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Abstract

Named-entity Recognition (NER) and machine translation (MT) are two very popular and
widespread tasks in natural language processing (NLP). The former aims to identify men-
tions of pre-defined classes (e.g. person name, location, time...) in text. The latter is more

complex, as it involves translating text from a source language into a target language.

In recent years, both tasks have been dominated by deep neural networks, which have
achieved higher accuracy compared to other traditional machine learning models. How-
ever, this is not invariably true. Neural networks often require large human-annotated
training datasets to learn the tasks and perform optimally. Such datasets are not always
available, as annotating data is often time-consuming and expensive. When human-
annotated data are scarce (e.g. low-resource languages, very specific domains), deep
neural models suffer from the overfitting problem and perform poorly on new, unseen
data. In these cases, traditional machine learning models may still outperform neural

models.

The focus of this research has been to develop deep learning models that suffer less
from overfitting and can generalize better in NER and MT tasks, particularly when they
are trained with small labelled datasets. The main findings and contributions of this thesis
are the following. First, health-domain word embeddings have been used for health-
domain NER tasks such as drug name recognition and clinical concept extraction. The
word embeddings have been pretrained over medical domain texts and used as initializa-
tion of the input features of a recurrent neural network. Our neural models trained with

such embeddings have outperformed previously proposed, traditional machine learning



models over small, dedicated datasets. Second, the first systematic comparison of sta-
tistical MT and neural MT models over English-Basque, a low-resource language pair,
has been conducted. This has shown that statistical models can perform slightly better
than the neural models over the available datasets. Third, we have proposed a novel reg-
ularization technique for MT, based on regressing word and sentence embeddings. The
regularizer has helped to considerably improve the translation quality of strong neural
machine translation baselines. Fourth, we have proposed using reinforcement-style train-
ing with discourse rewards to improve the performance of document-level neural machine
translation models. The proposed training has helped to improve the discourse properties
of the translated documents such as the lexical cohesion and coherence over various low-
and high-resource language pairs. Finally, a shared attention mechanism has helped to

improve translation accuracy and the interpretability of the models.
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