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a b s t r a c t 

Intrusion Detection System (IDS) is an important tool for protecting the Internet of Things 

(IoT) networks against cyber-attacks. Traditional IDSs can only distinguish between normal 

and abnormal behaviors. On the other hand, modern techniques can identify the kind of 

attack so that the appropriate reactions can be carried out against each type of attack. 

However, these techniques always suffer from the class-imbalance which affects the per- 

formance of IDS. In this paper, we propose a cost-sensitive stacked auto-encoder, CSSAE, to 

deal with class imbalance problem in IDS. CSSAE generates a cost matrix in which a unique 

cost is assigned to each class based on the distribution of different classes. This matrix is 

created in the first stage of CSSAE. In the second phase, a two-layer stacked auto-encoder 

is applied to learn features with better distinguish between the minority and the majority 

classes. These costs are used in the feature learning of deep learning, where the param- 

eters of the neural network are modified by applying the corresponding costs in the cost 

function layer. The proposed method is able to perform on both binary-class data and mul- 

ticlass data. Two well-known KDD CUP 99 and NSL-KDD datasets are used to evaluate the 

performance of CSSAE. Compared with other IDSs that have not considered class imbalance 

problem, CSSAE shows better performance in the detection of low-frequency attacks. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The Internet of Things (IoT) connects all things in the worl d to the internet. This is the result of advancements in mobile

communication, wireless sensor networks, and radio frequency identification so that things can collaborate with one another

anytime, anywhere and in any form [1] . The IoT is an invisible but intelligent network that senses, controls and can be

programmed [2] . It is predicted that over than 28 billion IoT devices can connect to the Internet by 2020 [3] . Therefore, each

person will possess three devices with the ability to connect to the Internet. According to a report, the annual economic

impact of IoT in 2025 will be between $2.7 and $6.2 trillion. These figures suggest the steep growth of IoT services [4] .

Since the IoT was established based on the conventional unsecured Internet model, security and privacy are two critical

challenges for IoT development [5] . Thus, questions regarding users, servers, and trusted third parties must be managed

[6] . With the spread of network attacks either to access sensitive information without permission by external users or to

raise access privileges by internal users, cyber-security recently has become one of the most critical issues. Although there

are different ongoing security mechanisms for data confidentiality and authentication, networks are vulnerable to multiple
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disrupting attacks. Intrusion Detection System (IDS) is a defense mechanism to fulfill this purpose. IDS is required to be

applied at the communication level to monitor network operation and communication links. When a pre-defined policy is

ignored, the system alerts about anomaly activities [7] . 

Machine Learning (ML)-based intrusion detection mechanisms are a new trend. This is because cyber-security has be-

come more complex than before and traditional signature-based mechanisms are no longer effective. The ML techniques

are able to efficiently discover valuable knowledge and hidden information [8] . Deep Learning is a robust method based on

artificial neural networks. According to the Gartner report, 1 deep learning and IoT are among the top strategic technology

trends for 2019. This is because traditional ML approaches cannot address the emerging analytic needs of IoT systems. Re-

ducing handcrafted dependence is the important improvement of deep learning over the traditional ML approaches. Indeed,

engineered feature sets are to be used for the training; as a result, some features that may not be evident from an expert’s

perspective can easily be extracted in deep learning models. Although deep learning can harvest valuable knowledge from

complex systems, its performance is affected when data is unbalanced. This is because of class imbalance in the training

dataset, which means that IDS achieves poorer detection accuracy when dealing with these low-frequency attacks. 

Because of the nature of the intrusion datasets, the class imbalance is a significant challenge which affects the attack

identification. Cost-sensitive is an effective technique to deal with this problem. Although some deep learning-based intru-

sion detection mechanisms have been recently developed [9–11] , to our best knowledge, there is no cost-sensitive feature

learning for these approaches. While convolutional networks achieve better performance in applications related to vision,

Stacked Auto-Encoder (SAE) performs very well with other areas such as intrusion detection [12] . Thus, we integrate a cost-

sensitive function into SAE to address the class imbalance in intrusion detection for IoT. This is the first work proposing

a solution for cost-sensitive deep learning for anomaly detection in IoT. In this paper, we propose a SAE-based system for

intrusion detection to learn robust feature representations and classifier parameters under a cost-sensitive setting. We have

called this method cost-sensitive stacked auto-encoder (CSSAE). Using this strategy, we are able to learn an improved clas-

sifier that deals with the class imbalance problem in IDS. The proposed system is extensively tested on two major intrusion

datasets to show the superiority of CSSAE compared to the state-of-the-art methods. The results of evaluations are presented

in terms of different classification measures such as accuracy, recall, precision, and skewed f-measure. The results show that

CSSAE outperforms the other similar approaches in terms of effectiveness and efficiency. 

The rest of the paper is organized as follows: Section 2 describes relevant background information related to this study,

including intrusion detection problem, deep learning, and class imbalance problem in classification. Section 3 elaborates

on some related works for intrusion detection problem in the IoT. In Section 4 , a novel cost-sensitive deep learning is

proposed to deal with class imbalance in intrusion detection. Section 5 details datasets as well as evaluation measures used

for evaluating our proposed method. Section 6 presents the experimental results and discussions. Finally, Section 7 concludes

the paper. 

2. Background information 

2.1. Stacked auto-encoders (SAEs) 

An auto-encoder is an unsupervised back-propagation neural networks algorithm for feature extraction. It tries to learn

the best parameters to reconstruct the output as closely to the input as possible. The auto-encoder compresses the input

into a lower-dimensional code and then reconstructs the output from this representation. Indeed, an auto-encoder is a

symmetrical structure of artificial neural networks [13] . Fig. 1 shows the basic structure of a single auto-encoder. As we can

see, this auto-encoder consists of two stages: encoder and decoder. The aim of an encoder is to map an input vector x ∈ [0,

1] d into a hidden representation h . The input data is transformed into the hidden layer through the encoding function f : 

h = f ( W 1 x + b 1 ) (1) 

where f is a non-linear activation function. The widely used activation functions include sigmoid, relu, tanh, and softsign.

A logistic sigmoid function f (x) = 1 /( 1 + exp( −x)) is often used as the activation function. The hidden representation h is

then reconstructed using decoding function g in order to generate the output vector x ′ ∈ [0, 1] d . The decoding function is a

non-linear mapping function as shown below: 

y = g ( W 2 h + b 2 ) (2) 

The process of auto-encoding tries to minimize the difference between reconstructed input and the original input. This

error value should be as small as possible. The network parameter set θ= { W 1 , b 1 , W 2 , b 2 } is fine-tuned to minimize the

average reconstruction error. W 1 ∈ R 

z×d and W 2 ∈ R 

d×z represent the weight matrices of the hidden layer and output layer,

respectively. The vectors b 1 ∈ R 

z and b 1 ∈ R 

d are the bias vectors of the hidden layer and output layer, respectively. The

terms d and z are the numbers of input neurons and hidden neurons, respectively. The reconstruction error is defined by a

likelihood function: 

L ( X, Y ) = 

1 

2 

N ∑ 

i =1 

‖ ( y i − x i ) ‖ 

2 
2 (3) 
1 https://www.gartner.com/smarterwithgartner/gartner- top- 10- strategic- technology- trends- for- 2019/ . 
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Fig. 1. The structure of a single auto-encoder. 
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Fig. 2. Schematic diagram of single auto-encoder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where N is the number of training samples, and x i denotes the i th training sample. 

The object function of sparse auto-encoder is computed by imposing a sparsity constrain on the target activation function

to achieve nonlinear mapping of the input vector. This means that the size of hidden layers may be larger than the input

size, which is referred to as the sparse auto-encoder. The reconstruction error of the sparse auto-encoder is calculated using

the following equation: 

L Sparse ( X, Y ) = L ( X, Y ) + β
z ∑ 

j=1 

KL ( ρ|| ̄ρ) (4)

where β represents the weight of sparsity penalty item, ρ is the sparsity parameter that is usually a small value close to

zero. ρ j = 

1 
n 

N ∑ 

i =1 

h i ( x i ) is the average activation of j the hidden node. In order to enforce the constraint ρ = ρ̄ , an extra penalty

term is added to the optimization objective that penalizes ρ̄ by deviating significantly from ρ . The penalty term is based on

Kullback–Leibler divergence that can be defined by Vincent et al. [14] : 

KL ( ρ|| ̄ρ) = ρ log 
ρ

ρ j 

+ ( 1 − ρ) log 

(
1 − ρ

1 − ρ̄

)
(5)

The ideal case is when only a few hidden neurons respond to specific classes and most of the neurons are suppressed

[15] . It is clear that the parameters of a basic auto-encoder are trained in an unsupervised way. In a basic auto-encoder,

when the number of hidden neurons ( z ) is smaller than that of d , the auto-encoder performs a feature reduction procedure.

In contrast, when the size of hidden layer is larger than the size of the input layer, auto-encoder is called sparse auto-

encoder [16] . Fig. 2 shows the schematic diagram of sparse auto-encoder with three layers, including the input layer, the

hidden layer, and the output layer. In this network, + 1 is the bias neuron. 

Single sparse auto-encoders can only learn low-level features. Several auto-encoders can be stacked to derive deeper

and higher-level features in a hierarchical way [17] . This technique is called stacked auto-encoder. A SAE is trained using

two phases: pre-training and fine-tuning. In the pre-training step, each auto-encoder reconstructs the input into the output

using unsupervised learning without any labeling or prior processing [13] . The first auto-encoder takes the original data
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Fig. 3. Schematic diagram of stacked auto-encoder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vector x as input to train the parameters of the first hidden layer. The output of the first auto-encoder is fed to the second

hidden layer to train the parameters. These steps are repeated until the parameters of all hidden layers are trained. A

SAE enlarges the parameter space, resulting in local optimum solution, particularly when the amount of input is limited.

Therefore, greedy layer-wise training is used in a stacked network that can convey better initialized parameters [15] . After

pre-training, the trained parameters are set to the initial parameters of the SAE. In the fine-tuning stage, the labeled samples

are used as supervised instances [18] . The final layer can deal with traditional supervised classification and the pre-trained

neural network can be fine-tuned using back-propagation. Fig. 3 shows an example of SAE with three hidden layers. 

2.2. Class imbalance 

Similar to most real-world problems, the collected data related to intrusion activities encountered the class-imbalance

problem. When the instances of some classes in the training set outnumber the other instances, the multiclass dataset is

said to be imbalanced or skewed. This skewed distribution of class instances affects the performance of machine learning

algorithms. They are biased toward the majority classes [19] . Approaches that handle the unbalanced data problem can be

grouped into two categories: 

Data-level approaches: These approaches are performed in the pre-processing stage of the machine learning process to

re-balance the class distributions. Since data-level approaches are independent of the classification phase, they can be em-

ployed flexibly. Under-sampling and over-sampling are two well-known strategies. Under-sampling removes examples from 

the majority class, while over-sampling adds examples to the minority class. These approaches have some drawbacks. Under-

sampling can potentially remove useful knowledge about the majority class data. Over-sampling makes the training complex

and burdensome by increasing the size of the training set. Besides, this technique is susceptible to over-fitting when the

minority class samples are randomly duplicated [20] . The Random Over-Sampling (ROS) and the Random Under-Sampling

(RUS) are two common data sampling methods. Chawla et al. [21] proposed Synthetic Minority Oversampling Technique

(SMOTE) that generates new samples by linear interpolation between closely lying minority class instances. A combination

of under-sampling and over-sampling has been presented in [22] to balance the training data. However, it increased the

computational cost of a classification model. 

Algorithm-level approaches: These methods modify the learning procedure by inserting an additional specialized mecha- 

nism into the original algorithm to prove the sensitivity of the classifier toward minority classes. Ng et al. [17] proposed

a two-phase encoding to deal with class imbalance problem. In the first phase, an SAE with sigmoid function is used. On

the other hand, the SAE of the second phase applies tanh as activation function. The features learned from the two SAEs

are combined. Cost-sensitive is a technique to deal with class imbalance in classification, in which different costs are as-

signed to each class and the algorithm adapts these costs during the training phase. The aim is to assign a higher cost for

minority class instances in order to reduce the overall learning cost. In the context of deep learning, some approaches have

recently been proposed to integrate class-specific costs into deep networks. Chung et al. [23] designed a loss function that

combined the cost information with the training stage of cost-sensitive deep learning. They also showed the effectiveness

of integrating the loss function into the pre-training stage. This method was applied for Deep Neural Networks (DNN) and

Convolutional Neural Networks (CNN). The loss function proposed in [24] assigns equal importance to misclassifications in

the minority and majority classes. Khan et al. [19] incorporated a cost-sensitive setting in CNN to learn feature representa-
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Table 1 

The distribution of different types of events in KDD 99 and NSL-KDD datasets. 

Event Dataset 

NSL-KDD KDD 99 

DoS 0.356 0.781813 

Probe 0.088 0.008246 

R2L 0.022 0.009054 

U2R 0.0000614 0.000116 

Normal 0.532 0.200772 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tions and classifier parameters for both the majority and minority classes. This approach can be used for both binary and

multiclass problems. The cost-sensitive function was applied before the softmax and the loss layer to alter the result of

the last layer of CNN. Since the proposed technique can only been developed for 2D data (e.g., computer vision) it is not

appropriate for 1D data such as intrusion data. 

2.3. Intrusion detection problem 

Intrusion detection is the process of identifying activities that try to obtain unauthorized access to a computer system. An

attacker may be internal or external. The former refers to the users who are inside the network with a degree of permissions.

However, they attempt to misuse their legitimate access privileges to attain non-authorized privileges. The latter type of

users tries to gain unauthorized access to system information [25] . 

An intrusion detection system collects and analyzes different types of network or host data such as packet headers,

operating system calls, traffic statistics, and file-system changes. In the intrusion detection process, the data collected by the

devices is received by the analysis engine. This engine aims to investigate the data to detect anomalies and intrusions. The

IDS system generates an alert report for the network administrator if it diagnoses an intrusion [26] . 

There are two types of IDS: Network-based IDS (NIDS) and Host-based IDS (HIDS). In NIDS, network traffic of various

network segments is monitored in order to identify malicious behaviors. HIDS is performed only for a network device and

pursues malicious activities occurring within the system. HIDS investigates not only network traffic but other data such

as running processes, file-system changes, inter-process communication, and application logs. On the other hand, the NIDS

analyzes only network traffic. 

2.4. Class imbalance problem in intrusion data 

The imbalance of labels in the intrusion datasets is significant. In the case of cyber-security in IoT, the majority of ma-

chines in the network often behave normally while a few of devices produce malicious traffic. Moreover, compared to the

number of normal transactions within a certain time range, some attacks are not extremely frequent [27] . KDD 99 and

NSL-KDD are two well-known intrusion datasets which are unbalanced. The characteristics of these datasets are described

in Section 5.1 . However, the different types of behaviors are shown in Table 1 . According to the analysis of these datasets,

malicious activities in the IoT network can be grouped into four main categories: 

- Denial of Service (DoS) : Attackers try to disrupt legitimate users’ access to a particular service or device [28] . 

- Probe : An attacker seeks to attain information about the network through scanning activities (i.e. ports scanning). 

- User to Root (U2R) : When an attacker tries to increase the privilege of a limited user to a superuser or root access (e.g.

via malware infection or stolen credentials). 

- Remote to Local (R2L) : when an attacker gains remote access to a victim machine imitating existing local users. 

According to the presented ratios, including Dos and Normal events are included the majority of the number of samples.

The distribution of both classes is 0.35 and 0.53 in NSL-KDD, respectively. These ratios are 0.78 and 0.2 in KDD 99. On

the other hand, Probe, R2L, and U2R attacks have rarely happened. Furthermore, since U2R and R2L attacks mimic normal

users’ behavior, they are the most challenging attacks for detection [29] . Unbalanced distribution causes the misclassification

of these attacks on DoS and Normal behaviors. Therefore, detection systems cannot correctly identify these attacks. These

false detections affect the decision to deal with any type of attack. Thus, defense mechanisms are designed that cannot

correctly detect some of the attacks. Therefore, the system will not work properly. 

3. Related works 

Intrusion detection techniques generally can be classified into supervised and unsupervised learning. In the former, the

normal behavior of networks is modeled using a labeled dataset. The latter builds a model based on normal behaviors

with this assumption that these behaviors frequently occur [29] . According to the placement strategy, intrusion detection

approaches are classified into two categories: centralized and distributed. In the centralized-based, IDS is placed in the

border router or a dedicated host. However, it makes communicational overhead between the nodes and IDS. Although
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distributed strategy can address this problem, it requires more processing and storage resources. In this paper, we categorize

intrusion detection techniques into three groups: signature-based, anomaly-based, and specification-based. 

In signature-based, a behavior is detected as an attack if the network activity matches an attack signature stored in

the database. These approaches are very effective at detecting known threats, but are ineffective against new attacks and

the variants of known attacks [30] . Anomaly-based approaches compare the behaviors of the network against a normal

activity. If the deviation between normal and attack behaviors exceed a threshold, IDS generates an alert. The anomaly-

based strategy is able to detect new attacks. Since this strategy considers anything that does not match normal activity as

an intrusion, the false positive ratio is high. Statistical or machine learning techniques are usually used to model normal

behavior. Specification-based approaches are similar to anomaly-based detection, i.e. detection of deviation from normal 

behavior. However, the rules of each specification are manually defined by a human expert. This is time-consuming and

error-prone [31] . 

An IDS model has been presented by Pajouh et al. [29] based on a two-layer dimension reduction and two-tier classifi-

cation module. Besides, the proposed model can be used to identify User to Root (U2R) and Remote to Local (R2L) attacks.

Component analysis and linear discriminate analysis were applied for dimension reduction. On the other hand, Naive Bayes

and K-Nearest Neighbor were used in the two-tier classification phase. Kozik et al. [27] proposed a distributed attack de-

tection system for Cloud and Edge-assisted IoT applications. They used Extreme Learning Machines. Apache Spark cloud

framework is employed on the artificial Netflow. Chen et al. [32] presented a model-based cyber security management ap-

proach for IoT with minimal impacts on the performance. Moreover, the approach can learn the signatures of an unknown

attack in real-time. Pahl and Aubet [33] developed a machine learning-based approach for anomaly detection for IoT by only

observing inter-service communication. They used two types of clustering algorithms: a grid-based algorithm and k-means.

The clustering model is updated using an online learning technique. Hasan et al. [34] investigated the performance of five

machine learning models for anomaly detection in the IoT systems. These algorithms included Logistic Regression (LR), Sup-

port Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN). Experimental

results showed that RF outperformed the other four models. 

Deep learning-based intrusion detection has recently attracted more attention. A methodology for the online detection

of network attacks against IoT gateways has been developed by Brun et al. [9] , in which dense random neural network was

used to predict Denial of Service (DoS) and Denial of Sleep attacks. Diro and Chilamkurti [10] designed a distributed deep

learning-based attack detection mechanism using fog-to-things architecture. Feng et al. [16] applied an auto-encoder for

anomaly detection in wireless communications. Lopez-Martin et al. [11] used conditional variational auto-encoder for IDS,

in which the intrusion labels are integrated inside the decoder layers. Shone et al. [35] proposed a model using the combi-

nation of deep and shallow learning. In this model, Non-symmetric Deep Auto-Encoder (NDAE) is first used for unsupervised

feature learning. A classification model is then constructed upon the model using stacked NDAEs and the RF classification

algorithm. However, the critical issue in the afore-mentioned literature is that they have not considered the cost of different

classes. 

4. CSSAE: cost-sensitive stacked auto-encoders 

4.1. Framework of the proposed method 

The aim of this study is to modify the cost function of SAE to be more sensitive toward misclassification of minority class.

Fig. 4 shows our proposed framework, which includes three main steps: Cost Matrix Formation, Feature Learning using SAE ,

and Cost-Sensitive Cost Function . Using this framework, we aim to reduce the impact of unbalanced data on the performance

of IDS. At the first step of our schema, a cost matrix is generated by computing the distributions of samples of all classes.

Then, the data is fed to a stacked sparse auto-encoder to classify instances. To avoid over-fitting, we use an early stopping

technique. If the value of loss function on the validation set remains almost unchanged for several epochs, the training

procedure stops. We also use the Batch Normalization technique to speed up the learning phase. In this study, Softmax
Classification

Cost γ 

Data
Cost Matrix Formation SAE-based feature 

training
Cost-sensitive Cost 

Function
Parameter 

setting

Fig. 4. Schematic diagram of our cost-sensitive SAE algorithm. 
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Table 2 

An example of cost matrix for a four-class data. 

Classes 

c 1 c 2 c 3 c 4 

Classes c 1 0 Cost c 1 → c 2 Cost c 1 → c 3 Cost c 1 → c 4 

c 2 Cost c 2 → c 1 0 Cost c 2 → c 3 Cost c 2 → c 4 

c 3 Cost c 3 → c 1 Cost c 3 → c 2 0 Cost c 3 → c 4 

c 4 Cost c 4 → c 1 Cost c 4 → c 2 Cost c 4 → c 3 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

classifier, which is a multi-class version of Logistic Regression, is used. Cross-entropy loss computes the probability of each

class, instead of the hinge loss. 

4.2. Cost matrix formulation 

In this section, we propose a new cost matrix γ that is proper for SAE training. The output of the last layer of an SAE is

modified using the cost matrix γ . In SAE, the classification decision is biased to the class with the maximum classification

score. The classifier weights are altered during the training process. The aim is to assign the maximum score to the desired

class, while the other classes have a lower score. In the case of class imbalance, the infrequent classes have less impact on

the classification model than the others. Thus, we introduce new cost assignment to encourage the correct classification of

the less frequent classes. 

Let the cost γ i, j denote the cost of classifying a sample belonging to a class i into class j, i � = j . Given x is an input sample

and γ is the cost matrix, the classifier tries to minimize risk ρ( c | x ), where c is the class prediction made by the classifier.

The risk can be computed as: 

ρ(i | x ) = P ( j| x ) (6)

where P( j |x) is the posterior probability over all classes given in sample x . An effective classifier should minimize the risk. 

In a cost matrix, the diagonal of the matrix is known as the utility vector. This vector shows the correct classification

and is set to zero. Also, all costs are non-negative, i.e. γ i, j > 0. Table 2 shows an example of a cost matrix for a dataset

with four classes. A 4 × 4 matrix is created in such a way that all the matrices’ cell values are greater zero except for those

on the diagonal which are always zero. This means that there is no cost when the algorithm classifies a sample correctly.

Otherwise, our algorithm assigns a misclassification cost depending on the corresponding cost in the cost matrix. 

4.3. Cost-sensitive training 

In order to deal with class imbalance during the process of feature learning, we propose a two-layer SAE to learn fea-

tures. Fig. 5 shows our proposed SAE algorithm with two hidden layers and the Softmax classifier as the output layer for

the classification algorithm. We improve this cost function based on a cost-sensitive strategy to deal with class imbalance.

Although there is no limit to the number of AEs being stacked, a single auto-encoder is not powerful enough to learn useful

features. On the other hand, SAE with more than two AEs may not achieve much better representation at the cost of slower

training time. 

Assume that the output of the last layer is { X, Y } = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m 

, y C ) } , x i ∈ R 

d× 1 , d is the number of encod-

ing neurons in the last layer, y i ∈ R 

C× 1 is the labels. The activation function f θ ( x ) of the Softmax classifier indicates in which

class the instance x belongs. This is determined using maximum conditional probability p( y = j, x ; θ ) , j ∈ { 1 , 2 , . . . , C } . The

value of f θ ( x ) is computed as follows: 

f θ ( x ) = 

1 ∑ C 
j=1 e 

θ T 
j 

x i 

⎡ 

⎢ ⎣ 

e θ
T 
1 x i 

e θ
T 
2 x i 

· · ·
e θ

T 
C x i 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

p( y i = 1 | x i ; θ1 ) 
p( y i = 2 | x i ; θ2 ) 

· · ·
p( y i = C| x i ; θC ) 

⎤ 

⎥ ⎦ 

(7)

In this equation, θ j is the parameter mapping toward the j the class. The weight and bias parameters are learnt by the

Softmax layer by minimizing the cost value. The cost function is calculated using the following equation: 

J ( W, b ) = − 1 

N 

[ 

N ∑ 

i =1 

C ∑ 

j=1 

I { y i = j } log 
e θ

T 
1 x i ∑ C 

j=1 e 
θ T 

1 
x i 

] 

+ 

λ

2 

L ∑ 

k =1 

nl ∑ 

i =1 

nl+1 ∑ 

j=1 

w i j 
2 (8)

where N is the number of training samples, C is the number of classes, λ is a weight decay coefficient, L is number of

hidden layers, nl is the number of neurons in the layer. I{ y i = j } determines the membership of an element in a subset j

of set y . If y i = j, I{ y i = j } is equal to 1 ; otherwise, it is 0 . This means that when the sample y i of class j is misclassified,

p( y i = j| x i ; θ j ) tends to be smaller and the result of Eq. (3) will be very large. 
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Fig. 5. An overview of our proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We aim to punish each type of misclassification error differently based on some given costs. This penalty value is

greater when a minority sample is misclassified than when a majority sample is wrongly classified. As we mentioned in

Section 4.2 , minority and majority classes are determined and we only need to find the corresponding cost from the cost

matrix. The superiority of our algorithm is that it is not necessary to determine the kind of classes in terms of minority or

majority. Indeed, the costs are assigned to the classes solely based on the distributions. This characteristic helps algorithm

could be applied on any datasets. 

CSSAE algorithm aims to impose a penalty for each misclassification according to the corresponding cost. We punish both

misclassified and actual classes in such a way that the output value of predicted class is reduced ( Eq. (9) ) while the output

value of the actual class increases ( Eq. (10) ). The main idea behind this strategy is that the output with larger value has the

more chance to get higher probability than smaller values. Therefore, CSSAE tries to increase the probability value of actual

class by increasing the corresponding output value in the last layer. On the other hand, CSSAE decrease the output value of

the misclassified class. 

y i = y P − γi,k × y P (9) 

y i = y A + γi,k × y A (10) 

The terms y P and y A are the outputs of predicted class and actual class, respectively. The value of y i is the new output of

misclassified and actual class. 

Once the weight and bias parameter learning is completed in the Softmax classifier, fine-tuning of all weight and bias

parameters in the whole network is performed by the algorithm. The weights of all layers in the network are improved by

using back-propagation technique, as follows: 

w i j = w i j + �w i j → w i j + lαy i (11) 
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α = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

y P − y i , i f i ∈ N L and i is predicted class 
y i − y A , i f i ∈ N L and i is actual class 
y i ( 1 − y i ) 

∑ 

k 

αk w ik , i f i N L 

0 , otherwise 

(12)

where N L is the neurons in the last layer, α is the error of a neuron, and w ik is the weight of the connection from unit i to

a unit k in the next higher layer. According to Eq. (12) , to compute the error of a unit in the last layer, we should calculate

the different between the new cost-sensitive values and the previous values. On the other hand, the weighted sum of the

errors of the units connected to unit i in the next layer is considered in order to compute the error of a hidden layer unit.

Biases are updated by the following equation: 

b j = b j + �b j → b j + lα (13)

5. Experimental setup 

In our experiments, we used the KDD ’99 and NSL-KDD datasets to evaluate the proposed method. These datasets are

commonly used in the literature to assess the performance of IDS methods. 

5.1. Datasets 

- KDD CUP 99: The KDD CUP 99 dataset is a well-known intrusion evaluation dataset that was applied in DARPA’s IDS

evaluation program [36] . The original version of this dataset consists of seven million connection records including five

million of training records and two million of test samples. These records were collected from 7 weeks of network traffic.

In academic experiences, 10% of the full-size dataset is used because they aim to evaluate the performance of IDS, not

efficiency. This reduced dataset is referred to as KDD CUP 99, which includes 494,021 training samples and 311,029

testing records. 

- NSL-KDD: NSL-KDD benchmark dataset [37] is a new version of KDD99 dataset for network intrusion detection systems. 

All attacks included in both datasets fell into four major groups: DoS, Probe, U2R, and R2L. The datasets have 22 at-

tack patterns and 41 feature fields. These features are three types: basic features (e.g., protocol type, packet size), do-

main knowledge features (e.g., the number of failed logins), and timed observation features (e.g., the ratio of connections

with SYN errors). Table 3 shows the distribution of train and test datasets for both benchmarks. All 22 attack types have

been included in both train and test sets. These attacks are randomly selected in the pre-processing phase, described in

Section 5.3 . 
Table 3 

Description of datasets. 

Category Attack type KDD 99 NSL-KDD 

Train Test Train Test 

DoS back 2970 331 1183 132 

land 27 3 22 3 

neptune 148,682 16,520 41,284 4587 

pod 316 35 218 24 

smurf 400,393 44,488 2980 331 

teardrop 892 99 813 91 

Probe ipsweep 1398 155 3366 374 

nmap 284 31 1409 157 

portsweep 1255 139 2779 309 

satan 2900 322 3931 437 

R2L ftp_write 10 1 10 1 

guess_password 3978 442 1155 129 

Imap 12 1 11 1 

multihop 23 2 22 3 

phf 6 0 5 1 

spy 2 0 2 0 

warezclient 918 102 801 89 

warezmaster 1460 162 867 97 

U2R loadmodule 10 1 10 1 

buffer_overflow 47 5 45 5 

rootkit 21 2 21 2 

perl 5 0 4 1 

Normal 142,084 15,787 69,348 7706 

Total 707,693 78,628 130,286 14,481 
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5.2. Evaluation measures 

In order to evaluate the performance of our proposed method, different metrics are used, including accuracy, recall,

precision, F-Measure, and false alarm rate. To measure the detection performance on the normal and attack classes, the

probability of detection (recall) and the probability of a false alarm are commonly applied. Skewed F -measure is employed

to measure how well IDS can balance the performance between the normal and attack classes. All these measures are

computed using four predictions obtained from the application of the classification model on the test dataset [26] . These

results are defined below: 

- True Positive (TP): The number of attacks that are correctly identified. 

- False Positive (FP): The number of normal samples classified as attacks. 

- True Negative (TN) : The number of normal records that are correctly classified as normal ones. 

- False Negative (FN): The number of intrusions that are mistakenly classified as normal. 

Accuracy : The accuracy refers to the proportion of the total number of correct classifications ( Eq. (14) ). 

Accuracy = 

T P + T N 

T P + T N + F P + F N 

(14) 

Recall : The recall indicates the proportion of the actual number of attacks which are correctly detected. Recall is very

important for IDS because detection models intend to discover true attack instances as much as possible. The recall is

defined as the following equation: 

Recall = 

T P 

T P + F N 

(15) 

Precision : The precision computes the proportion of correctly predicted attacks. This measure has a direct impact on

the performance of the system. A higher value of precision indicates a lower false positive rate and vice versa. Precision is

computed using the following equation: 

P recision = 

T P 

T P + F P 
(16) 

Skewed F-measure : Obviously, a good detection model tends to attain high value of recall and precision. However, there

is a tradeoff between these two measures. The Skewed F-measure evaluates the harmonic mean of recall and precision.

Indeed, it examines the accuracy of a system by considering both recall and precision ( Eq. (17) ). 

Skewed F - measure = 

( 1 + α) Recall ∗ Precision 

α × Recall + Precision 

(17) 

where α is a positive value to decide the relative significance of the precision over the recall. A greater value for α indicates

the higher importance of recall over precision. From the aspect of cost in case of unbalanced data, the most important

element of the confusion matrix is the FN value [38] . Therefore, we pay more attention to how many attack instances are

correctly detected. In this case, improving recall is considered more than increasing precision. Similarly [38] , we set α as 4

in our evaluations. 

False Alarm Rate (FAR) : The false alarm rate is the proportion of normal events that are incorrectly classified as malicious.

Unlike recall, a low false alarm rate is a prerequisite for any intrusion detection system ( Eq. (18) ). It is noted that given FAR,

a True Negative Rate (TNR) easily can be obtained, which is defined as T NR = 1 − F AR . 

FAR = 

F P 

F P + T N 

(18) 

5.3. Data pre-processing 

Both KDD CUP 99 and NSL-KDD datasets require a pre-processing to be used for our proposed deep learning. This phase

includes two phase sub-processes: data separation, data transformation, and data normalization ( Fig. 6 ). 

- Data separation: Before data modeling, it is necessary to divide data into two sets: a training set and test set. Both

datasets should consist of all attack types. Since random sampling is performed, all instances of some attack classes may

be selected as a training set. This is because some class distributions are unbalanced. Therefore, we separate all attack

classes and choose 90% of samples as the training set and 10% as the test set. 

- Data transformation: The trained deep learning model needs each tuple of data to be a vector of real numbers. There-

fore, each nominal feature is converted into a numerical value using data transformation step. There are three nominal

attributes: “protocol_type” (TCP, UDP, and ICMP), “service” (HTTP, FTP and so on), and “flag” (e.g. SF, SH and so on). 

- Data normalization: In the data normalization step of neural network-based approaches, the value of each attribute is

scaled into a well-proportioned range between 0 and 1. This process leads to eliminating the bias in favor of features
with greater values. As with data transformation, data normalization is also been used for the test dataset. 
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Fig. 6. Experimental setup steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Experimental results 

This section provides the results obtained from experiments in terms of performance and efficiency. We have undertaken

the evaluations based on a 5-class classification and a 2-class classification using KDD CUP 99 and NSL-KDD datasets. In 5-

class classification, four types of attacks as well as normal behaviors are classified using three algorithms. CSSAE is compared

with NDAE method [35] as well as applying SAE without the cost-sensitive approach. The results are presented using five

measures: accuracy, recall, precision, FAR , and F-Measure . In addition, the efficiency is evaluated according to CPU time. 

6.1. KDD CUP 99 

Fig. 7 shows the confusion matrices of the models for KDD CUP 99 dataset in terms of two-class classification and five-

class classification. In two-class classification, the algorithm builds a detection model based on normal and malicious events.

Since all types of attacks are considered as malicious events, the anomaly detection rate is high for all three algorithms. This

is because the attack instances greatly outnumber the normal behaviors, 62,841 (80%) against 15,787 (20%). Therefore, this

kind of modeling does not reflect the impact of low-frequency attacks on the IDS. The five-class confusion matrix is a

better way to show the effectiveness of anomaly detection systems. We presented these matrices on the left side of Fig. 7 .

Our model achieved a better anomaly detection rate for minority classes, 87% and 86% and 38% for Probe, R2L and U2R,

respectively. These figures are under 0.85 for SAE and NDAE algorithms. 

Fig. 8 presents the effectiveness of the CSSAE method against others. CSSAE outperforms the others, particularly for U2R

and R2L attacks. This means that it can detect these types of attacks with more accuracy. All three methods have similar

performance for identifying normal and DoS samples. The average FAR for CSSAE is 0.0057, while these figures are almost

0.016 and 0.011 for SAE and NDAE, respectively. Indeed, our proposed method can reduce the number of normal behaviors

that are incorrectly detected as attacks. The main focus of our method is to reduce the impact of class imbalance on the

detection rate for low-frequency attacks. According to Fig. 8 , we can observe that the recall values of CSSAE for minority

attacks (Probe, R2L, and U2R) are higher than that of other methods. This means that our method can correctly detect these

attacks. 

Fig. 9 shows the influence of epoch number on the training accuracy of models. As we can observe, the CSSAE algorithm

reached the maximum accuracy at the iteration 20, 99.35%. In contrast, the training accuracies of NDAE and SAE have been

maximized at iterations 30 and 35, respectively. 

The training time required for generating an intrusion detection model is a critical issue in IDS, particularly when dealing

with large scale data. Fig. 10 shows the results of the execution time comparison in terms of different neurons in hidden

layers on the KDD CUP 99 dataset. The time needed for the learning model increased with the increase of neurons. However,

our method can consistently reduce the required training time compared with SAE and S-NDAE. This is because CSSAE per-

forms a data dimensionality reduction technique to reject redundant features. This leads to reducing training time. Overall,

the CSSAE is up to 1.38 and 1.15 faster than the SAE and S-NDAE, respectively. 

6.2. NSL-KDD 

In this section, we show the performance of our model on the NSL-KDD dataset in comparison with other models.

Fig. 11 shows the average results of the detailed classification for each model. The elements on the diagonal of the confusion

matrix present accurately classified results. The results of the two-class classification show that our proposed algorithm can

detect anomalies with an accuracy of 98%, while SAE and NDAE well-classified 97% of attacks. On the other hand, according

to 5-class classification, CSSAE can detect correctly about 99% of normal and DoS events. It also achieves a good result in

the classification of minority attacks, 96% for Probe and R2L attacks. The values are about 88% and 90% for SAE and NDAE,

respectively. The most challenging problem of all three models is the detection of U2R attacks, which are 22%, 33%, and 56%

for SAE, NDAE, and CSSAE, respectively. 
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Fig. 7. Confusion matrix of models for KDD CUP 99 dataset. 

Please cite this article as: A. Telikani and A.H. Gandomi, Cost-sensitive stacked auto-encoders for intrusion detection in 

the Internet of Things, Internet of Things, https://doi.org/10.1016/j.iot.2019.100122 

https://doi.org/10.1016/j.iot.2019.100122


A. Telikani and A.H. Gandomi / Internet of Things xxx (xxxx) xxx 13 

ARTICLE IN PRESS 

JID: IOT [m3Gsc; October 15, 2019;20:50 ] 

Fig. 8. The performance of CSSAE on KDD CUP 99 dataset. 

 

 

 

 

 

 

Fig. 12 shows that CSSAE provided the best detection rate for all attacks. The values of this figure are derived from the

confusion matrix shown in Fig. 11 . Similar to KDD CUP 99 dataset, CSSAE outperforms the other approaches for detecting

minority class instances (i.e. Prob, R2L, U2R attacks). The distribution ratio of U2R in NSL-KDD is much more than its ratio

in the KDD CUP 99 dataset. However, our approach yielded a good detection ratio for the U2R attack compared to the two

other methods. According to Fig. 12 (a), the average accuracy of CSSAE is 0.996, against 0.97 and 0.98 for SAE and NDAE,

respectively. As we observe in Fig. 12 (b), the recall value for all approaches is lower than the other measures because it is
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Fig. 9. The training accuracy for KDD CUP 99 dataset. 

Fig. 10. The training time for KDD CUP 99 dataset. 

 

 

 

 

 

 

 

 

 

 

 

directly related to misclassifying the U2R attack as the high-frequency classes such as normal and DoS events. Figs. 12 (c)

and (d) prove that our proposed algorithm can identify attacks that occur much less frequently than commonly occurring

intrusions. In particular, CSSAE can detect U2R attacks that are rare in the NSL-KDD dataset. Fig. 12 (e) shows that the

detection of minority attacks is an important challenge for IDS mechanisms. This is because the false alarm rates are high

for rare attacks so that this value is above 0.4 for all three algorithms. 

Fig. 13 compares the training accuracy of intrusion detection algorithms according to the increase of epochs. Unlike the

KDD CUP 99 dataset ( Fig. 9 ), algorithms achieved the maximum accuracy with more epochs: 35, 40, and 45 for CSSAE, NDAE,

and SAE models, respectively. This is because the number of training records in the KDD CUP 99 dataset is greater than the

NSL-KDD dataset. Therefore, detection models are trained with many more samples than the NSL-KDD. 

Fig. 12 shows the execution time of the training phase of the methods on the NSL-KDD dataset. The number of neurons

in hidden layers varied from 5 to 50. Similar to the KDD CUP 99 dataset, the times for CSSAE and SAE are approximately

similar. However, it seems that more training time seemed to be needed for CSSAE than SAE with the increasing the number

of neurons. While the training time for the KDD CUP 99 dataset increased twofold when we increased the number of

neurons from 5 to 50, the training time was threefold for the NSL-KDD dataset. Fig. 14. 
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Fig. 11. Confusion matrix of models for NSL-KDD dataset. 
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Fig. 12. The performance of CSSAE on NSL-KDD dataset. 
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Fig. 13. The performance of CSSAE on NSL-KDD dataset. 

Fig. 14. The training time of algorithms for the NSL-KDD dataset. 

 

 

 

 

 

 

7. Conclusion and future works 

In this paper, we have confronted the problem of unbalanced data for intrusion identification in the Internet of Things.

We proposed a cost-sensitive stacked auto-encoder for feature learning considering the cost of each class. Our proposed

algorithm assigns a higher cost for misclassifying an abnormal example as a normal example than the cost of the reverse

error. The costs are determined dynamically based on the distribution of class instances, instead of being determined by

experts. Once each event is classified in the training phase, the corresponding cost is considered for parameters updating

in the fine-tuning phase of algorithm. In order to evaluate the proposed method, we used the KDD CUP 99 and NSL-KDD
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datasets. The results demonstrated that our approach attains high levels of performance, particularly for low-frequency at-

tacks such as Probe, U2R, and R2L. 

On the one hand, the amount of traffic data generated by IoT devices is dramatically increasing. On the other hand, the

traffic capacity of the Internet networks has sharply increased to facilitate the traffic passing through the networks. The

modern backbone links are able to handle millions of packets per second. Therefore, IDS requires completing the analysis

of a packet within a few nanoseconds. Developing a system that can investigate a large amount of data at high speed is an

important requirement in the field of intrusion detection. Reducing the computational time of IDS for very large databases

using parallel deep learning can be considered as a good opportunity for future work. Our proposed algorithm can be

successfully applied in other areas in which class imbalance is a critical problem. Data with unbalanced distribution is a

critical problem in network traffic classification that has not been considered in the learning phase of deep learning. We

plan to apply this idea for encrypted traffic classification. 
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