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ABSTRACT This paper investigates the consensus of second-order multi-agent systems under switched
topologies. Previous studies indicate that a consensus cannot be reached if the topology is fixed and has no
spanning tree, but it is possible to reach a consensus for the multi-agent systems under switched topologies
even if every topology has no spanning tree. However, in this paper, we show that some second-order
multi-agent systems cannot reach a consensus even if the union of the directed interaction graphs has a
spanning tree, and even if the union has a spanning tree frequently enough. It is often complex to judge
whether the second-order multi-agent systems can reach a consensus or not under switched topologies if
every topology has no spanning tree. This paper proposes a sequence-based topology-dependent method to
determine whether a consensus can be reached in this circumstance. Our results are supported by examples
and counterexamples.

INDEX TERMS Consensus, multi-agent systems, spanning tree, switched topologies.

I. INTRODUCTION
As a beneficial action to a group, cooperation widely exists
in the nature [1]. The main target of cooperation is to reach
a global goal with limited exchange of information among
adjacent agents following a local control protocol [2]. There
have been strong research interests in the last decade on
coordination [3]–[10].

As the basic problem of cooperation, the consensus has
beenwidely studied [11]–[13]. It refers to the states of a group
of autonomous agents reaching a common value under an
appropriately distributed control proposal. When the network
or topology switches, the consensus problem becomes more
complex. In the past years, some results were reported for
the consensus of multi-agent systems under switched topolo-
gies in, e.g., [14]–[20]. The event-triggered consensus of
multi-agent systems was introduced in [21]–[23]. According
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to [24]–[26], consensus-based power dispatch in the smart
grid is an important application of consensus computation
by multi-agent systems. A lemma was given in [27] to solve
the consensus of multi-agent systems with unknown control
directions.

For the first-order multi-agent systems under switched
topologies in [14], [15], a sufficient and necessary condition
of reaching a consensus is that the union of the directed
interaction graphs having a spanning tree frequently enough
or with jointly connected topologies. In [14], it is shown that a
consensus could be reached asymptotically when the union of
the directed interaction graphs has a spanning tree frequently
enough as the system evolves. A consensus algorithm was
proposed for the first-order multi-agent systems with jointly
connected topologies in [15].

For the consensus of second-order multi-agent systems
under switched topologies, it is often assumed that every
topology has a spanning tree [16]–[20]. A distributed con-
sensus control method was developed for the second-order
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multi-agent systems under directed spanning trees in [16].
A directed spanning tree-based adaptive control protocol was
developed in [17]. The consensus of second-order discrete-
time multi-agent systems was studied in [18] when all
switching topologies were strongly connected. A distributed
impulsive algorithm for second-order multi-agent systems
with a spanning tree was discussed in [19]. A novel consensus
protocol designed based on synchronous intermittent local
information feedback was proposed in [20] when the com-
munication topology contains a directed spanning tree.

Some papers also studied the consensus of second-order
systems under switched topologies when part topologies have
no spanning tree [28]–[30]. The case that only one topology
has a spanning tree and other topologies do not have was
studied in [28], [30]. A distributed event-triggered scheme
was presented in [29] to solve the problem of leader-following
consensus under switching topologies including both graphs
that have directed spanning tree and graphs that do not.

A few works designed control protocols for the consensus
of second-ordermulti-agent systemswhen all topologies have
no spanning tree under some special conditions in [31]–[39].
They mainly considered the condition that a consensus can
be determinately reached when the topologies have jointly
connected topologies. Almost all of them have to need the
displacement or velocity information of their own. That is to
say, they cannot run only with relative velocity or displace-
ment. Their main work is to design protocols rather than to
provide a checking rule.

The motivation of this paper is to provide a rule to judge
whether a consensus can be reached for the second-order
multi-agent systems if every topology has no spanning tree,
because many multi-agent systems can reach a consen-
sus under jointly connected topologies, while others cannot
achieve with the same protocol. We remove the limitation of
having to need agents’ own displacement or velocity infor-
mation.

Based on the above motivation, we propose a sequence-
based topology-dependent method to study the consensus of
second-order multi-agent systems when every topology has
no spanning tree.

Our main contributions are summarized as follows: (1) We
propose a novel sequence-based topology-dependent method
for the second-order multi-agent systems under switched
topologies to analyze the consensus if every topology has
no spanning tree; (2) On the basis of the proposed method,
we obtain a new theorem which can be seen as a rule to judge
whether a consensus can be reached for the second-order
multi-agent systems if every topology has no spanning tree;
(3) We present counterexamples to show that agents may
reach scattering status rather than a consensus even if the
topologies satisfy conventional conditions. That is, having
jointly connected topologies or maintaining a spanning tree
frequently enough is not a sufficient condition to ensure the
second-order multi-agent systems to reach a consensus.

The rest of this paper is organized as follows. In Section 2,
some basic concepts and the system model are introduced.

In Section 3, we study the conditions of reaching a consensus
and present the method for consensus analysis. Examples are
shown in Section 4 to verify the results.
Notation 1: Throughout this paper, N+ stands for the set

of positive integers. The symbol ‘‘×’’ represents the multipli-
cation operation or Cartesian product of sets. A matrix P >
(or <) 0 implies that matrix P is symmetric and positive (or
negative) definite. The time t1, t2, t3, . . . , tl, tl+1, . . . are the
switching times of the topologies of the multi-agent systems.
The function σ (t) : [0,+∞) → M = {1, 2, . . . ,m} is the
switching signal of the switching topologies andm is the total
amount of topologies.

II. SYSTEM DESCRIPTIONS AND PRELIMINARIES
For a network with n agents, its topology digraph can
be denoted by G = (V, E,A) with a set of nodes V =

{v1, v2, . . . , vn}, a set of edges E ⊆ V × V , and an adjacency
matrix A = [aij], where the set of node indexes is I =
{1, 2, . . . , n}. We assume i 6= j for any edge, which can be
denoted by eij = (vi, vj). The set of neighbors of node vi is
denoted byNi = {vj ∈ V : (vi, vj) ∈ E, j 6= i}. The Laplacian
matrix L is defined as: lij =

∑n
k=1,k 6=i aik for i = j, and

lij = −aij, for i 6= j, i, j ∈ I. In [28], [30], a Laplacian-like
matrix is defined as H = [hij], where hij = lij − lnj.
For the network changing among m topologies, each agent

is modeled by

ẋi(t) = vi(t),

v̇i(t) = ui(t), (1)

where xi(t) is the position of the ith agent, ui is the ith control
input.

Various consensus protocols have been discussed in the
literature. In this paper, we consider

ui(t) = β0
∑

j∈Ni(t)

aijσ (t) (xj(t)−xi(t))

+β1
∑

j∈Ni(t)

aijσ (t) (vj(t)−vi(t)). (2)

Remark 1: In [31]–[39], the protocols have to need the
agents’ own displacement or velocity information if every
topology has no spanning tree. In the protocol (2), we only
need relative velocity and displacement.
Remark 2: For the high-order protocol, the proposed idea

is also suitable.
In general, the multi-agent systems including m subsys-

tems (1) are said to reach a consensus if lim
t→+∞

[xi − xj] =

0, lim
t→+∞

[vi − vj] = 0,∀i, j ∈ I, i 6= j, under all initial

conditions.
For a network G, if the network is undirected, j ∈ Ni ⇔

i ∈ Nj, otherwise, j ∈ Ni has no fixed relationship with
i ∈ Nj. An undirected network can be seen as a special case
of the directed network. System (2) applies to both undirected
networks and directed networks. In this paper, we mainly
focus on directed networks.
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For the topologies considered in this paper, we make the
following assumption:
Assumption 1: The union of the directed interaction

graphs has a spanning tree, but every topology has no span-
ning tree.
Definition 1: For the multi-agent systems network switch-

ing among m topologies, we use T[p|q](t0, t) to denote the
total running time of the pth topology when it is instantly
activated after the qth topology in time section [t0, t), and
N[p|q](t0, t) to indicate the total switching times in this case.
Its sequence-based topology-dependent average dwell time is

τa([p|q]) ,
T[p|q](t0, t)
N[p|q](t0, t)

. (3)

To have a better understanding of this paper, we revisit the
following lemma.
Lemma 1 ( [28], [30]): For the directed network, if the

system

ż(t) = H̃ (t)z(t) (4)

is globally uniformly asymptotically stable, then the
multi-agent systems including m subsystems (1) with the
protocol (2) reach a consensus, where

H̃ (t) =
[

0 I
−β0H −β1H

]
σ (t)

, (5)

and

z(t) =


x1 − xn
. . .

xn−1 − xn
v1 − vn
. . .

vn−1 − vn

 (t). (6)

III. CONDITIONS FOR REACHING A CONSENSUS
In this section, we propose a novel method to judge whether
the multi-agent system with a specific protocol can reach a
consensus when every topology has no spanning tree.
Theorem 1: For the multi-agent systems including m sub-

systems (1) with the control protocol (2), assume that the pth

topology is instantly activated after the qth topology. Given
the constants lp ∈ N+, lq ∈ N+, 0 < µ[p|q] < 1, αp >
0, αq > 0, τmin,p = min

σ (ti)=p
(ti−ti−1), τmin,q = min

σ (ti)=q
(ti−ti−1),

if there exist a set of positive definite matrices Pp,jp >

0, Pq,jq > 0, jp = 0, 1, . . . , lp, jq = 0, 1, . . . , lq,
such that ∀(σ (ti) = p, σ (t−i ) = q) ∈ M ×M, p 6= q,
∀jp = 0, 1, . . . , lp − 1,

H̃T
p Pp,jp + Pp,jpH̃p +

lp(Pp,jp+1 − Pp,jp )

τmin,p
≤ αpPp,jp ,

H̃T
p Pp,jp+1+Pp,jp+1H̃p+

lp(Pp,jp+1 − Pp,jp )

τmin,p
≤αpPp,jp+1,

H̃T
p Pp,lp + Pp,lpH̃p ≤ αpPp,lp ,

(7)

Pp,0 ≤ µ[p|q]Pq,lq , (8)

τa([p|q]) < − lnµ[p|q]/αp, (9)

then the multi-agent systems includingm subsystems (1) with
the protocol (2) will reach a consensus.

Proof: For ∀t ∈ [ti, ti+1), σ (ti) = p, i > 0, we divide
the time section [ti, ti+ τmin,p) into lp equal length segments.
Every segment is described by Si,r = [ti + r × τmin,p/lp, ti +
(r + 1)× τmin,p/lp), r = 0, . . . , lp − 1.
We first design a matrix Pp(t) with piecewise-linear ele-

ments over time. Let Pp,r denote Pp(ti + r × τmin,p/lp). For
any segment, r takes its value from {0, . . . , lp − 1}, and
Pp(t) = (1 − θ )Pp,r + θPp,r+1 = P(r)p (θ ), θ = (t − ti −
r × τmin,p/lp) × lp/τmin,p, 0 ≤ θ ≤ 1. In the time section
[ti + τmin,p, ti+1), we use the time invariant matrix Pp,lp .

According to above discussion, the matrix Pp(t) is con-
structed as

Pp(t) =

{
P(r)p (θ ), t ∈ Si,r .
Pp,lp , t ∈ [ti + τmin,p, ti+1).

(10)

We construct the multiple Lyapunov functions

Vp(t) = zT (t)Pp(t)z(t), p ∈M. (11)

Because (10), the (11) can be rewritten as

Vp(t) =

{
zT (t)P(r)p (θ )z(t), t ∈ Si,r .
zT (t)Pp,lpz(t), t ∈ [ti + τmin,p, ti+1).

(12)

We use λmin > 0 (or λmax > 0) to denote the minimal
(or maximal) eigenvalue of all matrices Pp,j, p ∈ M, j ∈
{1, . . . , lp}, i.e.,

λminzT (t)z(t) ≤ V (t) ≤ λmaxzT (t)z(t). (13)

According to (7) and (12), we have

V̇p(t) ≤ αpVp(t). (14)

Because of (10) and (11), for ∀t ∈ t1, t2 . . .,

Vp(t) = zT (t)Pp(t)z(t)

= zT (t)P(0)p (0)z(t)

= zT (t)Pp,0z(t), (15)

and

Vq(t) = zT (t)Pq(t)z(t)

= zT (t)Pq,lqz(t). (16)

According to (8), (15), and (16), we obtain

Vp(t) ≤ µ[p|q]Vq(t−), t ∈ t1, . . ., (17)

when the network is switching from the qth topology to the
pth topology. That is, the Lyapunov function drops at all
topologies switching time t1, . . ..

According to (13)-(17), we have

V (z(t)) ≤ e
{
ασ (ti)(t−ti)

}
Vσ (ti)(z(ti))

≤ e
{
ασ (ti)(t−ti)

}
µσ (ti)Vσ (ti−)(z(ti

−))

≤ e

{
ασ (ti)(t−ti)µσ (ti)+ασ (ti−1)(ti−ti−1)

}
×Vσ (ti−1)(z(ti−1))
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FIGURE 1. Topologies of multi-agent systems in case 1.

= µσ (ti)e

{
ασ (ti)(t−ti)+ασ (ti−1)(ti−ti−1)

}
×Vσ (ti−1)(z(ti−1)). (18)

Recursively, we have

V (z(t)) ≤ µσ (ti) . . . µσ (t1)e
{
ασ (ti)(t−ti)+...+ασ (0)(t1−t0)

}
Vσ (t0)(z(t0)).

(19)

We assume there are s′′ different sequences in the time
interval [t0, t). If the sequence [p|q] corresponds to the gth

sequence, it is written as [p|q](g), g = 1, 2, . . . , s′′; and αp is
rewritten as αp(g) for the g

th sequence.
Therefore,

µσ (ti) . . . µσ (t1) = µ[σ (ti)|σ (ti−1)] . . . µ[σ (t1),σ (t0)]

=

s′′∏
g=1

µ[p|q](g)
N[p|q](g)(t0,t), (20)

and

ασ (ti)(t−ti)+ . . .+ ασ (0)(t1−t0)

=

s′′∑
g=1

αp(g)T[p|q](g)(t0, t)+ t1 − t0. (21)

Let t0 = 0 and we obtain

V (z(t)) ≤


s′′∏
g=1

µ[p|q](g)
N[p|q](g)(0,t)

e
{

s′′∑
g=1

αp(g)T[p|q](g)(0,t)+t1

}

×Vσ (0)(z(0))

= e

{
s′′∑
g=1
{αp(g)T[p|q](g)(0,t)+N[p|q](g)(0,t) lnµ[p|q](g)}+t1

}

×Vσ (0)(z(0)). (22)

Let K1 = et1 and one can get

V (z(t)) ≤ K1e

{
s′′∑
g=1
{αp(g)T[p|q](g)(0,t)+N[p|q](g)(0,t) lnµ[p|q](g)}

}

×Vσ (0)(z(0))

FIGURE 2. Positions and speed trajectories of agents in case 1 when conditions in Theorem 1 and Corollary 1 are not
satisfied.
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FIGURE 3. Positions and speed trajectories of agents in case 1 when all conditions in Theorem 1 and Corollary 1 are
satisfied.

= K1e

{
s′′∑
g=1

T[p|q](g)(0,t){αp(g)+
1

τa([p|q](g))
lnµ[p|q](g)}

}

×Vσ (0)(z(0)). (23)

We define

αp(g) +
1

τa([p|q](g))
lnµ[p|q](g),− γ

∗

(g). (24)

According to (3) and (9), we can know that for every g,
−γ ∗(g) < 0.
Let

−γ ∗ ,
s′′

max
g=1
{−γ ∗(g)}.

We obtain,

V (z(t)) < K1e{−γ
∗t}Vσ (0)(z(0)). (25)

According to (25), V (z(t)) → 0 as t → +∞. According
to Lemma 1 or formulation (13), we can know z(t) → 0
as t → +∞, which means a consensus can be reached
according to (6).
Remark 3: In Theorem 1, lp denotes how many segments

we divide the time section [ti, ti+ τmin,p) into. The parameter
µ[p|q] stands for the variation degree of Lyapunov functions at
the topology changing instance. The parameter αp represents
the increasing degree of Lyapunov functions.

FIGURE 4. Topologies of multi-agent systems in case 2.

Remark 4: If every topology has no spanning tree,
the parameter αq is set as αq > 0. This implies that the value
of the Lyapunov functions (11) probably increase when the
qth topology is available.When the pth topology is after the qth

topology, the inequality 0 < µ[p|q] < 1 implies that the value
of the Lyapunov functions (11)must decrease in the switching
instant to counterbalance the preceding increasing resulting
from switching to the qth topology.
If we do not consider the differences of sequences, and let

Tp =
∑
q

T[p|q], (26)

Np =
∑
q

N[p|q], (27)
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FIGURE 5. Positions and speed trajectories of agents in case 2 when conditions in Theorem 1 and Corollary 1
are satisfied.

we can get the topology-dependent average dwell time

τa(p) ,
Tp(t1, t)
Np(t1, t)

,

and the following corollary.
Corollary 1: For the system (4), let 0 < µp < 1, αp > 0,

τmin,p = min
σ (ti)=p

(ti − ti−1) and lp, p ∈ M, be the given

constants. If there exist a set of positive definite matrices
Pp,j > 0, j = 0, 1, . . . , lp, such that ∀j = 0, 1, . . . , lp − 1,

H̃T
p Pp,j + Pp,jH̃p +

lp(Pp,j+1−Pp,j)
τmin,p

≤ αpPp,j,

H̃T
p Pp,j+1 + Pp,j+1H̃p +

lp(Pp,j+1−Pp,j)
τmin,p

≤ αpPp,j+1,

H̃T
p Pp,lp + Pp,lpH̃p ≤ αpPp,lp ,

(28)

Pp,0 ≤ µpPq,lq , p 6= q, (29)

τa(p) < − lnµp/αp, (30)

then the multi-agent system (1) with the protocol (2) will
reach a consensus.

Although there is no communication between different
topologies, the agents are common in them. Agents can get
information from neighbors in different topologies after the
switching signals are added. Under proper conditions, a con-
sensus can be reached.

IV. NUMERICAL EXAMPLES
For multi-agent systems, there are two classes of consensus
problems in general: (a) there is no leader; (b) there is a leader.

In this section, we simulate both cases to verify the validity
of our results. We consider multi-agent systems with 4 agents
switching among three (or two) topologies. Every topology
has no spanning tree. We use the values of the three-level (or
two-level) signal σ (t) to represent these topologies.

A. CASE 1: NO FIXED LEADER
We consider the topologies in Fig. 1 in this case. For the union
of the three graphs (a), (b), and (c) in Fig. 1, there exists a
spanning tree, for example, 3© → 2© → 1© → 4©, that can
connect all agents.
Example 1: We consider these three topologies with time

parameters τmin,1 = 1.2, τmin,2 = 1.2, τmin,3 = 0.90,
τa([1|3]) = 2.7, τa([2|3]) = 3.5, τa([3|1]) = 1.9, τa([1|2]) = 1.2,
τa([2|1]) = 1.2, and τa([3|2]) = 0.90. We set the coupling
strength parameters as β0 = 1.0 and β1 = 0.40. If we set
l1 = 3, l2 = 3, l3 = 3, µ[3|1] = 0.041, µ[1|3] = 0.045,
µ[2|1] = 0.047, µ[1|2] = 0.048, µ[3|2] = 0.049, µ[2|3] =

0.057, α1 = 0.75, α2 = 0.85, and α3 = 0.90, Matlab
LMI tool boxes cannot find a proper set of positive definite
matrices satisfying conditions (7)-(8) except for the condi-
tion (9). The positions and speed trajectories of all agents
are shown in Fig.2. We can see that a consensus cannot be
reached.
Example 2: We consider the dwell time of three

topologies with time parameters τmin,1 = 0.120,
τmin,2 = 0.240, τmin,3 = 0.180, τa([1|3]) = 0.124,
τa([2|3]) = 0.260, τa([3|1]) = 0.184, τa([1|2]) = 0.120,

162214 VOLUME 8, 2020
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FIGURE 6. Positions and speed trajectories of agents in case 2 when all conditions in Theorem 1 and Corollary 1 are
satisfied.

τa([2|1]) = 0.240, and τa([3|2]) = 0.180. We set
the coupling strength parameters as β0 = 0.10 and
β1 = 1.0. If we set l1 = 3, l2 = 3, l3 = 3, µ[3|1] =

0.790, µ[1|3] = 0.794, µ[2|1] = 0.780, µ[1|2] = 0.800,
µ[3|2] = 0.800, µ[2|3] = 0.760, α1 = 1.748, α2 = 1.030, and
α3 = 1.200, Matlab LMI tool boxes can find a proper set of
positive definite matrices satisfying conditions (7)-(9). Now
all conditions in Theorem 1 are satisfied. The positions and
speed trajectories of all agents are shown in Fig. 3. We can
see that they reach a consensus.

B. CASE 2: THERE IS A FIXED LEADER
We consider the topologies as shown in Fig. 4 in this case.
Obviously, the first agent is a fixed leader. We set β0 = 1.0,
β1 = 0.40, l1 = 3, l2 = 3, µ1 = 0.89, µ2 = 0.89, α1 = 0.89
and α2 = 1.1.
Remark 5: According to (3), (26), (27) and the relation-

ship between Theorem 1 and Corollary 1, when the switching
topologies are shown in Fig. 4, we have

µ[1|2] = µ1,

µ[2|1] = µ2,

τa([1|2]) = τa(1),

τa([2|1]) = τa(2).

(31)

Example 3: We consider the dwell time of two topolo-
gies with time parameters τmin,1 = τa(1) = 12 and

τmin,2 = τa(2) = 9.0.1 We can find a proper set of positive
definite matrices satisfying conditions (28)-(29) but not (30).
The positions and speed trajectories of all agents are shown
in Fig. 5. We can see that they cannot reach a consensus. The
failure results from the use of an improper sequence-based
topology-dependent average dwell time.

Example 4: We consider the dwell time of two topologies
with time parameters τmin,1 = τa(1) = 0.12 and τmin,2 =
τa(2) = 0.090. We can find a proper set of positive defi-
nite matrices satisfying conditions (28)-(30). Now all con-
ditions in Corollary 1 are satisfied. The positions and speed
trajectories of all agents are shown in Fig. 6. We can see that
a consensus can be reached.
Remark 6: In Figs. 2 and 5 (Examples 1 and 3), it can be

seen that the second-order multi-agent systems 1 with control
protocols 2 can reach scattering status rather than a consensus
when all switching topologies have no spanning tree even if
they have jointly connected topologies.

V. CONCLUSION
This paper presents a novel method for analyzing the consen-
sus of second-order multi-agent systems without a spanning
tree. It is known that, although the second-order multi-agent
system cannot reach a consensus under a fixed topology

1Here, although we fixed the dwell time, it is also valid for average dwell
time.
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without a spanning tree, a consensus can be achieved under
switched topologies even if every topology has no spanning
tree. However, when sequence-based topology-dependent
average dwell time changes, even the same systems with the
same topologies may reach scattering status. Our proposed
method in this paper can be used to determine whether a
consensus can be reached under switched topologies if every
topology has no spanning tree. The effectiveness of the pro-
posed method is validated by examples and counterexamples.
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