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Abstract—Data stream poses additional challenges to statistical
classification tasks because distributions of the training and target
samples may differ as time passes. Such distribution change in
streaming data is called concept drift. Numerous histogram-based
distribution change detection methods have been proposed to
detect drift. Most histograms are developed on grid-based or
tree-based space partitioning algorithms which makes the space
partitions arbitrary, unexplainable, and may cause drift blind-
spots. There is a need to improve the drift detection accuracy
for histogram-based methods with the unsupervised setting. To
address this problem, we propose a cluster-based histogram,
called equal intensity k-means space partitioning (EI-kMeans).
In addition, a heuristic method to improve the sensitivity of
drift detection is introduced. The fundamental idea of improving
the sensitivity is to minimize the risk of creating partitions in
distribution offset regions. Pearson’s chi-square test is used as
the statistical hypothesis test so that the test statistics remain
independent of the sample distribution. The number of bins
and their shapes, which strongly influence the ability to detect
drift, are determined dynamically from the sample based on an
asymptotic constraint in the chi-square test. Accordingly, three
algorithms are developed to implement concept drift detection,
including a greedy centroids initialization algorithm, a cluster
amplify-shrink algorithm, and a drift detection algorithm. For
drift adaptation, we recommend retraining the learner if a drift is
detected. The results of experiments on synthetic and real-world
datasets demonstrate the advantages of EI-kMeans and show its
efficacy in detecting concept drift.

Index Terms—concept drift, data stream, multivariate two-
sample test, space partition

I. INTRODUCTION

Streaming data classification consists of a routine where a
model is trained on historical data and then used to classify
upcoming samples. When the labels of the new arrived samples
are available, they become a part of the training data. Concept
drift refers to inconsistencies in data generation at different
time, which means the training data and the testing data have
different distributions [1]–[3]. Drift detection aims to identify
these differences with a statistical guarantee through what
is, typically, a four-step process [4]: 1) cut data stream into
chunks as training/testing sets; 2) abstract the data sets into
a comparable model; 3) develop a test statistical or similarity
measurement to quantify the distance between the models; and
4) design a hypothesis test to investigate the null hypothesis
(most often, the null hypothesis is that there is no concept
drift).

Concept drift detection is also referred to change detection
test or covariate shift, which is very relevant in machine
learning [1], [5]–[7]. Some application domains are mobile
tracking systems that monitor user behaviour, intrusion de-
tection systems that identify unusual operations and remote

sensing systems that reveal false sensors. In these scenarios,
the systems can inference the change of situation by com-
paring data distributions at different time points, where the
discrepancy of the distributions is estimated, based on the
observed sample sets [8]. Learning under concept drift consists
of three major components: concept drift detection, concept
drift understanding, and concept drift adaptation [4]. In this
paper, we are focusing on improving concept drift detection
accuracy on multi-cluster data sets. Regarding to the drift
adaptation process, we recommend retraining the learner if
a drift is confirmed as significant.

Online and batch are two modes for drift detection [9]–
[11]. Batch mode drift detection is also referred to as change-
detection, or the two-sample test, where the idea is to infer
whether two sample sets have been selected from the same
population. This is a fundamental component of statistical data
processing. For most change-detection algorithms, the batch
size affects the drift threshold of the test statistics. Hence, extra
computation are required when the batch size is not fixed [1],
[12], [13]. The online approach is more flexible because the
drift threshold is self-adaptive [10]. Alternatively, it can be
calculated directly from new samples without a complicated
estimation process [11], especially when the change is simply
an insertion and/or removal of observation [14].

Histograms are the most widely used density estimators
[15]. A histogram is a set of intervals, i.e., bins, and density
is then estimated by counting the number of samples in each
bin. The design of the bins to reach the best density estimation
result is a nontrivial problem. Most methods are based on
regular grids, and the number of bins grows exponentially
with the dimensionality of the data [1]. A few methods
instead use a tree-based partitioning scheme, which tends
to scale well with high-dimensional data [1], [16]. Recent
research shows that bins of equal density result in better
detection performance than regular grids [17]. For example,
Boracchi et al. [1] developed a space partitioning algorithm,
named QuantTree, that creates bins of uniform density and
proved that the probabilities of these bins are independent
of the data distribution. As a result, the thresholds of the
test statistics calculated on these histograms can be computed
numerically from uni-variate and synthetically generated data
with a guaranteed false positive rate [1].

Tree-based methods have achieved outstanding results with
batch mode drift detection. However, their results are less
optimal with online modes due to the extra effort to recalcu-
late the drift threshold, since their drift threshold is depend
on the sample size [14]. This is a critical issue in real-
world distribution change monitoring problems, particularly
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Fig. 1. We draw a demonstration of tree-based space partitioning. Compared to cluster-based space partitioning algorithms like kMeans, tree-based space
partitions are irregular and not easily understood.

for streams with no explicit data batch indicators [18]. In
addition, tree-based space partitioning does not consider the
clustering properties of the data. Therefore, the partitioning
results for data with complex distributions may be arbitrary,
unexplainable, and may cause drift blind-spots in the leaf
nodes. For example, Fig 1. demonstrates the difference in the
space partitioning between QuantTree, kdqTree, and kMeans
algorithms. It can be seen that tree-based space partitioning
will produce hyper-rectangles that crossing multiple clusters.
The detected distribution change area may not be easily
understood.

To address the problems caused by irregular partitions, we
propose a novel space partitioning algorithm, called equal-
intensity kMeans (EI-kMeans). The first priority of EI-kMeans
is to build a histogram that dynamically partitions the data into
an appropriate number of small clusters, then applying Pear-
son’s chi-square test (χ2 test) to conduct the null hypothesis
test. The Pearson’s chi-square test ensures the test statistics
remain independent of the sample distribution and the sample
size. The proposed EI-kMeans drift detection consists of three
major components, which are the main contributions of this
paper:

• A greedy equal-intensity cluster-initialization algorithm
to initialize the kMeans cluster centroids. This helps the
clustering algorithm to select a appropriate initialization
status, and reduces the randomness of the algorithm.

• An intensity-based cluster amplify-shrink algorithm to
unify the cluster intensity ratio and ensure that each
cluster has enough samples for the Pearson’s chi-square
test. In addition, an automatic partition number searching
method that satisfies the requirements of a Pearson’s chi-
square test is integrated.

• A Pearson’s chi-square test-based concept drift detection
algorithm that achieves higher drift sensitiveness while
preserving a low false alarm rate.

The rest of this paper is organized as follows. In Section
II, the problem of concept drift is formulated and the prelim-
inaries of Pearson’s chi-square test are introduced. Section III

presents the proposed EI-kMeans space partitioning algorithm
and the drift detection algorithm. Section IV evaluates the
space partitioning performance and the drift detection accu-
racy. Section V concludes this study with a discussion of future
work.

II. PRELIMINARIES AND RELATED WORKS

In this section, we define concept drift, discuss the state-
of-the-art concept drift detection algorithms, and outline the
preliminaries of the Pearson’s chi-square test for the proposed
drift detection algorithm.

A. Concept drift definitions and related works of drift detec-
tion

Concept drift is characterized by variations in the distri-
bution of data. In a non-stationary learning environment, the
distribution of available training samples may vary with time
[18]–[21]. Consider a topological space feature space denoted
as X ⊆ Rm, where m is the dimensionality of the feature
space. A tuple (X, y) denotes a data instance, where X ∈ X
is the feature vector, y ∈ {y1, . . . , yc} is the class label and c is
the number of classes. A data stream can then be represented
as a sequence of data instances denoted as D. A sample set
chunked from a stream via a time window strategy is a set
of data instances arriving within a time interval, denoted as
DTi ∈ D, where Ti is the given time interval that defines
the time window. A concept drift has occurred between two
time windows T1 and T2 if the joint probability of X and y
is different, that is, pT1

(X, y) 6= pT2
(X, y) [22]–[25].

According to the definition of joint probability p(X, y) =
p(y|X) · p(X), if we only consider problems that use X to
infer y, concept drift can be divided into two sub-research
topics [19], [22], [26], [27]:
• Covariate shift focuses on the drift in p(X) while p(y|X)

remains unchanged. This is considered to be virtual drift
• Concept shift focuses on the drift in p(y|X) while p(X)

remains unchanged. This is most commonly referred to
as real drift
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It is worth mentioning that p(X) and p(y|X) are not the only
implications of p(X, y) drift. The prior probabilities of classes
p(y) and the class conditional probabilities p(X|y) may also
change, which could lead to a change in p(y|X) and would
affect the predictions [22], [28]. This issue is another research
topic in concept drift learning that closely relates to class
imbalance in data streams [29].

TABLE I
THE CAPABILITY OF IDENTIFYING REAL/VIRTUAL DRIFT WITH DIFFERENT
LEARNING SETTINGS THAT ARE CATEGORIZED BY DETECTION METHODS.

Error rate Distribution Multi-hypo

Real drift

X supervised X–supervised depends
− unsupervised × unsupervised depends
X semi-supervised X–semi-supervised depends
X active learning X–active learning depends

Virtual drift

× supervised X–supervised depends
− unsupervised X–unsupervised depends
× semi-supervised X–semi-supervised depends
× active learning X–active learning depends

Concept drift detection algorithms can be summarized in
three major categories, i) error rate-based; ii) distribution-
based and iii) multiple hypothesis tests (multi-hypo) [4]. The
algorithms can also be distinguished in different learning set-
tings, such as supervised, unsupervised [30], semi-supervised
[31], and active learning settings [32]. For a supervised setting,
the target variable is available for drift detection. Most error
rate-based drift detection algorithms are developed with this
setting [33]. In later work, the problem of label availability
in data streams with concept drift has been acknowledged
[34], [35] pointing out concept drift could occur within unsu-
pervised and semi-supervised learning environments. Accord-
ingly, active learning strategy is adopted by [32] to address
concept for improving the learning performance.

Real and virtual are two major drift types. Error-based,
distribution-based and multiple hypothesis are three major
categories of drift detection algorithms. Supervised, unsu-
pervised, semi-supervised and active learning are four major
settings of learning under concept drift. In Table I, the
X indicates the algorithms in this category can detect and
distinguish different drift types with the given setting. The X–

indicates the they can detect drifts but cannot distinguish the
types. The × indicates they are unable to detect the drift. The
− indicates the algorithms in this category cannot be applied
in the given setting. With regard to multiple hypothesis tests,
the capability of these algorithms varies significantly, since
they could be a combination of multiple error-based algorithms
or a hybrid of both error and distribution-based algorithms.
Therefore, it is hard to give a conclusion for this category.
In addition, it is worth to mention that Mahardhika [36]
has proposed a method to handle concept drift in a weakly
supervised setting.

EI-kMeans is one distribution-based drift detection algo-
rithm. Most Hoeffding bound-based algorithms, like [37], [38],
belong to error rate-based drift detection that can only detect
real drift with supervised, semi-supervised or active learning
settings. The main contribution of EI-kMeans is different from
conventional distribution-based drift detection. Conventional

Fig. 2. A demonstration of lower and higher resolution space partitioning
[13]. With lower resolutions, density is estimated by counting the sample
points in the partitions. With higher resolutions, density is estimated with a
smoothing function, such as kernel density estimation.

distribution-based drift detection algorithms aim to find a
novel test statistics to measure the discrepancy between two
distributions and to design a tailored hypothesis test to de-
termine the drift significant level, such as [10], [13], [39].
In contrast, EI-kMeans focuses on how to efficiently convert
multivariate samples into a multinomial distribution and then
use an existing hypothesis test to detect the drift. Since EI-
kMeans is using Pearson’s chi-square test as the hypothesis
test, the drift threshold can be calculated directly according to
Chi-square distribution and it can be implemented in an online
manner. Other distribution-based algorithms may need to re-
compute the drift threshold as new samples become available.

B. Histogram-based distribution change detection

Histograms are the oldest and most widely used density
estimator [15]. The bins of the histogram are the intervals,
i.e., partitions, of the feature space. Hence, a K-bins his-
togram is a set of K partitions, denoted as {Sk}k=1,...,K ,
where Sk is a partition of the feature space X , Sk ⊆ X ,⋃K
k=1 Sk = X and Si ∩ Sj = φ, for i 6= j [1]. Histograms

are often built upon regular grids, which means the number
of bins will grow exponentially along with the dimensionality
of the data [1]. Dasu et al. extended QuadTree [16] based
on the idea of a k-dimensional tree [40] and developed
a kdqTree space partitioning scheme [41]. In the kdqTree
scheme, the feature space is partitioned into adaptable cells of
a minimum size and a minimum number of training samples.
Then, the Kullback–Leibler divergence is used to quantify
the distribution discrepancy, and bootstrap sampling is used
to estimate the confidence interval. Another recent tree-based
space partitioning algorithm, named QuantTree, was proposed
by Boracchi et al. [1], which splits the feature space into
partitions of uniform density. The advantages of QuantTree
is that the test statistics computed based on it are distribution
free [1].

Distribution change detection with histograms can be con-
sidered from the perspective of granularity and can be catego-
rized into two groups: higher resolution histograms and lower
resolution histograms, as demonstrated in Fig. 2.

Lower resolution partitioning requires a large number of
training samples so that each partition could have enough
samples to estimate the density. Without adequate training
samples, the estimate the density may suffer from randomness.
To mitigate this problem, Lu et al. [12], [23] proposed a
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competence-based space partitioning method that uses related
sets to enrich sample sets, then applying space partitioning
and calculating the distribution discrepancy. Liu et al. applied a
similar strategy [13] by partitioning the feature space based on
k-nearest neighbor particles. These higher-resolution partitions
resulted in higher drift detection accuracy on small sample
sets, but also suffered from higher computational costs.

C. Pearson’s chi-square test

Pearson’s chi-square test, or χ2 test for short, is used to
determine whether there is a significant difference between
the expected frequencies and the observed frequencies in one
or more sets of data [42]. The test statistic follows a chi-
square distribution when there is no significant difference. The
purpose of the test is to assume the null hypothesis is true and
then evaluate how likely a specific observation would be.

The standard process of the χ2 test is to use sample data
to find: the degrees of freedom, the expected frequencies, the
test statistic, and the p-value associated with the test statistic
[42]. Given a contingency table with i rows and j categorical
variables (column), the degrees of freedom are equal to

DF = (i− 1)(j − 1).

The expected frequency counts are computed separately for
each level of one categorical variable at each level of the other
categorical variable. The ith and jth expected frequencies of
the contingency table are calculated with the equation

Ei,j = (ni × nj)/n,

where ni is the sum of the frequencies for all columns in row
i, nj is the sum of the frequencies for all rows of columns j,
and n is the sum of all rows and columns. The test statistic is
a chi-square random variable χ2 defined by

χ2 =
∑ (Oi,j − Ei,j)2

Ei,j
, (1)

where Oi,j is the observed frequency count at row i and
column j, and Er,j is the expected frequency count at row
i and column j. The p-value is the probability of observing
a sample statistic as extreme as the test statistic. Since the
p-value is a χ2 test statistic, it can be computed with the chi-
square probability distribution function.

Pearson’s chi-square test should be used with the conditions
described in [42], which assumes there is a sufficiently large
sample set. If the χ2 test is applied to a small sample set, the
χ2 test will yield an inaccurate inference and will result in a
high Type II error. The true positive detection accuracy will be
impaired, but the false alarm rate will not increase. According
to the central limit theorem, an χ2 distribution is the sum
of Oi,j independent random variables with a finite mean and
variance that converges to a normal distribution for large Oi,j .
For many practical purposes, Box et al. [42] claim that for
Oi,j > 50 and Ei,j > 5 the distribution of the estimated test
statistics is sufficiently close to a normal distribution for the
difference to be ignored. In other words, to avoid the bias
raised by asymptotic issues, the observations and expectation
frequencies should be greater than a particular threshold.

III. EI-KMEANS SPACE PARTITIONING AND DRIFT
DETECTION WITH PEARSON’S CHI-SQUARE TEST

This section presents our EI-kMeans space partitioning
histogram and our drift detection algorithm based on Pearson’s
chi-square test. The algorithm implementation detail is given,
and the complexity is discussed at the end of this section.

A. The risk of offset partitions in histogram-based drift detec-
tion

Let us begin by restating the concept drift detection problem
and our proposition.

Problem. 1. Let dT1 and dT2 be random variables defined
on a topological space X ⊆ Rm, with respect to pT1 , pT2 ∈
P (X ), where P (X ) consists of all Borel probability measures
on X . Given the observations DT1

= {d11, . . . , d1m1
} and

DT2
= {d21, . . . , d2m2

} from dT1
and dT2

, respectively, how
much confidence do we have that dT1 6= dT2? At present,
most distribution change detection methods assume that the
observations DT1

, DT2
are i.i.d. which makes the assumption

and objective equivalent to a two-sample test problem.
The problem of analyzing a data stream to detect changes

in data generating distribution is very relevant in machine-
learning and is typically addressed in an unsupervised manner
[1]. However, it can easily be extended to handle a supervised
setting. For this, there are two options for implementing our
proposed solution without changing the algorithms. Option 1:
Considering the label or target variable as one feature of the
observations in the sample set and then applying the proposed
concept drift detection algorithms. Option 2: Separate the
observations based on their labels and detect concept drift
individually.

The design of the space partitioning algorithm is critical
to how the histogram is constructed, but nowhere in the
literature is there a definitive conclusion on how to build a
perfect histogram. Tree-based histogram construction is one
of the most popular methods for change detection. QuantTree
[1] is a representative algorithm that creates partitions of
uniform density in a tree structure. Given all the distributions
are the same, the drift threshold is independent of the data
samples and can be numerically computed from univariate
and synthetically generated data. Although some studies claim
that uniform-density partition schemes are superior based on
experiment evaluations [13], [17], no study includes a detailed
justification of its claims.

The fundamental idea of drift detection via histograms is to
convert the problem of a multivariate two-sample test into a
goodness-of-fit test for multinomial distributions. If the data
is categorical and belongs to a collection of discrete non-
overlapping classes, it has a multinomial population [4]. In this
case, each partition (each bin in the histogram) constitutes a
categorical, non-overlapping class. And the null hypothesis for
a goodness-of-fit test to evaluate how the observed frequency
Oi,j match the expected frequency Ei,j , that is, the number of
testing data in a partition is expected to fall into an estimated
range based on the training data [42]. The hypothesis is
rejected if the p-value of the observed test statistic is less than
a given significance level α [25], [43], [44].
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(a) Partition Scheme 

with off-set regions

(b) Partition Scheme 

without off-set regions

Fig. 3. A demonstration of the offset partition. The toy data represents a
Gaussian distribution with a mean shift. The partition scheme in (a) has an
offset partition (highlighted in the middle), while the partition scheme in (b)
does not. For (a), even though there is a distribution discrepancy, the value
of (Oi,j − Ei,j)2 in the middle partition is equal to 0.

Pearson’s chi-square test is a commonly used hypothesis
test for this task if the expected frequency for each category
is larger than 5, and the observed frequency for each category
is larger than 50 [42]. In histogram-based drift detection, this
requirement can be satisfied by controlling the number of
samples in partitions, such as reducing the number of partitions
K to ensure all partitions contain enough samples. Recall the
χ2 test statistic in Eq. (1)., we know that, given the same
number of partitions, the higher the value of the test statistic,
the more likely it is that a distribution drift has occurred.
Therefore, the objective is to design a partition algorithm
to have the highest χ2 test statistic. If the highest χ2 test
statistic, which represents the highest distribution discrepancy,
does not refute the null hypothesis, then there is no drift.
Theoretically, the expected frequency counts for all partitions
becomes known once the partition scheme is determined.

To maximize the χ2 test statistic, the space partitioning
strategy needs to avoid partitions that have distribution discrep-
ancies that cannot be measured by subtracting the observations
and expectations, as illustrated in Fig. 3. Related defintions are
given below.

Definition 1. (Partition Absolute Variation) The absolute
variation of a partition is defined as the integration of the
probability density difference of ptrain(x) and ptest(x) in
partition Sk, denoted as

δavSk
(ptrain(x), ptest(x)) =

∫
Sk

∣∣∣ptrain(x)− ptest(x)
∣∣∣dx.

where ptrain(x), ptest(x) denotes the probability density func-
tion of the training and testing data, and Sk is the partition
interval.

Definition 2. (Partition Probability Variation) The probability
variation of a partition is defined as the difference of the inte-
gration of the probability density in partition Sk of ptrain(x)
and ptest(x), denoted as

δpvSk
(ptrain(x), ptest(x)) =

∣∣∣∫
Sk

ptrain(x)dx−
∫
Sk

ptest(x)dx
∣∣∣

Then we have the offset partition defined as follow.

Definition 3. (Offset Partition) Given two probability density
distributions ptrain(x) and ptest(x), a space partition Sk is
an offset partition if the absolute variation is larger than the
probability variation, denoted as δavSk

(ptrain(x), ptest(x)) >
δpvSk

(ptrain(x), ptest(x)).

... ...... ...

(a) Partition scheme 

with off-set regions

Avoid off-set regions by 

reducing partition size

Fig. 4. Reducing the risk of an offset region by reducing partition size. Recall
the example in Fig. 3. The risk of having partitions on an offset region can
be reduced by minimizing the interval size of the partition. However, offset
regions cannot be completely avoided because the drift direction and margin
are unknown.

Concept drift detection requires the histogram built on train-
ing samples only. Admittedly, the impact of offset partitions
on distribution estimation can be reduced by learning methods
that optimize the density difference between the training and
testing samples. However, this method can be time-consuming
and is not feasible when the testing data is small or even not
available. Additionally, this method may not be suitable for
streaming data since data may arrive much faster than it can be
tested. Therefore, for concept drift detection, histograms need
to be designed only based on training data, and minimizing
the occurrence of offset partitions. In other words, to achieve
the best drift detection results, the histogram should have the
least number of offset partitions. To detect concept drift, we
propose the following strategies to reduce the appearance of
offset partitions.

• Partitions should avoid cluster gaps. With multi-cluster
training sample sets, there are gaps between clusters. If
a partition steps across multiple clusters, its sensitivity to
drift will be affected.

• Partitions should be as compact as possible. The dis-
tances between samples within a partition should be
minimized. If the drift direction is unknown, one rule of
thumb to avoid offset partitions is to keep the shape of the
partition as compact as possible, as shown in Fig. 4. How-
ever, this strategy must be constrained by a predefined
minimum partition size. Otherwise, the partitions will be
too small to yield statistical information. In our case, the
χ2 test requires the number of observations to be as large
possible. The minimum requirement is 50 observations
for each partition, and the expected frequency count has
to be greater or equal to 5 [42].

This strategy also conforms to Boracchi et al.’s [17] con-
clusion that histogram bins of equal density provide better
detection performance than regular grids. For example, given
a sample set with 1000 samples and 50 as the minimum
number of points in a partition with no identical samples,
the smallest average interval size of 1000/50=20 partitions is
always smaller than the smallest average interval size of 19
partitions. However, histogram bins of equal density may not
always have the smallest average interval size. Therefore, bins
of non-uniform density may provide superior performance to
uniform density bins in some cases.

The distribution discrepancy within partitions is also im-
portant, which is another issue resulting from offset partitions
that may influence the drift detection results. An χ2 test
cannot identify a distribution discrepancy inside a partition,
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so the histogram design should ensure the distributions in
the partitions are as simple as possible. For example, kernel
density estimation-based methods assume the data follows
Gaussian mixture distributions. However, this can cause band-
width selection problems. Therefore, we need an indicator that
represents whether or not the density of samples in the same
partition are similar. Definition 4 defines this indicator as the
offset margin:

Definition 4. (Offset Margin) The off-set margin of partition
Sk is defined as the difference between the absolute variation
and the probability variation of Sk, denoted as ∆(Sk) =
|δavSk

(ptrain, ptest)− δpvSk
(ptrain, ptest)|.

The offset partition is only one of many issues that might
influence the detection results. Intuitively, the more partitions
we have, the less likely offset partitions occur. Also, different
partitioning schemes will result in different drift detection
results with different sample sets. Minimizing the risk of offset
partitions may result in better performance generally, but it
may not be the best choice for a particular sample set.

B. EI-kMeans Space Partitioning

Since the main objective is to keep the risk of offset regions
as small as possible without knowing the testing data, the
simplest method is to create as many partitions as possible.
To this end, we propose using the average partition interval
size as an indicator for constructing a histogram. The χ2 test
requires there be more than 50 observations with an expected
frequency greater than 5. This requirement can be satisfied by
adding constraints onto the indicator. The general form of the
objective function is to find the centroids with the smallest
average interval size:

argmin
{Sk}1,...,K

1

K

K∑
k=1

Vol(Sk), s.t.Ok ≥ 50, and Ek ≥ 5. (2)

As the interval in high dimensional cases is a volume, the
interval size is denoted as Vol(Sk). The Ok denotes the count
of observations in Sk, and Ek denotes the expected frequency
count in Sk.

The nature of kMeans makes it a good option for this
task. Adding constraints can be addressed by introducing an
algorithm to monitor the number of samples in each cluster.
Here, the volume indicator represents the average distance
to the centroids. The overall workflow of EI-kMeans space
partition is shown in Fig. 5.

As shown in Fig. 5, the procedure begins by initializing
the cluster centroids with a greedy equal-intensity k-means
initialization algorithm. The objective of this algorithm is to
segment the feature space into a set of partitions with the same
number of samples. Let D denote the training data set for the
histogram, and DSk

be the samples located in partition Sk.
There are K partitions. The greedy equal intensity kMeans
initialization will evenly divide the samples into K groups.
The centroids of these groups will be input into kMeans as
the initial centroids. Once thekMeans converges or reaches
the maximum iteration criteria, the returned sample labels and
the centroids are used for equal-intensity cluster amplification.

Greedy EI cluster 

initialization

k-means clustering:

num samples list

intensity ratio list

While min{num samples 

list}>desired value

Amplify-shrink clusters

based on intensity ratio 

Reduce the number 

of clusters 

EI-kMeans:

centroids

amplify coefficients

Algorithm 1

Algorithm 2

No

Yes

Train data

Fig. 5. The workflow for constructing the EI-kMeans histogram.

Greedy equal-intensity k-means initialization finds the far-
thest sample, i.e., the sample with the longest distance to its
nearest neighbor. The n

K -nearest neighbors of this sample is
labelled as the first partition, where n = |D| is the cardinality
of the training sample set. The labelled samples are then
removed from the training set, and the above process is
repeated until all the samples are labelled.

Remark: if the remainder of n
K is not equal to 0, the re-

mainder will be evenly distributed into the first few partitions,
that is, samples with b nK c+1 nearest neighbors will be labeled
instead of those with the n

K nearest neighbours.

Algorithm 1: Greedy equal-intensity kMeans centroids
initialization

input : 1. Training set, D
2. The number of cluster, K

output: Centroids list, C = {C1, . . . , Ck}
1 Initialize the expected number of samples for each partition

VN = {nk}k=1,...,K ;
2 for k in range K do
3 Find the 1NN for all samples in D;
4 Sort the 1NN distance for all samples;
5 Get the sample with the largest value of 1NN distance;
6 Find the nk nearest neighbors of this sample;
7 Calculate the mean as the centroids, Ck;
8 Append the centroids to the output list, C = C

⋃
{Ck} ;

9 end
10 return C = {C1, . . . , Ck};

Algorithm 1 shows the pseudocode for the greedy equal-
intensity kMeans centroid initialization. The inputs are: a set
of training samples D; and the number of clusters to initialize.
In this algorithm, one trick we used to control the computation
cost is sub-sampling. The input training set D could be the
entire training set or just a subset of the training set. Some data
pre-processing techniques, such as dimensionality reduction
or data normalization, will be applied before running our
algorithm. Since different data sets may require different data
pre-processing techniques, this is not the main scope of our
algorithm.
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Denote the number of samples in dataset D as n, and
n =

∑K
k=1 nk. The runtime complexity in line 3 is O(n log n)

with an appropriate nearest neighbor search algorithm, such
as k-d tree. The sorting complexity for line 4 is O(n log n)
with a merge-sort algorithm. The complexity for lines 6 and
7 are O(nk log n) and O(nk), respectively. Therefore, the
total complexity for each iteration is O(n log n) according to
the rule of sums. The total complexity for the greedy equal-
intensity k-means centroids initialization is O(nK log n)

Based on the labels, the cluster sample intensity ratio is
computed by dividing the count of samples in a cluster by the
total number of training samples, i.e.,

rSk
=
nSk

n
, (3)

where nSk
= |DSk

| is the number of samples located in
partition Sk.

The intensity ratios for all clusters can be represented as
a vector Vr, where the shape of Vr is K × 1. The amplify
coefficient function for the cluster distance is calculated based
on this vector:

Vcoe = eθ(Vr−1),

where θ is a parameter to control the shape of the coefficient
function. To convert the amplify coefficients to matrix, the
amplify coefficient vector Vcoe is multiplied by a 1×n vector
to create a K × n amplify coefficient matrix, denoted as
Mcoe = Vcoe · V1. Calculating the paired Euclidean distance
matrix between the centroids and the data samples as Mdist,
the amplified distance matrix is derived by

Mdist = MdistMcoe,

and the amplified cluster labels are derived by finding the
centriod index with the minimum amplified distance,

ŷ = argmin
{1,...,K}

Mdist.

In the cluster amplify-shrink algorithm, θ is chosen through
a grid search from a predefined set Θ = {0, 0.05, . . . , 1.5}.
When θ = 0, the amplify coefficients are all equal to 1, which
will not amplify or shrink any of the clusters. As θ increases,
the clusters are amplified or shrunk sharply. If the minimum
number of samples in a partition is larger than the desired
value, the amplify-shrink algorithm will terminate, denoted as

min{nSk
}k=1,...,K ≥ β,

where β is the desired value of the minimum number of
samples in the partitions. According to the requirements of
Pearson’s chi-square test, the desired value is β = 50. If no
θ can satisfy the desired value, the number of partitions is
reduced by 1, namely K = K − 1, and the above process is
repeated.

Algorithm 2 shows the pseudocode for the equal-intensity
kMeans space partitioning. The inputs are: the training set D;
the minimum number of samples in a partition β; and the grid
search range of the amplify coefficient function parameter Θ.
The aim of lines 4-8 are to build kMeans clusters of similar
intensity. Then, from lines 10 to 19, the clusters are amplified
or shrunk based on their intensity ratio. The amplify-shrink

Algorithm 2: Equal intensity k-means space partition-
ing

input : 1. Training set, D
2. The number of cluster, K
3. Minimum number of samples in partition, β = 50
4. The amplify coefficient function parameter range,
Θ = {0, 0.05, . . . , 1.5}

output: EI-kMeans Histogram (C, Vcoe):

1 Initialize the number of clusters K = n
β

, where n = |D|;
2 Initialize V̂N = {0, . . . , 0};
3 while min{V̂N} < β and K > 1 do
4 Initialize the centroids, Cini =GreedyInitial(D,K);
5 Initialize the expected number of samples for each

partition VN ;
6 Update centroids, C = k-means(D, Cini);
7 Count the samples in each partition, V̂N ;
8 Calculate the intensity vector, Vr = V̂N

VN
;

9 for θ in range Θ do
10 Calculate the amplify coefficient vector, Vcoe;
11 Calculate the D to C distance matrix, Mdist;
12 Calculate the amplified distance, Mdist;
13 Get the new labels, ŷ;
14 Count the samples in each partition, V̂N ;
15 end
16 if min{V̂N} ≥ β then
17 return EI-kMeans Histogram (C, Vcoe);
18 end
19 end
20 C = k-means(D, Crand);
21 Vcoe = {1, . . . , 1};
22 return EI-kMeans Histogram (C, Vcoe);

process will end up satisfying the minimum number of samples
or until it reaches the end of the range of Θ. If a desired
partition sets cannot be found after the amplify-shrink process,
the number of clusters will be reduced by 1, namely K is
updated to K − 1, and the process is repeated.

From lines 10 to 19, the main cost is the multiplication
of the matrix, which has a runtime complexity equal to
O(|Θ|Kn). Because |Θ| is constant, the complexity is actually
O(Kn). The greedy initialization in line 4 is O(Knlogn), the
k-means in line 6 is O(Kn). Considering the while loop starts
from K to 2, the worst-case complexity of EI-kMeans space
partition is O(K2nlogn).

C. EI-kMeans Drift Detection

EI-kMeans considers the clustering property between sam-
ples as important when drift occurs. We assume that the
distribution change is more likely to occur in a closely-
located group of samples than in an arbitrary shape. EI-
kMeans space partitioning are cluster-prioritized and are more
sensitive to drift within multi-cluster type datasets. The drift
detection workflow, in Fig. 6, is simple and fast, once the
space partitioning is finished. Based on the output of how the
partitions are constructed, the testing samples are clustered
into K partitions. The observations in the training and the
testing sample sets are vertically stacked to form a contingency
table, and the χ2 test is applied to evaluate the distribution
discrepancy between them.
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Fig. 6. The workflow for EI-kMeans detecting drift.

Algorithm 3: EI-kMeans Drift Detection
input : 1. Training data set DT0

2. Testing set DT1

3. EI-kMeans Histogram (C, Vcoe)
output: Drift detection results, (H0, p-value)

1 Find the partition label of DT0 and DT1 ;
2 Count the frequencies in DT0 and DT1 ;
3 Build the contingency table;
4 Run Pearson’s chi-square test;
5 return (H0, p-value);

Algorithm 3 is the drift detection algorithm. It counts the
observation frequencies of both the training and testing data,
and conducts the χ2 test. The counting process is implemented
using the same steps in Algorithm 2, lines 12-14. If no drift
occurs, the observation frequencies of the training data set are
stored in the system buffer for the next test. A contingency
table is formed for each test by vertically stacking the stored
vector and the observation frequencies of the testing data set.
The χ2 test returns a result whether it rejects or accepts the
null hypothesis test, denoted as H0.

The optimized complexity of the 1NN classifier in the
EI-kMeans drift detection algorithm is O(nlogn). The χ2

test complexity is O(K). The overall EI-kMeans drift de-
tection runtime complexity is O(nK). In this algorithm,
n = max{ntrain, ntest}

The overall EI-kMeans drift detection algorithm can be
summarized into 3 steps.

• Step 1. Initialize the greedy equal-intensity cluster cen-
troids.

• Step 2. Segment the feature space as small clusters. This
step is based on k-means clustering, which divides the
datasets into a set of individual clusters. This ensures no
partition will step across clusters. The number of parti-
tions is continuously reduced if the number of samples
in each partition does not satisfy the desired values.

• Step 3. Detect drift with Pearson’s chi-square test.

IV. EXPERIMENTS AND EVALUATION

In this section, we compare the proposed EI-kMeans with
other state-of-the-art drift detection algorithms to demonstrate
how EI-kMeans performs on the drift detection tasks. The
selected histogram-based drift detection algorithms are Quant-
Tree with both χ2 and total variation statistics which are
reported as the best method in their paper [1], kdqTree with χ2

test [41] and one multivariate two-sample test baseline, known
as the multivariate Wald-Wolfowitz test (MWW test) [45]. We
choose the MWW test as the baseline because it is designed
to solve the problem by statistical analysis and its runtime
complexity is low enough to perform in a stream learning
scenario. To support the reproducible research initiative, the
source code of EI-kMeans is available online1

A. A comparison of space partitioning

Experiment 1. For this experiment, we generated three data
sets with different configurations to demonstrate the difference
in the space partitioning. The partitioning results are shown
in Fig. 7. The first data set, denoted as 1G, has a Gaussian
distribution with a mean of µ = [0, 0], a variance matrix of

Σ =

[
1 0
0 1

]
, and 1350 data samples. The second data set,

denoted as 3G[1:1:1], has three Gaussian distributions with
different means: µ1 = [−5, 0], µ2 = [0, 0], µ3 = [5, 0]. The
variance matrixes are the same, which form three clusters with
the same number of data samples in each cluster. The third data
set, denoted as 3G[1:3:5], has the same settings as 3G[1:1:1]
but with a diverse sample ratio for each cluster, i.e., the cluster
with the mean of µ1 contains 150 data samples; µ2 has 450
samples; and µ3 has 750. The number of desired partitions is
set as K = 9.

Findings and discussion: The intStv stands for the standard
deviation of the partitions’ intensity, which is calculated via
Eq. (3). Low intStv implies that the samples are evenly
distributed in each partition. The results shows that no matter
what shape of the data set is, EI-kMeans always has a smaller
intensity variation than kMeans, which is what we want to
achieve.

B. Drift detection accuracy with synthetic data sets

Experiment 2: In this experiment, we generated six 2-
dimensional data sets to evaluate the power of EI-kMeans to
detect drift. We compared EI-kMeans with the state-of-the-
arts QuantTree, kdqTree and k-means space partition plus χ2

test. The training set contained 2000 training samples, and
the testing set contained 200 samples. For each data type, we
generated 250 stationary testing sets and 250 drift testing sets
and evaluated both Type I and Type II errors. Type I errors
are rejections of a true null hypothesis (also known as a "false
positive"). A Type II error is the false null hypothesis rates (a
"false negative"). The Type-I and Type-II errors are the most
common evaluation metric for distribution change detection.
To evaluate the stability, we run the test 50 times and recorded
the mean and standard deviation. Table II presents the data

1https://github.com/Anjin-Liu/TCYB2019-EIkMeansDriftDetection
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Fig. 7. A demonstration of EI-kMeans space partitioning compared to kMeans. There is very little difference between panel (a) and (d). Panel (b) and (e)
both have good equal-intensity space partitioning because data is evenly divided between the number of partitions. Panels (c) and (f) show the advantages of
EI-kMeans with uneven cluster ratios. The key difference is that kMeans partitions the space according to distance, while EI-kMeans partitions according to
intensity and distance. So, as an example, kMeans splits the cluster on the left, while EI-kMeans keeps it whole to ensure the number of partitions for each
cluster is the same as its sample ratio.

TABLE II
CONFIGURATIONS OF THE 2-DIMENSIONAL SYNTHETIC DISTRIBUTION DRIFT DATA SETS. x DENOTES THE FEATURE, µ DENOTES THE MEAN VECTOR, Σ

DENOTES THE VARIANCE MATRIX, AND δ DENOTES THE DRIFT MARGIN.

Data type Description Configurations Drift margin

2d-U-mean Uniform distribution
with drift mean x1 ∈ [0, 1 + δ] δ = 0.06

2d-1G-mean Gaussian distribution
with drift mean µ = [0 + δ, 0], Σ =

[
1 0
0 1

]
δ = 0.3

2d-1G-var Gaussian distribution
with drift variance µ = [0 + δ, 0], Σ =

[
1 + δ 0

0 1 + δ

]
δ = 0.2

2d-1G-cov Gaussian distribution
with drift covariance µ = [0 + δ, 0], Σ =

[
1 0 + δ

0 + δ 1

]
δ = 0.2

2d-2G-mean 2 Gaussian mixture
distribution with drift mean µ1 = [0, 0], µ2 = [0 + δ, 0], Σ1,Σ2 =

[
1 0
0 1

]
δ = 0.4

2d-4G-mean 4 Gaussian mixture
distribution with drift mean µ1 = [0, 0], µ2 = [5, 0],µ3 = [0, 5],µ4 = [5− δ, 5], Σ1,Σ2,Σ3,Σ4 =

[
1 0
0 1

]
δ = 0.8

TABLE III
DRIFT DETECTION RESULTS OF EXPERIMENT 2, ntrain = 2000, ntest = 200. EACH DETECTION ALGORITHM WAS RUN 50 TIMES ON 250 DATA SETS

GENERATED WITH DIFFERENT RANDOM SEEDS, THE AVERAGE AND STANDARD DEVIATION OF TYPE-I ERROR ARE REPORTED. THE UNDERLINED
VALUES ARE THE TYPE-I ERROR WHICH EXCEED THE PREDEFINED FALSE POSITIVE RATE, α = 0.05.

EI-kMeans χ2 test kMeans χ2 test kdqTree χ2 test QuantTree χ2 stat QuantTree TV stat MWW test

2d-U-mean 4.79±1.57 4.02±1.35 5.00±1.94 4.89±1.48 3.77±1.36 10.11±4.62
2d-1G-mean 4.90±1.94 3.65±1.62 4.88±2.26 4.72±1.69 3.70±1.40 10.80±4.60
2d-1G-var 4.90±1.94 3.65±1.62 4.88±2.26 4.72±1.69 3.70±1.40 10.80±4.60
2d-1G-cov 4.90±1.94 3.65±1.62 4.88±2.26 4.72±1.69 3.70±1.40 10.80±4.60
2d-2G-mean 3.82±1.70 3.14±1.54 4.01±2.29 4.51±1.97 3.04±1.43 10.68±5.28
2d-4G-mean 2.31±1.39 2.06±1.02 2.72±1.62 2.66±1.01 2.11±0.99 9.36±4.65

Average 4.27 3.36 4.39 4.37 3.34 10.43

set configurations, and Table III shows the mean of the drift
detection results. Table IV shows the standard deviation. To
evaluate the influence of training batch size, we changed the
training set size to 3000, 4000 and 5000. The detection results
are shown in Table V. Fig. 8. shows the space partitioning
results of each algorithm.

Findings and discussion: The results shows that all drift
detection algorithms outperformed the base-line multivariate
two-sample test, MWW test. The results demonstrate that
EI-kMeans with χ2 test has the average Type-I error below
α = 0.05 as well as the lowest average Type-II error. Com-
paring to the kMeans-based space partition the improvement
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TABLE IV
THE AVERAGE AND STANDARD DEVIATION OF TYPE-II ERROR OF EXPERIMENT 2. THE BOLD VALUES ARE THE LOWEST TYPE-II ERROR IN THE ROW.

THE NUMBER IN THE BRACKET NEXT TO THE AVERAGE TYPE-II ERROR INDICATES THE RANK OF THE AVERAGE TYPE-II ERROR. THE LOWER THE
TYPE-II ERROR IS, THE HIGHER RANK THE RESULT WILL BE.

EI-kMeans χ2 test kMeans χ2 test kdqTree χ2 test QuantTree χ2 stat QuantTree TV stat MWW test

2d-U-mean 45.00±10.18 47.87±9.60 47.28±11.77 40.27±21.28 57.25±23.72 13.57±5.64
2d-1G-mean 40.84±11.34 58.28±11.45 43.71±12.07 61.34±11.39 70.33±7.47 83.62±7.34
2d-1G-var 80.46±6.02 81.76±6.78 76.51±8.95 84.93±4.43 89.85±3.22 83.72±7.38
2d-1G-cov 80.84±5.51 87.47±4.58 83.39±5.82 90.72±5.39 92.45±4.57 87.20±6.18
2d-2G-mean 57.43±10.80 66.78±9.66 59.78±11.41 70.57±10.42 83.74±5.20 83.22±6.90
2d-4G-mean 46.42±13.37 53.58±12.70 45.88±13.27 77.21±12.17 84.32±9.08 80.70±7.77

Average 58.50 (1) 65.96 (3) 59.43 (2) 70.84 (4) 79.66 (6) 72.00 (5)

TABLE V
DRIFT DETECTION RESULTS OF EI-KMEANS FOR EXPERIMENT 2 WITH DIFFERENT TRAINING BATCH SIZE.

ntrain = 2000 ntrain = 3000 ntrain = 4000 ntrain = 5000

Type-I Type-II Type-I Type-II Type-I Type-II Type-I Type-II

2d-U-mean 4.79 45.00 4.83 43.32 4.84 41.57 4.78 40.86
2d-1G-mean 4.90 40.84 5.06 38.39 5.17 37.55 5.00 36.77
2d-1G-var 4.90 80.46 5.06 79.57 5.17 79.85 5.00 79.57
2d-1G-cov 4.90 80.84 5.06 80.10 5.17 80.39 5.00 80.72
2d-2G-mean 3.82 57.43 3.73 55.69 3.68 54.74 3.64 55.52
2d-4G-mean 2.31 46.42 2.13 45.55 2.06 45.18 1.98 44.43

Average 4.27 58.50 (4) 4.31 57.10 (3) 4.35 56.55 (2) 4.23 56.31 (1)

of EI-kMeans space partitioning is significant, which raised
the rank from (3) to (1). The kdqTree space partition with
χ2 test performed well in this experiment, and had shown
no significant disadvantages compared to others. The Quant-
Tree space partitioning with χ2 and TV statistics are not
performing well in general, because the partitioning strategy
is not designed for multi-cluster data sets. As we can see,
the Type-II error of QuantTree χ2 stat is very close to the
kMeans χ2 test on the 2d-U-mean, 2d-1G-mean, 2d-1G-var
and 2d-1G-cov data sets, which are all single cluster type data
sets. Average performance dropped significantly on the multi-
cluster data sets 2d-2G-mean and 2d-4G-mean. Based on these
results, we conclude that the design of a histogram scheme
makes a significant contribution to the drift detection accuracy
in different data distribution which is a nontrivial problem.
Regarding to the batch size, as we use Pearson’s chi-square
test as the drift detection hypothesis test, the drift threshold of
the test statistics is determined by the Chi-square distribution
with a given significant level. A sample set with a sufficiently
large size is assumed. If a chi-squared test is conducted on
a sample with a small size, the chi-squared test will yield an
inaccurate inference, which might end up committing a Type
II error. As we can see, the Type-II error increases as the
training size decrease.

Experiment 3: To evaluate the proposed algorithm on high
dimensional data, we expand the 2d-1G-mean and 2d-4G-
mean data sets to 4, 6, 8, 10 and 20 dimensions by adding
normal distributed data. For example, in the 4d-1G-mean data
set, the first two features are the same as the 2d-1G-mean
but, for the third and fourth features, they are generated
by normal distribution N (0, 1) with covariance equal to 0.
Since increasing unrelated dimensions will reduce the drift

sensitiveness, we increased the drift margin for HD-1G-mean
to 0.5, for HD-4G-mean to 1.0, and doubled the training data.
The results are given in Fig. 9.

Findings and discussion: In Fig. 9, the Type-II errors in-
creased as the non-drift dimension increased. Most algorithms
preserved a low Type-I error, except the MWW test. Although
MWW test has the lowest Type-II error on the HD-4G-mean
drift data sets, its Type-I error is above the desired α-level
threshold. The kdqTree with χ2 test has the best performance
on the HD-1G-mean data sets, but it turns to powerless on the
HD-4G-mean data sets. We consider this is because kdqTree
does have a effective method to control the number of samples
in each partition. Directly applying χ2 test on the kdqTree
partitions is risky. In this experiment, EI-kMeans outperforms
others in most cases and has its false positive rate below the
predefined threshold α = 0.05, which indicates that it is stable
on high dimensional data.

C. Drift detection accuracy with real-world data sets

Experiment 4. Drift detection on real-world data sets.
For this experiment, we created 8 train-test drift detection
tests from 5 real-world data applications. For each test, we
generated one training data set and 500 testing data sets.
Among these testing data sets, half were drawn from the
same distribution, the other half were drawn from a different
distribution. Again, the results were evaluated in terms of
Type-I and Type-II errors. The characteristics of these data
sets are summarized in Table IX.

HIGGS Bosons and Background Data Set. The ob-
jective of this data set is to distinguish the signatures of
the processes that produce Higgs boson particles from those
background processes that do not. Four low-level indicators
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Fig. 8. Space partitioning results of experiment 2. As shown in sub-figure (a)-(d) the partitions of QuantTree are rectangle-based and cross multiple clusters,
which may jeopardise its capability to drift detection. Sub-figures (e)-(h) are the partitions created by kdqTree algorithm. All partitions have similar size no
matter how many samples are inside. This could be dangerous on high density variation samples, because some sparse regions may not have enough samples
to estimate the density. For the sub-figure (i)-(l), kMeans shows compact partitions. However, some partitions are too small to include enough samples, which
may jeopardise its drift detection sensitiveness. Sub-figure (m)-(p) are the partitions of EI-kMeans, which is very similar to kMeans. This is anticipated since
we used the same cluster algorithm. The main difference is that EI-kMeans ensures each partition could have a reasonable large size, so that the number of
sample in each partition are evenly distributed.

of the azimuthal angular momenta for four particle jets were
selected as features, which means the distributions were R4.
The jet momenta distributions of the background processes
are denoted as Back, and the processes that produce Higgs
bosons are denoted as Higgs. The total sample size of mixed
Backs and Higgs is 1.1 × 107. We randomly selected 2000
samples without replacement from each distribution as the
training data.1000 samples were used as the testing set. There
were three types of data integration: Back-Back where both
sample sets were drawn from Back; Higgs-Higgs, where both
sample sets were drawn from Higga; and Higgs-Back, where
one sample set was drawn from Higgs and the other from
Back.

MiniBooNe Particle Identification Data Set. This data set
contains 36,499 signal events and 93,565 background events.
Each event has 50 particle ID variables. The drift detection
task is to distinguish between signal events and background
events. The sample size of the training set size was 2000, and
500 for the testing set.

Arabic Digit Mixture Data Set. This data set contains
audio features of 88 people (44 females and 44 males) pro-
nouncing Arabic digits between 0 and 9. We applied the same
configuration as Denis et al. [14]. The data set was originally
i.i.d. and contained a time series for 13 different attributes.
The revised configuration has 26 attributes instead of 13 time
series with a replacement mean and standard deviation for each
time series. Mixture distributions were generated by grouping
female and male labels. Mixture distribution A contained
randomly selected samples of both males and females, with
male labels from 0 to 4 and female labels from 5 to 9. Mixture

distribution B reversed the labels at 9, i.e., drawing the samples
of ID9 with label male. We configured the data set this way to
create multiple clusters, where the pronunciation of each digit
formed a cluster. The configuration is summarized in Table
VI. The training set size was 2000, and the testing set size
was 500.

Localization Mixture Data Set. The localization data set
contains data from a sensor carried by 5 different people (A,
B, C, D, E). The original data has 11 different movements with
imbalanced samples. To use this data set for drift detection,
we selected the top three movements with the most samples,
’lying’, ’walking’ and ’sitting’. To simulate multiple clusters
with drift, we grouped samples from different people together
at different percentages to result in varied data distributions.
The training set size was 3000, and 600 for the testing set.
The sample proportion of each people is summarised in Table
VII.

Insects Mixture Data Set. This data set contains features
from a laser sensor. The task is to distinguish between 5
possible specimens of flying insects that pass through a laser
in a controlled environment (Flies, Aedes, Tarsalis, Quinx, and
Fruit). A preliminary analysis showed no drift in the feature
space. However, the class distributions gradually change over
time. To simulate drift in multiple clusters, we selected the
samples from different insects and grouped them together at
different percentages. Thus, the data distribution may vary.
The training set size was 2000, and 500 for the testing set
size. The sample proportion of each specimens is summarized
in Table VIII.

Findings and discussion: The average drift detection ac-
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TABLE VI
DATA GENERATION STRUCTURE OF THE ARABIC DIGIT MIXTURE DATA SET (F: FEMALE, M: MALE).

ID0 ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9

A M M M M F F F F F F
B M M M M F F F F F M
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Fig. 9. The result of experiment 3. The bar chars indicates the average
Type-I, Type-II errors in percentage for each algorithm. The x-axis is the
dimenionality of the data sets. The dash line is the predefined α-level.

TABLE VII
DATA GENERATION STRUCTURE OF THE LOCALIZATION MIXTURE DATA

SET. THE VALUES ARE THE PROPORTION OF SAMPLES DRAWN FOR EACH
PERSON.

PeopleA PeopleB PeopleC PeopleD PeopleE

A 0.0 0.2 0.2 0.2 0.4
B 0.4 0.4 0.2 0.0 0.0

TABLE VIII
DATA GENERATION STRUCTURE OF THE INSECT MIXTURE DATA SET. THE

VALUES ARE THE PROPORTION OF SAMPLES DRAWN FOR EACH INSECT
TYPE.

Flies Aedes Tarsalis Quinx Fruit

A 0.2 0.2 0.2 0.2 0.2
B 0.14 0.14 0.2 0.2 0.32

curacy is shown in Table X XI, and their standard deviation.
The results show that all tested methods returned an average
false positive rate below the α = 0.05 except MWW test.
EI-kMeans had the lowest average Type-II error of 32.57%,

TABLE IX
THE CHARACTERISTICS OF THE DATA SETS.

Data set ID Data set name # Features # Training # Testing

Real-I Higgs-Back 4 2000 1000
Real-II Back-Higgs 4 2000 1000
Real-III Sign-Back 50 2000 500
Real-IV Back-Sign 50 2000 500
Real-V Arabic A-B 26 2000 500
Real-VI Arabic B-A 26 2000 500
Real-VII Localization 3 3000 600
Real-VIII Insect 49 2000 500

which is 1.17% lower than the next best performance by k-
means with a χ2 test. However, EI-kMeans improved drift
detection power comes at the cost of an increased false positive
rate, and sometimes at over the predefined thresholds. This
result conforms to our expectation since EI-kMeans places
more restrictive constraints on the number of samples in each
partition to meet the requirements of χ2 test. With a small
sample set, the χ2 test will yield an inaccurate inference and
is prone to Type II errors. Notably, however, while the true
positive detection accuracy may be impaired, the false alarm
rate does not surpass the predefined threshold α.

Across the Real-I to Real-VII data sets, the cluster-based
algorithms performed just as well as the tree-based algorithms.
However, the QuantTree algorithms completely lost its power
to detect drift with the Real-VIII Insect mixture cluster-based
data set, while EI-kMeans showed the best performance.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel space partitioning algo-
rithm, called EI-kMeans, for drift detection on multi-cluster
data sets. EI-kMeans is a modified k-means algorithm to
search for the best centroids to create partitions. The distances
between samples and centroids are amply-shrink based on the
cluster intensity ratios. The proposed algorithm detects concept
drift from a data distribution perspective. Similar to most
distribution-based drift detection algorithms, with a supervised
learning setting, it will trigger drift alarm if there is a real or
virtual drift but it may not be able to distinguish the drift types.
The results of our experiments show the power of EI-kMeans
to detect drift with multi-cluster type data sets and proved
that histogram design is critical to drift detection accuracy.
The results also show that uniform space partitioning may not
always outperform other schemes – the performance of the
space partition algorithm is data-dependent.

The version of EI-kMeans considered in this paper is de-
signed for a Pearson’s chi-square test, but different hypothesis
tests may require different methods of histogram construction.
This is something we intend to explore in future work. In
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TABLE X
DRIFT DETECTION RESULTS WITH REAL-WORLD DATA SETS, TYPE-I ERROR (%). EACH DETECTION ALGORITHM WAS RUN 50 TIMES ON 250 DATA SETS
GENERATED WITH DIFFERENT RANDOM SEEDS, AND THE AVERAGE TYPE-I ERROR AND THE STANDARD DEVIATION ARE REPORTED. THE UNDERLINED

RESULTS EXCEED THE PREDEFINED FALSE POSITIVE RATE, α = 0.05.

EI-kMeans χ2 test kMeans χ2 test kdqTree χ2 test QuantTree χ2 stat QuantTree TV stat MWW test

Real-I 6.34±5.97 3.50±2.72 4.80±4.18 6.70±5.73 5.77±4.85 7.14±5.94
Real-II 9.09±8.13 3.44±3.37 4.06±3.24 5.26±3.15 4.34±2.71 6.54±5.72
Real-III 4.67±2.74 1.8±1.35 3.12±3.59 3.83±1.9 3.69±1.80 3.14±3.60
Real-IV 4.06±2.03 1.94±1.52 2.94±2.50 4.91±2.68 4.59±2.39 3.26±3.21
Real-V 4.40±4.14 3.96±3.97 5.37±5.33 4.42±4.11 4.30±3.96 1.46±3.05
Real-VI 4.45±3.94 2.96±2.35 4.81±4.20 5.34±6.45 4.87±5.16 1.33±1.84
Real-VII 0.00±0.00 0.00±0.00 0.00±0.00 2.00±14.14 2.00±14.14 10.00±30.30
Real-VIII 2.81±2.59 1.58±1.60 3.42±7.90 5.66±4.96 4.97±4.24 10.45±9.39

Average 4.48 2.40 3.57 4.77 4.32 5.42

TABLE XI
DRIFT DETECTION RESULTS WITH REAL-WORLD DATA SETS, TYPE-II ERROR (%). THE BOLD RESULTS ARE THE LOWEST TYPE-II ERROR ON THIS DATA

SET.

EI-kMeans χ2 test kMeans χ2 test kdqTree χ2 test QuantTree χ2 stat QuantTree TV stat MWW test

Real-I 87.16±9.69 85.34±9.46 78.61±11.69 80.00±13.10 82.76±10.84 89.45±7.85
Real-II 74.02±17.21 92.73±5.77 77.71±13.48 79.66±11.62 84.46±8.80 69.78±19.22
Real-III 0.00±0.00 0.00±0.00 25.94±43.94 0.00±0.00 0.00±0.00 0.00±0.00
Real-IV 0.00±0.00 0.00±0.00 3.90±12.02 0.00±0.00 0.00±0.00 0.00±0.00
Real-V 12.92±12.61 18.94±13.18 16.78±10.90 66.68±17.64 84.71±9.06 98.15±1.99
Real-VI 12.10±12.92 4.26±5.38 17.15±10.51 92.03±7.82 93.98±6.51 98.82±1.23
Real-VII 62.00±49.03 36.00±48.49 58.00±49.86 62.00±49.03 64.00±48.49 2.00±14.14
Real-VIII 12.37±10.98 32.62±17.45 30.22±17.35 77.32±14.40 80.90±11.92 68.66±18.43

Average 32.57 (1) 33.74 (2) 38.54 (3) 57.21 (5) 61.35 (6) 53.36 (4)

addition, concept drift detection is only one aspect of learning
in a dynamic stream. How to design a tailored drift adaptation
algorithm that leverages the drift detection result to achieve
better performance in stream learning is our next target.
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[22] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Comput. Surv., vol. 46, no. 4,
pp. 1–37, 2014.

[23] N. Lu, J. Lu, G. Zhang, and R. L. De Mantaras, “A concept drift-tolerant
case-base editing technique,” Artif. Intell., vol. 230, pp. 108–133, 2016.

[24] A. Liu, Y. Song, G. Zhang, and J. Lu, “Regional concept drift detection
and density synchronized drift adaptation,” in Proceedings of the 26th
International Joint Conference on Artificial Intelligence, pp. 2280–2286,
2017.

[25] C. Alippi, G. Boracchi, and M. Roveri, “Hierarchical change-detection
tests,” IEEE Transactions on Neural Networks Learn. Syst., vol. 28,
no. 2, pp. 246–258, 2017.

[26] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonsta-
tionary environments: A survey,” IEEE Comput. Intell. Mag., vol. 10,
pp. 12–25, 2015.

[27] S. Ramírez-Gallego, B. Krawczyk, S. García, M. Woźniak, and F. Her-
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