 213	ssettes
6	5.5.3	Correlation of FE model to measured modal properties	222
6	5.5.4	Simulated walking response and comparison to measured results	225
6.6	Co	ncluding remarks	229

CHAP	TER	7 NUMERICAL ANALYSIS OF MULTI-CASSETTE	FLOOR
MODE	EL A	ND PARAMETRIC STUDIES	231
7.1	Int	roduction	231
7.2	Μι	ıltiple cassette model	232
7.	2.1	Model overview	232
7.	2.2	Investigated parameters	233
7.	2.3	Modal properties of reference case	235
7.	2.4	Floor response of reference case	236
7.3	Inf	luence of higher damping ratio	239
7.4	Inf	luence of increased stiffness parallel to span	243
7.5	Inf	luence of increased span-to-depth ratio	248
7.6	Co	ncluding remarks	257
СНАР	TER	8 GUIDANCE ON VIBRATION DESIGN OF LONG-SPAN	TIMBER
RIBBE	E D-D	ECK FLOORS	259
8.1	Int	roduction	259
8.2	Pro	posed vibration design flow chart	259
8.3	Nu	merical model or simplified approach	262
8.4	Co	nsiderations in numerical model	262
8.	4.1	Material model and element types	262
8.	4.2	Boundary conditions	263
8.	4.3	Cassette-to-cassette connections	263
8.	4.4	Damping ratio	264
8.5	Co	nsiderations in response prediction	264
8.6	Co	nsiderations in vibration criterion and performance assessment	266
8.	6.1	Forming appropriate criteria	266
8.	6.2	Satisfactory floor performance	269
8.7	Co	nsiderations in structural changes to improve performance	270

8.8	Concluding remarks	271
СНАР	TER 9 CONCLUSIONS AND RECOMMENDATIONS	272
9.1	Conclusions	272
9.2	Recommendations for Future Work	276
Refere	nces	278
Appen	dices	296

List of Figures

Figure 1-1 Commercial timber buildings in Australia (a) International House (Guthri
2018); (b) 25 King, Brisbane (Bates Smart 2018)
Figure 1-2 Schematic diagram of a (a) ribbed-deck floor system and (b) traditional jois
floor
Figure 1-3 Proprietary ribbed-deck floor systems. Note Kerto-Q and Kerto-S in (d) ar
LVL products manufactured by Metsä Wood
Figure 1-4 Outline of thesis
Figure 2-1 An overview of floor vibration1:
Figure 2-2 Measurement procedure for modal analysis using hammer excitation (diagram
adapted from Friswell and Mottershead (1995) and Sinha (2015b))20
Figure 2-3 Piezoelectric accelerometer components
Figure 2-4 Illustration of aliasing phenomenon (Clarence W. de Silva 2000)2
Figure 2-5 A square sine (top) and its sine wave components (bottom) (Lyons & Fuga
2014)
Figure 2-6 Effect of sample length and leakage Fourier transform of a periodic signal
(Friswell & Mottershead 1995)24
Figure 2-7 Example of typical measured data from an instrumented hammer test and
subsequent FRF amplitude and coherence, adapted from (Sinha 2015b)2
Figure 2-8 Example of a stabilisation diagram (LMS International 2012)2
Figure 2-9 The gait cycle (adapted from Inman, Ralston & Todd 1981; Racic, Pavic &
Brownjohn 2009)
Figure 2-10 Spatial parameters of human walking (Vaughan, Davis & O'Connor 1999
Figure 2-11 Vertical ground reaction force of one footstep normalised by walker weigh
(adapted from Racic, Pavic and Brownjohn (2009))29
Figure 2-12 Force patterns for different types of human activities as investigated by
Wheeler (1982) (image from Glisovic & Stefanovic (2010) adapted from Wheeler (1982)
30
Figure 2-13 Mathematical modelling of human walking
Figure 2-14 An example of continuously measured walking force signal as measured by
Racic and Brownjohn (2011)

Figure 2-15 Example of duplication of a single footfall trace to create a synthetic
continuous time history. Double support phase has been annotated. Adapted from Racic
and Brownjohn (2011)
Figure 2-16 Typical floor response of a low-frequency floor from walking (Brownjohn &
Middleton 2008)
Figure 2-17 Typical floor response of a high-frequency floor from walking (Brownjohn
& Middleton 2008)
Figure 2-18 Autospectral density of the walking force (annotated with points of leakage)
(after Eriksson (1994))
Figure 2-19 Example of floor cassette to frame connection (adapted from (Moroder,
Pampanin & Buchanan 2016) (a) cassette webs supported by corbel; (b) cassette webs
supported by pocket; (c) cassette webs supported by steel joist hanger39
Figure 2-20 Support condition with Sylodyn interlayer tested by Jarnerö et al. (2015) (a)
tested in the laboratory; (b) tested in-situ
Figure 2-21 Types of joist bracing tested by Khokhar (2012)42
Figure 2-22 Typical connections between adjacent cassettes
Figure 2-23 Half-lap connection between adjacent CLT panels
Figure 2-24 Frequency-weighting filters provided in BS 6471-1 (2008a), ISO 2631-
1(1997) and JIS C1510 (1995) for z-axis vibration. Frequency weighting W_{m} is
recommended if the vibration direction is unknown as stated in ISO $2631-2(2003)51$
Figure 2-25 Z-axis perception curves for continuous vibration including recommended
limits55
Figure 2-26 Recommended range of and relationship between parameters a and b, as
published in Eurocode 5 (European Committee for Standardisation 2004)62
Figure 2-27 Shape of forcing function of a heel-drop impact (Smith & Chui 1988)64
Figure 2-28 Proposed <i>aw, rms</i> curves, adapted from Al-Foqaha'a et al. (1999)65
Figure 2-29 Comparison between the proposed criterion and subjective rating of 106 field
floors (Hu & Chui 2004)
Figure 2-30 Proposed vibration design flow chart, adapted from Hamm et al. (2010)71
Figure 3-1 Fundamental relationship of system response
Figure 3-2 Tested ribbed-deck floor (a) elevation; (b) cross-section A85
Figure 3-3 Cross-section of LVL showing veneers
Figure 3-4 Orientations of laminated veneer lumber

Figure 3-5 Flowchart of laboratory experiments	90
Figure 3-6 Stage C1 web supported test boundary conditions	91
Figure 3-7 Flange bearing support condition	92
Figure 3-8 Detail of 'screw' support condition	92
Figure 3-9 Set-up of simple boundary condition with elastomer	94
Figure 3-10 Calibrated weights at support – typical set-up (test C1_Sdyn1500 s	hown) 95
Figure 3-11 Double cassette test and connection types	97
Figure 3-12 Accelerometer set-up plan view (as shown by the red dots), impac	t hammer
locations (as shown by the blue crosses) and walking path (as shown by t	he dotted
arrows). Note 'Start' indicates the location of where the walker started the wal	
Figure 3-13 Test instrumentation	
Figure 3-14 Typical plots for 10 test samples for one accelerometer	
Figure 3-15 Raw and W _k filtered acceleration response from walking excitation	
and frequency domain	
Figure 3-16 Cumulative distribution of floor response	
Figure 4-1 Principal axes of wood (Porteous & Kermani 2007)	
Figure 4-2 Local and global coordinate system of FE model	
Figure 4-3 Steel shaft and plate pin boundary condition	
Figure 4-4 Accelerometer layout and impact locations	
Figure 4-5 Experimental vs numerical results for the first two bending modes	
and fix-fix boundary conditions	
Figure 4-6 Preliminary FE model overview of element type	
Figure 4-7 An example of a spurious (non-physical) mode	
Figure 4-8 (a) 'Ideal' pin-roller boundary condition configuration; (b) 'Spring'	
condition configuration	-
Figure 4-9 Sensitivity study of mesh size and frequency of first five modes and	
deflection	_
Figure 4-10 Plot of sum of FRFs for all impact location points for bearing	
condition	
Figure 4-11 Plot of sum of FRFs for all impact location points for screwer	
condition	
Figure 4-12 Static deflection test load-deflection curve for Joist A and C	

Figure 4-13 Detail of flange bearing onto timber frame
Figure 4-14 Row names for each row within the panel overhang portion of model.
Identical row names for the opposite support
Figure 4-15 Isometric view of FE model of cassette with support node locations
highlighted
Figure 4-16 Plan view of Support A from Figure 4-15. Support B is identical
Figure 4-17 Uncertain parameters in the FE model
Figure 4-18 Normalised sensitivity coefficient of varying material property parameters to
x _{min} with respect to each response output
Figure 4-19 Normalised sensitivity coefficient of varying material property parameters to
x _{max} with respect to each response output
Figure 4-20 Normalised sensitivity coefficient of support stiffness parameters with
respect to each response output
Figure 4-21 Flowchart for model updating procedure
Figure 5-1 Node locations for each footstep for LM2 (shown temporally for the first 13
footsteps) and the load application node for LM1 and path for LM3152
Figure 5-2 Single footfall traces applied to the FE model as per Chen et al. (2019) 156
Figure 5-3 LM3 'basic' and 'advanced' load function for a 78 kg person at a 2.1 Hz
walking pace
Figure 5-4 Fast Fourier Transform (FFT) of the Wk frequency-weighted measured
acceleration response for frequency range of $0-50\ Hz$ and $0-15\ Hz$ at locations LOC1,
LOC2, LOC3 and LOC4 for (a) W1 and (b) W2a
Figure 5-5 Simulated (a) acceleration and (b) velocity response (sum of both modes) of
one footstep at C4 for a 78kg walker at 2.1 Hz walking pace based on three vibration
design guides
Figure 5-6 Simulated (NoIntra) vs measured time history response for W1 showing
similarities in time-history response
Figure 5-7 Simulated (NoIntra) vs measured time history response for W2a showing
similarities in time-history response
Figure 5-8 Simulated vs measured time-history response using LM3 Basic170
Figure 5-9 Cumulative distribution plots of MTVV velocity based on LM3 'Advanced'
171

Figure 5-10 Probability and cumulative distribution plots comparing LM2 and measured
results
Figure 6-1 Plot of sum of FRFs for all impact location points for flange bearing onto
Sylodyn support condition. Grey FRF plots refer to single cassette C1_Flange tests from
same impact locations
Figure 6-2 Plot of sum of FRFs for all impact location points for flange bearing onto
Sylomer support condition. Grey FRF plots refer to single cassette C1_Flange tests from
same impact locations
Figure 6-3 Comparison of damping ratios between C1_Flange, C1_Sdyn0 and C1_Smer0
tests
Figure 6-4 Maximum response factors from W1 walking tests with elastic interlayer 186
Figure 6-5 Maximum response factors from W2a walking tests with elastic interlayer
Figure 6-6 Maximum response at B4 for all double cassette walking tests for walking
pace
Figure 6-7 Cumulative distribution functions for the RF at accelerometer B4 for all double
cassette tests at pace frequency equal to fifth integer division of first bending mode 189
Figure 6-8 Cumulative distribution functions for the RF at accelerometer B4 for all double
cassette tests at pace frequency of 2 Hz
Figure 6-9 Cumulative distribution functions for the RF at accelerometer B4 for all double
cassette tests at pace frequency of 1.5 Hz
Figure 6-10 Sum FRF amplitude for impact LOC4 for all added mass tests192
Figure 6-11 Typical mode shapes for all modes under 50 Hz. Figures are from
C1_Smer1000 test
Figure 6-12 Maximum response factor contours for W1 walking tests for C1_Sdyn1000
and C1_Sdyn2000 tests
Figure 6-13 Maximum response factor contours for W2a walking tests for C1_Smer1000
and C1_Smer2000 tests
Figure 6-14 Maximum response at B4 for all Sylodyn and Sylomer walking tests for
walking pace (a) 1.5 Hz; (b) 2.0 Hz; (c) 'R' Hz
Figure 6-15 Cumulative distribution functions for the RF at accelerometer B4 for all
additional mass tests with elastomer at pace frequency equal to fifth integer division of
first bending mode

Figure 6-16 Cumulative distribution functions for the RF at accelerometer B4 for all
double cassette tests at pace frequency of 2 Hz
Figure 6-17 Cumulative distribution functions for the RF at accelerometer B4 for all
double cassette tests at pace frequency of 1.5 Hz
Figure 6-18 Sum FRF amplitude for impact LOC3 for all double cassette tests202
Figure 6-19 Typical mode shapes for all modes under 50 Hz. Figures are from C2_Spl300
test, as an example
Figure 6-20 Maximum response factors from W1 walking tests: web-to-web connection
Figure 6-21 Maximum response factors from W1 walking tests: splice connection
between adjacent flanges
Figure 6-22 Maximum response factors from W1 walking tests: diagonal screws between
adjacent flanges
Figure 6-23 Maximum response at C2 for all double cassette walking tests for walking
pace (a) 1.5 Hz; (b) 2.0 Hz; (c) fifth integer of first bending mode208
Figure 6-24 Cumulative distribution functions for the RF at Accelerometer C2 for all
double cassette tests at pace frequency equal to fifth integer division of first bending
mode
Figure 6-25 Cumulative distribution functions for the RF at Accelerometer C2 for all
double cassette tests at pace frequency of 2 Hz
Figure 6-26 Cumulative distribution functions for the RF at Accelerometer C2 for all
double cassette tests at pace frequency of 1.5 Hz
Figure 6-27 Double cassette model overview
Figure 6-28 Sensitivity study of mesh size and frequency of first five modes and mid-
span deflection
Figure 6-29 Photo of (a) web-to-web connection at 300 mm c/c; (b) splice connection
between flanges with screws at 150 mm c/c; (c) plan view of diagonal screw connections
at 150 mm c/c (arrows indicate screw locations)
Figure 6-30 Spring elements at web-to-web screw connection locations215
Figure 6-31 Comparison of mode shapes and natural frequency between 'S-w300' and
'C-w300' model with mode shape order in parentheses. Note m and n refer to the degree
of curvature in the longitudinal and transverse directions, respectively217

Figure 6-32 MAC diagram for eight common modes obtained experim	entally and
numerically in C-w150-f300	224
Figure 6-33 Overview of walking path, footstep loading and response nodes	s on double
cassette model	225
Figure 6-34 Simulated velocity response using LM2 'NoIntra' and velocity t	ime-history
response integrated from measured acceleration response at C2	227
Figure 6-35 Cumulative distribution plot of measured Spl300 ('R' Hz) for b	
and LM2 NoIntra at C2	228
Figure 7-1 Overview of multiple cassette model including response node lo	cations (red
squares) and single footstep loading locations (pink squares with arrows alo	ng grid line
E)	232
Figure 7-2 Cross-section details of different models as per Table 7-1	234
Figure 7-3 Model 1 at 2 Hz pace frequency	238
Figure 7-4 Model 1 at 2.09 Hz ('R' Hz) pace frequency	239
Figure 7-5 Model 2 (2% damping ratio) at 2.09 Hz ('R' Hz) pace frequency	241
Figure 7-6 Model 3 (4% damping ratio) at 2.09 Hz ('R' Hz) pace frequency	242
Figure 7-7 Cumulative distribution of simulated floor response for mode	ls with 1%
(Mod1), 2% (Mod2) and 4% (Mod3) damping ratio	243
Figure 7-8 Model 4 at 2 Hz pace frequency	246
Figure 7-9 Model 4 at 2.14 Hz ('R' Hz) pace frequency	247
Figure 7-10 FRF plots at response node E2 for 1 N sinusoidal loading applications	ed at E2 for
(a) frequencies between 0 and 30 Hz; (b) 8 to 15 Hz enlarged plot with modes	s annotated.
	247
Figure 7-11 Cumulative distribution of simulated floor response for Model	1 and 4 at 2
Hz and 'R' Hz pace frequencies	248
Figure 7-12 Model 5 at 2 Hz pace frequency	253
Figure 7-13 Model 6 at 2 Hz pace frequency	254
Figure 7-14 Model 5 at 2.02 Hz ('R' Hz) pace frequency	255
Figure 7-15 Model 6 at 1.80 Hz ('R' Hz) pace frequency	256
Figure 7-16 Cumulative distribution of simulated floor response at node E2 f	
5 and 6 for both pace frequencies.	257

Figure 7-17 Frequency response plots at response node E2 for 1 N sinusoidal lo	oading
applied at E2 for (a) frequencies between 0 and 30 Hz; (b) 8 to 15 Hz enlarged plo	ot with
modes annotated.	257
Figure 8-1 Vibration design flow chart for long-span timber ribbed-deck floors	261
Figure 8-2 Considerations when developing vibration design criteria	267
Figure A-1 Typical load-deflection curve	297

List of Tables

Table 1-1 Overview of differences between traditional joist floor and ribbed-deck floor
system
Table 2-1 Various damping ratios recommended in standards and reported in literature
Table 2-2 Multiplying factors given in ISO 2631-2 (1974) to define vibration magnitudes
below which the probability of adverse comment is 'low'
Table 2-3 VDV limits for 16 hour day for residential and commercial buildings (British
Standards Institution 2008a)
Table 2-4 Summary of considered modes, response measures and recommended criterion
for CCIP-016, SCI P354 and AISC DG 1178
Table 3-1 Loading assumed for design of timber cassette floor
Table 3-2 Edgewise limit state design characteristic values as per Nelson Pine for
LVL11(2016) and Carter Holt Harvey for hySPAN®(2012)86
Table 3-3 Fabrication procedure for the timber cassettes
Table 3-4 Summary of measured material properties for LVL1389
Table 3-5 Interlayer properties
Table 3-6 Summary of single cassette tests
Table 3-7 Summary of double cassette tests
Table 3-8 Walker details
Table 4-1 ANSYS element summary table
Table 4-2 ANSYS material property input
Table 4-3 Numerical solutions for simply-supported web for various element types and
% error from analytical results
Table 4-4 Natural frequency of the first three modes obtained from LMS Test.Lab 116
Table 4-5 Comparison of mode shapes between FE model and experimental
Table 4-6 Natural frequency error from experimental natural frequencies
Table 4-7 Frequency, damping ratios and mode shapes for simple boundary condition
tests
Table 4-8 Summary of natural frequencies for each restrained row within 76 mm (Row(
- Row4) and the measured natural frequency with mode order in parentheses128

Table 4-9 Natural frequencies for first five modes considering reduced number of
restrained nodes for Row1 – Row3
Table 4-10 Correlation between experimental results and initial FE model135
Table 4-11 Upper and lower limits considered for sensitivity analysis139
Table 4-12 Correlation between experimental and tuned FE model142
Table 4-13 Final input parameter values for updated model
Table 4-14 Correlation between experimental and updated FE model143
Table 5-1 Calculated effective impulse for each relevant mode
Table 5-2 Mean DLFs and phase angles at given walking frequency as per Chen, Ding
and Živanović (2019)155
Table 5-3 Dynamic load factors for harmonics and sub-harmonics as per Živanović et al.
(2007b)
Table 5-4 Summary of 'basic' and 'advanced' LM3
Table 5-5 Summary of measured acceleration and integrated velocity amplitudes for both
walkers at pace frequency equivalent to the fifth integer of the fundamental mode (2.1
Hz)162
Table 5-6 Predicted response at location A4, B4 and C4 based on the three load models
Table 5-7 Simulated response for 'NoIntra_C' with MoE parallel to grain increased by
5% for Web C
Table 6-1 Summary of single cassette tests referenced in this chapter179
Table 6-2 Summary of double cassette tests referenced in this chapter179
Table 6-3 Modal properties of flange supported boundary condition with addition of
elastomer
Table 6-4 Natural frequencies for all modes under 50 Hz for all added mass tests with
covariance across all impact locations shown in italicised parentheses
Table 6-5 Damping ratio for all modes under 50 Hz for all added mass tests with
covariance across all impact locations shown in italicised parentheses
Table 6-6 Natural frequencies for all modes under 50 Hz for all double cassette tests with
covariance across all impact locations shown in italicised parentheses201
Table 6-7 Damping ratio for all modes under 50 Hz for all double cassette tests with
covariance across all impact locations shown in italicised parentheses201

Table 6-8 Natural frequencies for all non-spurious modes under 50 Hz for C-	w and C-
w150 with % error of C-w150 from C-w and C-w300 model	218
Table 6-9 Natural frequencies for all non-spurious modes under 50 Hz for C-w	150-f300
and C-w150-f150 with % error of C-w150-f300 from C-w150 and C-w150-f15	0 models
	219
Table 6-10 Natural frequencies for all non-spurious modes under 50 Hz for C-w1	50-f300r
with % error from C-w150-f300.	220
Table 6-11 Correlation between Spl300 and numerical models C-w150-f300 and	C-w150-
f300r	224
Table 6-12 Predicted response based on Chen et al. (2019) single footstep loa	iding and
measured response at accelerometer C2	226
Table 6-13 Summary of modes from C-w150-f300r considered in CCIP-016 me	ethod 228
Table 7-1 Overview of all analysed models for parametric studies	234
Table 7-2 Summary of cross-sections considered	234
Table 7-3 Overview of modal properties for Model 1 for all modes under 30 H	z. Modal
properties for common modes to single cassette tests are also noted in italics for	or ease of
comparison; modal masses were taken from the calibrated FE model	236
Table 7-4 Overview of modal properties for Model 4 for all modes under 30 Hz	z244
Table 7-5 Overview of modal properties for Model 5 for all modes under 30 Hz	z250
Table 7-6 Overview of modal properties for Model 6 for all modes under 30 Hz	z251
Table 8-1 Relationship between annoyance level, probability of perception (based on
previous version of standard AIJES-V001-2004) and performance level in curren	
V001-2018 standard for commercial buildings	268
Table 8-2 Tentative floor performance levels for use in categories A (residenti-	al) and B
(office) as proposed by Abeysekera et al. (2018)	269

Abstract

The development of engineered wood products and the environmental benefits of timber over conventional building materials has led to an increased interest in the use of timber for the construction of multi-storey buildings. Timber has a high strength-to-weight ratio making it structurally efficient for long-span floor applications (a common practice in commercial buildings). However, the low mass of such floors makes them more susceptible to walking-induced vibrations compared to heavier floors such as those made from concrete. In fact, when designing long-span timber floors, dynamic performance criteria tends to govern the design rather than strength. Unfortunately, there is a lack of specific vibration design guidance for long-span timber floors with much of the current criteria based on tests of short-span timber joist floors in residential applications. In addition, there is uncertainty as to how accurately other vibration design guides, mainly used for concrete and steel-concrete composite floors, predicts and assesses floor performance of long-span timber floors.

This thesis addresses this gap by investigating the dynamic behaviour of a long-span timber floor through both experimental and numerical methods. Impact hammer and walking tests with two subjects were performed on a 9 m span ribbed-deck floor which consists of a laminated veneer lumber (LVL) panel glued and screwed to three LVL web members, forming one cassette. The influence of various boundary conditions and cassette-to-cassette connections on the modal properties and floor response were explored. A numerical model of a single cassette, calibrated to measured results through model updating, was used to investigate three human walking load models including the deterministic modelling approach adopted in current vibration design guides. In addition, a numerical model representing the cassette-to-cassette connection was developed and updated using measured results of double cassette tests. These details were adopted in a multi-cassette floor model, based on the dimensions of a typical commercial building floor grid, to investigate the influence of common design parameters on modal properties and floor response.

One of the main findings from walking tests was that the floor exhibited neither a completely transient nor a completely resonant response, despite being classified as a 'high-frequency' floor. This assumption of floor behaviour resulted in inaccuracies in response prediction using current vibration design guides and it is proposed that a step-by-step load model which considers the stochastic nature of walking is more appropriate. This load model also provides the response time-history which allows an assessment of the duration of certain vibration amplitudes (through a cumulative distribution function) during the walking event to be considered in design.

Modal clustering was consistently observed, particularly for the first two or three modes, in the single and double cassette experiments as well as the multi-cassette numerical model. Furthermore, the multi-cassette model revealed that higher modes with low modal masses largely contributed to the floor response. This finding highlights that criterion which only considers the fundamental mode may not be adequate. In regards to design considerations which may benefit the floor response, damping was found to play a key role. This may be in the form of incorporating an elastomer (such as Sylomer®) at the support locations where experimental tests revealed that the damping ratio could increase from 1% to approximately 5% and 7% for the first and second modes, respectively. The findings from all investigations were used to provide guidance and commentary for a vibration design procedure, based on a finite element approach, suitable for long-span timber ribbed-deck floors which was presented in the form of a flow chart.