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Consolidation Analysis of Soft Ground Improved by 1 

Stone Columns Incorporating Foundation Stiffness 2 

Abstract 3 

The consolidation of soft ground improved by stone columns is normally analysed 4 

under equal strain or free strain conditions. In this study a new consolidation model 5 

for stone columns is proposed to capture actual field conditions that lie between these 6 

two hypotheses, where a permeable foundation layer on top of the unit cell is 7 

introduced. By considering the stiffness of this layer, a closed-form solution can be 8 

derived, which indicates a considerable difference between the equal strain and free 9 

strain conditions. The influence of foundations with varying values of stiffness is 10 

examined, and the results demonstrate that as the foundation layer becomes stiffer, the 11 

time needed to achieve a 90% degree of consolidation decreases and so does the 12 

differential settlement, but the steady stress concentration ratio increases. This is also 13 

confirmed by a parametric study carried out under varying dimensionless ratios with 14 

respect to soil modulus, column spacing and permeability. A computational example 15 

is provided to show the implications of these results on actual design. Finally, a case 16 

study is presented to illustrate that the proposed model is able to provide more 17 

realistic predictions of settlement and stress concentrations on top of the unit cell. 18 
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Introduction 1 

Conventional radial consolidation theory was first proposed by Barron (1948), to 2 

describe the cases of equal strain and free strain. For a unit cell which consists of 3 

homogeneous soil, equal strain condition assumes that the vertical strain is always 4 

uniform at a given depth as consolidation progresses, and therefore, the vertical stress 5 

on top of the unit cell is uneven. However, free strain condition imposes a uniform 6 

vertical stress at the top surface that results in differential settlement as consolidation 7 

takes place. Over the years, various solutions for radial consolidation with vertical 8 

drains have been developed by adopting these two concepts (Hansbo et al., 1981; Lei et 9 

al., 2015; Leo, 2004; Rujikiatkamjorn and Indraratna, 2014; Tang and Onitsuka, 1998; 10 

Walker and Indraratna, 2006; Zhu and Yin, 2001). For flexible prefabricated vertical 11 

drains, any difference in the average degree of consolidation based on either condition 12 

is found to be small, i.e., often within 5% (Richart, 1959; Zhu and Yin, 2004). 13 

Therefore, when designing vertical drains, either equal strain or free strain condition 14 

can be adopted. 15 

For cases with stone columns, Han and Ye (2001) proposed a simplified method to 16 

estimate the average degree of consolidation of ground reinforced with stone columns 17 

that incorporates both well-resistance and soil disturbance. The behaviour of such a 18 

composite ground under time-dependent loading has been studied adopting an 19 
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analytical approach by Wang (2009), while solutions that incorporate column 1 

deformation as well as combined vertical and radial flow have been discussed by Xie et 2 

al. (2009) and Lu et al. (2010). Indraratna et al. (2013) proposed a numerical solution 3 

for soft soil improved with stone column based on free strain by considering the effects 4 

of arching and clogging. Despite these efforts, there is still a large disparity among the 5 

aforementioned solutions, which clearly implies that when assumptions of equal strain 6 

and free strain are applied to a relatively stiff stone column system there can be a 7 

significant deviation (Han, 2014). Moreover, significant differential settlement which 8 

is likely to occur for nonuniformly distributed loading condition (Bouassida and Carter, 9 

2014) also needs to be considered carefully. 10 

In this paper, a modified consolidation model is presented where a theoretical condition 11 

between equal strain and free strain that captures the foundation stiffness is described. 12 

A closed-form analytical solution is obtained to calculate the average degree of 13 

consolidation, the redistribution of vertical stress, and the differential settlement 14 

between the column and the surrounding soil, supported by an illustrated example and a 15 

case study. A parametric study is also carried out to evaluate the effect of foundation 16 

stiffness. 17 
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Establishment of theoretical model 1 

Basic assumptions 2 

Unlike flexible vertical drains, the difference between the stiffness of a stone column 3 

and soil can lead to redistribution of stress and differential settlement between the top 4 

of the column and the soil, therefore, an assumption of either free strain or equal strain 5 

can be unrealistic. In order to address this dilemma, a mathematical model is proposed, 6 

where an additional layer is added on top of the original unit cell to represent the 7 

foundation or platform (Figure 1). 8 

The proposed model is based on the following assumptions: 9 

1) Darcy’s law is valid.  10 

2) Only vertical flow is considered inside the stone column, while only radial flow 11 

is accounted in the surrounding clay. 12 

3) The top surface of the unit cell is free draining, but the bottom and the unit cell 13 

boundary are impermeable. 14 

4) The load on top of the foundation is uniform and time independent (constant), 15 

and only the vertical strains are considered. 16 

5) The pore water pressure and flow velocity are continuous across the 17 

column-soil interface. 18 
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6) The weight of the foundation layer and its compression are ignored. 1 

7) Any possible shear stress at the column-soil interface is ignored while the shear 2 

stress in the foundation layer is calculated using a method that is analogous to 3 

the “trapdoor theory” by Terzaghi (1943) as elaborated later. 4 

As shown in Figure 1, column settlement at the top surface of the unit cell can be treated 5 

as uniform, whereas the actual settlement on top of the surrounding soil depends on the 6 

radial distance (i.e., closer to the column means less settlement). The average vertical 7 

strains of the stone column (εc) and the surrounding soil (εs) are used after being 8 

determined from: 9 

 𝑚𝑚𝑣𝑣𝑣𝑣
𝜕𝜕[𝜎𝜎𝑠𝑠(𝑡𝑡) − 𝑢𝑢�𝑠𝑠(𝑧𝑧, 𝑡𝑡)]

𝜕𝜕𝜕𝜕
=
∂𝜀𝜀𝑠𝑠(𝑧𝑧, 𝑡𝑡)

𝜕𝜕𝜕𝜕
 (1) 

 𝑚𝑚𝑣𝑣𝑣𝑣
𝜕𝜕[𝜎𝜎𝑐𝑐(𝑡𝑡) − 𝑢𝑢�𝑐𝑐(𝑧𝑧, 𝑡𝑡)]

𝜕𝜕𝜕𝜕
=
∂𝜀𝜀𝑐𝑐(𝑧𝑧, 𝑡𝑡)

𝜕𝜕𝜕𝜕
 (2) 

where σc and σs are the vertical stresses on top of the stone column and surrounding soil, 10 

respectively (no attenuation with depth), 𝑢𝑢�𝑐𝑐  and 𝑢𝑢�𝑠𝑠  are the average excess pore 11 

pressure in the stone column and surrounding soil, respectively, and mvc and mvs are the 12 

coefficients of volume compressibility of the stone column and surrounding soil, 13 

respectively. 14 
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Consideration of the foundation stiffness 1 

The shear stress generated in the foundation layer may differ depending on the type of 2 

foundation material (e.g. concrete, sandy soil, or asphalt), and the nature of vertical 3 

stress redistribution such as arching; the latter often attracts a variety of opinions when 4 

included in modelling (Low et al., 1994; Madhav and Van Impe, 1994; Van Eekelen et 5 

al., 2013). In this study, shear stress at the overlying foundation is calculated based on 6 

the “trapdoor theory” initially proposed by Terzaghi (1943). It is assumed that when 7 

differential settlement occurs, any sliding in the foundation layer is vertical and the 8 

normal stress is uniform (Tien, 1996) as shown in Figure 2(a); this assumption has also 9 

been adopted in pile-embankment analysis (Chen et al., 2008). The generation of shear 10 

stress in the foundation layer is determined by mimicking a traditional direct shear test. 11 

A typical curve of shear stress versus the horizontal strain in a direct shear test is shown 12 

in Figure 2(b) (Ishibashi, 2011; Schofield and Wroth, 1968), and similarly, the shear 13 

stress (τ) at the sliding surface is related to the normal stress (σh) and the differential 14 

settlement (ΔS). Given that the allowable differential settlement of a foundation is 15 

usually restricted, it is reasonable to consider that the stress-strain curve would still be 16 

in the linear stage. Therefore, in the proposed model, shear stress in the foundation 17 

layer is assumed to be linearly proportional to its vertical strain. The slope of the 18 

stress-strain curve in a direct shear test defines its shear resistance, whereas in this 19 
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model the slope of shear stress versus normalised differential settlement, ΔS/H1, is 1 

introduced as the stiffness of the foundation, denoted as K. This straight-forward way of 2 

considering shear stress may not reflect the real mechanism, but its simplicity enables 3 

the following coupled analysis to be carried out effectively. 4 

By considering the force equilibrium in the foundation layer, the loads on top of the 5 

embankment should be equal to the supporting force provided at the top surface of the 6 

unit cell. The redistribution of vertical stress can then be calculated as follows ((3-5): 7 

 𝜋𝜋(𝑟𝑟𝑠𝑠2 − 𝑟𝑟𝑐𝑐2)𝜎𝜎𝑠𝑠(𝑡𝑡) = 𝜋𝜋(𝑟𝑟𝑠𝑠2 − 𝑟𝑟𝑐𝑐2)𝜎𝜎 − ∆𝜎𝜎 ∙ 𝐻𝐻1 ∙ 𝜋𝜋𝑟𝑟𝑐𝑐 (3) 

 𝜋𝜋𝑟𝑟𝑐𝑐2𝜎𝜎𝑐𝑐(𝑡𝑡) = 𝜋𝜋𝑟𝑟𝑐𝑐2𝜎𝜎 + ∆𝜎𝜎 ∙ 𝐻𝐻1 ∙ 𝜋𝜋𝑟𝑟𝑐𝑐 (4) 

 ∫ 𝜀𝜀𝑠𝑠(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑑𝑑𝐻𝐻
0 − ∫ 𝜀𝜀𝑐𝑐(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑑𝑑𝐻𝐻

0
𝐻𝐻1

𝐾𝐾 = ∆𝜎𝜎 (5) 

where rc and rs are the radius of the stone column and unit cell respectively, H1 is the 8 

thickness of the foundation layer, K is the stiffness of the foundation, and Δσ is the 9 

shear stress in the foundation layer. 10 

The relationship between vertical strain and excess pore pressure can be represented by 11 

(6) and (7), and a detailed derivation is given in Appendix I. Through these two 12 

equations, the vertical strains can be calculated independent of the thickness of the 13 

foundation layer. 14 



 10 / 56 
 

 𝜕𝜕𝜀𝜀𝑠𝑠
𝜕𝜕𝜕𝜕

=
𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾𝑟𝑟𝑐𝑐2

𝜕𝜕𝑢𝑢�𝑐𝑐
𝜕𝜕𝜕𝜕 − 𝑚𝑚𝑣𝑣𝑣𝑣(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2)(𝑚𝑚𝑣𝑣𝑣𝑣𝐻𝐻𝐻𝐻 + 𝑟𝑟𝑐𝑐) 𝜕𝜕𝑢𝑢�𝑠𝑠𝜕𝜕𝜕𝜕

𝑟𝑟𝑐𝑐2[𝐾𝐾𝐾𝐾(𝑚𝑚𝑣𝑣𝑣𝑣 − 𝑚𝑚𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑐𝑐] − 𝑟𝑟𝑠𝑠2(𝑟𝑟𝑐𝑐 + 𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾)
 

(6) 

 𝜕𝜕𝜀𝜀𝑐𝑐
𝜕𝜕𝜕𝜕

=
𝑚𝑚𝑣𝑣𝑣𝑣𝑟𝑟𝑐𝑐(𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾𝑟𝑟𝑐𝑐 + 𝑟𝑟𝑠𝑠2−𝑟𝑟𝑐𝑐2)𝜕𝜕𝑢𝑢�𝑐𝑐𝜕𝜕𝜕𝜕 + 𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾(𝑟𝑟𝑠𝑠2−𝑟𝑟𝑐𝑐2)𝜕𝜕𝑢𝑢�𝑠𝑠𝜕𝜕𝜕𝜕

𝑟𝑟𝑐𝑐2[𝐾𝐾𝐾𝐾(𝑚𝑚𝑣𝑣𝑣𝑣 −𝑚𝑚𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑐𝑐]− 𝑟𝑟𝑠𝑠2(𝑟𝑟𝑐𝑐 +𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾)
 

(7) 

where H is the thickness of the unit cell. 1 

Governing equations 2 

Deformation of the stone column and surrounding clay should be equal to the net flow 3 

into the system. Based on deformation-flow equilibrium, the governing equations for 4 

the consolidation of clay and column can be established, as represented by (8) and (9), 5 

respectively. 6 

 
1
𝛾𝛾𝑤𝑤𝑟𝑟

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘𝑠𝑠𝑓𝑓(𝑟𝑟)𝑟𝑟

𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕

� = −
𝜕𝜕𝜀𝜀𝑠𝑠
𝜕𝜕𝜕𝜕

 (8) 

 
2𝑘𝑘𝑠𝑠
𝛾𝛾𝑤𝑤𝑟𝑟𝑐𝑐

𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕 �𝑟𝑟=𝑟𝑟𝑐𝑐

+
𝑘𝑘𝑐𝑐
𝛾𝛾𝑤𝑤

𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2

= −
𝜕𝜕𝜀𝜀𝑐𝑐
𝜕𝜕𝜕𝜕

 (9) 

where us is the pore water pressure of a certain point in surrounding soil, f(r) is a 7 

function of radius that describes variations in permeability in the surrounding soil 8 

which can used to represent the smear effect, kc and ks are the coefficients of 9 

permeability of the stone column and undisturbed soil respectively, and γw is the unit 10 

weight of water. 11 

The boundary conditions are given by (13), thus: 12 
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𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕 �𝑟𝑟=𝑟𝑟𝑠𝑠

= 0 (10) 

 𝑢𝑢𝑠𝑠 = 𝑢𝑢�𝑐𝑐(𝑟𝑟 = 𝑟𝑟𝑐𝑐) (11) 

 𝑢𝑢�𝑠𝑠(0, 𝑡𝑡) = 𝑢𝑢�𝑐𝑐(0, 𝑡𝑡) = 0  (𝑡𝑡 > 0) (12) 

 𝜕𝜕𝑢𝑢�𝑠𝑠(𝐻𝐻, 𝑡𝑡)
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑢𝑢�𝑐𝑐(𝐻𝐻, 𝑡𝑡)

𝜕𝜕𝜕𝜕
= 0 (13) 

The excess pore water pressure at the top surface of the unit cell is prescribed by the 1 

following: when vertical loads are first applied the induced excess pore water pressure 2 

is assumed to be uniform in the unit cell and equal to the magnitude of external loads, 3 

but when consolidation commences the excess pore pressure is immediately dissipated 4 

to zero at the surface of the unit cell. 5 

The initial condition can then be expressed by (14), hence: 6 

 𝑢𝑢�𝑠𝑠(𝑧𝑧, 0) = 𝑢𝑢�𝑐𝑐(𝑧𝑧, 0) = 𝜎𝜎 (14) 

Finally, a governing equation specifying the variable, 𝑢𝑢�𝑐𝑐, can be obtained, and the 7 

details of its derivation are given in Appendix II extending the past procedures (Lu et 8 

al., 2010; Tai et al., 2017). 9 

 𝐶𝐶 ∙ 𝐸𝐸
𝜕𝜕3𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2𝜕𝜕𝜕𝜕

− 𝐸𝐸
𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2

+ (𝐵𝐵 + 𝐶𝐶 ∙ 𝐷𝐷)
𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑡𝑡2

+ (1 − 𝐷𝐷)
𝜕𝜕𝑢𝑢�𝑐𝑐
𝜕𝜕𝜕𝜕

= 0 (15) 
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Analytical solutions 1 

It is assumed that the excess pore water pressure in the stone column can be rewritten as 2 

a product of two independent functions (16), each with only one variable. Then, the 3 

governing equation obtained can be solved by the variable separation method, where: 4 

 𝑢𝑢�𝑐𝑐 = 𝐺𝐺(𝑡𝑡) ∙ 𝑍𝑍(𝑧𝑧) (16) 

The governing equation can now be transformed into two ordinary differential 5 

equations (ODEs) as shown below: 6 

 −
(𝐵𝐵 + 𝐶𝐶 ∙ 𝐷𝐷)𝐺𝐺′′(𝑡𝑡) + (1 −𝐷𝐷)𝐺𝐺′(𝑡𝑡)

𝐶𝐶 ∙ 𝐸𝐸 ∙ 𝐺𝐺′(𝑡𝑡)− 𝐸𝐸 ∙ 𝐺𝐺(𝑡𝑡)
=
𝑍𝑍′′

𝑍𝑍
= −𝛼𝛼2 (𝛼𝛼 > 0) (17) 

where α is a positive constant that will be explained later. 7 

General solution 8 

By considering Eqn. (17) as a second order linear ODE, its boundary condition and 9 

initial condition are represented by: 10 

 𝑢𝑢�𝑐𝑐(0, 𝑡𝑡) = 𝐺𝐺(𝑡𝑡)𝑍𝑍(0) = 𝑍𝑍(0) = 0 (18) 

 𝑢𝑢�𝑐𝑐(𝑧𝑧, 0) = 𝐺𝐺(0)𝑍𝑍(𝑧𝑧) = 𝜎𝜎 (19) 

 𝜕𝜕𝑢𝑢�𝑐𝑐(ℎ, 𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝐺𝐺(𝑡𝑡)𝑍𝑍′(𝐻𝐻) = 𝑍𝑍′(𝐻𝐻) = 0 (20) 

The solutions can then be obtained after finding Eigenfunctions based on the variable 11 

separation method (Kreyszig, 1988). 12 
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 𝑢𝑢�𝑐𝑐 = �𝐺𝐺(𝑡𝑡) ∙ 𝑍𝑍(𝑧𝑧)
𝑛𝑛

     (𝑛𝑛 = 1,2,3, … ) (21) 

 𝑍𝑍𝑛𝑛(𝑧𝑧) = sin (𝛼𝛼𝑛𝑛z) (22) 

 𝐺𝐺𝑛𝑛(𝑡𝑡) = 𝑏𝑏𝑛𝑛e𝛽𝛽𝑛𝑛∙𝑡𝑡 + 𝑐𝑐𝑛𝑛e𝜃𝜃𝑛𝑛∙𝑡𝑡 (23) 

 𝛼𝛼𝑛𝑛 =
(2𝑛𝑛 − 1)𝜋𝜋

2𝐻𝐻
 (24) 

 𝛽𝛽𝑛𝑛 =
−1 + 𝐷𝐷 + 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2 − �−4(𝐵𝐵 + 𝐶𝐶𝐶𝐶)𝐸𝐸𝛼𝛼𝑛𝑛2 + (1 − 𝐷𝐷 − 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2)2

2(𝐵𝐵 + 𝐶𝐶𝐶𝐶)
 (25) 

 𝜃𝜃𝑛𝑛 =
−1 + 𝐷𝐷 + 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2 + �−4(𝐵𝐵 + 𝐶𝐶𝐶𝐶)𝐸𝐸𝛼𝛼𝑛𝑛2 + (1 − 𝐷𝐷 − 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2)2

2(𝐵𝐵 + 𝐶𝐶𝐶𝐶)
 (26) 

In the above, the coefficients “bn”, and “cn” are integration constants. 1 

The excess pore water pressure in the stone column and surrounding soil can be written 2 

respectively as follows: 3 

 
𝑢𝑢�𝑐𝑐 = �(𝑏𝑏𝑛𝑛e𝛽𝛽𝑛𝑛∙𝑡𝑡 + 𝑐𝑐𝑛𝑛e𝜃𝜃𝑛𝑛∙𝑡𝑡) sin(𝛼𝛼𝑛𝑛z)

𝑛𝑛

1

 
(27) 

𝑢𝑢�𝑠𝑠 = �[𝑏𝑏𝑛𝑛

𝑛𝑛

1

[1 + (𝐶𝐶𝐶𝐶 + 𝐵𝐵)𝛽𝛽𝑛𝑛 − 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2]e𝛽𝛽𝑛𝑛∙𝑡𝑡

+ 𝑐𝑐𝑛𝑛[1 + (𝐶𝐶𝐶𝐶 + 𝐵𝐵)𝜃𝜃𝑛𝑛 − 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2]e𝜃𝜃𝑛𝑛∙𝑡𝑡] sin(𝛼𝛼𝑛𝑛z) 

(28) 

In Eqn. (27) and (28), these two integration constants, bn and cn, can be determined by 4 

considering the initial condition ((14), hence: 5 

𝑏𝑏𝑛𝑛 =
𝜎𝜎(−1 + 𝐷𝐷 − 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2 + �−4(𝐵𝐵 + 𝐶𝐶𝐶𝐶)𝐸𝐸𝛼𝛼𝑛𝑛2 + (1 − 𝐷𝐷 − 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2)2)

𝛼𝛼𝑛𝑛𝐻𝐻�−4(𝐵𝐵 + 𝐶𝐶𝐶𝐶)𝐸𝐸𝛼𝛼𝑛𝑛2 + (1 − 𝐷𝐷 − 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2)2
 (29) 
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𝑐𝑐𝑛𝑛 =
𝜎𝜎(1 − 𝐷𝐷 + 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2 + �−4(𝐵𝐵 + 𝐶𝐶𝐶𝐶)𝐸𝐸𝛼𝛼𝑛𝑛2 + (1 − 𝐷𝐷 − 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2)2)

𝛼𝛼𝑛𝑛𝐻𝐻�−4(𝐵𝐵 + 𝐶𝐶𝐶𝐶)𝐸𝐸𝛼𝛼𝑛𝑛2 + (1 − 𝐷𝐷 − 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2)2
 (30) 

The average degree of consolidation for the whole unit cell, 𝑈𝑈�, can then be calculated 1 

using: 2 

 
𝑈𝑈� = 1 −

�1 − 𝑟𝑟𝑐𝑐2
𝑟𝑟𝑠𝑠2
� 𝑢𝑢�𝑠𝑠 + 𝑟𝑟𝑐𝑐2

𝑟𝑟𝑠𝑠2
𝑢𝑢�𝑐𝑐

∑ 𝛼𝛼𝑛𝑛sin(𝛼𝛼𝑛𝑛z)𝜎𝜎𝜎𝜎𝑛𝑛
1

 

(31) 

The vertical strains of stone column and surrounding soil can be calculated according to 3 

(6) and (7) together with the initial condition, which gives: 4 

𝜀𝜀𝑠𝑠 =
𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾𝑟𝑟𝑐𝑐2(𝑢𝑢�𝑐𝑐 − 𝜎𝜎) −𝑚𝑚𝑣𝑣𝑣𝑣(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2)(𝑚𝑚𝑣𝑣𝑣𝑣𝐻𝐻𝐻𝐻+ 𝑟𝑟𝑐𝑐)(𝑢𝑢�𝑠𝑠 − 𝜎𝜎)

𝑟𝑟𝑐𝑐2[𝐾𝐾𝐾𝐾(𝑚𝑚𝑣𝑣𝑣𝑣 −𝑚𝑚𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑐𝑐]− 𝑟𝑟𝑠𝑠2(𝑟𝑟𝑐𝑐 +𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾)
 (32) 

𝜀𝜀𝑐𝑐 =
𝑚𝑚𝑣𝑣𝑣𝑣𝑟𝑟𝑐𝑐(𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾𝑟𝑟𝑐𝑐 + 𝑟𝑟𝑠𝑠2−𝑟𝑟𝑐𝑐2)(𝑢𝑢�𝑐𝑐 − 𝜎𝜎) +𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾(𝑟𝑟𝑠𝑠2−𝑟𝑟𝑐𝑐2)(𝑢𝑢�𝑠𝑠 − 𝜎𝜎)

𝑟𝑟𝑐𝑐2[𝐾𝐾𝐾𝐾(𝑚𝑚𝑣𝑣𝑣𝑣 −𝑚𝑚𝑣𝑣𝑣𝑣) + 𝑟𝑟𝑐𝑐]− 𝑟𝑟𝑠𝑠2(𝑟𝑟𝑐𝑐 + 𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾)
 (33) 

The stress concentration ratio, ns, can now be calculated from: 5 

 
𝑛𝑛𝑠𝑠(𝑡𝑡) =

𝑚𝑚𝑣𝑣𝑣𝑣 ∫ 𝜀𝜀𝑐𝑐(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑑𝑑𝐻𝐻
0 + 𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣 ∫ 𝑢𝑢�𝑐𝑐(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑑𝑑𝐻𝐻

0

𝑚𝑚𝑣𝑣𝑣𝑣 ∫ 𝜀𝜀𝑠𝑠(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑑𝑑𝐻𝐻
0 + 𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣 ∫ 𝑢𝑢�𝑠𝑠(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑑𝑑𝐻𝐻

0

 
(34) 

The differential settlement on the top surface of the unit cell, ΔS, now becomes: 6 

 ∆𝑆𝑆(𝑡𝑡) = � 𝜀𝜀𝑠𝑠(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑑𝑑
𝐻𝐻

0
− � 𝜀𝜀𝑐𝑐(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑑𝑑

𝐻𝐻

0
 (35) 
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Equal strain condition 1 

The equal strain hypothesis is valid when the stiffness of the foundation approaches 2 

infinity (K→+∞), and there is no differential settlement occurring during the whole 3 

consolidation process. 4 

This means the governing equation can degenerate into the form shown below, 5 

whereby: 6 

 𝐶𝐶𝐶𝐶
𝜕𝜕3𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2𝜕𝜕𝜕𝜕

− 𝐸𝐸
𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2

+ (1 − 𝐷𝐷)
𝜕𝜕𝑢𝑢�𝑐𝑐
𝜕𝜕𝜕𝜕

= 0 (36) 

 𝑢𝑢�𝑠𝑠 = 𝑢𝑢�𝑐𝑐 + 𝐶𝐶𝐶𝐶
𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2

 (37) 

 𝜕𝜕𝜀𝜀𝑠𝑠
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜀𝜀𝑐𝑐
𝜕𝜕𝜕𝜕

= −
𝑟𝑟𝑐𝑐2
𝜕𝜕𝑢𝑢�𝑐𝑐
𝜕𝜕𝜕𝜕 + (𝑟𝑟𝑠𝑠2 − 𝑟𝑟𝑐𝑐2)𝜕𝜕𝑢𝑢�𝑠𝑠𝜕𝜕𝜕𝜕

(𝑟𝑟𝑠𝑠2 − 𝑟𝑟𝑐𝑐2)/𝑚𝑚𝑣𝑣𝑣𝑣 + 𝑟𝑟𝑐𝑐2/𝑚𝑚𝑣𝑣𝑣𝑣
 

(38) 

Note that the secondary differential item for time has been cancelled, so the two ODEs 7 

after variable separation become: 8 

  
(𝐷𝐷 − 1)𝐺𝐺′(𝑡𝑡)

𝐶𝐶 ∙ 𝐸𝐸 ∙ 𝐺𝐺′(𝑡𝑡) − 𝐸𝐸 ∙ 𝐺𝐺(𝑡𝑡)
=
𝑍𝑍′′

𝑍𝑍
= −𝛼𝛼2(𝛼𝛼 > 0) (39) 

Through a similar procedure as obtaining the general solution, the solutions for the 9 

average excess pore pressure and vertical strain of a unit cell under equal strain 10 

condition can be derived as: 11 

 
𝑢𝑢�𝑐𝑐 = �

2𝜎𝜎𝑟𝑟𝑠𝑠2

𝐻𝐻[𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛3(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2) + 𝛼𝛼𝑛𝑛𝑟𝑟𝑠𝑠2]
𝑒𝑒

𝐸𝐸𝛼𝛼𝑛𝑛2𝑡𝑡
−1+𝐷𝐷+𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2

𝑛𝑛

1

sin [𝛼𝛼𝑛𝑛𝑧𝑧] 
(40) 
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 𝑢𝑢�𝑠𝑠 = (1 − 𝐶𝐶𝐶𝐶𝛼𝛼𝑛𝑛2)𝑢𝑢�𝑐𝑐 (41) 

 𝜀𝜀𝑠𝑠 = 𝜀𝜀𝑐𝑐 = −
𝑟𝑟𝑐𝑐2𝑢𝑢�𝑐𝑐 + (𝑟𝑟𝑠𝑠2 − 𝑟𝑟𝑐𝑐2)𝑢𝑢�𝑠𝑠 − 𝜎𝜎𝜎𝜎𝑠𝑠2

(𝑟𝑟𝑠𝑠2 − 𝑟𝑟𝑐𝑐2)/𝑚𝑚𝑣𝑣𝑣𝑣 + 𝑟𝑟𝑐𝑐2/𝑚𝑚𝑣𝑣𝑣𝑣
 

(42) 

The stress concentration ratio can still be determined using Eqn. (34). 1 

Free strain condition 2 

The free strain hypothesis means that the stiffness of the foundation is negligible and 3 

the vertical stress on top of the unit cell is uniform. Consequently, the differential 4 

settlement only depends on the compression modulus of stone column and the 5 

surrounding soil, hence: 6 

 𝑚𝑚𝑣𝑣𝑣𝑣
∂(𝜎𝜎 − 𝑢𝑢�𝑠𝑠)

𝜕𝜕𝜕𝜕
=
𝜕𝜕𝜀𝜀𝑠𝑠
𝜕𝜕𝜕𝜕

 (43) 

 𝑚𝑚𝑣𝑣𝑣𝑣
∂(𝜎𝜎 − 𝑢𝑢�𝑐𝑐)

𝜕𝜕𝜕𝜕
=
∂𝜀𝜀𝑐𝑐
𝜕𝜕𝜕𝜕

 (44) 

The structure of the degenerated equation for free strain is still the same as that of the 7 

general form, but with the two parameters B and K equalling zero, as represented by 8 

Eqns. (45)-(46). Therefore, the solution remains the same as the general one given 9 

earlier. 10 

 𝐶𝐶 ∙ 𝐸𝐸
𝜕𝜕3𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2𝜕𝜕𝜕𝜕

− 𝐸𝐸
𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2

+ 𝐶𝐶 ∙ 𝐷𝐷
𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑡𝑡2

+ (1 − 𝐷𝐷)
𝜕𝜕𝑢𝑢�𝑐𝑐
𝜕𝜕𝜕𝜕

= 0 (45) 

 𝑢𝑢�𝑠𝑠 = 𝑢𝑢�𝑐𝑐 + 𝐶𝐶 ∙ 𝐷𝐷
𝜕𝜕𝑢𝑢�𝑐𝑐
𝜕𝜕𝜕𝜕

+ 𝐶𝐶 ∙ 𝐸𝐸
𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2

 (46) 
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Comparison with previous studies 1 

In order to verify the proposed model, comparisons are made with existing 2 

consolidation models under the hypotheses of equal strain (Han and Ye 2001, Lu et al. 3 

2010) and free strain (Indraratna et al. 2013). 4 

The basic parameters adopted in the verification are cited from Indraratna et al. (2013) 5 

and presented in Table 1. The smear effect can be considered by the permeability 6 

variation funtion f(r) in Eqn. (8), but the effect of clogging in the stone column is 7 

ignored. Meanwhile, the time factor, T, is adopted as the abscissa that can be defined as 8 

shown below. 9 

 𝑇𝑇 =
𝑘𝑘𝑠𝑠𝑡𝑡

4𝑚𝑚𝑣𝑣𝑣𝑣𝛾𝛾𝑤𝑤𝑟𝑟𝑠𝑠2
 (47) 

Figure 3 shows the comparison of the average degree of consolidation for a unit cell 10 

calculated using the proposed model with previous studies. The difference among the 11 

three curves of equal strain is negligible, which indicates that ignoring vertical flow in 12 

the surrounding soil and radial flow in the column is acceptable for a thick unit cell 13 

(>16m). However, with free strain, the consolidation predicted by the current model is 14 

much faster when the time factor is less than 0.1; the trend then reverses, and the degree 15 

of consolidation given by Indraratna et al. (2013) becomes higher at the later stage. 16 
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Differences between equal strain and free strain 1 

The curves in Figure 3 also show that the degree of consolidation for free strain is 2 

higher than that for equal strain at the beginning, but then it falls behind at a later stage. 3 

This observation agrees with the statement made by Zhu and Yin (2004), except that the 4 

difference is rather small (<6%) for vertical drains in their analysis, whereas it can be 5 

up to 15% for stone columns. It can be concluded that, there is a large disparity in the 6 

consolidation rate of ground improved by stone columns that results from the basic 7 

hypotheses: whether equal strain or free strain is adopted. 8 

There is also no redistribution of vertical stresses on top of the column and surrounding 9 

soil under free strain conditions, so the stress concentration ratio is always equal to 1, 10 

whereas the distribution of vertical stress for equal strain changes as consolidation 11 

progresses, as shown in Figure 4(a). Initially, most of the vertical loading is carried by 12 

the surrounding soil, so the vertical stress ratio on top of the stone column remains at a 13 

relatively low level, while the vertical stress ratio on the surrounding soil is larger than 14 

unity to maintain the force equilibrium. As consolidation continues, the vertical stress 15 

in the surrounding clay decreases while that on the stone column increases, and this 16 

agrees with the findings of Han and Ye (2001). Meanwhile, because of the assumption 17 

of equal strain, the stress concentration ratio will increase with consolidation until it 18 
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reaches the same value as the compressibility ratio of the column material to the soil 1 

(i.e., 7 in this case), as shown in Figure 4(b). 2 

The evolution of excess pore pressure in the surrounding soil and stone column under 3 

both hypotheses is presented in Figure 5(a) and 5(b), respectively. In the surrounding 4 

soil the initial excess pore pressure is higher, and its dissipation is faster for the case of 5 

equal strain. On the contrary, for the pore pressure in the stone column, the initial value 6 

under free strain is markedly higher than that of equal strain, but the difference between 7 

equal strain and free strain quickly becomes negligible. 8 

Figure 6 gives the profiles of excess pore pressure at different times for stone column 9 

and surrounding soil, respectively. Echoing with Figure 5, Figure 6 also shows that the 10 

initial excess pore pressure decreases with depth in the surrounding soil, but it increases 11 

with depth in the stone column. It is also indicated that more time is required for the 12 

completion of consolidation under free strain conditions. When consolidation 13 

commences (T=0.001), the excess pore pressure ratio at the bottom of stone column is 14 

almost 0.8 for free strain and less than 0.4 for equal strain (Figure 6a), but after a short 15 

period of time (T=0.1), the pore pressure ratio in the stone column decreases to about 16 

0.2 for both equal strain and free strain. Unlike equal strain, the amount of pore 17 

pressure dissipated in stone column is much higher for free strain when the time factor 18 

reaches 0.01, which explains why the degree of consolidation under free strain is higher 19 
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initially. The initial excess pore pressure ratio in the surrounding soil is higher (larger 1 

than 1) for equal strain which again confirms the fact that the external load is mostly 2 

carried by the surrounding soil at the beginning (Figure 6b). However, the excess pore 3 

pressure in the surrounding soil is lower for equal strain when T equals to 0.01, which 4 

means that equal strain induces faster consolidation. Figure 6 also demonstrates that 5 

the excess pore pressure in the surrounding soil is not as sensitive to depth as it is in 6 

stone column, possibly due to the ignorance of vertical flow in surrounding soil. Note 7 

that the small variation with depth is attributed to the pore pressure gradient in stone 8 

column. 9 

Effect of foundation stiffness 10 

In practice, the stiffness of a foundation is neither infinity nor zero, therefore, the 11 

performance of soft ground improved by stone columns should be between equal strain 12 

and free strain. By varying the stiffness of the foundation, this behaviour can be 13 

captured by the proposed consolidation model. A parametric study was carried out to 14 

investigate the effect of foundation stiffness on the stone column, and the same 15 

parameters provided in Table 1 were used, except for the stiffness of foundation. 16 

By considering the foundation layer as a common earth structure, the stiffness of the 17 

foundation layer can be determined based on direct shear tests of its base soil, while 18 
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the typical values of stiffness, K, can be calculated from the existing direct shear tests 1 

that are listed in Table 2. As for a 2-3m high embankment, the lateral earth pressure is 2 

limited, and therefore, the resulting K value is expected to be relatively low. In the 3 

following analysis, the foundation stiffness was altered by using the compressibility of 4 

the surrouding soil as a reference; the product of foundation stiffness and volume 5 

compressibility (K∙mvs) varies from 0.1 to 10, which corresponds to a stiffness of 200 6 

kPa to 20,000 kPa. 7 

Figure 7(a) shows that the change in foundation stiffness affects the consolidation rate. 8 

Initially, the rate decreases as the foundation stiffness increases, but after a certain time 9 

(T≈0.03) the consolidation accelerates when the foundation becomes stiffer, and cases 10 

of equal strain and free strain become the upper and lower boundary. 11 

Naturally, the stress concentration ratio on top of the unit cell is also influenced by the 12 

stiffness of the foundation, as shown in Figure 7(b). The external loading is initially 13 

carried by the surrounding soil, but as consolidation progresses it is gradually 14 

transferred to the stone column. The stress concentration ratio approaches a steady 15 

value when consolidation approaches to the end. The steady stress concentration ratio 16 

increases as the foundation become stiffer, and in this case the steady stress 17 

concentration ratio is 7 (corresponding to the equal strain condition). 18 
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The differential settlement ratio (ΔS/H) is defined as the ratio of differential settlement 1 

at the top of the unit cell to the height of the unit cell. Figure 7(c) shows that less 2 

differential settlement is generated as the foundation becomes stiffer. For a flexible 3 

foundation, negative differential settlement (around 2%) develops initially which 4 

means the column settles more than the surrounding soil at the beginning due to its high 5 

permeability, but then this trend reverses until the differential settlement becomes 6 

positive and finally reaches a steady value. This can be explained as follows: the excess 7 

pore pressure in the surrounding soil takes much longer to dissipate than inside the 8 

stone column, therefore, the compression of surrounding soil develops much slower 9 

than that of stone column, and the surrounding soil settles more than the column 10 

initially. Figure 7(c) also indicates that the differential settlement ratio can be negligible 11 

when the foundation is stiff, but it could be up to 18% when the foundation is flexible. 12 

Note that this amount of differential settlement is not realistic in field conditions 13 

because of the resistance mobilised at the column-soil interface, but the results 14 

presented hereby still highlight the need to evaluate the differential settlement. 15 

Effect of modulus ratio, spacing ratio, and permeability ratio 16 

The sensitivity of the modulus ratio, the permeability ratio of column material to soil, 17 

and column spacing are also studied under conditions between equal strain and free 18 

strain. Slightly different from the previous section, in this part, the stiffness of 19 
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foundation is assigned as 1000, 2000 and 4000kPa, respectively (corresponds to the 1 

K∙mvs values of 0.5, 1, 2). 2 

The quality (modulus) of stone column is crucial for the performance of the improved 3 

soft ground (Deb and Behera, 2016; Raju and Sondermann, 2005). In practice, the 4 

modulus ratio of column to clay is in the range of 10-40 (Hu, 1995, Kelly, 2014). Based 5 

on elastic theory, the coefficient of volume compressibility, mv, can be calculated using 6 

Poisson’s ratio, ν, and Young’s modulus, E0 from the equation given below (Han and 7 

Ye, 2001). 8 

 𝑚𝑚𝑣𝑣 =
(1 + 𝜈𝜈)(1 − 2𝜈𝜈)

𝐸𝐸0(1− 𝜈𝜈)
 (48) 

Han and Ye (2001) also suggested that the Poisson’s ratios for stone column and 9 

surrounding soil should be chosen as 0.15 and 0.45, respectively. As a result, the ratio 10 

of coefficient of compressibility of clay to column is in the range of 2 to 11 when the 11 

modulus ratio of column to clay varies between 8 and 40. 12 

The influence of modulus ratio under various values of foundation stiffness is 13 

investigated and the corresponding results are shown in Figure 8. The steady stress 14 

concentration ratio under different modulus ratios is compared to previous predictions 15 

(Barksdale and Bachus, 1983, Han and Ye, 2001) in Figure 8(a), and it is observed that 16 

these results follow a similar trend except that the current model shows slight 17 
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nonlinearity. It is also noted that the steady stress concentration ratio increases with an 1 

increase in either modulus ratio or foundation stiffness, but the effect of foundation 2 

stiffness becomes negligible when the modulus ratio is relatively small (i.e. <10). 3 

The time factor corresponding to 90% degree of consolidation, U90, is usually used as 4 

an indicator to compare the consolidation rate among different cases. Figure 8(b) 5 

illustrates that U90 decreases as the modulus ratio increases or the foundation becomes 6 

stiffer. When the modulus ratio is less than 10, the value of U90 is not sensitive to the 7 

foundation stiffness. 8 

Note that the differential settlement ratio increases with an increase in the modulus 9 

ratio, but it decreases as the foundation becomes stiffer, as shown in Figure 8(c). The 10 

differential settlement is likely to be affected significantly by the stiffness of foundation 11 

even at a relatively low modulus ratio (i.e. <10). Similarly, the radius ratio of unit cell to 12 

column (rs/rc) and the permeability ratio of column material to clay (kc/ks) are also 13 

varied under different values of stiffness of foundation. The radius ratio changes in the 14 

range of 1.5-3.5 while the permeability ratio varies between 103 and 106, both of which 15 

are in the typical range (Hu, 1995; Kelly, 2014). Only U90 is calculated to show the 16 

change of consolidation rate, as the stress concentration and differential settlement are 17 

unlikely to be affected significantly in this scenario. Figure 9(a) shows that U90 is 18 

normally higher for a larger radius ratio, and its value also increases slightly as the 19 
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foundation becomes stiffer under a certain radius ratio. Figure 9(b) illustrates that 1 

further increase in the permeability ratio beyond 104 barely accelerates consolidation 2 

anymore, and U90 is not sensitive to the stiffness of the foundation at a given 3 

permeability ratio. 4 

Practical design illustrative example 5 

An example is given to illustrate how this proposed model can be used for a practical 6 

design. In a project where 0.8m diameter stone columns are spaced 2m apart in a 7 

rectangular pattern are used to stabilise a 10-meter-thick layer of soft clay over an 8 

impervious rock bed. Then it can be determined that the equivalent radius of the unit 9 

cell is 2.26m, which is 1.13 times of the column spacing, and an annular area outside 10 

the stone column with a diameter of 0.92m is disturbed due to installation. The 11 

permeability of undisturbed clay, disturbed clay, and column material are 10-9, 10-10, 12 

and 10-4m/s, respectively. The coefficient of volume compressibility of column 13 

material and clay are 0.08 and 0.8 MPa-1, respectively. The stiffness of foundation is 14 

2,000kPa. A 100kPa vertical load is applied instantly and the degree of consolidation 15 

after 30 days and the time to achieve 90% of consolidation degree (U90) are required. 16 

The proposed model predicts that the degree of consolidation after 30 days is 53.2% 17 

and U90 takes around 95 days. In comparison, the model of Han and Ye (2002) shows 18 

that the degree of consolidation after 30 days is 66.5% and U90 is 63 days, whereas Lu 19 
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et al. (2010)’s model predicts that the 30-day degree of consolidation is 60% and U90 1 

can be achieved within 79 days. 2 

Application to a case study 3 

In mid-2012 at the Ballina national field test facility, NSW, Australia, a group of stone columns 4 

were installed to improve the local soft clay. These fully-penetrated stone columns were in a 5 

square pattern at a spacing of 2-metre. Subsequently a 4m high embankment was built in four 6 

stages within 50 days. The first metre of the embankment consisted of rockfill overlain with a 7 

layer of geogrid; the natural unit weight of embankment fill was between 17.5-20kN/m3 which 8 

resulted in a vertical load of approximately 70-80kPa. The properties of Ballina clay and 9 

general site condition have been reported in detail elsewhere (Kelly et al., 2016; Pineda et al., 10 

2016) and are summarised in Table 3. The water table is close to the ground surface. This 11 

layer of soft Ballina clay is around 10-13 metres thick and is underlain by mixture of sand and 12 

stiff clay.  13 

Figure 10 shows a cross section of this embankment. Several settlement plates and 14 

earth pressure cells have been installed at the top surface of the central column. 15 

Differential settlement was observed between the central column and the adjacent soil 16 

surface while the stress concentration ratio was recorded by earth pressure data. The 17 
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proposed model was used to make a prediction and the basic parameters are given in 1 

Table 4. 2 

A comparison between the measurements and model predictions are shown in Figure 3 

11. Figure 11(a) shows that the prediction for the first 50 days agrees well with the 4 

measurement; the proposed model can capture the differential settlement between 5 

column surface (Sc) and soil surface (Ss) which is missing in equal strain analysis, 6 

and the prediction is better when K is equal to 1000kPa. The prediction under free 7 

strain condition is not shown because there is inevitable redistribution of stress that 8 

occurs at the top of the unit cell. As for the stress concentration ratio (Figure 11b), the 9 

monitoring data were only available for the first 100 days because of the 10 

malfunctioning sensor. The measured stress concentration ratio is in the range of 2 to 11 

3 and has a slightly increasing trend. Although the model predicted a faster increase 12 

and a higher steady value, it still provides a closer match compared to the equal strain 13 

condition.Figure 11 Embankment at Ballina: (a) construction order and settlement; (b) 14 

stress concentration ratio 15 

Model limitation 16 

Although the proposed model can provide solutions for the consolidation of soft ground 17 

improved with stone column under equal strain, free strain, and conditions in-between, 18 
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by considering the foundation stiffness, there are still some inevitable limitations listed 1 

below, as also demonstrated through the case study. 2 

(i) Shear stress would be expected at the rough column-soil interface, but 3 

complexities would arise due to the intrusion of fine particles into the 4 

column pores. The shear stress at the interface is ignored in the proposed 5 

model, so the load transfer is attributed solely to the properties of the 6 

foundation layer. 7 

(ii) The mechanism of shear stress generation in the foundation layer is more 8 

complicated than that simplified here, i.e., the sliding surface is not vertical 9 

and highly depends on the magnitude of deformation and the types of soil. 10 

(iii) Vertical flow in the surrounding soil is ignored, which is acceptable for a 11 

thick layer of clay, but the consolidation rate for a relatively short stone 12 

column may be underestimated. 13 

(iv) Vertical strain in the surrounding soil is generally non-uniform (the closer to 14 

the column the less), and this is not considered in the proposed model. 15 

Conclusions 16 

A new consolidation model was presented to capture the consolidation of soft ground 17 

improved by stone columns under conditions ranging from equal strain to free strain 18 
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by incorporating the stiffness of the foundation. The shear stress generated in the 1 

foundation layer is determined using a method similar to Terzaghi’s “trapdoor theory”. 2 

This method of stress redistribution is combined with consolidation to obtain 3 

generalized closed-form solutions. The derived solution was validated by comparison 4 

with previous models either under equal strain or free strain. The results showed that 5 

for stone columns, the difference between those two situations were significant and the 6 

consolidation curves corresponding to equal strain and free strain became the upper 7 

and lower boundary, respectively. It is observed that consolidation under free strain 8 

condition developed faster than equal strain initially, but then the trend reversed. 9 

A parametric study was also carried out to examine and quantify the effect of 10 

foundation stiffness; it showed that when the stiffness of the foundation increases, (a) 11 

the time needed to achieve 90% of degree of consolidation decreases, (b) the steady 12 

stress concentration ratio increases, and (c) the differential settlement at the ground 13 

surface decreases. The influence of foundation stiffness under different modulus ratios 14 

(Ec/Es), radius ratios (rs/rc), and permeability ratios (kc/ks) was also evaluated in this 15 

study. It was found that when the modulus ratio increases, consolidation becomes 16 

more sensitive to variations in the foundation stiffness, however, the effect of 17 

foundation stiffness on the consolidation rate is marginal under different radius ratios 18 

and permeability ratios. 19 
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An illustrative example is provided to demonstrate that the assumption of equal strain 1 

may lead to an overestimation of the consolidation degree in practice. Moreover, a 2 

case study at Ballina, NSW with detailed settlement and total stress measurements 3 

was also presented and analysed using the proposed model. Besides the conventional 4 

prediction of consolidation rate, additional features such as the differential settlement 5 

and the stress concentration ratio at ground surface can also be well captured. Despite 6 

of some deviation existing, it is still shown that this analytical model is capable of 7 

giving more realistic results than that under equal strain condition. 8 
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Appendix I: derivation of Eqn. (6) and (7) 1 

Combing Eqn. (3) and (4) together would yield: 2 

 ∆𝜎𝜎 = −
𝑟𝑟𝑐𝑐(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2)(𝜎𝜎𝑐𝑐 − 𝜎𝜎𝑠𝑠)

𝐻𝐻1𝑟𝑟𝑠𝑠2
 (a1) 

Substitute (a1) into (5), 3 

 � (𝜀𝜀𝑠𝑠 − 𝜀𝜀𝑐𝑐)𝑑𝑑𝑑𝑑
𝐻𝐻

0
= −

𝑟𝑟𝑐𝑐(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2)(𝜎𝜎𝑐𝑐 − 𝜎𝜎𝑠𝑠)
𝐾𝐾𝑟𝑟𝑠𝑠2

 (a2) 

Because the stress items are independent of depth, therefore, the right side of Eqn. (a2) 4 

can be rewritten as: 5 

 −
𝑟𝑟𝑐𝑐(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2)(𝜎𝜎𝑐𝑐 − 𝜎𝜎𝑠𝑠)

𝐾𝐾𝑟𝑟𝑠𝑠2
= −�

𝑟𝑟𝑐𝑐(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2)(𝜎𝜎𝑐𝑐 − 𝜎𝜎𝑠𝑠)
𝐻𝐻𝐻𝐻𝑟𝑟𝑠𝑠2

𝑑𝑑𝑑𝑑
𝐻𝐻

0
 (a3) 

Then Eqn. (a2) becomes an integral equation: 6 

 � [(𝜀𝜀𝑠𝑠 − 𝜀𝜀𝑐𝑐) +
𝑟𝑟𝑐𝑐(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2)(𝜎𝜎𝑐𝑐 − 𝜎𝜎𝑠𝑠)

𝐻𝐻𝐻𝐻𝑟𝑟𝑠𝑠2
]𝑑𝑑𝑑𝑑

𝐻𝐻

0
= 0 (a4) 

The integral equation usually does not have a general solving procedure, but a 7 

solution can be easily speculated. 8 

 (𝜀𝜀𝑠𝑠 − 𝜀𝜀𝑐𝑐) +
𝑟𝑟𝑐𝑐(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2)(𝜎𝜎𝑐𝑐 − 𝜎𝜎𝑠𝑠)

𝐻𝐻𝐻𝐻𝑟𝑟𝑠𝑠2
= 0 (a5) 

Combining (a5) and (a1) gives: 9 

 ∆𝜎𝜎 =
𝐻𝐻𝐻𝐻
𝐻𝐻1

(𝜀𝜀𝑠𝑠 − 𝜀𝜀𝑐𝑐) (a6) 

Substituting Eqn. (a6) into Eqns. (3) and (4) would yield: 10 
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 𝜎𝜎𝑠𝑠 = 𝜎𝜎 +
𝐾𝐾𝑟𝑟𝑐𝑐𝐻𝐻(𝜀𝜀𝑠𝑠 − 𝜀𝜀𝑐𝑐)
𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2

 (a7) 

 𝜎𝜎𝑐𝑐 = 𝜎𝜎 +
𝐾𝐾𝐾𝐾(𝜀𝜀𝑠𝑠 − 𝜀𝜀𝑐𝑐)

𝑟𝑟𝑐𝑐
 (a8) 

Take derivative of (a7) and (a8) with respect to time, t, and combining with Eqn. (1) 1 

leads to: 2 

 ∂𝜀𝜀𝑠𝑠
𝜕𝜕𝜕𝜕

=
𝑚𝑚𝑣𝑣𝑣𝑣[𝐻𝐻𝐻𝐻𝑟𝑟𝑐𝑐

∂𝜀𝜀𝑐𝑐
𝜕𝜕𝜕𝜕 + ∂𝑢𝑢�𝑠𝑠

𝜕𝜕𝜕𝜕 (𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2)]

𝑚𝑚𝑣𝑣𝑣𝑣𝐻𝐻𝐻𝐻𝑟𝑟𝑐𝑐 − 𝑟𝑟𝑐𝑐2 + 𝑟𝑟𝑠𝑠2
 

(a9) 

 ∂𝜀𝜀𝑐𝑐
𝜕𝜕𝜕𝜕

=
𝑚𝑚𝑣𝑣𝑣𝑣(𝐻𝐻𝐻𝐻∂𝜀𝜀𝑠𝑠𝜕𝜕𝜕𝜕 −

∂𝑢𝑢�𝑐𝑐
𝜕𝜕𝜕𝜕 𝑟𝑟𝑐𝑐)

𝑚𝑚𝑣𝑣𝑣𝑣𝐻𝐻𝐻𝐻 + 𝑟𝑟𝑐𝑐
 

(a10) 

Combining (a9) and (a10), then Eqn. (6) and (7) can be obtained. 3 

  4 
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Appendix II: derivation of Eqn. (15) 1 

Integrating Eqn. (8) considering the radius from r to rs, and then combining Eqn. (10) 2 

yields: 3 

 
𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝜕𝜕

=
𝛾𝛾𝑤𝑤(𝑟𝑟𝑠𝑠2 − 𝑟𝑟2)

2𝑘𝑘𝑠𝑠𝑓𝑓(𝑟𝑟)𝑟𝑟
𝜕𝜕𝜀𝜀𝑠𝑠
𝜕𝜕𝜕𝜕

 (b1) 

Substituting (b1) into (9) gives: 4 

 
𝑟𝑟𝑠𝑠2 − 𝑟𝑟𝑐𝑐2

𝑟𝑟𝑐𝑐2
𝜕𝜕𝜀𝜀𝑠𝑠
𝜕𝜕𝜕𝜕

+
𝑘𝑘𝑐𝑐
𝛾𝛾𝑤𝑤

𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2

= −
𝜕𝜕𝜀𝜀𝑐𝑐
𝜕𝜕𝜕𝜕

 (b2) 

Integrating (b1), the following equation can be derived by incorporating (11), thus, 5 

 𝑢𝑢𝑠𝑠 − 𝑢𝑢�𝑐𝑐 =
𝛾𝛾𝑤𝑤
2𝑘𝑘𝑠𝑠

𝜕𝜕𝜀𝜀𝑠𝑠
𝜕𝜕𝜕𝜕

�
𝑟𝑟𝑠𝑠2 − 𝑟𝑟2

𝑓𝑓(𝑟𝑟)𝑟𝑟
𝑑𝑑𝑑𝑑

𝑟𝑟

𝑟𝑟𝑐𝑐
 (b3) 

A relationship can also be established between the average pore water pressure in the 6 

surrounding clay and the pore pressure in the stone column, as given in (b4) and (b5). 7 

 𝑢𝑢�𝑠𝑠 =
1

𝜋𝜋(𝑟𝑟𝑠𝑠2 − 𝑟𝑟𝑐𝑐2)
� 2𝜋𝜋𝜋𝜋𝜋𝜋𝑠𝑠𝑑𝑑𝑑𝑑
𝑟𝑟𝑠𝑠

𝑟𝑟𝑐𝑐
= 𝑢𝑢�𝑐𝑐 +

𝛾𝛾𝑤𝑤𝐴𝐴
𝑘𝑘𝑠𝑠(𝑟𝑟𝑠𝑠2 − 𝑟𝑟𝑐𝑐2)

𝜕𝜕𝜀𝜀𝑠𝑠
𝜕𝜕𝜕𝜕

 (b4) 

 𝐴𝐴 = � 𝑟𝑟�
𝑟𝑟𝑠𝑠2 − 𝑟𝑟2

𝑓𝑓(𝑟𝑟)𝑟𝑟
𝑑𝑑𝑑𝑑

𝑟𝑟

𝑟𝑟𝑐𝑐
𝑑𝑑𝑑𝑑

𝑟𝑟𝑠𝑠

𝑟𝑟𝑐𝑐
 (b5) 

Combining (6) with (b4) and (b5) gives: 8 

 𝑢𝑢�𝑠𝑠 = 𝑢𝑢�𝑐𝑐 + 𝐵𝐵
𝜕𝜕𝑢𝑢�𝑐𝑐
𝜕𝜕𝜕𝜕

+ 𝐶𝐶
𝜕𝜕𝑢𝑢�𝑠𝑠
𝜕𝜕𝜕𝜕

 (b6) 

 𝐵𝐵 = −
𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑐𝑐2𝛾𝛾𝑤𝑤

𝑘𝑘𝑠𝑠(𝑟𝑟𝑐𝑐2−𝑟𝑟𝑠𝑠2)[𝐾𝐾𝑚𝑚𝑣𝑣𝑣𝑣𝐻𝐻(𝑟𝑟𝑐𝑐2−𝑟𝑟𝑠𝑠2) + 𝑟𝑟𝑐𝑐(𝑟𝑟𝑐𝑐2−𝑟𝑟𝑠𝑠2)− 𝐾𝐾𝐾𝐾𝑟𝑟𝑐𝑐𝑚𝑚𝑣𝑣𝑣𝑣]
 (b7) 
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 𝐶𝐶 = −
𝐴𝐴(𝐾𝐾𝐾𝐾𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣 + 𝑚𝑚𝑣𝑣𝑣𝑣𝑟𝑟𝑐𝑐)𝛾𝛾𝑤𝑤

𝑘𝑘𝑠𝑠[𝐾𝐾𝑚𝑚𝑣𝑣𝑣𝑣𝐻𝐻(𝑟𝑟𝑠𝑠2 − 𝑟𝑟𝑐𝑐2) + 𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾𝑟𝑟𝑐𝑐2 + 𝑟𝑟𝑐𝑐(𝑟𝑟𝑠𝑠2−𝑟𝑟𝑐𝑐2)]
 (b8) 

Then substituting (6) and (7) into (b2) gives: 1 

 𝜕𝜕𝑢𝑢�𝑠𝑠
𝜕𝜕𝜕𝜕

= 𝐷𝐷
𝜕𝜕𝑢𝑢�𝑐𝑐
𝜕𝜕𝜕𝜕

+ 𝐸𝐸
𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2

 (b9) 

 𝐷𝐷 =
𝑟𝑟𝑐𝑐2[𝑚𝑚𝑣𝑣𝑣𝑣𝑟𝑟𝑐𝑐(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2) −𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾𝑟𝑟𝑠𝑠2]

(𝑟𝑟𝑐𝑐2−𝑟𝑟𝑠𝑠2)[𝑚𝑚𝑣𝑣𝑣𝑣𝑟𝑟𝑐𝑐(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2) −𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾𝑟𝑟𝑠𝑠2]
 (b10) 

 𝐸𝐸 = −
𝑘𝑘𝑐𝑐𝑟𝑟𝑐𝑐2[𝐾𝐾𝑚𝑚𝑣𝑣𝑣𝑣𝐻𝐻(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2) + 𝑟𝑟𝑐𝑐(𝑟𝑟𝑠𝑠2−𝑟𝑟𝑐𝑐2) −𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾𝑟𝑟𝑐𝑐2]
𝛾𝛾𝑤𝑤(𝑟𝑟𝑐𝑐2−𝑟𝑟𝑠𝑠2)[𝑚𝑚𝑣𝑣𝑣𝑣𝑟𝑟𝑐𝑐(𝑟𝑟𝑐𝑐2 − 𝑟𝑟𝑠𝑠2) −𝑚𝑚𝑣𝑣𝑣𝑣𝑚𝑚𝑣𝑣𝑣𝑣𝐾𝐾𝐾𝐾𝑟𝑟𝑠𝑠2]

 (b11) 

Substituting (b9) into (b6) leads to: 2 

 𝑢𝑢�𝑠𝑠 = 𝑢𝑢�𝑐𝑐 + (𝐵𝐵 + 𝐶𝐶𝐶𝐶)
𝜕𝜕𝑢𝑢�𝑐𝑐
𝜕𝜕𝜕𝜕

+ 𝐶𝐶𝐶𝐶
𝜕𝜕2𝑢𝑢�𝑐𝑐
𝜕𝜕𝑧𝑧2

 (b12) 

Taking the derivative of Eqn. (b12) with respect to time, and then combining with 3 

Eqn. (b9) to eliminate the item involving 𝑢𝑢�𝑠𝑠, allows one to obtain the governing 4 

equation (15). 5 

  6 
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Table 1 Basic parameters used in analysis (Indraratna et al. 2013) 1 

ks(m/s) kc/ks rc(m) rs(m) rd/rc 

1.6×10-9 103 0.5 1.5 1.15 

kd/ks M(mvs/mvc) γw(kN/m3) H(m) mvs(MPa-1) 

0.1 7 10 16 2 

 2 

  3 
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Table 2 Foundation stiffness for different geo-materials based on direct shear tests 1 

Sources Soil Type 
Shear 

rate(mm/s) 

Specimen 

dimension(mm) 

Normal 

stress 

(kPa) 

Corresponding 

K* (kPa) 

Xu et al. (2011) 
Soil-rock 

mixture 
0.1-0.133 600x600x400 10-40 400-3000 

Dafalla (2013) 
Clay-sand 

mixture 
0.002 100x100 49-147 3000-10000 

Simoni and 

Houlsby (2006) 

Sand-gravel 

mixture 
0.0056 254x152x150 90 1000-5000 

Jewell (1989) Sand - 250x152x152 30-33 4000-11000 

Morgenstern 

and Tchalenko 

(1967) 

Clay 0.000049 60x60x25 215 11000-18000 

*Estimated based on the shear stress-horizontal displacement curves in the literature 2 
  3 
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Table 3 Properties of Ballina clay (Pineda et al. 2016) 1 

Borehole number Inclo2 Mex9 

Depth 2.1m-10.5m 2.8m-10m 

Water content 78%-122% 81%-113% 

Liquid limit 87%-128% 87%-127% 

Plastic limit 32%-50% 34%-46% 

Initial void ratio e0 2.03-3.31 2.16-2.89 

Dry density ρd (g/cm3) 0.62-0.89 0.65-0.87 

Coefficient of consolidation cv (m2/year) 2.5-285.9 4.75-23.5 

Undrained shear strength su (kPa) 11-24 10-26 

Permeability k (10-9m/s) 0.65-54 0.5-4.7 

Modulus M (kPa) 1140-2561 1587-3120 

  2 
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Table 4 Parameters used in prediction of field embankment 1 

H(m) rs(m) rc(m) rd/rc K(kPa) 

10 1.13 0.4 b1.15 c500/1000 

ks(m/s) kc(m/s) kd/ks mvs/mvc mvs(MPa-1) 

a10-9 b10-4 b0.1 b10 a0.7 

a. based on results of Pineda et al. (2016) and Kelly et al. (2017) 2 
b. according to Han and Ye (2001), Indraratna et al. (2013) 3 
c. Assumed based on Table 2 4 

  5 
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 1 

Figure 1 A stone column unit cell 2 

  3 
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 1 

(a) 2 

 3 

(b) 4 

Figure 2 Shear stress in the foundation layer (a) trapdoor theory (Terzaghi 1943); (b) 5 
typical stress-strain relationship (based on direct shear test) 6 
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 1 

Figure 3 Comparison between proposed model and previous models 2 
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1 

 2 
Figure 4 Vertical stress on top of the unit cell: (a) vertical stress ratio; (b) stress 3 

concentration ratio 4 
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 1 

Figure 5 Development of excess pore pressure for equal strain and free strain (depth of 2 
1m and 10m): (a) surrounding soil; (b) stone column 3 

  4 
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Figure 6 Excess pore pressure profiles: (a) in stone column; (b) in surrounding soil 2 
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 1 

(c) 2 

Figure 7 Effect of foundation stiffness on: (a) average degree of consolidation; (b) 3 

stress concentration ratio; (c) differential settlement 4 
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Figure 8 Effect of modulus ratio under varying foundation stiffness: (a) steady stress 2 
concentration ratio (ns); (b) time to achieve 90% degree of consolidation (U90); (c) 3 

differential settlement ratio (ΔS/H) 4 
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Figure 9 Effect of foundation stiffness on U90: (a) radius ratio (rs/rc); (b) permeability 5 
ratio (kc/ks) 6 
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Figure 10 Cross-section of embankment beyond stone columns 2 
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Figure 11 Embankment at Ballina: (a) construction order and settlement; (b) stress 3 
concentration ratio 4 
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