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Abstract

Named-entity Recognition (NER) and machine translation (MT) are two very popular and

widespread tasks in natural language processing (NLP). The former aims to identify men-

tions of pre-defined classes (e.g. person name, location, time...) in text. The latter is more

complex, as it involves translating text from a source language into a target language.

In recent years, both tasks have been dominated by deep neural networks, which have

achieved higher accuracy compared to other traditional machine learning models. How-

ever, this is not invariably true. Neural networks often require large human-annotated

training datasets to learn the tasks and perform optimally. Such datasets are not always

available, as annotating data is often time-consuming and expensive. When human-

annotated data are scarce (e.g. low-resource languages, very specific domains), deep

neural models suffer from the overfitting problem and perform poorly on new, unseen

data. In these cases, traditional machine learning models may still outperform neural

models.

The focus of this research has been to develop deep learning models that suffer less

from overfitting and can generalize better in NER and MT tasks, particularly when they

are trained with small labelled datasets. The main findings and contributions of this thesis

are the following. First, health-domain word embeddings have been used for health-

domain NER tasks such as drug name recognition and clinical concept extraction. The

word embeddings have been pretrained over medical domain texts and used as initializa-

tion of the input features of a recurrent neural network. Our neural models trained with

such embeddings have outperformed previously proposed, traditional machine learning
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models over small, dedicated datasets. Second, the first systematic comparison of sta-

tistical MT and neural MT models over English-Basque, a low-resource language pair,

has been conducted. This has shown that statistical models can perform slightly better

than the neural models over the available datasets. Third, we have proposed a novel reg-

ularization technique for MT, based on regressing word and sentence embeddings. The

regularizer has helped to considerably improve the translation quality of strong neural

machine translation baselines. Fourth, we have proposed using reinforcement-style train-

ing with discourse rewards to improve the performance of document-level neural machine

translation models. The proposed training has helped to improve the discourse properties

of the translated documents such as the lexical cohesion and coherence over various low-

and high-resource language pairs. Finally, a shared attention mechanism has helped to

improve translation accuracy and the interpretability of the models.

ii



Contents

Abstract i

1 Introduction 1

1.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 11

2.1 Named-Entity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Traditional NER systems . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Evaluation in NER . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2.1 CoNLL-F1 . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Traditional MT systems . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Evaluation in MT . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Deep Learning for NER and MT . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1.1 Word2vec . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1.2 GloVe . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1.3 FastText . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1.4 Contextual word embeddings . . . . . . . . . . . . . . 25

2.3.2 Sentence embeddings . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



2.3.3 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . 27

2.3.3.1 Vanilla RNNs . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3.2 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3.3 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3.4 Bidirectional RNNs . . . . . . . . . . . . . . . . . . . 32

2.3.4 Deep Sequential Classification . . . . . . . . . . . . . . . . . . . 33

2.3.4.1 BiLSTM-CRF . . . . . . . . . . . . . . . . . . . . . . 34

2.3.4.2 Sequence-to-Sequence Models . . . . . . . . . . . . . 35

2.3.5 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Low-Resource Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.1 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.3 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.4 Multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4.5 Sequence-level training . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Recurrent Neural Networks with Specialized Word Embeddings for Health-

Domain Named-Entity Recognition 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 CRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Bidirectional LSTM and bidirectional LSTM-CRF . . . . . . . . 56

3.4 Word features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Specialized word embeddings . . . . . . . . . . . . . . . . . . . 58

3.4.2 Character-level embeddings . . . . . . . . . . . . . . . . . . . . 59

3.4.3 Feature augmentation . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



3.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.3 Training and hyper-parameters . . . . . . . . . . . . . . . . . . . 63

3.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.4.1 CCE results over the i2b2/VA dataset . . . . . . . . . . 64

3.5.4.2 DNR results over the DrugBank and MedLine datasets . 66

3.5.4.3 Accuracy by entity classes . . . . . . . . . . . . . . . . 67

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 English-Basque Statistical and Neural Machine Translation 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 The Basque Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Moses SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Apertium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Google Translate . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.4 OpenNMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Experimental Settings and Results . . . . . . . . . . . . . . . . . 75

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Regressing Word and Sentence Embeddings for Regularization of Neural

Machine Translation 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Regularization Techniques . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Word and Sentence Embeddings . . . . . . . . . . . . . . . . . . 86

5.2.3 Unsupervised NMT . . . . . . . . . . . . . . . . . . . . . . . . . 87

v



5.3 The Baseline NMT model . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Regressing word and sentence embeddings . . . . . . . . . . . . . . . . . 90

5.4.1 ReWE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 ReSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.2 Model Training and Hyper-Parameter Selection . . . . . . . . . . 95

5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.4 Understanding ReWE and ReSE . . . . . . . . . . . . . . . . . . 100

5.5.5 Unsupervised NMT . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Leveraging Discourse Rewards for Document-Level Neural Machine Trans-

lation 109

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Document-level NMT . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.2 Discourse evaluation metrics . . . . . . . . . . . . . . . . . . . . 113

6.2.3 Reinforcement learning in NMT . . . . . . . . . . . . . . . . . . 113

6.3 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.1 Sentence-level NMT . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.2 Hierarchical Attention Network . . . . . . . . . . . . . . . . . . 114

6.4 RISK training with discourse rewards . . . . . . . . . . . . . . . . . . . 115

6.4.1 Reward functions . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.2 Mixed objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5.1 Datasets and experimental setup . . . . . . . . . . . . . . . . . . 118

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5.2.1 Ablation study . . . . . . . . . . . . . . . . . . . . . . 123

vi



6.5.2.2 Translation examples . . . . . . . . . . . . . . . . . . 124

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 A Shared Attention Mechanism for Interpretation of Neural Automatic Post-

Editing Systems 128

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2.1 Attention mechanisms for APE . . . . . . . . . . . . . . . . . . 130

7.3 The proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4.2 Artificial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4.3 Training and hyper-parameters . . . . . . . . . . . . . . . . . . . 134

7.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Conclusion 143

References 146

vii



List of Figures

Figure 1.1 Performance vs data. . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2 Multilingual NER system. . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1 NER example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.2 Translation example. . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.3 Multiple translations. . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.4 CBOW and Skip-gram. . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.5 GloVe probability matrix. . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.6 ELMo contextualized embeddings. . . . . . . . . . . . . . . . . . 25

Figure 2.7 Vanilla RNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.8 Unfolded LSTM network. . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.9 LSTM internal architecture. . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.10 GRU internal architecture . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.11 Bidirectional RNN. . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.12 Encoder-decoder architecture. . . . . . . . . . . . . . . . . . . . . 36

Figure 2.13 Beam search example. . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.14 Transformer based encoder-decoder. . . . . . . . . . . . . . . . . 38

Figure 2.15 Transformer encoder. . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 2.16 Performance of a model over a training (bleu) and test (orange) sets. 41

Figure 2.17 Full model vs dropout. . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 2.18 Data augmentation in NMT. . . . . . . . . . . . . . . . . . . . . . 45

Figure 2.19 Two different MTL strategies. . . . . . . . . . . . . . . . . . . . . 45

viii



Figure 2.20 Feature-based approach with pre-trained LM. . . . . . . . . . . . 49

Figure 2.21 Fine-tuning approach with pre-trained LM. . . . . . . . . . . . . . 49

Figure 3.1 (a) DNR and (b) CCE tasks examples, where ‘B’ (beginning) spec-

ifies the start of a named entity, ‘I’ (inside) specifies that the word is part

of the same named entity, and ‘O’ (outside) specifies that the word is not

part of any predefined class. . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.2 The Bidirectional LSTM-CRF with word-level and character-level

word embeddings. In the example, word ‘sulfate’ is assumed to be the

5th word in a sentence and its only entity; ‘x5’ represents its word-level

embedding (a single embedding for the whole word); ‘x∗5’ represents its

character-level embedding, formed from the concatenation of the last hid-

den state of the forward and backward passes of a character-level Bidirec-

tional LSTM; ‘h1’ - ‘h5’ are the hidden states of the main Bidirectional

LSTM which become the inputs into a final CRF; eventually, the CRF

provides the labeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.3 Concatenation of all the word features, including general domain

embeddings (bleu), specialized embeddings (green), charracter-level em-

beddings (orange) and handcrafted features (red). . . . . . . . . . . . . . 59

Figure 3.4 Description of the hand-crafted features. . . . . . . . . . . . . . . 60

Figure 3.5 (a) An example of an incorrect tagging in the “strict” evaluation

method. (b) An example of a correct tagging in the “strict” evaluation

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



Figure 5.1 Baseline NMT model. (Left) The encoder receives the input sen-

tence and generates a context vector cj for each decoding step using an

attention mechanism. (Right) The decoder generates one-by-one the out-

put vectors pj , which represent the probability distribution over the target

vocabulary. During training yj is a token from the ground truth sentence,

but during inference the model uses its own predictions. . . . . . . . . . . 86

Figure 5.2 Full model: Baseline + ReWE + ReSE. (Left) The encoder with the

attention mechanism generates vectos cj in the same way as the baseline

system. (Right) The decoder generates one-by-one the output vectors pj ,

which represent the probability distribution over the target vocabulary,

and ej , which is a continuous word vector. Additionally, the model can

also generate another continuous vector, r, which represents the sentence

embedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 5.3 BLEU scores over the de-en test set for models trained with train-

ing sets of different size. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 5.4 BLEU scores of three models over the enfr validation set for dif-

ferent λ values: baseline (red), baseline + ReWE (MSE) (green), baseline

+ ReWE (CEL) (blue). Each point in the graph is an average of 3 inde-

pendently trained models. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.5 BLEU scores over the Cs-En dev set of a baseline + ReWE + ReSE

model, with λ fixed to 20 and different β values. Each point in the graph

is an average of 3 independently trained models. . . . . . . . . . . . . . . 102

Figure 5.6 Visualization of the sj vectors from the decoder for a subset of the

cs-en test set. Please refer to Section 5.5.4 for explanations. This figure

should be viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 5.7 Visualization of the sj vectors in a smaller neighborhood of the

center word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



Figure 5.8 BLEU scores over the test set. The reported results are the average

of 5 independent runs.. The red line represents the baseline model and the

blue line is the baseline + ReWE. . . . . . . . . . . . . . . . . . . . . . . 106

Figure 6.1 RISK training. Given the source document, the policy (NMT

model) predicts l candidate translations. Then, a reward function is com-

puted for each such translation. For supervised rewards, (e.g., BLEU)

the reference translation is required, but not for LC and COH. Finally,

the RISK loss is computed using the rewards and the probabilities of the

candidate translations, differentiated, and backpropagated for parameter

update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 6.2 BLEU, LC and COH scores over the Cs-En validation set at dif-

ferent training iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 7.1 An example of perfect correction of an mt sentence. . . . . . . . . 137

Figure 7.2 Partial improvement of an mt sentence. . . . . . . . . . . . . . . . 140

Figure 7.3 Passing on a correct mt sentence. . . . . . . . . . . . . . . . . . . 141

Figure 7.4 A completely incorrect prediction. . . . . . . . . . . . . . . . . . 142

xi



List of Tables

Table 3.1 Statistics of the training and test datasets used in the experiments . . 61

Table 3.2 The hyper-parameters used in the final experiments . . . . . . . . . 63

Table 3.3 Comparison of the results between the different RNN models and

the state-of-the-art systems over the CCE and DNR tasks. . . . . . . . . . 65

Table 3.4 Percentage of words initialized with pre-trained embeddings in the

train, dev and test of the respective datasets. . . . . . . . . . . . . . . . . 67

Table 3.5 Results by class for the B-LSTM-CRF with character-level and

cc/mimic embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 4.1 The number of samples in the PaCo_EnEu, WMT16_IT and Berriak

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.2 BLEU score of the models over the PaCo_EnEu and Berriak corpora. 76

Table 4.3 BLEU score of the models over the WMT16_IT corpus. . . . . . . . 77

Table 4.4 Average of the percentages of bypassed words by all the NMT mod-

els in each dataset and each direction. . . . . . . . . . . . . . . . . . . . 79

Table 4.5 Example of translations over the PaCo2_EnEU (en→eu) test set. 81

Table 5.1 Approximate number of sentences in the each train, dev and test

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xii



Table 5.2 BLEU scores over the En-Fr test set. The reported results are the

average of 5 independent runs. (†) means that the differences are statisti-

cally significant with respect to the baseline with a p-value < 0.05 over a

two-tailed Welch’s t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 5.3 BLEU scores over the Cs-En test set. The reported results are the

average of 5 independent runs. (†) means that the differences are statisti-

cally significant with respect to the baseline with a p-value < 0.05 over a

two-tailed Welch’s t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 5.4 BLEU scores over the Eu-En test set. The reported results are the

average of 5 independent runs. (†) means that the differences are statisti-

cally significant with respect to the baseline with a p-value < 0.05 over a

two-tailed Welch’s t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 5.5 BLEU scores over the De-En test set. The reported results are the

average of 5 independent runs. (†) means that the differences are statisti-

cally significant with respect to the baseline with a p-value < 0.05 over a

two-tailed Welch’s t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Table 5.6 Clustering indexes of the LSTM models over the cs-en test set. The

reported results are the average of 5 independent runs. . . . . . . . . . . . 102

Table 5.7 Translation examples. Example 1: Eu-En and Example 2: Cs-En. . 108

Table 6.1 The datasets used for the experiments. . . . . . . . . . . . . . . . . 118

Table 6.2 Main results. (∗) means that the differences are statistically signif-

icant with respect to the HANjoin baseline with a p-value < 0.05 over a

one-tailed Welch’s t-test. LC and COH values that come at the expense of

a drop in translation accuracy (e.g. BLEU, FBERT) are highlighted in italics. 122

Table 6.3 Ablation study of the various reward functions over the Zh-En TED

talks dataset with RISK(1.0). Undesirable LC and COH values are high-

lighted in italics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiii



xiv

Table 6.4 Translation example. Snippet of a document from the Zh-En TED

talks test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Table 6.5 Translation example. Snippet of a document from the Es-En subti-

tles test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Table 7.1 The model and its hyper-parameters. . . . . . . . . . . . . . . . . . 134

Table 7.2 Results on the WMT17 IT domain English-German APE test set. . 136

Table 7.3 Percentage of the decoding steps with marked attention weight on

either input (src, mt) or both. . . . . . . . . . . . . . . . . . . . . . . . . 139



Chapter 1

Introduction

Natural language processing (NLP) is a field of research that combines linguistics, ma-

chine learning and computer science for the automatic analysis and synthesis of text. The

main goal is to achieve “human-like language processing” in order to be able to develop

intelligent systems that can act upon the information processed (e.g. clustering, classifi-

cation, text generation). NLP is one of the key areas of artificial intelligence (AI) [Liddy,

2001].

In order to reach “human-like language processing”, over the years the field has de-

veloped a wide range of sub-tasks. These sub-tasks or sub-fields of NLP process dif-

ferent aspects of language. Some of them are low-level NLP tasks, which analyze the

lexical, gramatical and semantic elements of textual sentences and include text tokeniza-

tion [Mikheev, 2003], part-of-speech tagging [Màrquez and Rodríguez, 1998], chunking

[Ramshaw and Marcus, 1999], syntactic structure analysis [Socher et al., 2011], named-

entity recognition [Rau, 1991; Nadeau and Sekine, 2007], entity relation extraction [Mintz

et al., 2009], optical character recognition [Mori et al., 1999] and speech processing

(speech-to-text) [Hinton et al., 2012] among others. Other tasks require a much higher

level of abstraction to detect patterns that are implicit in text (closer to what we per-

ceive as “AI”). High-level tasks include sentiment analysis [Pang et al., 2008], natural

language inference [Bowman et al., 2015], fake-news detection [Shu et al., 2017], decep-

tion detection [Mihalcea and Strapparava, 2009], machine translation [Koehn et al., 2003;

Bahdanau et al., 2015], text summarization [Barzilay and Elhadad, 1999], poetry gener-

ation [Zhang and Lapata, 2014] and dialogue systems [Weizenbaum, 1966; Gao et al.,

1
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2019].

And how does NLP address all of these tasks? What are the underlying algorithms?

The early NLP systems (1950-1980s) relied heavily on human-designed rules and tem-

plates that were hard-coded into computer programs. These rules were often derived from

well-established linguistic theories (e.g. generative grammar [Chomsky, 1956]), lexical

analysis and domain knowledge. However, researchers soon became aware that these

approaches were not scalable.

Therefore, later in the 80s, the field started to slowly move away from rules and em-

brace approaches based on machine learning (ML), such as decision trees and other prob-

abilistic models. Researchers discovered that ML models could identify useful textual

patterns from the data which enabled the rapid development of NLP systems across a

wider range of domains.

Thanks to the fast progress in machine learning and the increased processing capa-

bility of computers, NLP research has now moved to the “deep learning era” [LeCun et

al., 2015]. Traditional machine learning models have been outperformed by large neural

networks that have the ability to fit more complex datasets. These models have improved

the accuracy of almost every existing NLP task, and thus, most of the current state-of-the-

art NLP systems are underpinned by deep learning. Other areas of AI, such as computer

vision, robotics and data mining, are also dominated by deep learning models.

Low-resource NLP

Despite the recent progress, deep neural networks also have their limitations. One of their

main shortcomings is the overfitting problem [Lawrence et al., 1997]. Overfitting occurs

when a ML model learns to fit the training data “too well”, and subsequently loses the

ability to make accurate predictions over new, unseen data. This is common in ML models

when the size of the training data is too small, yet it seems to be even more prevalent in

deep neural networks (certainly, because of their much larger number of parameters). As

can be observed in Figure 1.1, neural networks are “data hungry”. That is, when there

are enough training data these models perform the best, but accuracy decreases when

the amount of data is limited (often below the standard of traditional machine learning

models).
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Figure 1.1: Performance vs data: Usual performance of different machine learning and
deep learning models. Source: https://blog.easysol.net/building-ai-applications/

Consequently, overfitting poses a problem for NLP when the amount of human-annotated

data is scarce. These include tasks with low-resource languages (e.g. Aboriginal lan-

guages in Australia) or specific language domains (e.g. the health domain, where data

privacy issues prevail).

In the light of this, there is a clear need to improve the current deep learning models

so that we can successfully use smaller training datasets without compromising the level

of performance. Such improvements will contribute to the “democratization” of NLP by

giving low-resource language speakers access to more accurate NLP tools. The aim of

the research presented in this thesis is to address the overfitting problem in two specific

NLP tasks: named-entity recognition (NER) and machine translation (MT).

Named Entity-Recognition and Machine Translation

NER seeks to identify mentions of predefined classes in unstructured text. It is a key step

in many NLP applications such as information extraction, entity relation extraction and

document de-identification. Typical pre-defined entities include person names, locations,

organizations, time, currency, numbers and urls (amongst others). Figure 1.2 shows an

example of a multilingual NER tagger.

On the other hand, MT is a task where the system needs to learn to translate a sentence
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Figure 1.2: An example of a commercial multilingual NER system. Source:
https://www.basistech.com/text-analytics/rosette/entity-extractor/

from a source language to a target language. The translated sentence needs to retain the

meaning of the original sentence and be grammatically correct. For example, the Spanish

sentence Hola, mi nombre es Iñigo, should be translated into the English sentence Hello,

my name is Iñigo. MT is more challenging than NER for two main reasons: 1) the length

of the input and output sequences in MT can differ, and 2) the output space in MT is much

larger compared to NER (whole vocabulary of the target language in MT vs few entity

classes in NER).

Both state-of-the-art NER [Huang et al., 2015; Lample et al., 2016; Peters et al., 2018;

Devlin et al., 2019] and MT [Bahdanau et al., 2015; Sutskever et al., 2014; Vaswani et

al., 2017] models are based on deep neural networks, and thus share the common problem

of overfitting when the datasets are small. As mentioned above, the rest of the thesis will

describe the research this author has carried out in order to alleviate this problem in both

tasks.

1.1 Research Contributions

The thesis presents six main research contributions:

1. Pre-training of health-domain word embeddings for neural NER models in drug
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name recognition and clinical concept extraction, which are two low resource NER

tasks due to the limited available training data. Experimental results have shown

that using our proposed health-domain embeddings together with general domain

embeddings as input features provides a much better initialization to the neural net-

work and helps to find a better local optimum during training with small datasets.

Our approach has outperformed previously published results on two popular datasets.

2. Systematic comparison of three English-Basque MT models: a phrase-based statis-

tical machine translation (PB-SMT) model trained by ourselves, a neural machine

translation (NMT) model trained by ourselves, and a commercial off-the-shelf NMT

system. Experiments over three low-resource datasets in this language pair have

shown that PB-SMT models can outperform NMT models when the amount of

training data available is limited. Moreover, we have seen that translating from En-

glish to Basque is more difficult than the other way round, probably because Basque

is an agglutinative language, morphologically richer than English.

3. Proposal of a novel regularization technique for NMT models based on regressing

word and sentence embeddings (ReWE and ReSE). Experiments over four differ-

ent language pairs (with low-resource datasets) have shown that our regularization

approach outperforms strong NMT baselines.

4. A detailed analysis was conducted to better understand how the proposed regular-

ization methods (ReWE and ReSE) have achieved such significant improvements

in translation accuracy. Our 2-D visualizations and clustering experiments over the

output vectors have shown that the regularizers help to better discriminate between

candidate translation words.

5. Proposal of a reinforcement-style training objective, leveraging discourse rewards,

to improve the translation quality of document-level NMT models. There is a

scarcity of document-level MT training datasets, and thus, NMT models strug-

gle to learn to generate accurate translations with good discourse structure. The

proposed training method alleviates this problem by explicitly targeting the max-

imization of two established discourse metrics such as lexical cohesion(LC) and
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coherence(COH).

6. Proposal of a novel shared attention mechanism for neural automatic post-editing

(APE) model. APE models are generally trained over small training datasets in

order to learn to correct the errors made by a black-box MT system. The proposed

shared attention has let the model select from words in the source sentence or the

black-box MT output and helps to improve the translation accuracy of strong APE

baselines. Moreover, the attention has shown to be useful for a better interpretation

of the results provided by the neural model.

1.2 Publications

This sections details the list of journal, conference and workshop publications completed

during the completion of this PhD, as well as the presentations given by the author.

• Journal papers

– Iñigo Jauregi Unanue, Ehsan Zare Borzeshi and Massimo Piccardi, “Recur-

rent Neural Networks with Specialized Word Embeddings for Health-Domain

Named-Entity Recognition,” Journal of Biomedical Informatics, Vol. 72, pp.

102-109, December, 2017.

– Iñigo Jauregi Unanue, Ehsan Zare Borzeshi and Massimo Piccardi, “Regress-

ing Word and Sentence Embeddings for Regularization of Neural Machine

Translation,” (Under review on the Transaction of Neural Networks and Learn-

ing Systems (T-NNLS)).

• Conference papers

– Iñigo Jauregi Unanue, Lierni Garmendia Arratibel, Ehsan Zare Borzeshi and

Massimo Piccardi, “English-Basque Statistical and Neural Machine Trans-

lation”, 11th edition of the Language Resources and Evaluation Conference

(LREC 2018), Miyazaki, Japan, 7-12 May, 2018, pp. 880-885.
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– Iñigo Jauregi Unanue, Ehsan Zare Borzeshi and Massimo Piccardi, “A Shared

Attention Mechanism for Interpretation of Neural Automatic Post-Editing Sys-

tems”, 2nd Workshop on Neural Machine Translation and Generation (WNMT

2018), held in conjunction with ACL 2018, Melbourne, Australia, 20th of July,

2018, pp. 11-17.

– Iñigo Jauregi Unanue, Ehsan Zare Borzeshi, Nazanin Esmaili and Massimo

Piccardi, “ReWE: Regressing Word Embeddings for Regularization of Neural

Machine Translation Systems”, 11th North American Chapter of the Associa-

tion for Computational Lingusitics (NAACL-HLT 2019), Minneapolis, USA,

2-7 June, 2019, pp. 430-436.

– Binh Thanh Kieu, Iñigo Jauregi Unanue, Son Bao Pham, Hieu Xuan Phan

and Massimo Piccardi, “Learning Neural Textual Representations for Cita-

tion Recommendation”, accepted at the International Conference on Pattern

Recognition (ICPR) 2020, 8 pages.

– Iñigo Jauregi Unanue, Nazanin Esmaili, Gholamreza Haffari and Massimo

Piccardi, “Leveraging Discourse Rewards for Document-Level Neural Ma-

chine Translation,” (Under review on an international NLP conference - ERA

Rank A).

• Presentations

– Iñigo Jauregi Unanue, Ehsan Zare Borzeshi and Massimo Piccardi, “Named-

Entity Recognition (NER) in Health & Sentence Similarity”, Emerging Trends

in Digital Health (CMCRC 2017 annual conference, poster presentation), Syd-

ney, Australia, 17-18 May, 2017.

– Iñigo Jauregi Unanue, Ehsan Zare Borzeshi and Massimo Piccardi, “English-

Basque Statistical and Neural Machine Translation”, 15th Annual Workshop

of The Australian Language Technology Association (ALTA), Queensland

University of Technology, Brisbane, Australia, 6-8 December, 2017.

– Iñigo Jauregi Unanue, Ehsan Zare Borzeshi and Massimo Piccardi, “Health-

Domain Natural Language Processing”, Weekly Seminar of the IXA NLP

Group, Donostia, Basque Country, Spain, 20th of December, 2017.
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– Iñigo Jauregi Unanue, Ehsan Zare Borzeshi, Nazani Esmaili and Massimo Pic-

cardi, “Low-Resource Natural Language Processing”, Research Bites, Span-

ish Researchers in Australia Pacific (SRAP), Sydney, Australia, 20th of June,

2019.

– Iñigo Jauregi Unanue, Ehsan Zare Borzeshi, Nazanin Esmaili and Massimo

Piccardi, “Low-Resource Neural Machine Translation”, Weekly Seminar of

the RoZetta Institute, Sydney, Australia, 13th of September, 2019.

1.3 Thesis Chapters

The thesis has been organized over eight chapters that are summarized as follows:

Chapter 1 The present chapter. The research topic and the contributions are introduced.

Chapter 2 This chapter contains the literature review which discusses traditional and

more recent neural state-of-the-art models proposed in NER and MT. The chapter then

presents the main research work conducted to deal with the overfitting problem on small

datasets.

Chapter 3 In this chapter we describe our work on health-domain NER. We have focused

on two particular tasks: drug name recognition and clinical concept extraction. Health-

domain word embeddings have been pre-trained using a publicly available medical un-

supervised dataset. Those embeddings are used as input features for a state-of-the-art

NER model (i.e. BiLSTM-CRF). The experiments have shown that these embeddings

improve the test accuracy and outperform previously proposed models over challenging

benchmarks. The work presented in this chapter has been published in the Journal of

Biomedical Informatics [Jauregi Unanue et al., 2017].

Chapter 4 In this chapter a systematic comparison of three contemporary MT models is

presented: an SMT model trained by ourselves, an NMT model trained by ourselves and

an off-the-shelf commercial NMT system. We have tested these models over the English-
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Basque low-resource language pair, using the limited annotated data that is publicly avail-

able. The experiments show that traditional SMT models can outperform state-of-the-art

NMT systems when supervised data are scarce. The work in this chapter has been pub-

lished in the Language Resources and Evaluation Conference 2018 [Jauregi Unanue et

al., 2018a].

Chapter 5 This chapter presents a novel regularization technique for NMT models. It ex-

plains how NMT models suffer from overfitting when trained with maximum likelihood

estimation (MLE). The regularizer forces the model to jointly learn to predict the next

word in the translation (categorical value) and its word embedding (continuous value).

Additionally, we also propose the use of a second regularizer where the model learns to

predict a sentence embedding. The experiments show that the use of this regularizer can

consistently improve state-of-the-art NMT baselines over three low-resource language

pairs. However, in a high-resource language pair, we observe that there is no need to

use this regularizer. Further experiments have demonstrated that the regularizers work

well because they help the model to learn a better clustered output space, hence, facil-

itating the target word classification. The work in this chapter has been published in

the North American Chapter of the Association for Computational Lingusitics (NAACL)

2019 [Jauregi Unanue et al., 2019] and a journal extension has been submitted to the

IEEE Transactions on Neural Networks and Learning Systems (T-NNLS) and is currently

under review.

Chapter 6 This chapter presents a novel way to train document-level NMT models com-

bining reinforcement-style training with document discourse evaluation metrics. The ap-

proach presented in this chapter aims to explicitly train the model to improve document

discourse using existing discourse rewards in the objective function. The experimental

results showed that the proposed approach can improve discourse properties of the trans-

lated documents such as the lexical cohesion or coherence. At times, other accuracy based

evaluation metrics such as BLEU are also improved using this training method. The work

in this chapter has been submitted to an international NLP conference (ERA Rank A) in

collaboration with researchers Dr. Nazanin Esmaili (University of Technology Sydney)
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and Prof. Gholamreza Haffari (Monash University), and my supervisor, Prof. Massimo

Piccardi.

Chapter 7 This chapter presents the work done in automatic post-editing (APE). APE is

a subfield of machine learning, where a fine-tuned APE model is trained to correct the

errors of a general MT model. Our work has proposed a novel shared attention mecha-

nism that contributes to improving the translation accuracy and the interpretabilty of the

model. The work in this chapter has been published in the 2nd Workshop on Neural Ma-

chine Translation and Generation (WNMT 2018), held in conjunction with ACL 2018.

[Jauregi Unanue et al., 2018b].

Chapter 8 This chapters concludes the dissertations and discusses possible future re-

search work in the area of low-resource NER and MT.



Chapter 2

Literature Review

The literature review presented in this chapter is organized in the following way. First,

Sections 2.1 and 2.2 frame the previous work in NER and MT, respectively. These two

sections focus mainly on the description of the tasks, the conventional machine learning

models proposed before the emergence of deep learning, and the standard way of eval-

uating the models. Then, Section 2.3 introduces the related deep learning models and

training techniques. NER and MT share many neural architectures, and it seemed more

convenient to describe them jointly in a separate section. Finally, Section 2.4 discusses

the main related work on low-resource NER and MT.

2.1 Named-Entity Recognition

From a machine learning perspective NER is a sequential classification problem. Given an

input sentence x = {x1, x2, . . . , xn} the system needs to predict a sequence of labels y =

{y1, y2, ..., yn}, where each xi represents a word in the text and yi its corresponding named

entity. Typical predefined named entities are: person names, organizations, locations,

currency, URLs and time. Fig. 2.1 shows an example of a sentence with some predefined

entities. In this example, ‘John’ is identified as a person name (‘PER’) and ‘University of

Technology Sydney’ is identified as a organization (’ORG’). Note that a named entity can

contain multiple words. The IOB2 tagging format [Sang and Veenstra, 1999] introduces

additional markers in order to accurately define the boundaries of multiple token named

entities. ’B-’ (beginning) indicates that the word is the first token of a named entity, ’I-’

11
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Figure 2.1: Example of a sentence annotated with named entities according to the IOB2
tagging format.

(inside) indicates that the token is still part of the same entity and ’O’ (outside) indicates

that he word does not belong to any predefined class.

Nevertheless, NER is not limited to only identifying those types of named entities.

Depending on the domain and the application, NER models can be trained to find other

classes. An interesting domain with many NER applications is health. Chapter 3 of

this thesis, for example, proposes some improvements to two typical NER tasks in the

health domain. These include drug name recognition [Chalapathy et al., 2016b], clinical

concept extraction [Chalapathy et al., 2016a], de-identification of patients on electronic

health records [Dernoncourt et al., 2017], finding entities in the biomedical domain [Gri-

dach, 2017] or identifying mentions of adverse reactions of drugs in social media [Cocos

et al., 2017]. The main problem of health-domain NER research is usually the limited

availability of annotated data.

2.1.1 Traditional NER systems

Initially, NER relied completely on hand-crafted rules in order to extract these classes.

An example of that is the first known NER system proposed by [Rau, 1991]. The NER

proposed in this paper could extract company names from text using different lexical and

syntactic rules such as word capitalization, acronym matching, checking co-occurences

of prepositions with nouns, and so on. However, researchers soon realised that these

approaches could not scale, because hand-crafted rules are very domain-dependent and

do not generalize well to different text domains and different languages.

As a result, researchers started to move on towards language independent statistical

models [Nadeau and Sekine, 2007]. Since the mid-90s, several conferences and work-

shops on NER have been organized, which has led to the release of many annotated NER

corpora [Grishman and Sundheim, 1996; Chinchor et al., 1998; Sang and De Meulder,
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2003; Doddington et al., 2004; Santos et al., 2006; Pradhan et al., 2013]. These datasets

can differ in terms of the target entity classes (e.g company names, people names, drug

names, mentions of clinical events...), the domain of the documents/sentences (e.g. med-

ical, news, finance, fiction...) and the size of annotated data. The main challenge remains

on finding adequate training data for your target NER tasks. In any case, researchers have

used these datasets to train machine learning models that are able to learn disambiguation

rules from the data. Traditional machine learning models have usually followed a two-

step supervised learning approach. First, a feature engineering step converts the input

tokens into numerical vectors. These features are designed by humans in order to embed

information that is helpful for the task. Second, a sequential classifier is trained to learn

the best parameters that maximize the likelihood of the training data (features and anno-

tated labels). The classifier is considered generative if it is trained to maximize the joint

probability of the training data:

θ∗ = argmax
θ

p(x, y|θ) (2.1)

where θ are the parameters of the model. Instead, the classifier is considered discrimina-

tive if it is trained to maximize the conditional probability of the output sequence given

the input words:

θ∗ = argmax
θ

p(y|x, θ) (2.2)

During inference, the model selects the output sequence that maximizes the trained

probability (generative(2.3) or discriminative(2.4))

y∗ = argmax
y

p(x, y|θ∗) (2.3)

y∗ = argmax
y

p(y|x, θ∗) (2.4)

Researchers have proposed both generative and discriminative classifiers for NER.

Typical generative approaches are based on Hidden Markov Models (HMMs) [Bikel et al.,

1997; Morwal et al., 2012], while discriminative approaches rely on Maximum Entropy
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models (ME) [Borthwick et al., 1998], Conditional Random Fields (CRFs) [McCallum

and Li, 2003] and Support Vector Machines (SVMs) [Asahara and Matsumoto, 2003].

However, in recent years, if there are sufficient supervised data to train the models, the

aforementioned “traditional” machine learning models have been outperformed by deep

learning models. Sequential deep learning models are usually discriminative classifiers

that make use of advanced neural architectures such as recurrent neural networks (RNNs)

or transformers in order to fit the training data. Section 2.3 will describe these models in

more detail and how they have been used in NER.

2.1.2 Evaluation in NER

Automatic quantitative evaluation is a fundamental aspect of empirical research that per-

mits a systematic comparison of different models. The standard accuracy, which com-

putes the ratio of the number of correct predictions and the number of total predictions, is

a typical evaluation metric in many NLP systems. However, the accuracy is a poor metric

for imbalanced datasets such as NER’s. In NER tasks, most of the words in the text do

not belong to any predefined named-entity class and are labelled as ‘O’. Let’s assume, for

instance, that 80% of the words belong to class ‘O’ and the rest of the words belong to

some named entity: then, a dummy classifier that does not predict any named entity and

which output is always ‘O’ will get an accuracy of 80%, which seems misrepresentative.

For that reason, the NER community has decided to generally use the F1-score (2.5).

The F1-score is the equally weighted harmonic mean of the precision and recall. This

metric better captures the quality of a NER system. However, different ways of computing

the precision and recall have been proposed such as the CoNLL-F1, ACE, MUC-7 and

SemEval. Here we address the most common one used by researchers: CoNLL-F1.

F1 = 2× precision× recall
precision+ recall

(2.5)

2.1.2.1 CoNLL-F1

This version of the F1 was presented at the CoNLL-2003 named-entity recognition shared

task [Sang and De Meulder, 2003] and it is a very common and widespread metric for the



CHAPTER 2. LITERATURE REVIEW 15

evaluation of NER systems. CoNLL-F1 is a strict version of the normal F1 due to the fact

that it only considers as true positives named entities that are an exact match of the ground

truth (i.e. all tokens). For example, if a named entity has 3 tokens and the classifier has

only missed one of them, this evaluation metric will consider that the prediction is fully

incorrect, even if two of the tokens have been correctly classified. The whole named entity

chunk needs to be correctly classified. Thus, the precision and recall are computed in the

following way:

precision =
#correct chunks

#guessed chunks
recall =

#correct chunks

#true chunks
(2.6)

2.2 Machine Translation

Machine translation, too, can be considered a sequential classification task; yet, it is very

different from NER. In machine translation, a source sentence x = {x1, x2, . . . , xn} with

n tokens has to be translated into a sentence in the target language y = {y1, y2, . . . , ym}

with m tokens. Figure 2.2 shows a translation of a sentence from Basque to English.

There are two key differences that make MT a more challenging task compared to NER:

1. Unlike in NER, the target sequence does not need to contain the same number of

tokens as the source (∃ n 6= m). This means that the machine translator has to learn

to make predictions of sentences with variable length. In Figure 2.2 the source

sentence has 4 words, while the target sentence has 6 words.

2. The output space in MT is very large. In NER, the classifier needs to choose be-

tween a small set of predefined named entities (e.g. 10∼20), while in MT each word

in the vocabulary of the target language becomes an output class. For example, the

Oxford English Dictionary contains full entries for 171,476 words. In practice the

vocabulary is usually trimmed to the most frequent ∼50,000 words in the training

data, which is still much larger than in NER.
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2.2.1 Traditional MT systems

MT is probably one of the oldest tasks in NLP as it has been around since the 1950s. The

early MT models relied completely on handcrafted-rules and heuristics derived from well

grounded linguistics theories. These include rule-based models (RBMT)[Appelo, 1986],

constraint-based models (CBMT)[Arnold and Sadler, 1992], knowledge-based models

(KBMT)[Carbonell et al., 1978], lexical-based models (LBMT)[Abeillé et al., 1990],

principle-based models (PBMT)[Dorr, 1991] ans shake and bake models (S&BMT)[Beaven,

1992].

However, the limitations of rules soon became manifest, as they depend too much

on the translation domain and language, and consequently have a very little capacity of

generalization. Thus, similar to NER, researches started to develop language independent,

statistical machine translation (SMT) models [Brown et al., 1990; Doi and Muraki, 1992;

Nomiyama, 1992]. SMT models use a Bayesian approach to model the probability of a

target sentence given the source sentence:

p(y|x) ∼ p(x|y)× p(y) (2.7)

where p(y) is a language model that evaluates the correctness of translation y in the target

language, and p(x|y) models the likelihood of x being the source sentence given the

translation y. The probabilities of this equation are learned from the translation corpus.

Among the different SMT paradigms that have been proposed in MT research, the

phrase-based statistical machine translation (PB-SMT) has become the dominant model

[Koehn et al., 2003]. In PB-SMT, the source sentence is first sampled into a sequence of

I phrases xI with uniform distribution. Each phrase xi can be a single token or multiple

tokens in the source sentence. Then, all the phrases are translated into the target language

with a conditional phrase translation probability model φ(xi|yi). The translated phrases

are re-ordered in the target language using a distortion probability distribution d(ai−bi−1)

Figure 2.2: Example of a translation from Basque to English.
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where ai and bi−1 denote the start and end positions of the source phrases translated into

the ith and (i − 1)th target phrases respectively. In addition, the length of the translation

is also calibrated by introducing a ω factor. As a result, the probability of the segmented

translation p(yI |xI) is modeled as:

p(yI |xI) ∼ p(xI |yI)× p(yI)× ωlength(yI) (2.8)

where p(xI |yI) is decomposed into:

p(xI |yI) =
I∏
i=0

φ(xi|yi)d(ai − bi−1) (2.9)

At inference, the model decodes the source sentence from left to right with the beam-

search algorithm. It starts with an empty hypothesis, translating each phrase in the source

sentence one by one. At the end, the hypothesis that maximizes the probability is chosen

as the translation:

y∗ = argmax
y

p(y|x) = argmax
yI

p(xI |yI)× p(yI)× ωlength(yI) (2.10)

The PB-SMT has been the de-facto model in MT for many years thanks to the release

of the Moses open source translation toolkit [Koehn et al., 2007]. This framework has

facilitated the building and training of these models, including training of phrase align-

ment models such as Giza++ [Och and Ney, 2003] and language models such as KenLM

[Heafield, 2011].

Currently, the neural sequence-to-sequence models have outperformed PB-SMT when

trained on large available corpora [Bojar et al., 2016; Bojar et al., 2017; Sutskever et al.,

2014], as it has happened in NER. However, when the amount of training data is limited,

PB-SMT can still outperform deep learning models.

2.2.2 Evaluation in MT

The quality of a translation is evaluated in two directions: adequacy and fluency. The

former measures the information rate that has been correctly translated in the target sen-

tence, while the latter evaluates the grammatical correctness of the sentence. Yet the
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Figure 2.3: A source sentence in Basque can be translated into multiple correct sentences
in English.

automatic evaluation of these attributes over the sentences generated by the MT models

is a challenging task and is still considered an open problem. The main challenge is that a

sentence in a source language can have multiple translation that are equally correct. See,

for instance, the example in Figure 2.3. The Basque sentence “Mendira joatea asko gus-

tatzen zait” has three correct English translations, which are grammatically correct and

preserve the meaning of the original sentence. However, it is difficult to find translation

datasets that, for each source sentence, cover all the space of correct translations. Most of

the available translation corpora contain one ground-truth reference per source sentence.

In this scenario, one obvious evaluation method is human evaluation. Multiple profes-

sional translators can score the predictions made by the MT systems. But this approach

is expensive, time-consuming and often the inter-annotator agreement of the translators

is low [Stymne and Ahrenberg, 2012]. As a result, the researchers in the field have been

devoted to developing alternative automatic evaluation metrics that correlate well with

human judgment and, among them, BLEU [Papineni et al., 2002] has become de facto

metric. The idea is to compute a weighted average of n-gram matches against the ground-

truth reference translation. For that, the BLEU’s authors have proposed a modified n-gram

precision score:

pn =

∑
C∈{Candidates}

∑
n-gram∈C Countclip(n-gram)∑

C′∈{Candidates}
∑

n-gram′∈C′ Count(n-gram′)
(2.11)
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that makes a clipped count of the total number of n-grams in the candidate predictions

of the MT system that overlap with the ground-truth reference (Countclip only counts

the maximum number of times an n-gram appears in a single reference), divided by the

total number of n-grams in the predictions. Then, a weighted average of the different n-

gram precision scores (e.g. unigram, bigram, trigram) is performed, including a sentence

brevity factor BP :

BLEU = BP × exp(
N∑
n=1

wn log pn) (2.12)

BP =

1 if c > r

exp(1−r/c) if c ≤ r

(2.13)

where c represents the candidate sentence predicted by the MT model, r is the ground-

truth reference, N is the maximum number of words in an n-gram and wn = 1/N .

Another widely used MT evaluation metric is the Translation Edit Rate (TER) [Snover

et al., 2006], which measures the minimum number of editing that needs to be done to the

prediction in order to exactly match the reference. Possible edits include substitution of

single words, insertion of new words, deleting words or shifting words in the sequence.

Thus, the TER metric is computed dividing the number of edits made over the hypothesis

by the total number of words in the reference sentence:

TER =
# of edits

# of words in the reference
(2.14)

The authors claim that TER has higher correlation with human than BLEU and other

MT evaluation metrics such as METEOR [Banerjee and Lavie, 2005] or NIST [Dodding-

ton, 2002], which also follow a similar intuition.

However, the aforementioned n-gram matching based metrics have many limitations.

For example, Callison-Burch et al. [2006] have claimed that the correlation between the

BLEU score and the human-judgment has been often overestimated. On the one hand,

they are not good at capturing distant phrasal dependencies and penalizing the swap of

cause and effect clauses [Isozaki et al., 2010] (e.g. A because B instead of B because

A). On the other hand, these metrics can only recall n-grams that exactly occur in the
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reference translations and are unable to account for the meaning-preserving lexical and

compositional diversity of translations such as synonyms (METEOR excepted) and para-

phrases [Zhang et al., 2020]. As a consequence, in recent years there has been a trend to

propose alternative evaluation metrics in workshops and conferences (e.g. WMT [Bojar

et al., 2016; Bojar et al., 2017; Bojar et al., 2018; Barrault et al., 2019]).

Recently, there has been a proposal to produce word embedding based evaluation met-

rics (see Section 2.3.1 for more information on word embeddings). Zhang et al. [2020]

have proposed a new metric named FBERT , which uses contextual word embeddings

learned from a pre-trained BERT model [Devlin et al., 2019] to evaluate the translation

quality. Similar to the famous F1-score, FBERT is the harmonic-mean of the precision

(PBERT ) and the recall (RBERT ):

RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

xTi x̂j (2.15)

PBERT =
1

|x|
∑
x̂j∈x̂

max
xi∈x

xTi x̂j (2.16)

FBERT = 2
PBERT ·RBERT

PBERT +RBERT

(2.17)

where xi is the i-th word in the tokenized reference sentence, xi its contextual word em-

bedding, x̂j is the j-th word in the tokenized predicted sentence and xj its contextual word

embedding. According to Zhang et al. [2020], their proposed BERT-based evaluation

metric shows stronger system-level and segment-level correlations with human judgment

than other common metrics such as BLEU.

2.3 Deep Learning for NER and MT

Nowadays, the state-of-the-art machine learning models that have achieved the highest

performance on most of the publicly available NER and MT benchmarks are based on

deep neural models. The revolution of deep learning has contributed to very accurate

systems and has brought NLP to the greater attention of the media, companies, investors

and academia. In this section, the most common deep learning architectures for NER and
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MT are described.

2.3.1 Word Embeddings

One of the great advantages of neural networks with respect to traditional machine learn-

ing systems is their ability to learn patterns from random input representations. This

avoids time-consuming feature engineering as the neural network can act as a very good

feature extractor. However, the performance of the network can vary substantially de-

pending on the random seed. An unfortunate initialization of the features can make the

training less effective.

In many NLP tasks, this problem can be alleviated by initializing words (input fea-

tures) with meaningful pre-trained word embeddings [Li and Yang, 2018]. Word em-

beddings are high-dimensional (but much lower than one-hot encodings), dense vector

representations that aim to capture the distributional and semantic properties of words

in a particular language. The underlying assumption is that words with similar meaning

appear in similar contexts. Following that assumption, unsupervised word embedding al-

gorithms make use of word coocurrences in text in order to come up with good vector

representations. As a result, embeddings of similar words are closer in the vector space.

Additionally, these vectors tend to hold nice properties such as “king − queen = man −

woman”. Overall, word embeddings provide a better feature initialization for the neural

network and facilitate the training.

In this section some of the most common unsupervised word embedding representa-

tions are described.

2.3.1.1 Word2vec

Word2vec [Mikolov et al., 2013a] is an unsupervised word embedding algorithm based on

the simplified architecture of a feedforward neural network language model (NNLM) in

order to improve training efficiency. Word2vec can learn high-quality continuous vector

representations by modeling the log-probabilities of word coocurrences in a fixed con-

text window. The authors have proposed two variants of the algorithm: skip-gram and

continuous bag-of-words (see Figure 2.4).
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Figure 2.4: A figure from [Mikolov et al., 2013a] which depicts the two variants of
word2vec: CBOW (left) and Skip-gram (right).

Skip-gram has been described in detail in [Mikolov et al., 2013b]. The model is

trained to find vector representations that are good at predicting surrounding words in a

sentence (or document):

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt) (2.18)

wherew1, . . . , wT are words in the training batch and c is the context window size. During

training, the model tries to maximize the average log-probability of a context word wt+j

given a center word wt. The probability p(wO|wI) is defined as a softmax function:

p(wO|wI) =
exp(v′wO

TvwI
)∑W

w=1 exp(v′w
TvwI

)
(2.19)

where vwI
is the “input” vector representation and v′wO

is the “output” vector representa-

tion and W is the number of words in the vocabulary. However, the computation of the

denominator in this probability is intractable because it requires to compute the exponen-

tial for all the words in the vocabulary, which is very large (50,000∼ 100,000 words). The

authors have proposed two efficient alternatives to compute an approximation of (2.19),
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the hierarchical softmax [Morin and Bengio, 2005] and Noise Constrastive Estimation

(NCE) [Gutmann and Hyvärinen, 2012; Mnih and Teh, 2012].

CBOW is very similar to Skip-gram, but instead of predicting the context words given

the centre word, the algorithms learns representations that help to predict the centre word

given the context words:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt|wt+j) (2.20)

2.3.1.2 GloVe

GloVe, proposed by [Pennington et al., 2014], is another unsupervised word embedding

algorithm, which also looks at the co-occurrences of words in text in order to come up

with good representations. The authors of GloVe point out that CBOW and Skip-gram

make poor use of the statistics of the unsupervised corpus because they operate in local

context windows. Therefore, they propose a global log-bilinear regression model that is

trained on global word to word co-occurrence counts. Once the co-occurrence matrix for

the corpus is calculated, the probability of a word j appearing in the context of word i is

computed:

pij = p(j|i) = Xij

Xi

(2.21)

where Xij is the number of times those words co-occur and Xi is the number of times i

appears together with any word in the context (Xi =
∑

kXik).

The table in Figure 2.5 shows a few examples of the co-occurrence probabilities for

target words steam and ice, computed from a 6 billion token corpus. The table shows that

Figure 2.5: Some probabilities derived from the co-occurence matrix of a 6 billion token
corpus [Pennington et al., 2014].
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relative probabilities p(k|ice)/p(k|steam) are better than raw probabilities at discriminat-

ing relevant words (steam and gas, ice and solid) from irrelevant words (ice and fashion).

Consequently, they start building a learning model that is based on ratios of probabilities:

F (wi,wj, w̃k) =
pik
pjk

(2.22)

where w ∈ Rd and w̃ ∈ Rd are word vectors and context word vectors respectively. After

several derivations (for more information the reader can check the original paper), they

come up with a weighted least square objective function:

J =

|V |∑
i,j=1

f(Xij)(wT
i w̃j + bi + b̃j − logXij)

2 (2.23)

where |V | is the size of the vocabulary, b is the bias term and f(Xij) is the weighting

function.

2.3.1.3 FastText

[Bojanowski et al., 2017] have proposed an extension of the word2vec’s Skip-gram model.

Their model is able to learn representations for character n-grams or subword units of

words, modeling the internal structure of words, which is very important for morphologi-

cally rich languages such as Turkish, Finnish or Basque.

FastText aims to learn vector representations that can predict context words given a

central word. Similar to the Skip-gram model, it models this conditional probability:

p(wc|p(wt) =
es(wt,wc)∑W
j=1 e

s(wt,j)
(2.24)

where W is the vocabulary size, wt is the center word and wc is the context word. How-

ever, differently from word2vec (2.19), it uses a scoring function s(wt, wc) instead of

directly computing the inner product of the vectors. The scoring function is defined as:

s(w, c) =
∑
g∈Gw

zTg vc (2.25)

where Gw ⊂ {1, . . . , G} is the subset of n-grams that appear in the word w and are
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Figure 2.6: An example from [Peters et al., 2018]. They show the nearest neighbour
words of the word play for GloVe, and the nearest neighbour sentences that contain the
word play for the contextual embeddings.

included in a dictionary of n-grams G, zg is the vector representation of the n-gram g and

vc is the vector representation of the word in the context c.

In the original paper, the authors carry out several experiments over 9 languages with

different morphologies that demonstrate the benefits of using this model.

2.3.1.4 Contextual word embeddings

Recently, there has been a remarkable improvement regarding word embeddings. The

latest models are using pre-trained language models in order to infer contextual word

embeddings. This type of embeddings addresses a limitation of traditional ones: the

variation of the word’s meaning across different linguistics contexts. See the example

in Figure 2.6. When using GloVe embeddings, the word play is shown to be closest to

words related to sports such as game, players or football. Conversely, when computing

the nearest neighbour of the contextual embeddings, we observe that depending on the

context, word play can be closer to words in the topic of theatre.

Most of the state-of-the-art natural language understanding (NLU) systems use pre-

trained language models to compute contextual embeddings and use them in their models.

The best known pre-training language model algorithms are ELMo [Peters et al., 2018],

GPT [Radford et al., 2018], BERT [Devlin et al., 2019] and XLNet [Yang et al., 2019].

A more detailed description of pre-trained language models is given in Section 2.4.6.
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2.3.2 Sentence embeddings

In parallel to word embeddings, researchers have been interested in obtaining meaningful

representations for larger sequences of words such as sentences, paragraphs or documents.

These vectors are usually known as sentence embeddings and they can be very useful for

many NLP applications such as unsupervised text clustering [Huang, 2008], automatic

parallel translation corpus mining [Artetxe and Schwenk, 2019a] and many NLU tasks

[Wang et al., 2019].

The simplest and most intuitive way of obtaining sentence embeddings is to average

the word embeddings in the sentence or document in order to obtain a fixed-dimensional

vector. However, when the sentence is long, this approach does not work very well. Other

more sophisticated algorithms include Skip-Thought vectors [Kiros et al., 2015], which

use the continuity of text from books to train an encoder-decoder model that tries to re-

construct the surrounding sentences of an encoded passage; InferSent [Conneau et al.,

2017], where sentence embeddings are learned in a supervised manner over the Stanford

Natural language Inference dataset; Doc2vec [Le and Mikolov, 2014], an unsupervised

embedding algorithm that is trained to predict words in the same sentence/document; Sen-

tenceBERT [Reimers and Gurevych, 2019], sentence embeddings produced by pooling

the contextual word embeddings predicted by a pretrained LM such as BERT; massively

multilingual sentence embeddings [Artetxe and Schwenk, 2019b], a sentence embedder

formed by a single BiLSTM encoder that shares a vocabulary with 93 languages, which

enables the model to create cross-lingual sentence embeddings; or the universal sentence

encoder (USE) [Cer et al., 2018], a transformer-based sentence embedder trained in a

multi-task setting.

Among them, USE has been one of the most popular until recently thanks to its re-

markable performance in NLU tasks and ease of use, with publicly available pre-trained

models shared and ready to use with the well-known tensorflow-hub package 1. The model

can use two different architectures, one based on the Transformer [Vaswani et al., 2017]

and the other on Deep Averaging Networks (DAN) [Iyyer et al., 2015]. In both cases,

the sentence encoder is trained with multi-task learning, aiming to obtain very general

vector representations that can perform well in a variety of tasks such as sentiment clas-

1USE model: https://tfhub.dev/google/universal-sentence-encoder/3

https://tfhub.dev/google/universal-sentence-encoder/3
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sification [Pang and Lee, 2005; Hu and Liu, 2004], document classification [Li and Roth,

2002], sentence similarity [Cer et al., 2017] and natural language inference [Bowman et

al., 2015].

2.3.3 Recurrent Neural Networks

Tweets, paragraphs, documents or novels are all sequences of words, and words are se-

quences of characters at their turn. Words by themselves have meaning, but the meaning

of a sentence obviously depends on the order of its words and not just their values. For

example, the meaning of the two sentences “I live in Sydney which is in Australia” and “I

live in Australia which is in Sydney” is completely different. Thus, models that are able

to capture the positional inter-dependencies between the words in a sequence are needed.

RNNs are a type of neural networks that are effective for processing sequential data.

They are an extension of feedforward networks in which cyclical or recurrent connections

are allowed [Graves, 2012]. These recurrent connections create an internal “memory”,

which allows processing a sequence of vectors (x1, x2, . . . , xn) as input and produce an-

other sequence (h1,h2, . . . ,hn) as output that contains some extent of sequential informa-

tion about every vector in the previous elements in the input sequence. The first RNN is

credited to [Hopfield, 1982] and is known as the Hopfield Network. However, RNNs be-

came more popular in the 1990s when many other variants were proposed [Elman, 1990;

Jordan, 1990; Lang et al., 1990]. In the following sections different RNN models are

described.

2.3.3.1 Vanilla RNNs

[Elman, 1990] and [Jordan, 1990] proposed two very similar, simple variants of the RNNs

in the early 1990s, which are commonly known as Vanilla RNNs. This section describes

these two models. To keep the description simple, consider a single layer RNN. Let’s

assume that X : {x1, x2, . . . , xn} is the input sequence and that Y : {y1, y2, . . . , yn} is

the sequence that needs to be predicted. The forward pass of the Elman network follows

Equations (2.26). As can be seen, the model computes its internal hidden state (ht) at

time t, given the current element in the input sequence (xt) and the previous hidden state
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(ht−1), together with some additional learnable parameters Wh, Uh and bh. Note that ht−1

is the recurrent connection that retains the information from previous steps in the sequence

(“memory”). Then, the output yt is computed given ht and the learnable parameters Wy

and by. σh and σy are non-linear functions such as sigmoid or tanh.

ht = σh(Whxt + Uhht−1 + bh)

yt = σy(Wyht + by)
(2.26)

The Jordan network only differs from the Elman network in the recurrent connec-

tions. Instead of using the previous hidden state (ht−1), it uses the previous output (yt−1)

(Equation 2.27).

ht = σh(Whxt + Uhyt−1 + bh)

yt = σy(Wyht + by)
(2.27)

Figure 2.7 shows a diagram of the Elman Network that may help to understand it

better. On the left, it shows an RNN unit with the two inputs, the current element of the

input sequence and the previous hidden state. Given those inputs, the system predicts

the next hidden state and the output. On the right, we see the same RNN as a time-

unfolded graph, where each node corresponds to a particular time step. It can be seen

that yt depends on all the previous elements in the input sequence x1, . . . , xt. Thus, the

network keeps all the previous states in “memory” to predict the next value. Note that

Figure 2.7 corresponds to a sequential prediction example. For each input xt, an yt is

predicted. In other words, the input and the output have the same length. This is a good

example of an NER system. For each word in the input, a named-entity class is predicted.

However, that is not always the case. For example, in MT, the predicted sequence does

not have to be of the same length of the input. In such cases, the sequence of hidden

states (h1, . . . ,hn), needs to be converted into a fixed dimensional vector, which will later

be used to predict the output sequence. A common way of encoding the input sequence

into a fixed dimensional vector is to only keep the last hidden state, which in theory will

retain the information of the whole sequence. Other more sophisticated approaches learn

attention weights to compute a weighted sum of the hidden states [Bahdanau et al., 2015;

Luong et al., 2015]. The hidden states with higher weights will have a greater influence



CHAPTER 2. LITERATURE REVIEW 29

Figure 2.7: The Elman network. (left) An RNN unit. (right) The same RNN unit but
time-unfolded.

in the prediction.

RNNs are trained in the same way to the feedforward networks with back-propagation

[Rumelhart et al., 1986]. In order to compute the gradient in RNNs, the generalized back-

propagation algorithm needs to be applied to the unfolded graph shown in Figure 2.7. For

a complete example of the computation of the gradient, please refer [Goodfellow et al.,

2016]. Nowadays, however, there is software available that allows computing the gradient

automatically [Bergstra et al., 2010; Collobert et al., 2002; Abadi et al., 2016]. This

software usually include all the necessary tools to successfully train our RNNs, which is

very beneficial for the research in this field.

To conclude, it is important to address the drawbacks of Vanilla RNNs. In theory, the

internal memory of the network should help correctly predicting the output. Nevertheless,

in practice they often fail to learn long-term dependencies in the sequences as they tend to

be biased by the most recent vectors. The main problems are the exploding and vanishing

gradients. The exploding gradient happens when large error gradients accumulate during

back-propagation. This leads to big parameter updates, which can make the learning

unstable [Goodfellow et al., 2016]. A solution for the exploding gradient problem is

gradient clipping [Pascanu et al., 2013]. However, gradient clipping does not solve the

vanishing gradient problem. The vanishing gradient happens when the gradients quickly

tend to zero as the sequence increases. Consequently, short-term dependencies dominate

the computation of gradient and training becomes more difficult [Bengio et al., 1994].
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Figure 2.8: The LSTM network. (left) A LSTM unit. (right) The same LSTM unit but
time-unfolded.

2.3.3.2 LSTM

In order to alleviate the vanishing and exploding gradient problems in vanilla RNNs,

researchers have proposed gated RNNs such as the long short-term memory network

(LSTM) [Hochreiter and Schmidhuber, 1997]. LSTMs follow the same cyclic structure

with a repeating recurrent module (Fig. 2.8), but with a more complex internal archi-

tecture than a normal RNN as they contain some extra gates and cells that interact in a

very specific way. The usual forward pass of the recurrent unit follows Equations 2.28.

Note that in these equations we do not calculate the output vectors yt. Nevertheless, it is

straightforward to apply a multi layer perceptron (MLP) and a soft-max function to each

ht to get the output values as it was done in Equations 2.26 and 2.27.

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc)

ht = ot ◦ tanh(ct)

(2.28)

In Equation 2.28, for each t-th element in the sequence, h is the hidden state, c is the

memory cell state, f is the forget gate, i is the input gate, o is the output gate, σ is the

sigmoid function and ◦ is the Hadamard product. The memory cell is another separate

recurrent connection, in addition to the hidden state, which stores the information of all

the sequence. The forget gate controls the amount of information from the cell state that

will flow through the network. The input gate permits to insert more information from

the current state into the cell state. Finally, the output gate generates the new hidden state
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(ht), given the current element from the input sequence (xt), the previous hidden state

(ht−1) and the current memory cell (ct). Figure 2.9 shows a more detailed picture of an

LSTM unit.

The LSTM not only deals better than the RNN with the long-term dependencies, but

also converges faster. Consequently, the LSTM is more efficient during training and less

supervised data is required. The main drawback is that the number of learnable param-

eters is bigger, and thus, the amount of memory required to perform all the necessary

computations is larger.

2.3.3.3 GRU

The GRU is another gated RNN recently proposed by [Cho et al., 2014] to also solve the

vanishing gradient problem. However, its internal mechanism differs considerably from

the LSTM. The forward pass of the GRU (Equations 2.29) only has two gates: the update

gate z and the reset gate r.

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ht = (1− zt) ◦ ht−1 + zt ◦ tanh(Whxt + Uh(rt ◦ ht−1) + bh)

(2.29)

The reset gate is equivalent to the forget gate in the LSTM as it controls the flow of

previous states information. Similarly, the update gate is equivalent to the input gate of the

LSTM as it manages the input of the new information into the hidden state. The separate

Figure 2.9: Detailed LSTM unit.
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memory state cell (c) and the output gate (o) from Equations 2.28 are not present in the

GRU. Figure 2.10 shows the detailed diagram of a GRU unit.

[Chung et al., 2014] have compared these two gated RNNs on the tasks of polyphonic

music and speech signal modelling. Their experiments have shown that the GRU has

a comparable performance to the LSTM, while being computationally more efficient.

Consequently, the number of research papers that use GRU networks has increased in the

last few years.

2.3.3.4 Bidirectional RNNs

In the previous sections, several types of RNNs have been described. In all of them, the

predicted hidden state (ht) depends on past information on the input sequence. But in

none of these models the hidden state depends on future information of the sequence,

which may often be useful, especially in NLP.

The Bidirectional RNN [Schuster and Paliwal, 1997] aims to learn to predict the

value at each time step by looking at both the previous and the future tokens in the in-

put sequence. The approach is very simple. Basically, two separate RNNs are learned.

The first one learns the hidden representations of the sequence by reading the sequence

left-to-right. The second RNN learns the hidden representation by reading the sequence

backwards, right-to-left. Finally, the forward and the backward representations are con-

catenated to form a single representation (Equation 2.30). Figure 2.11 shows the typical

structure of the Bidirectional RNN. Any kind of RNN can be used (e.g. vanilla, LSTM,

GRU).

Figure 2.10: Detailed GRU unit.
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Figure 2.11: Bidirectional RNN [Schuster and Paliwal, 1997].

hr = RNNright(xt,ht−1)

hl = RNNleft(xt,ht+1)

h = [hr;hl]

(2.30)

2.3.4 Deep Sequential Classification

As mentioned in Section 2.1 and Section 2.2, NER and MT are both sequential classifica-

tion tasks. In both cases, the classifier needs to learn how to predict a sequence of output

labels given an input sentence. Yet there are big differences between the two. NER has

to generate a label per token in the input, which results in an output sequence of the same

length, and the number of output classes is quite small (10 ∼ 20). Instead, in MT, the

model needs to generate a sequence (the translation) of variable length which does not

need to have the same length as the input and with a much larger (30, 000 ∼ 80, 000)

number of output classes. For these reasons, researchers have proposed different neu-

ral architectures for each task. This section covers two of them, which have been the

workhorse architectures in their respective task: the BiLSTM-CRF and the seq2seq mod-

els. Additionally, describes a novel neural network proposed in the literature, namely the

Transformer, which introduces some changes that improve limitations of RNNs.
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2.3.4.1 BiLSTM-CRF

One of the most popular neural architecture for NER in recent years has been the BiLSTM-

CRF [Lample et al., 2016; Huang et al., 2015]. The BiLSTM network is very good at en-

coding the input sequence into a sequence of latent variables (h1, . . . ,hn). A simple and

effective strategy is to use these vectors together with a softmax layer to make a sequence

of independent classification decisions. This has been quite successful in tasks such as

POS tagging. However, NER is a task that is more dependent on the grammar and the

context words in the sentence. For example, if a token is preceded by a ‘B-PERSON’

label, the chances of the next label being ‘I-PERSON’ are very high, and on the contrary,

the chances of the next label being ‘I-ORGANIZATION’ are zero. Therefore, an output

layer that allows structured prediction may be very helpful.

The CRF [Lafferty et al., 2001] layer after the BiLSTM allows for that joint sequen-

tial prediction. The CRF uses the hidden vectors that are the output from the LSTM as

measurements P ∈ Rn×k and a state transition matrix A ∈ R(k+2)×(k+2), which can use

the previous and future measurements to predict the current class. n is the number of

tokens in the sequence and k is the number of output classes. Matrix A is a k+2 squared

matrix because y0 and yn+1 are the start and end labels. Given these two matrices, the

score function of a given output sequence is computed by:

s(X, y) =
n∑
i=0

Ayi,yi+1
+

n∑
i=1

Pi,yi (2.31)

Given the scoring function, being CRF a discriminative approach, it models the con-

ditional probability p(y|X) as:

p(y|X) =
exp(s(X, y))

Z(X)
(2.32)

where Z(X) is the cumulative sum of exp(s(X, y)) over all the possible y.

The parameters of the BiLSTM-CRF are typically jointly learned end-to-end over a

training set, (Xtrain,Ytrain) = {Xi,Yi} i = 1, . . . , N , with conditional maximum likeli-

hood (Equation 2.33).
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θ, A = argmax
θ,A

p(Ytrain|Xtrain, θ,A) (2.33)

where θ and A are the weights of the BiLSTM-CRF network.

Once the model has been trained, the prediction of a BiLSTM-CRF is the sequence of

labels maximizing the model for the given the input sequence and the learned parameters

(Equation 2.34).

y∗ = argmax
y

p(y|X, θ,A) (2.34)

The labels are typically predicted using dynamic programming algorithms such as

Viterbi which provides the optimal prediction for the measurement sequence as a whole.

Building upon the BiLSTM-CRF, researchers have proposed many alternatives to this

network. For example, Lample et al. [2016] have proposed to add a character-level word

encoding to the word embeddings to learn the morphological patterns in the words; Ma

and Hovy [2016] have used a convolutional neural network (CNN) for the character-

level word embedding; Peters et al. [2018] have used pre-trained LSTM-based language

models to learn contextual word embeddings; and Devlin et al. [2019] have replaced

the LSTM encoder for more efficient pre-trained transformer. However, in most of the

state-of-the-art models the underlying architecture is very similar to the BiLSTM-CRF.

2.3.4.2 Sequence-to-Sequence Models

Sequence-to-sequence (seq2seq) models are the base architecture for neural machine trans-

lation (NMT) models. Seq2seq has revolutionized the area of MT, providing a deep-

learning framework that can be trained end-to-end and that has improved considerably

the translation quality of previous existing models such as the PBSMT [Bojar et al., 2016;

Bojar et al., 2017; Sutskever et al., 2014]. It is ubiquitously used in learning tasks where

the lengths of the input and output sequences are different (as such, it is not commonly

used in NER).

Seq2seq models are based on the encoder-decoder architecture (see Figure 2.12). Usu-

ally, both the encoder and the decoder are some type of neural network such as the LSTM

[Sutskever et al., 2014], GRU or transformer [Vaswani et al., 2017]. In any case, first the
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Figure 2.12: Typical encoder-decoder architecture of a seq2seq model.

encoder converts the input sequence of word embeddings xi into a sequence of hidden

vectors hi:

hi = encoder(xi,hi−1) i = 1, . . . n (2.35)

where n is the number of tokens in the input sentence. Then, given all the hidden vectors,

a fixed dimensional context vector cj is defined for each decoding step j. The context

vector, is computed as a weighted sum of the hidden vectors:

cj =
n∑
i=0

αijhi j = 1, . . .m (2.36)

where αij are the attention weights and m is the total number of decoding steps (the

number of tokens in the target sentence). Many different algorithms have been proposed

to compute the attention weights such as the additive attention [Bahdanau et al., 2015], the

multiplicative attention [Luong et al., 2015] or the multi-headed attention usually used in

transformers [Vaswani et al., 2017]. Then, the decoder generatesm hidden vectors one by

one using the context words, the previous target word’s embedding yj−1 and the previous

decoding hidden vector sj−1:

sj = decoder(cj, sj−1, yj−1) j = 1, . . .m (2.37)

Finally, the hidden vectors sj are propagated through a linear layer and a softmax layer

in order to output the probability distribution of the words in the target vocabulary:

pj = softmax(Wsj + b) j = 1, . . .m (2.38)
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where W and b are trainable parameters. pj is a vector with the dimension of the same

size as the target vocabulary. During training, the seq2seq model is trained to maximize

the probability of the words in the ground-truth sentence with the negative log-likelihood

(NLL) loss. Additionally, the common practice is to use a “teacher-forcing” setting, where

the embeddings of the previous words in the decoding steps are taken from the ground-

truth reference and not from the model’s own predictions. This is done to speed-up train-

ing convergence.

However, during inference, the words of the ground-truth are not available. As usual

in other discriminative models, the optimal y sequence that maximizes the probability of

the translation needs to be found:

y∗ = argmax
y

p(y|x, θ) (2.39)

where x is the source sentence and y is its translation. But the output label space is too

large in MT to be able try all the possible translation. Thus, researchers have proposed

other more efficient sub-optimal inference algorithms such as beam search [Sutskever

et al., 2014]. The beam search algorithms predicts the most probable B words at the

first decoding step. After that, it continues decoding the most likely next words as a tree

search, discarding all paths except the most probableB paths. The search is stopped when

the end-of-sentence (<EOS>) is predicted. Figure 2.13 shows how beam search predicts

a translation hypothesis.

Currently, the state-of-the-art NMT model is that proposed by Vaswani et al. [2017]

and is based on transformer encoder and decoders (see Figure 2.14) [Bojar et al., 2018;

Barrault et al., 2019]. See Section 2.3.5 for more details on the Transformer

2.3.5 Transformer

As mentioned in the previously, RNNs can encode sequences of tokens from left-to-right

and right-to-left. Yet, to obtain each hidden vector in the sequence, the hidden vector

of the previous element needs to be already computed. This inherent sequential nature

of RNNs does not allow for parallelization. Thus, Vaswani et al. [2017] have proposed

the Transformer, a neural network architecture that avoids any recurrent connection and
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Figure 2.13: Beam search with beam size B = 5 in a English-German translation exam-
ple. Image taken from OpenNMT2

Figure 2.14: Transformer based encoder-decoder model from [Vaswani et al., 2017]
. (left) encoder and (right) decoder. The multi-head attention on the decoder uses the
hidden vectors from the decoder as keys and queries to learn the attention weights.
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Figure 2.15: Transformer encoder [Vaswani et al., 2017].

relies solely on the attention mechanism to learn the sequential dependencies of the to-

kens. This architecture is highly parallelizable and, consequently, more computationally

efficient, reducing considerably the convergence time of the model. Figure 2.15 shows

the architecture of a single layer of the Transformer sequence encoder.

First, the tokens of the input sentence (x1, x2, . . . , xn) are encoded with their corre-

sponding word embeddings (x1, x2, . . . , xn). An additional positional encoding is added

to the word vector to make use of the order of the words in the sequence. The positional

encoding has the same dimension as the word embedding (dmodel) so that both can be

added and it is obtained with two sinusoidal functions of different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(2.40)

where pos is the position of the word in the sequence and i is the dimension in the vector.

The resulting word encoding is:

epos = xpos + PEpos pos = 1, . . . , n (2.41)

Then, a multi-headed self-attention mechanism models the intra-sequence dependen-

cies between tokens. This module first maps the input embeddings epos of dimension



CHAPTER 2. LITERATURE REVIEW 40

dmodel into a query (Q), key (K) and value (V ) vectors of dimension dk = dmodel/h, being

h the number of heads. Lets say that E ∈ Rn×dmodel is the input matrix that contains all the

n embeddings of the tokens in the input sentence, then the three mappings are obtained:

Q = EWQ

K = EWK

V = EWV

(2.42)

where WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk and WV ∈ Rdmodel×dk are learnable param-

eters. Given these three mappings, the attention mechanism computes the new hidden

vectors stored in matrix Z ∈ Rn×dk . The authors used the multiplicative attention [Lu-

ong et al., 2015] instead of the additive attention [Bahdanau et al., 2015] because it is

computationally more efficient:

Z = Attention(Q,K,V) = softmax(
QKT

√
dk

)V (2.43)

But the authors have shown that it is beneficial to use many different attention mecha-

nisms in parallel rather than a single one. Therefore, they have proposed to learn different

linear projections WQ
i , WK

i and WV
i . The multi-headed attention is computed:

MultiHead(E) = Concat(head1, head2, . . . , headh)WO (2.44)

where headi = Attention(EWQ
i ,EWK

i ,EWV
i ) and WO ∈ Rhdk×dmodel are learnable

parameters. The authors also include a residual connection [He et al., 2016] and layer

normalization [Ba et al., 2016] to ease the training of the network.

Z = LayerNorm(E +MultiHead(E)) (2.45)

Finally, the transformer propagates the output of the self-attention sublayer into a

feed-forward network, which also uses residual connections and layer normalization (see

Figure 2.15).

This is a single layer of the transformer, but usually in NLP many layers are stacked

together when encoding sequences. For a more detailed description of the transformer
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(a) Overfitted model (b) Not overfitted model

Figure 2.16: Performance of a model over a training (bleu) and test (orange) sets.

we refer the reader to the Ilustrated Transformer3. The transformer has become the most

common neural network encoding/decoding model on NER and MT tasks.

2.4 Low-Resource Deep Learning

The previous sections have described the state-of-the-art sequential labeling models which

nowadays are predominantly based on deep learning. However, this only holds when there

is enough amount of supervised data to properly train the models, as it has been shown that

neural networks suffer significantly from overfitting [Lawrence et al., 1997]. Overfitting

means that the model has learned to fit the training data “too well” and is not able to

generalize to new unseen data. In a simple analogy, it’s as if a kid memorized all the

answers of his/her maths homework, but then could not answer correctly a new question

in the exam. In essence, the kid did not understand the task. Thus, an overfitted model

would perform like in Figure 2.16a, where the training error would be almost zero, but

the test error would start growing after a point. While in a properly trained model, the test

error should not start growing after certain iterations even if the training error is not zero

(Figure 2.16b).

When there is a lot of properly annotated, good quality training data, it is easier to

avoid overfitting, as the model is trained over many examples and becomes more robust.

However, as mentioned before, abundant supervised data are often not available in many

3http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/
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NLP tasks. Consequently, researchers have become very interested in developing regu-

larization and training techniques that can help the model to generalize better on different

NLP tasks, using fewer annotated data. This has been the main motivation of this thesis,

too. This section covers some of the most popular approaches that have been proposed

for improving the generalization of deep neural networks to date.

2.4.1 Early Stopping

Early stopping [Prechelt, 1998] is a widespread regularization technique in deep learning.

The approach is very simple, yet very effective. It consists of monitoring the performance

of the model over the validation set during training and terminating training accordingly.

Typically, the training data are first divided into a training and a validation sets (e.g.

70/30). Then, the model training commences solely over the training data. Every certain

number of batches, the model is evaluated over the validation set. If the evaluation score

between subsequent validation turns meets the stopping criteria, the training is immedi-

ately terminated. A stopping criterion, for example, can be that the new validation score

is lower than the previous one.

The effectiveness of early stopping can be observed by looking at Figure 2.16b. With

the stopping criterion mentioned in the previous paragraph, the model would have stopped

training around batch 750, and it would have avoided overfitting. Early stopping has

become a common regularization technique in NER and MT deep learning based models.

2.4.2 Dropout

Dropout [Srivastava et al., 2014] is another very effective regularization technique with

deep neural networks. As mentioned by the authors of the original paper, one of the best

ways to regularize a neural network is to “ensemble” the predictions of multiple different

neural networks. However, this is most often infeasible, as doing inference for multiple

neural networks can be very time-consuming. Dropout, instead, is used over a single

model.

The idea in dropout is to randomly remove connections from the neural network at

each training iteration (see Figure 2.17b). Thus, at each training step, a different “thinned”
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(a) Standard Neural Net (b) After applying dropout

Figure 2.17: Full model vs dropout.

version of the whole neural network is trained. The practical way of doing this is by

randomly multiplying some weights with zero. The percentage of the weights that are

set to zero is a tuneable hyper-parameter, but usual values oscillate between 0.3 and 0.5.

Dropout has been proven to be a very powerful technique to avoid overfitting and, thus,

different variations of it have been proposed in recent years [Ba and Frey, 2013; Gal and

Ghahramani, 2016].

Finally, it is important to say that even if in most cases dropout helps to improve the

accuracy of the model, it can sometimes have the opposite effect and damage the model,

as shown by [Lan et al., 2020]. Their experiments show that when the transformer-based

ALBERT model has been trained with sufficiently large amounts of training data, the

downstream tasks (e.g. NER) accuracy is higher when the model does not use dropout.

Nevertheless, dropout is commonly used in NER and MT deep learning based models.

2.4.3 Data Augmentation

Overfitting is more prevalent in small datasets. Therefore, many researchers have looked

into ways of increasing the size of the datasets in a fast and economic way, without the

need for annotation from human experts. Datasets of this kind often get the name of

silver-corpora.

In NER, a common approach is to use ‘bootstrapping’ [Nadeau and Sekine, 2007],

which is a semi-supervised learning (SSL) technique. The model usually starts with a

small list of annotated names. It parses the corpus looking for mentions of those names
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and tries to extract some contextual clues that surround those names. Then, the model

looks for new instances that co-occur in the same contexts, and the list of entities is

expanded. This process can be repeated until a large amount of named entities is gathered.

Multiple SSL learning approaches for NER have been proposed in recent years [Brin,

1998; Collins and Singer, 1999; Yangarber et al., 2002]. Training supervised models over

these collected entities can contribute to improve the model.

Many ways of augmenting the training data have also been proposed for MT. A com-

mon approach is to crawl the web looking for bilingual or even multilingual web pages

that contain bitexts [Harris, 1988], mutual translations in different languages. Esplà-

Gomis et al. [2014] have distinguished three main approaches of crawling the web for

parallel texts: finding similarities in the URLs [Ma and Liberman, 1999; Chen et al., 2004;

Espla-Gomis and Forcada, 2010; San Vicente et al., 2012], exploiting parallel structures

of HTML files [Espla-Gomis and Forcada, 2010; San Vicente et al., 2012; Papavassiliou

et al., 2013] and content-similarity techniques based on bag-of-words [Ma and Liberman,

1999; Antonova and Misyurev, 2011; Barbosa et al., 2012].

Another strategy to obtain additional data in MT is to infer back-translations from a

monolingual corpus. For example, Sennrich et al. [2016] use a large monolingual dataset

in the target language and a pre-trained MT model to translate those sentences from tar-

get→source. Training an NMT model with these additional data helps to improve its de-

coder’s side language model and, as a result, the overall BLEU score. Other researchers

have also proposed different ways to perform back-translations [Poncelas et al., 2018;

Hoang et al., 2018; Edunov et al., 2018a; Fadaee and Monz, 2018].

Finally, inspired by techniques developed in computer vision, Fadaee et al. [2017]

have proposed to create synthetic translation samples. In computer vision, synthetic sam-

ples of images are created by rotating or flipping the images. For NMT, the authors have

proposed to target low-frequency words in order to generate new sentence pairs contain-

ing these rare words. Figure 2.18 shows an example.

2.4.4 Multi-task learning

In recent years, multi-task learning (MTL) has become another very effective strategy to

improve the ability of deep learning models to generalize, with widespread applications
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Figure 2.18: Data augmentation in computer vision and NMT [Fadaee et al., 2017]. Word
bat is replaced by word bag, creating a new synthetic sentence that is grammatically and
semantically correct (based on the probability accorded by a trained language model).

(a) Hard parameter sharing (b) Soft parameter sharing

Figure 2.19: Two different MTL strategies.

in fields such as NLP [Collobert and Weston, 2008], computer vision [Girshick, 2015],

speech recognition [Deng et al., 2013] and drug discovery [Ramsundar et al., 2015],

among others. The underlying principle is to use multiple loss functions or “tasks”, which

are different yet related, forcing the neural model to learn shared representations that can

perform well in all of them (and, possibly, others).

Ruder [2017] classifies MTL in two main approaches: hard parameter sharing and

soft parameter sharing. In the former, several layers of the neural networks are shared

between all tasks, and only the output layer is different between them (see Figure 2.19a

from [Ruder, 2017]). In the latter, each task has its own model with its own parameters,

but the parameters of the different models are regularized by encouraging them to be

similar (see Figure 2.19b from [Ruder, 2017]). For example, Duong et al. [2015] use `2

distance and Yang and Hospedales [2016] use the trace norm for regularization.

Aguilar et al. [2017] have recently proposed an improved multi-task neural architec-

ture for NER in social media. They separate entity categorization and entity segmentation
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in two tasks using two objective functions. Crichton et al. [2017] have used a multi-task

convolutional neural network that is jointly trained in many different biomedical NER

tasks (with different classes) and showed that the model can improve results most of the

times. However, MTL can also damage the performance of the models. Some researchers

[Changpinyo et al., 2018; Søgaard and Goldberg, 2016] have shown the performance

of NER models drops if it is trained jointly with tasks such as POS tagging, chunking,

sentence comprehension, surpersense tagging or semantic tagging.

MTL has also been used in MT. Zaremoodi and Haffari [2018] have used monolingual

linguistic resources on the source side in a MTL approach. The auxiliary tasks used

include NER, semantic parsing and syntactic parsing. Their experiments have showed

substantial improvements in low-resource language pairs. Similarly, Zhang and Zong

[2016] have used the source sentence information and train the model to learn to reorder

the source sentence as an auxiliary task. Eventually, Domhan and Hieber [2017] have

leveraged target side information in an MTL setting, using a language modelling auxiliary

task in order to learn to translate better.

2.4.5 Sequence-level training

A major source of overfitting in NMT models is the exposure bias [Bengio et al., 2015].

NMT models usually operate at token-level, meaning the classifier is trained to maximize

the probability of the tokens in the translation, token-by-token, left to right. During train-

ing, the model uses “teacher forcing”, which means the decoder uses the previous token

from the reference sentence to infer the probability of the current token. However, at test

time, the reference sentence is not available, and the model needs to rely on its own pre-

vious token predictions to decode the sentence token by token. This training-inference

discrepancy is known as exposure bias and can seriously damage the performance of the

model at test time.

In order to solve this problem, researchers have proposed to train NMT and other

natural language generation (NLG) models using sequence-level objective functions, with

reinforcement learning style training [Ranzato et al., 2015; Paulus et al., 2018]. One of

the most widespread algorithms used for sequence-level training is REINFORCE [Sutton

and Barto, 2018], which defines the loss function as the negative expected reward (r) of a



CHAPTER 2. LITERATURE REVIEW 47

policy (p(y|x; θ)):

L(y) = −E[r(y)]p(y|x;θ) ≈
∑

ŷ∼p(y|x;θ)

−r(ŷ)p(ŷ|x; θ) (2.46)

in NMT the policy is a seq2seq neural network, and the expectation is approximated with

few ŷ sentences (e.g. 1 ∼ 5), which are typically obtained by either sampling or beam

search. This objective function uses the model’s own predictions (‘trajectories’) during

training, therefore, the exposure bias is removed.

Moreover, the REINFORCE algorithm allows us to minimize any loss function (or

maximize any reward function) that cannot be differentiated in θ. In NLG tasks, mod-

els can be directly trained in typical, discontinuous evaluation functions such as BLEU,

METEOR, TER or ROUGE. The target function is defined as the reward in Equation

2.46. Then, ignoring the indirect dependence of r on θ and using the policy gradient theo-

rem, we can calculate the derivative of the objective function and backpropagate gradients

through the policy network:

∂

∂θ
− E[r(y)]p(y|x;θ) = −E[r(y)

∂

∂θ
ln p(y|x; θ)]p(y|x;θ)

≈
∑

ŷ∼p(y|x;θ)

−r(ŷ)p(ŷ|x; θ) ∂
∂θ

ln p(ŷ|x; θ)
(2.47)

Note the simple rule from calculus (∂ ln f(u)
∂u

= 1
f(u)

∂f(u)
∂u
−→ ∂f(u)

∂u
= f(u)∂ ln f(u)

∂u
) that is

applied in Equation 2.47.

In practice, due to the prediction space in MT and because the expectation is approx-

imated with very few samples, the REINFORCE algorithm has a very large variance and

often fails to converge. In order to reduce the variance of the model, researchers have pro-

posed different approaches such as reward with baseline or pre-training NMT models with

the NLL loss to avoid a “cold start” [Sutton and Barto, 2018]. Edunov et al. [2018b] have

experimented with various alternative variations of the REINFORCE algorithm to train

NMT models. Fine-tuning with these sequence-level losses has proven to be beneficial,

particularly in low-resource language pairs.



CHAPTER 2. LITERATURE REVIEW 48

2.4.6 Transfer Learning

Let us conclude this chapter talking about transfer learning, which has become a very pop-

ular approach for many low-resource NLP tasks. In transfer learning, a neural network is

first pre-trained in a high resourced supervised dataset or in a large unsupervised dataset.

In this pre-training stage, the model is normally trained in a very general task. Then, this

model is used as basis to fine-tune the model for a more-specific, low-resource task. Word

embeddings such as word2vec, GloVe or fastText are an example of such transfer learn-

ing. However, recently researchers have proposed more sophisticated transfer learning

methods.

One popular approach is to use pre-trained language models such as ELMo [Peters et

al., 2018], GPT[Radford et al., 2018], BERT [Devlin et al., 2019] or XLNet [Yang et al.,

2019]. These are very large deep networks, based on RNNs or transformers, that leverage

large amounts of unsupervised data to learn robust language models. Usually, a language

model learns the probability of a sentence (t1, . . . , tN) by modelling the conditional prob-

ability of each token ti in the sentence given the preceding tokens:

p(t1, . . . , tN) =
N∏
i=1

p(ti|t1, . . . , ti−1) (2.48)

where N is the number of tokens in the sentence. Typically, bidirectional language mod-

els model the sentences left-to-right and right-to-left. However, Devlin et al. [2019] have

proposed an alternative method to learn deep bidirectional language models that has ob-

tained very promising results. They call it the masked language model (MaskLM) and

is inspired by the cloze task, as they randomly mask a percentage of words in the sen-

tence and the network needs to learn to predict the masked tokens given the unmasked

tokens (preceding and future). Different from the de-noising autoencoders [Vincent et al.,

2008], in MaskLM the model only has to predict the masked tokens and not reconstruct

the whole sentence.

Once the language models have been pre-trained, either with a normal LM or a Masked

LM, there are two main ways of using them for transfer learning in less resourced tasks:

a feature-based approach and a fine-tuning approach. On the one hand, feature-based

approaches use task specific architectures such as the BiLSTM, and add the pre-trained
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Figure 2.20: A feature-based approach using ELMo LM representations [Peters et al.,
2017]. The vectors learned from the ELMo network are used as features in a task-specific
architecture, in this case, a two-layer BiLSTM. ELMo vectors are concatenated with the
output of the first LSTM layer.

Figure 2.21: A fine-tuning approach using BERT [ElJundi et al., 2019]. A classification
layer is adde to the BERT architecture. The whole network is fine-tuned with a task-
specific loss.
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representations as additional features. ELMo [Peters et al., 2018] uses this approach (see

Figure 2.20). On the other hand, fine-tuning approaches do not use many task-specific

parameters (e.g. just add an output layer), but fine-tune all the pre-trained parameters on

the low-resource task. BERT [Devlin et al., 2019] has been conceived to be used in this

way (see Figure 2.21).

Pre-training language models have achieved state-of-the-art results in many low re-

sourced NER tasks. Just as an example, Liu et al. [2018] have recently proposed to

combine pre-trained language models and multi-tasking, reporting significant accuracy

improvements.

In MT, few researchers have aimed to use pre-trained language models, but the results

have not been as promising. Edunov et al. [2019] have used deep contextualized embed-

dings as input to the encoder and the decoder. They have showed that these representations

have been useful in the encoder, but not in the decoder. Alternatively, researchers have

proposed another way to perform transfer learning in NMT models. The main idea is to

pre-train robust NMT models over high-resource language pairs such as French-English

or Spanish-English, and then fine-tune those models over less resourced language pairs

such as Basque-English. Zoph et al. [2016] have used this approach, obtaining up to 5.6

BLEU points of improvement over four low-resource language pairs.



Chapter 3

Recurrent Neural Networks with

Specialized Word Embeddings for

Health-Domain Named-Entity

Recognition

3.1 Introduction

In the healthcare system, patients’ medical records represent a big data source. Even

though the records contain very useful information about the patients, in most cases the in-

formation consists of unstructured text such as, among others, doctors’ notes, medical ob-

servations made by various physicians, and descriptions of the recommended treatments.

This type of data cannot be analyzed using common statistical tools; rather, they need to

be approached by Natural Language Processing (NLP) techniques. Health-domain NER

aims to automatically find “named entities” in text and classify them into predefined cat-

egories such as people, locations, hospitals, drugs, brands etc. In the health domain, the

two most important NER tasks are Clinical Concept Extraction (CCE) and Drug Name

Recognition (DNR). The former aims to identify mentions of clinical concepts in pa-

tients’ records to help improve the organization and management of healthcare services.

Named entities in CCE can include test names, treatments, problems related to individual

51
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Figure 3.1: (a) DNR and (b) CCE tasks examples, where ‘B’ (beginning) specifies the
start of a named entity, ‘I’ (inside) specifies that the word is part of the same named entity,
and ‘O’ (outside) specifies that the word is not part of any predefined class.

patients, and so forth. The latter seeks to find drug mentions in unstructured biomedical

texts to match drug names with their effects and discover drug-drug interactions (DDIs).

DNR is a key step of pharmacovigilance (PV) which is concerned with the detection and

understanding of adverse effects of drugs and other drug-related problems. Figure 3.1

shows examples of both tasks.

NER is a challenging learning problem because in most domains the training datasets

are scarce, preventing a “brute-force” approach by exhaustive dictionaries. Consequently,

many systems rely on handcrafted rules and language-specific knowledge to solve this

task. To give a simple example of such rules, if the word begins with a capital letter

in the middle of the sentence, it can be assumed to be a named entity in most cases.

Nevertheless, these approaches are time-costly to develop, depend considerably on the

language and the domain, are ineffective in the presence of informal sentences and ab-

breviations and, although they usually achieve high precision, suffer from low recall

(i.e., they miss many entities). Conversely, machine learning (ML) approaches over-

come all these limitations as they are intrinsically robust to variations. More modern

ML methods follow a two-step process: (1) feature engineering and (2) automated clas-

sification [Segura-Bedmar et al., 2015; Abacha et al., 2015; Rocktäschel et al., 2013;

de Bruijn et al., 2011]. The first step represents the text by numeric vectors using domain-

specific knowledge. The second step refers to the task of classifying each word into a

different named-entity class, with popular choices for the classifier being the linear-chain

CRFs, Structural Support Vector Machines (S-SVM) and maximum-entropy classifiers.

The drawback of this approach is that feature engineering can be often as time-consuming
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as the manual design of rules.

In recent years, the advent of deep learning has contributed to significantly overcome

the feature engineering problem in ML. More specifically, in general domain NER the

Long Short-Term Memory (LSTM) and its variants (e.g., the Bidirectional LSTM) have

reported very promising results [Lample et al., 2016]. In these models, unique words only

need to be initialized with random vectors, and during training the neural network is able

to automatically learn improved representations for them, completely bypassing feature

engineering. In order to further increase the performance of these systems, the input

vectors can alternatively be assigned with general-purpose word embeddings learned with

GloVe [Pennington et al., 2014], Word2vec [Mikolov et al., 2013b] or other algorithms.

The aim of general-purpose word embeddings is to map every word in a dictionary to

a numerical vector (the embedding) so that the distance between the vectors somehow

reflects the semantic difference between the words. For example, ‘cat’ and ‘dog’ should be

closer in the vector space than ‘cat’ and ‘car’. The common principle behind embedding

approaches is that the meaning of a word is conveyed by the words it is used with (its

surrounding words, or context). Therefore, the training of the word embeddings only

requires large, general-purpose text corpora such as Wikipedia (400 K unique words)

or Common Crawl (2.2 M unique words), without the need for any manual annotation.

As well as semantic word embeddings, character-level embeddings of words can also

be automatically learned [Lample et al., 2016]. Such embeddings can capture typical

prefixes and suffixes, providing the classifiers with richer representations of the words.

However, as mentioned before, drug and clinical concept recognition are very domain-

specific tasks, and supervised datasets for training state-of-the-art RNNs are often scarce.

Even the training of the word embeddings is challenged by the fact that general-purpose

text corpora often do not contain the technical words and specialized concepts that are

inherent in the health domain. In order to assign word embeddings to such specialized

words, the embedding algorithms should be retrained using medical domain resources

such as, for instance, the MIMIC-III corpora [Johnson et al., 2016a].

[Chalapathy et al., 2016b] have obtained very promising accuracy with a DNR sys-

tem that uses a Bidirectional LSTM-CRF architecture with random assignments of the

input word vectors at the EMNLP 2016 Health Text Mining and Information Analysis
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workshop. The reported results were very close to the system that ranked first in the

SemEval-2013 Task 9.1. [Chalapathy et al., 2016a] have leveraged the same architecture

for CCE at the Clinical NLP 2016 workshop, this time using pre-trained word embeddings

from GloVe, and the results outperformed previous systems over the i2b2/VA dataset.

In this chapter, we evaluate if these systems can be further improved by training the

deep networks with more complex and specialized word embeddings. Moreover, the im-

pact of augmenting the word embeddings with conventional feature engineering is ex-

plored. As methods, we compare contemporary recurrent neural networks such as the

Bidirectional LSTM and the Bidirectional LSTM-CRF against a conventional ML base-

line (a CRF). We report state-of-the-art results in both DNR and CCE, outperforming

systems that follow the traditional two-step machine learning approach.

3.2 Related work

Most of the pre-deep-learning research carried out in domain-specific NER has combined

supervised and semi-supervised ML models with text feature engineering. This is the

case, for example, for most of the systems that participated on the SemEval-2013 Task

9.1 [Herrero-Zazo et al., 2013], a shared-task organized for the development of NER sys-

tems targeting the recognition and classification of names of pharmacological substances

(i.e. drug name recognition (DNR)). WBI-NER [Rocktäschel et al., 2013], the system

that ranked first in the shared, is based on a linear-chain CRF with a combination of

general and domain specialized features. General domain features include whether the

token is part of a sentence with all uppercase letters, the text of four preceding and suc-

ceeding tokens, and other common morphological, syntactic and orthographic features

proposed in the literature [Klinger et al., 2008; Settles, 2005; Leaman and Gonzalez,

2008]. Domain specific features include the use of ChemSpot [Rocktäschel et al., 2012]

to check whether a token is part of a chemical; to check whether the token appears in

the Jochem [Hettne et al., 2009] chemical dictionary, or ontology-based features that can

help to distinguish whether a entity refers to a specific drug or a generic term denot-

ing a group of drugs [De Matos et al., 2010; Coulet et al., 2011]. Later work on DNR

have followed similar approaches to the ones propsed by WBI-NER [Abacha et al., 2015;
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Liu et al., 2015].

In CCE, a similar approach (general/domain specific feature engineering + conven-

tional ML classifier) has achieved the best results [de Bruijn et al., 2011; Boag et al.,

2015]. For example, the previous state-of-the-art proposed by de Bruijn et al. [2011]

have trained a a semi-Markov HMM, which can tag multitoken spans of text, using a

combination of general domain features such as character n-grams, token n-grams, sen-

tence length indicators, section features (e.g. headings, subsections, paragraphs), and

domain specific external annotation tools such as cTakes [Savova et al., 2010], MetaMap

[Aronson and Lang, 2010] or ConText [Harkema et al., 2009]. Insipired by Miller et al.

[2004], they have also used the Brown clustering algorithm [Brown et al., 1992].

In health-domain, pretrained word embeddings [Pennington et al., 2014; Mikolov et

al., 2013b; Lebret and Collobert, 2013] have been used in traditional ML methods [Nikfar-

jam et al., 2015; Wu et al., 2015] and in neural networks, where [Dernoncourt et al., 2017]

have achieved better performance than previously published systems in de-identification

of patient notes. [Cocos et al., 2017] have used the Bidirectional LSTM model for la-

belling Adverse Drug Reactions in pharmacovigilance. [Xie et al., 2017] have used a

similar model for studying the adverse effects of e-cigarettes. [Wei et al., 2016] have

combined the output of a Bidirectional LSTM and a CRF as input to an SVM classifier

for disease name recognition. A possible drawback of this approach is that the overall

prediction is not structured and may miss on useful correlation between the output vari-

ables.

In a work that is more related to ours, [Jagannatha and Yu, 2016] have employed a

Bidirectional LSTM-CRF to label named entities from electronic health records of cancer

patients. Their model differs in the CRF output module where the pairwise potentials are

modelled using a Convolutional Neural Network (CNN) rather than the usual transition

matrix. [Gridach, 2017] has also used the Bidirectional LSTM-CRF for named-entity

recognition in the biomedical domain. The main difference and contribution of our pro-

posed approach is that it leverages specialized health-domain embeddings created from

a structured database. In the experiments, these embeddings have been used jointly with

general-domain embeddings and they have proved able to improve the accuracy in several

cases. In addition, our work evaluates the use of hand-crafted features in the system [Lee
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et al., 2016]. This aims to provide a comprehensive feature comparison for health-domain

named-entity recognition based on LSTM models.

3.3 Methods

3.3.1 CRF

We train a CRF model as a useful baseline for performance comparison with the proposed

neural networks. For its implementation, we have used the HCRF library1. The features

used as input are described in Section 3.4. Note that a CRF model is also used as the

output layer in the Bidirectional LSTM-CRF.

3.3.2 Bidirectional LSTM and bidirectional LSTM-CRF

For the RNN approach, we train two models: 1) The Bidirectional LSTM (B-LSTM) and

2) the Bidiretional LSTM-CRF (B-LSTM-CRF), both described in Chapter 2. However,

we have used a different implementation of the LSTM unit proposed by [Lample et al.,

2016], the state-of-the-art NER model at the time of conducting this research (i.e. 2017),

and showed in Equation 3.1. Note that in this implementation the forget gate (ft) is miss-

ing and that both the input gate (it) and the output gate (ot) depend directly from the

memory cell state (c).

it = σ(Wixt + Uiht−1 + Vict−1 + bi)

ct = (1− it) ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc)

ot = σ(Woxt + Uoht−1 + Voct−1 + bo)

ht = ot ◦ tanh(ct)

(3.1)

We test the LSTM models with the same features used for the CRF in order to establish

the fairest-possible comparison. The features are described in detail in Section 3.4. Figure

3.2 shows a descriptive diagram of the Bidirectional LSTM-CRF.

1HCRF. Available from: <http://multicomp.ict.usc.edu/?p=790>
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Figure 3.2: The Bidirectional LSTM-CRF with word-level and character-level word em-
beddings. In the example, word ‘sulfate’ is assumed to be the 5th word in a sentence
and its only entity; ‘x5’ represents its word-level embedding (a single embedding for the
whole word); ‘x∗5’ represents its character-level embedding, formed from the concate-
nation of the last hidden state of the forward and backward passes of a character-level
Bidirectional LSTM; ‘h1’ - ‘h5’ are the hidden states of the main Bidirectional LSTM
which become the inputs into a final CRF; eventually, the CRF provides the labeling.



CHAPTER 3. RECURRENT NEURAL NETWORKS WITH SPECIALIZED WORD
EMBEDDINGS FOR HEALTH-DOMAIN NAMED-ENTITY RECOGNITION 58

3.4 Word features

Neural networks can learn meaningful representations from random initializations of

word embeddings. However, it has been proved that pre-trained word embeddings can

improve the performance of the network [Lample et al., 2016; Chalapathy et al., 2016a;

Dernoncourt et al., 2017; Lee et al., 2016]. In this section, we present the pre-trained

embeddings employed in lieu of the random assignments.

3.4.1 Specialized word embeddings

A word embedding maps a word to a numerical vector in a vector space, where semantically-

similar words are expected to be assigned similar vectors. To perform this mapping, we

have used a well-known algorithm called GloVe [Pennington et al., 2014]. This algorithm

learns word embeddings by looking at the co-occurrences of the word in the training data,

assuming that a word’s meaning is mostly defined by its context and, therefore, words hav-

ing similar contexts should have similar embeddings. GloVe can be trained from large,

general-purpose datasets such as Wikipedia, Gigaword5 or Common Crawl without the

need for any manual supervision. In this work, we have experimented with different

general purpose, pre-trained word embeddings from the official GloVe website [29] and

noticed that the embeddings trained with Common Crawl (cc) (2.2 M unique words) were

giving the best results. By default, the code always initializes the word embedding of each

unique word in the dictionary with a unique random vector. In alternative, we replace the

random initialization with a pre-trained embedding. However, although such datasets gen-

erate good embeddings in many cases, for domain-specific tasks such as DNR and CCE

they can suffer from some lack of vocabulary. As a matter of fact, in health corpora it is

common to find very technical and unusual words which are specific to the health domain.

If GloVe is trained only with general-purpose datasets, it is likely that such words will be

missing and will still have to be assigned with random vectors.

In order to solve this problem, we have generated a new word embedding by training

GloVe from scratch with a large health domain dataset called MIMIC-III [Johnson et al.,

2016a]. This dataset contains records of 53,423 distinct hospital admissions of adults to

an intensive care unit between 2001 and 2012. The data, structured in 26 tables, include
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information such as vital signs, observations of care providers, diagnostic codes etc. We

expect such a dataset to contain many of the technical words from the health domain that

may not appear in general-domain datasets, and as the size of MIMIC-III is sufficiently

large, we should be able to extract meaningful vector representations for these words. As

a first step, we have selected a subset of the tables and columns, and generated a new

dataset where each selected cell together with the title of the corresponding column form

a pseudo-sentence. As the next step, we have used this dataset to re-train GloVe, and

concatenated these specialized word embeddings with the others to create vectors that

contain information from both approaches (cc/mimic). Obviously, there are words that

appear in the general dataset, but not in MIMIC-III, and the vice versa. In such cases,

the corresponding embedding is still assigned randomly. If a word does not appear in

either dataset, we assign its whole embedding randomly. In all cases, the embeddings are

updated during training by the backpropagation step.

Figure 3.3: Concatenation of all the word features, including general domain embed-
dings (bleu), specialized embeddings (green), charracter-level embeddings (orange) and
handcrafted features (red).

3.4.2 Character-level embeddings

Following [Lample et al., 2016] we also add character-level embeddings of the words.

Such embeddings reflect the actual sequence of characters of a word and have proven to

be useful for specific-domain tasks and morphologically-rich languages. Typically, they

contribute to catching prefixes and suffixes which are frequent in the domain, and cor-

rectly classifying the corresponding words. As an example, a word ending in “cycline”
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Figure 3.4: Description of the hand-crafted features.

is very likely a drug name, and a character-level embedding could help classify it cor-

rectly even if the word was not present in the training vocabulary. All the characters are

initialized with a random embedding, and then the embeddings are passed character-by-

character to a dedicated LSTM in both forward and backward order. The final outputs in

the respective directions promise to be useful encodings of the ending and the beginning

of the word. These character-level embeddings are integral part of the LSTM architecture

and are not available in the CRF or other models. The character embeddings, too, are

updated during training with backpropagation.

3.4.3 Feature augmentation

Conventional machine learning approaches for NER usually have a feature engineering

step. [Lee et al., 2016] have shown that adding handcrafted features to a neural network

can contribute to increase the recall. In our work, we try this approach with features

similar to those used by them. Figure 3.4 shows the list of features used. The distinct

values of each feature are encoded onto short random vectors, for a total dimension of

146-D. During training, these encodings are updated as part of the backpropagation step.

3.5 Results

3.5.1 Datasets

Hereafter, we evaluate the models on three datasets in the health domain. In order to

ensure that we do not disclose any personally identifiable information and ensure the

privacy of any individual that may appear in the documents, we have only used publicly

available datasets that have been completely de-identified and approved for research use
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Training Test
Documents 170 256
Sentences 16315 27626
problem 7073 12592
test 4608 9225
treatment 4844 9344

(a) i2b2/VA

DDI-DrugBank DDI-MedLine
Training Test Training Test

Documents 730 54 175 58
Sentences 6577 145 1627 520
drug_n 124 6 520 115
group 3832 65 234 90
brand 1770 53 36 6
drug 9715 180 1574 171

(b) SemEval-2013 Task 9.1

Table 3.1: Statistics of the training and test datasets used in the experiments

by authoritative ethics bodies.

The first dataset is the 2010 i2b2/VA IRB Revision (we refer to it as i2b2/VA for short

in the following) and is used for evaluating CCE. This dataset is a reduced version of the

original 2010 i2b2/VA dataset that is no longer distributed due to restrictions introduced

by the Institutional Review Board (IRB) in 2011 [Uzuner et al., 2011]. The other two

datasets are DrugBank and MedLine, both part of the SemEval-2013 Task 9.1 for DNR

[Herrero-Zazo et al., 2013]. Table 3.1a and 3.1b describes the basic statistics of these

datasets. For the experiments, we have used the official training and test splits released

with the distributions.

3.5.2 Evaluation metrics

We report the performance of the model in terms of the F1 score. The F1 score is a very

relevant measure as it considers both the precision and the recall, computing a weighted

average of them. If we note as TP the number of true positives, FP the false positives and

FN the false negatives, we have:
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precision =
TP

TP + FP

recall =
TP

TP + FN

recall =
2× precision× recall
precision+ recall

(3.2)

However, it must be remarked that there are different ways of computing the precision

and the recall, depending on what we consider as a correct or incorrect prediction [Nadeau

and Sekine, 2007]. In this work, following the SemEval-2013 Task 9.1 metrics, we em-

ploy the “strict” evaluation method, where both the entity class and its exact boundaries

are expected to be correct. We have used the B-I-O tagging standard to annotate the text

at word level. In detail, ‘B’ means the beginning (first word) of a named entity; ‘I’ stands

for ‘inside’, meaning that the word is part of the same entity (for multi-word entities; e.g.,

“albuterol sulfate”); and ‘O’ stands for ‘outside’, meaning that the word is not part of

any named entities. Therefore, a valid annotation of a named entity always begins with

a ‘B’. An example is shown in Figure 3.5. All the models used in our work have been

trained to predict explicit ‘B’ and ‘I’ labels for each entity class. The evaluation includes

a post-processing step that converts an ‘I’ prediction to a ‘B’ if it follows directly an ‘O’

prediction, thus making all predicted entities valid. An entity is considered as correctly

predicted only if all its ‘B’ and ‘I’ labels and all its classes are predicted correctly. In the

example of Figure 3.5 the prediction will be counted as a true positive only if all the four

words “recently diagnosed abdominal carcinomatosis” are tagged as a single entity of the

problem class. Every differing ‘B’ prediction will instead be counted as a false positive.

The evaluation protocol explicitly counts only the true positives and the false positives,

and derives the false negatives as (number of true entities – true positives).

Figure 3.5: (a) An example of an incorrect tagging in the “strict” evaluation method. (b)
An example of a correct tagging in the “strict” evaluation method.



CHAPTER 3. RECURRENT NEURAL NETWORKS WITH SPECIALIZED WORD
EMBEDDINGS FOR HEALTH-DOMAIN NAMED-ENTITY RECOGNITION 63

3.5.3 Training and hyper-parameters

For an unbiased evaluation, all the trained models have been tested blindly on unseen test

data. In order to facilitate replication of the empirical results, we have used a publicly-

available library for the implementation of the neural networks (i.e. the Theano neural

network toolkit [Bergstra et al., 2010]) and we release our code2. To operate, any machine

learning model requires both a set of parameters, which are learned automatically during

training, and some “hyper-parameters”, which have to be selected manually. Therefore,

we have divided the training set of each dataset into two parts: a training set for learning

the parameters (70%), and a validation set (30%) for selecting the best hyperparameters

[Bergstra and Bengio, 2012]. The hyper-parameters of the LSTM include the number of

hidden nodes (for both LSTM versions), (Hw, Hc) ∈ {25, 50, 100}; the word embedding

dimension, dw ∈ {50, 100, 200, 300, 600}; and the character embedding dimension, dc ∈

{25, 50, 100}. Additional hyper-parameters include the learning rate and the drop-out

rate, which were left to their default values of [0.01] and [0.5] respectively [Srivastava et

al., 2014]. All weights in the network, feature encodings and the words that do not have a

pre-trained word embedding have been initialized randomly from the uniform distribution

within range [1,1], and updated during training with backpropagation. The number of

training epochs was set to 100, selecting the epoch that obtained the best results on the

validation set. The best model from the validation set was finally tested on the unseen,

independent test set without any further tuning, and the corresponding accuracy reported

in the tables. Table 3.2 shows all the hyper-parameters used for the experiments reported

in the Section 3.5.4.

2HealthNER. Available from: https://github.com/ijauregiCMCRC/healthNER

Hyper-parameter Value
Word embedding dim (dw) 300(cc)/600(cc/mimic)
Word LSTM hidden layer dim (Hw) 100
Char embedding dim (dc) 25
Char LSTM hidden layer dim (Hc) 25
Dropout 0.5
Optimization Stochastic Gradient Descend Learning rate 0.01
Concatenated hand-crafted features dim 146

Table 3.2: The hyper-parameters used in the final experiments

https://github.com/ijauregiCMCRC/healthNER
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3.5.4 Results

Table 3.3a and 3.3b shows the results of the proposed models and the state-of-the-art sys-

tems on the CCE task (i2b2/VA dataset) and DNR task (DrugBank and MedLine datasets),

respectively. In the following subsections, we discuss the results obtained for each task.

3.5.4.1 CCE results over the i2b2/VA dataset

On the i2b2/VA dataset (Table 3.3a), the Bidirectional LSTM-CRF (BLSTM-CRF) with

Common Crawl embeddings (cc) and character-level embeddings (char) as features has

obtained the best results (83.35% F1 score). The model has outperformed all systems from

the literature (top quadrant of Table 3.3a) which are all based on conventional domain-

specific feature engineering. It is important to note that [de Bruijn et al., 2011] had re-

ported a higher accuracy on 2010 i2b2/VA (85.23% F1 score), but their model was trained

and tested on the original version of the dataset which is no longer available due to the

restrictions introduced by the Institutional Review Board. As for what specialized em-

beddings are concerned, Table 3.4 shows that the general-domain dataset Common Crawl

already contains almost all the words in the dataset. Therefore, adding the MIMIC-III

embeddings (cc/mimic) does not extend the vocabulary, and therefore it brings no im-

provement. On the other hand, the B-LSTM has improved by 0.3 pp with the cc/mimic

embeddings. Even though the mimic embeddings do not cover significant extra vocab-

ulary, they may have enriched the feature space. Conversely, the cc/mimic embeddings

have provided no improvements with the B-LSTM-CRF. For this, we need to take into ac-

count that the BLSTM-CRF already has a high score (83.35% F1-score). Consequently, it

may be more difficult to improve its results. Conversely, using conventional feature engi-

neering has led to lower accuracy (77.81% F1-score). Eventually, concatenating both the

features and the pre-trained embeddings showed no improvement over the best model.

Table 3.3a also shows the importance of using a final CRF layer in the B-LSTM-CRF,

given that the B-LSTM alone was only able to achieve a 77.59% F1 score. At its turn, the

CRF baseline has only obtained a 64.09% F1 score in its best configuration, lower than

any version of the LSTM.
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Model F1-score (%)
Binarized Neural Embedding CRF [Wu et al., 2015] 82.80
CliNER [Boag et al., 2015] 80.00
Truecasing CRFSuite [Fu and Ananiadou, 2014] 75.86
CRF + (random) 11.27
CRF + (features) 25.53
CRF + (cc) 53.72
CRF + (cc/mimic) 58.28
CRF + (cc/mimic) + (features) 64.09
B-LSTM + (random) 65.43
B-LSTM + (random) + (features) 69.42
B-LSTM + (cc) 75.17
B-LSTM + (cc) + (char) 76.79
B-LSTM + (cc/mimic) + (char) 77.19
B-LSTM + (cc/mimic) + (char) + (features) 77.59
B-LSTM-CRF + (random) 75.05
B-LSTM-CRF + (random) + (features) 77.81
B-LSTM-CRF + (cc) 82.85
B-LSTM-CRF + (cc) + (char) 83.35
B-LSTM-CRF + (cc/mimic) + (char) 82.70
B-LSTM-CRF + (cc/mimic) + (char) + (features) 83.29

(a) CCE results over the i2b2/VA dataset

Model
DDI-DB DDI-ML
F1(%) F1(%)

WBI-NER [Rocktäschel et al., 2013] 87.80 58.10
Hybrid-DDI [Abacha et al., 2015] 80.00 37.00
Word2Vec+DINTO [Segura-Bedmar et al., 2015] 75.00 57.00
CRF + (random) 28.70 13.65
CRF + (features) 44.52 20.19
CRF + (cc) 43.42 32.62
CRF + (cc/mimic) 53.12 30.87
CRF + (cc/mimic) + (features) 66.45 29.36
B-LSTM + (random) 65.09 21.28
B-LSTM + (random) + (features) 75.43 30.88
B-LSTM + (cc) 71.75 42.39
B-LSTM + (cc) + (char) 84.35 43.33
B-LSTM + (cc/mimic) + (char) 83.63 44.39
B-LSTM + (cc/mimic) + (char) + (features) 84.06 45.92
B-LSTM-CRF + (random) 69.50 44.60
B-LSTM-CRF + (random) + (features) 75.78 43.36
B-LSTM-CRF + (cc) 79.03 57.87
B-LSTM-CRF + (cc) + (char) 87.87 59.02
B-LSTM-CRF + (cc/mimic) + (char) 88.38 60.66
B-LSTM-CRF + (cc/mimic) + (char) + (features) 87.42 59.75

(b) DNR results over the DrugBank and MedLine datasets

Table 3.3: Comparison of the results between the different RNN models and the state-of-
the-art systems over the CCE and DNR tasks.
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3.5.4.2 DNR results over the DrugBank and MedLine datasets

In the DNR task (Table 3.3b), the proposed B-LSTM-CRF with the concatenated word

embeddings (cc/mimic) and the character-level embeddings (char) has improved over all

the previous approaches on both DrugBank (88.38% F1 score) and MedLine (60.66% F1

score). Table 3.4 shows that only 49% of the words in the datasets have been found in the

cc embeddings. However, when the concatenated embeddings (cc/mimic) are used, the

percentage of found words has increased to 67% for DrugBank and 61% for MedLine,

leading to better results in the classification task. Words that appear in the MIMIC-III

dataset but are not contained in Common Crawl are typically very technical and domain-

specific, such as drug names or treatments; examples include: pentostatin, sitagliptin,

hydrobromide, organophosphate, pyhisiological and methimazole. In total, 1189 extra

words have been mapped in DrugBank and 716 in MedLine thanks to the use of MIMIC-

III. However, the B-LSTM has only obtained an accuracy improvement on the MedLine

dataset, but not on DrugBank. This can be explained by the fact that the accuracy of the

B-LSTM on MedLine is very low (44.33%) and, therefore, easy to improve. Instead, on

DrugBank the accuracy of the B-LSTM is already very high (84.35% F1-score) and thus

difficult to improve. With the B-LSTM-CRF, results with extra vocabulary covered by the

cc/mimic embeddings have improved with both datasets.

As for what concerns the hand-crafted features, their use has led to higher accuracy

than with the Common Crawl embeddings on the DrugBank dataset in two cases. How-

ever, the concatenation of the features and the pre-trained embeddings has not improved

the best results. As in the CCE task, the B-LSTM-CRF model has proved better than the

B-LSTM alone on both DrugBank (88.38% vs 84.35% F1-score) and MedLine (60.66%

vs 45.92% F1-score.) Finally, we can see that the use of the character-level embeddings

has led to higher relative improvements for DrugBank than for the other two datasets. A

plausible explanation for this is that this dataset contains more words with distinctive pre-

fixes and suffixes which are more effectively captured by the character-level embeddings.

In general, the CRF has significantly underperformed compared to the neural net-

works. We speculate that this model may require more extensive feature engineering to

achieve a comparable performance, or that it may not be able to achieve it at all. In partic-

ular, we see that the CRF has performed the worst with MedLine. A possible explanation
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Common Crawl
Common Crawl
+ MIMIC-III

(cc) (cc+mimic)
i2b2/VA 99.99 % 99.99 %
DDI-DrugBank 49.50 % 67.02 %
DDI-MedLine 49.10 % 61.51 %

Table 3.4: Percentage of words initialized with pre-trained embeddings in the train, dev
and test of the respective datasets.

can be found in the “curse of dimensionality”: MedLine is a small dataset (1627 training

sentences), while the overall dimensionality of the input embeddings is 746. This makes

the learning problem very sparse and seems to seriously affect a linear model such as the

CRF. On the contrary, the non-linear internal architecture of the neural networks may in

some cases help reduce the effective dimensionality and mollify this problem.

3.5.4.3 Accuracy by entity classes

Table 3.5a and 3.5b break down the results by entity class for the best model on each

dataset. With the MedLine dataset, we can notice the poor performance at detecting

brand. In DrugBank, the same issue occurs with entity class drug_n. This issue is likely

attributable to the small sample size. Instead, the i2b2/VA dataset all entity classes are

detected with similar F1 scores, likely owing to the larger number of samples per class.

However, we see that brand achieves the second best F1 score in DrugBank despite its

relatively low frequency in the dataset, and that drug_n obtains a very poor performance

in MedLine even if it has the second highest frequency. We identify two other main factors

that may have a major impact on the accuracy: (1) the average length of the entities in each

class, and (2) the number of test entities that had not been seen during the training stage.

In this respect, the brand and drug entities are usually very short (average ∼ 1 word),

while the group and drug_n entities often have multiple words. Since shorter entities are

easier to predict correctly, brand obtains better accuracy than group in DrugBank. On

the other hand, the drug_n and group entities have similar length, but in MedLine drug_n

obtains a very poor performance. This is most likely because no entity of type drug_n

that appears in the test set had been seen during training. Conversely, a large percentage

of the test group entities had been seen during training and have therefore proved easier
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Entity Precision Recall F1-score

B-LSTM-CRF+(cc)+(char)
problem 81.29 83.62 82.44
test 84.74 85.01 84.87
treatment 83.36 83.55 83.46

(a) i2b2/VA

Entity
DDI-DrugBank DDI-MedLine
Precision Recall F1-score Precision Recall F1-score

B-LSTM-CRF
group 81.69 87.88 84.67 69.14 60.22 64.37
drug 94.77 89.56 91.83 73.89 77.33 75.57

+(cc+mimic) brand 84.21 90.57 87.27 100.00 16.67 28.57
+(char) drug_n 00.00 00.00 00.00 68.18 25.57 37.19

(b) SemEval-2013 Task 9.1

Table 3.5: Results by class for the B-LSTM-CRF with character-level and cc/mimic em-
beddings.

to predict.

3.6 Conclusion

We have set to investigate the effectiveness of the Bidirectional LSTM and Bidirectional

LSTM-CRF – two specific architectures of recurrent neural networks – for drug name

recognition and clinical concept extraction, and compared them with a baseline CRF

model. As input features, we have applied combinations of different word embeddings

(Common Crawl and MIMIC–III), character-level embedding and conventional feature

engineering. We have showed that the neural network models have obtained signifi-

cantly better results than the CRF, and reported state-of-the-art results over the i2b2/VA,

DrugBank and MedLine datasets using the B-LSTM-CRF model. We have also pro-

vided evidence that retraining GloVe on a domain-specific dataset such as MIMIC-III

can help learn vector representations for domain-specific words and increase the classi-

fication accuracy. Finally, we have showed that adding hand-crafted features does not

further improve performance since the neural networks can learn useful word representa-

tions automatically from pre-trained word embeddings. Consequently, time-consuming,

domain-specific feature engineering can be usefully avoided.



Chapter 4

English-Basque Statistical and Neural

Machine Translation

4.1 Introduction

Machine Translation (MT) is one of the oldest tasks in NLP, dating back to the 1950s, yet

it is a partially unresolved challenge to the present days. The goal of MT is to read and

understand a sentence in a source language to the extent required to generate its correct

translation in a target language. The advent of deep neural networks has also led to

significant progress in MT, now popularly known as Neural Machine Translation (NMT)

[Sutskever et al., 2014; Bahdanau et al., 2015; Luong et al., 2015; Vaswani et al., 2017;

Wu et al., 2016]. NMT models mainly use the encoder-decoder architecture (described

in Section 2.3.4.2) and have outperformed previous translation systems in many language

pairs (e.g., German-English, French-English).

However, in order to reach high accuracies, neural translation systems tend to require

very large parallel training corpora [Koehn and Knowles, 2017]. As a matter of fact, such

corpora are not yet available for many language pairs. When the training data are rela-

tively small, other, more traditional approaches such as Statistical Machine Translation

(SMT) [Koehn et al., 2007] seem to tend to be more accurate. Various researchers have

compared the quality of PB-SMT and NMT translation models [Bentivogli et al., 2016;

Toral and Sánchez-Cartagena, 2017; Castilho et al., 2017] on different language pairs

and with different training corpus sizes. In recent years, several ideas have been pro-

69
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posed in order to mollify the issue of not having enough training data. This includes

using multi-lingual systems with zero-shot translation [Johnson et al., 2016b], transfer

learning [Zoph et al., 2016] and back-translations [Sennrich et al., 2016]. Several work

has also been proposed in the popular WMT workshops with a variaety of low resouced

language pairs. Zhou et al. [2018] have explored effective methods for cross-lingual trans-

fer learning to translate from rich-resource languages to low-resource languages. Their

research has shown that using neighbouring language families for the cross-lingual trans-

fer often can achieve better performance than a single-family multi-source multi-target

baseline. They have reported a 9.9 BLEU p.p. improvement for English-Swedish trans-

lation. Similarly, Kocmi and Bojar [2018] show that a trivial transfer learning, where

they first train a “parent” model for a high-resource language pair and then continue the

training on a low-resource pair only by replacing the training corpus, can bring signif-

icant translation performance improvement even in distant unrelated languages. Using

parallel synthetic data, by leveraging monolingual data with back-translation or other ap-

proaches has also been a popular proposal in the workshops [Chinea-Rios et al., 2017;

Currey et al., 2017]. Finally, meta-learning [Gu et al., 2018] has been also proposed as

an interesting training method for low resourced translation models.

For this work, we have selected a low-resource language pair, English-Basque (ab-

breviation: en-eu), since I am a Basque native speaker and this language has had limited

dedicated studies, and used it as a case study for a comparison of statistical and neu-

ral machine translation. Past machine translators for the Basque language have mainly

used rule-based [Mayor et al., 2011] and statistical approaches [de Ilarraza et al., 2008;

Stroppa et al., 2006]. In the WMT 2016 workshop [Bojar et al., 2016] an IT-domain trans-

lation shared task was organized which included English-Basque as a language pair. Del

Gaudio et al. [2016], participants on the shared-task, have proposed two alternative sys-

tems, one based on PB-SMT [Koehn et al., 2007] and a system exploiting deep language

engineering approaches [Žabokrtskỳ et al., 2008]. Their work showed how challenging it

is to translate in this distant language pair, achieving translations with low accuracy with

respect to the reference sentences (∼ 10 BLEU). In our work, we compare three different

systems: OpenNMT, an open-source NMT system; Moses SMT, an open-source SMT

system; Apertium; a publicly available rule-based machine translation (RBMT) system
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and Google Translate, a publicly-available commercial system which uses either SMT or

NMT models depending on the language pair. The first two have been trained by us with

dedicated datasets, while Google has just been used “as is” from its API. The three mod-

els have been tested over open-domain and Information Technology (IT) domain datasets

from the WMT2016 IT helpdesk shared task. Moreover, we have released a new, small en-

eu corpus (named Berriak) useful for probing English-Basque machine translation. This

corpus consists of 500 long and complex sentences translated from English to Basque by

experienced translators and is much more realistic and challenging than the existing en-eu

corpora. Due its small size, we have only used it as a test set.

4.2 The Basque Language

Basque (Euskara) is a language spoken in the Basque Country (northern Spain and south-

western France). It is not considered a member of the Indo-European language family and

it remains isolated to date, meaning that researchers have not found any other language

with similar characteristics. As stated by [Mayor et al., 2011], Basque is an agglutinative

language with rich inflectional morphology. This means that a word may include several

morphemes that change its inflectional category such as number, case, tense or person.

Unlike in fusional languages such as Spanish and French, in agglutinative languages the

boundaries between morphemes remain clear-cut [Aikhenvald, 2007]. For agglutinative

languages, rule-based systems have proved a rather effective translation approach in the

past [Koehn and Monz, 2006].

During the military dictatorship of Spain (1939-1975), Basque became illegal and the

number of speakers dropped drastically. However, in the 1970s a process for the formal

standardization of the language (Euskara Batua) began and Basque teaching in schools

was restored. Nowadays, the language is official in the Basque autonomous community in

Spain and it has reached approximately 1M speakers (including Navarre and the French

side). Yet, the persisting lack of available translation corpora makes the development of

Basque machine translators a difficult task.
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4.3 Methods

4.3.1 Moses SMT

SMT has been the state-of-the-art approach to machine translation for many years [Koehn

et al., 2003]. SMT systems are usually phrase-based system which first try to learn the

alignments of phrases between different languages, and then predict the best composition

of phrases for the translation with the help of a target language model (LM).

In this work, we have evaluated a popular open-source SMT toolkit called Moses

[Koehn et al., 2007]. First, a word alignment model between the source and target lan-

guages has been learned over the training data with the GIZA++ toolkit [Och and Ney,

2003]. Then, an LM has been learned over the training data with KenLM [Heafield,

2011]. Finally, based on these two models, the Moses decoder has been used to translate

the sentences. The parameters of the models have been kept to the default recommended

values by the authors of Moses.

4.3.2 Apertium

Apertium1 is a RBMT system that is only available to translate from Basque to English

(and not the other way around). It combines multiple morphological, lexical, chunking

and anaphora resolution rules.

4.3.3 Google Translate

Google Translate is a publicly-available, well-known commercial machine translator. Re-

cently, it has implemented the Google Neural Machine Translation (GNMT) [Johnson et

al., 2016b] over many language pairs and en-eu is one of them2. Google Translate does

not train from a dedicated annotation of parallel text; rather, it crawls the Web to forage

for “likely parallel” paragraphs (for instance, those marked with multiple HTML lang

tags). In our work, we have used it from the convenient Google Cloud Translation API3.

1https://apertium.org/index.eng.html?dir=eus-eng#translation
2https://cloud.google.com/translate/docs/languages
3Google Translate API: https://cloud.google.com/translate/docs/

https://apertium.org/index.eng.html?dir=eus-eng#translation
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4.3.4 OpenNMT

We have trained an NMT model by using the OpenNMT toolkit [Klein et al., 2017] with

the seq2seq architecture of [Sutskever et al., 2014]. This architecture is formed by an

encoder, which converts the source sentence into a sequence of numerical vectors, and a

decoder, which predicts the target sentence based on the encoded source sentence. Both

the encoder and the decoder are usually recurrent neural networks (RNNs). Additionally,

an attention mechanism [Bahdanau et al., 2015; Luong et al., 2015] has been used to learn

soft-alignments between the source and the target sentences.

In our model, we have used the Long Short-Term Memory (LSTM) network [Hochre-

iter and Schmidhuber, 1997] for both the encoder and the decoder. We have also used

the dot attention mechanism [Luong et al., 2015] where weights over the encoded source

sentence are provided by an auxiliary network. Like with any other neural models for

NLP, prior to processing each unique word in the corpus needs to be mapped to a high-

dimensional vector (word embedding). This mapping can be either random (the default)

or based on user-provided pre-trained embeddings. In addition, the word embeddings can

be kept constant during training, or updated alongside all other parameters to minimise

the cost function. Since pre-trained embeddings have typically reported higher accuracies

[Dernoncourt et al., 2017; Lample et al., 2016], we have trained Basque word embeddings

using GloVe [Pennington et al., 2014] over the Basque Wikipedia. For English, we have

used the available CommonCrawl pre-trained embeddings4. We have evaluated the use of

these embeddings in two different ways: maintaining them fixed during both training and

testing (f-emb) and updating them during the training stage (u-emb). The word embed-

dings have a dimension of 300. The remaining parameters of the network have been kept

to their default recommended values by the authors of OpenNMT.

4GloVe: https://nlp.stanford.edu/projects/glove/
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Data PaCo2_EnEu WMT16_IT Berriak
training 125,356 89,983 —
test 5,000 1,000 500

Table 4.1: The number of samples in the PaCo_EnEu, WMT16_IT and Berriak datasets.

4.4 Experiments

4.4.1 Corpora

As mentioned previously, the en-eu language pair is considered to be low-resourced. To

mitigate this issue, the WMT16 machine translation for IT domain shared task5 provided

a parallel en-eu corpus. This corpus includes both an IT-domain dataset and an open-

domain dataset (PaCo2_EnEu). PaCo2_EnEu consists of approximately 130,000 en-eu

translations crawled from the web [San Vicente et al., 2012]. In the experiments, we

have used 5,000 as a test set and the rest for training the models (in the shared-task

PaCo2_EnEu was only used as out-of-domain training data, not as testing data). We

have also used the IT-domain data to evaluate the translators over a specialised domain.

The IT-domain training set consists of 89,983 samples, but only 2,000 of them are proper

sentences; the rest are translations of IT terms from Wikipedia and localization PO files.

Consequently, the amount of “good quality” data in the training set is very limited. At

its turn, the test set consists of 1,000 proper sentences. Another English-Basque paral-

lel corpus is available at the OPUS repository 6, which is larger in number of sentences

(∼ 1M). However, the sentence alignment in this corpus is not good [Tiedemann and

Scherrer, 2017], resulting in a rather noisy dataset, and that can affect the quality of the

predictions made by the MT system [Khayrallah and Koehn, 2018]. This corpus is more

suited for training document-level NMT models [Miculicich et al., 2018], because it has

clear document boundaries, and because the surrounding sentence can help to understand

the context better, achieving better translations and mollifying the issues produced by

poor sentence alignment. Therefore, we have used this dataset in Chapter 6 to train our

document-level translation model.

By inspecting these resources, we had realised the lack of long and complex sen-

5WMT16: http://www.statmt.org/wmt16/it-translation-task.html
6OPUS: http://opus.nlpl.eu/

http://www.statmt.org/wmt16/it-translation-task.html
http://opus.nlpl.eu/
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tences, likely a major limitation for the realistic evaluation of this language pair. Such

sentences appear in most professional translations and they are expected to prove far more

challenging for automated translators. To provide a resource contribution, we have there-

fore collected and released a small, high-quality en-eu corpus called Berriak (news in

Basque)7,8. To create a suitable corpus, we have randomly selected English sentences

from the English-German news corpus of WMT16 which meets the requirements. The

sentences have been translated into Basque with the help of Librezale9, an open group of

highly-qualified volunteers who work to increase the use of the Basque language in the

IT domain. To date, we have collected 500 en-eu translations for a total of 10,280 tokens.

The number of distinct tokens in the corpus is 4,554 for Basque and 3,741 for English,

and the average sentence length is∼19 and∼23 tokens respectively. Usually morpholog-

ically rich languages such as Basque tend to have a larger vocabulary size. Due to the low

number of sentences in this corpus, in this work we have only used it as a further test set

for models trained with PaCo2_EnEu. The corpus is similar to the popular news domain

translations released by the organizers of the WMT workshops every year, and we believe

will allow for a better comparison between translation models and to expose brittleness

in models trained on existing benchmarks [Liu et al., 2019]. The manual translations are

still ongoing and we intend to release an extended version in the near future. Table 4.1

summarises the number of samples of the various datasets.

4.4.2 Experimental Settings and Results

We have conducted a number of experiments to evaluate the models in a variety of sce-

narios. In the first experiment, we have trained the SMT and NMT models with the

PaCo2_EnEu training set and tested them with both the PaCo2_EnEu test set and Berriak.

Google Translate has been used as is. Experiments have been conducted in both English-

to-Basque (en→eu) and Basque-to-English (eu→en) to assess performance in both di-

rections. In addition, for the NMT model we have experimented with updated random

embeddings (r-emb), fixed pre-trained embeddings (f-emb), and updated pre-trained em-

beddings (u-emb). Table 4.2 reports the BLEU scores [Papineni et al., 2002] for the three
7ISLRN: 197-383-395-000-1
8https://github.com/ijauregiCMCRC/english_basque_MT
9Librezale: https://librezale.eus/
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Model PaCo2_EnEu Berriak
en→eu
Moses SMT 21.02 5.90
OpenNMT(r-emb) 20.07 1.49
OpenNMT(f-emb) 19.39 1.43
OpenNMT(u-emb) 21.18 1.84
Google Translate 9.12 9.91
eu→en
Moses SMT 24.20 8.53
OpenNMT(r-emb) 19.44 3.35
OpenNMT(f-emb) 18.61 4.28
OpenNMT(u-emb) 22.42 5.53
Google Translate 16.66 20.80
Apertium 8.15 7.3

Table 4.2: BLEU score of the models over the PaCo_EnEu and Berriak corpora.

models. The first remark is that all models generally perform worse with Basque as the

target language. This is in line with the literature, in relation to the fact that morpho-

logically rich languages are harder as target, comparing to other languages with simpler

morphology such as English [Bojar et al., 2013]. The main issue is that treating words as

atomic units of information in morphologically rich languages is not suitable [Passban,

2017], as morphemes can significantly change the meaning of the word. As future work,

better morphological decomposition or subword tokenization [Sennrich et al., 2015] could

be explored. As for the models’ comparison, both Moses SMT and OpenNMT have re-

markably outperformed Google Translate on the PaCo2_EnEu test set. Apertium, the

RBMT system, has significantly underperformed compared to the other systems. The

NMT model has achieved the highest BLEU score (21.18) in the en→eu direction, while

the SMT model has achieved the highest BLEU score (24.20) in the opposite direction.

This also is in line with recent work on morphologically rich languages [Belinkov et al.,

2020]. For the NMT model, updating the pre-trained embeddings during training (u-emb)

has invariably led to the highest accuracies, up to an improvement of 2.98 BLEU points

over the random embeddings in the eu→en direction.

However, the performance ranking has changed drastically when testing on the more

probing Berriak corpus. In this case, Google Translate has achieved the highest BLEU

scores by a large extent. We believe that both Moses SMT and OpenNMT, which have

been trained using only the PaCo2_EnEu training set, have obtained such low results

because the training corpus does not contain the same kind of long sentences as Berriak
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Model WMT16_IT
en→eu
Moses SMT 11.74
Moses SMT+(PaCo train) 11.89
OpenNMT(r-emb) 11.87
OpenNMT(PaCo train)(r-emb) 12.42
OpenNMT(u-emb) 12.75
OpenNMT(PaCo train)(u-emb) 12.31
Google Translate 14.46
eu→en
Moses SMT 19.06
Moses SMT+(PaCo train) 19.34
OpenNMT(r-emb) 15.46
OpenNMT(PaCo train)(r-emb) 16.93
OpenNMT(u-emb) 17.30
OpenNMT(PaCo train)(u-emb) 18.01
Google Translate 24.66
Apertium 6.6

Table 4.3: BLEU score of the models over the WMT16_IT corpus.

and therefore the models could not learn to translate such challenging sentences. Between

SMT and NMT, the former has clearly outperformed the latter, confirming that SMT

generalises better when the training corpus is limited. In this case, Apertium (7.3 BLEU)

has also performed better than the NMT model. On the other hand, the training corpus

of Google Translate is certainly much bigger, and that has helped it achieve better results

on Berriak. However, the BLEU score when Basque is the target is still very low (9.91)

and significant improvements are an outstanding need. For what concerns NMT and

word embedding, also in this case the updated pre-trained embeddings have led to an

improvement (although slight) in score.

In a second experiment in the IT domain (Table 4.3), Google Translate has again ob-

tained the best results, and the RBMT model has significantly underperformed. This can

be explained with the fact that Moses SMT and OpenNMT have only been trained with

2,000 proper IT-domain sentences. Between these two models, OpenNMT has outper-

formed Moses SMT for Basque as the target language, and vice versa for English. To

mollify the small training size issue, we have added the open-domain corpus to the train-

ing data (noted as PaCo train in Table 4.3). The results have slightly improved for both

NMT and SMT, with a more noticeable improvement for NMT (12.42 in en→eu and

16.93 in eu→en). Larger relative improvements have been achieved with the use of the
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pre-trained embeddings (12.75 in en→eu and 17.30 in eu→en). Since the updated em-

beddings had proved clearly more accurate in the previous experiment, we have not used

the fixed embeddings in this experiment. Finally, using both the open-domain data and the

pre-trained embeddings has only improved the scores for English as the target language.

Once again, all the models have performed significantly better with English as the target

language, with an even bigger margin compared to the general-domain experiment. We

speculate that this may be due to the fact that in the IT domain the Basque language does

not have a vocabulary as comprehensive and developed as English does. In fact, many IT

words and expressions are taken from English unchanged.

For a qualitative analysis, Table 4.5 shows three examples of translations provided by

the different models alongside the ground truth from the PaCo2_EnEu test set, which is

the dataset on which the trained NMT and SMT models have obtained the best accuracies.

We can see that for sentence 2 the OpenNMT model has provided a translation identical

to the ground truth, probably thanks to the fact that there are sentences with the same

structure in the training corpus. However, the NMT model tends to directly bypass many

words from the original English sentence into the prediction (see sentences 1 and 3; NB:

OpenNMT allows the model to bypass words from the source sentence). More precisely,

if the model is uncertain about which word from the target vocabulary should be predicted

next, it will pass on the word with highest attention weight from the source sentence.

This mechanism aims to help the prediction of words such as proper names, which are

not likely to appear in the target vocabulary. As additional analisys, we have computed

the percentage of words bypassed by the different NMT models. To this aim, we have

counted the number of words in the test set’s predictions which did not belong to the

target vocabulary, and divided it by the total number of words predicted. Table 4.4 shows

the computed percentages, averaged over all the different NMT models. We can observe

that the numbers are clearly higher when Basque is the target language, which matches

our intuition that Basque is more difficult to translate into. When comparing the different

datasets, we observe a trend to bypass more words in Berriak, which is understandable as

this dataset does not have a training corpus and has longer and more complex sentences.

Conversely, WMT16_IT has the lowest percentages of source words in the predictions.

This is likely due to the fact that this dataset is very domain-specific and has a smaller
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Corpus Bypassed (%)
en→eu
PaCo2_EnEu 21.70
Berriak 36.60
WMT16_IT 3.78
eu→en
PaCo2_EnEu 4.29
Berriak 7.59
WMT16_IT 1.07

Table 4.4: Average of the percentages of bypassed words by all the NMT models in each
dataset and each direction.

vocabulary size.

On a separate note, NMT tends to predict the same word repeatedly (see sentence 3),

as often been reported for neural encoder-decoder architectures [Ding et al., 2017]. On the

other hand, the SMT model seems able to match more words correctly in each sentence,

but it has difficulties to form grammatically-complete sentences (see all three examples).

Finally, the sentences predicted by Google Translate contain synonyms of the words in

the ground truth (e.g., Iruñean vs Pamplona) and errors in the inflectional morphemes

(e.g., entzierroa vs entzierroetan, Bilaketa vs Bilaketaren, zezenketen vs zezenketarako).

4.5 Conclusion

In this work we have presented a performance comparison of three contemporary MT

approaches on a low-resourced language pair, English-Basque. The compared approaches

include an NMT model (OpenNMT, with and LSTM encoder/decoder), an SMT model

(Moses) and the popular Google Translate service.

The experimental results have showed that all the models have achieved worse results

when Basque is the target language, confirming that languages with rich morphology are

more difficult to translate into. The NMT and SMT models have outperformed Google

Translate when using training and test data from the same corpus (PaCo2_EnEu). How-

ever, these models have not generalised well on long and complex sentences, in contrast

to Google Translate. For the NMT model, initialising the word embeddings with pre-

trained embeddings (based on the Basque Wikipedia for Basque and CommonCrawl for

English) and updating them during training has invariably led to the best BLEU scores.
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Thanks to the embedding initialization, the NMT model has been able to improve the

results obtained by the SMT. In absolute terms, the achieved BLEU scores suggest that

machine translation for Basque still has large margins for improvement, mainly due to

the lack of available billingual corpora for this language pair. In order to contribute in

the alleviation of this problem, we have released a new, small corpus (named Berriak) of

highly accurate en-eu sentences translated by experienced human translators to be used

as a probing test set for this language pair. However, there is a need to propose alternative

RNN architectures that will handle better the lack of data.
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1. How many people take part in The Sanfermin Bullrunnings -
Sanfermin.com - Pamplona

English sentence
2. Search results as from 07/02/2011 in "Zarzuela"

3. For this reason, after Madrid and Sydney, they plan to con-
tinue this international anti-bullfighting campaign in Croatia and
Berlin.

1. Sanferminetako entzierroa zenbat jendek egiten duen - Sanfer-
min.com - Pamplona

Ground Truth
2. Bilaketa emaitzak 2011/07/02 egunetik aurrera “Zarzuela”-
(e)n

3. Horregatik, zezenketen eta entzierroen aurkako nazioarteko
protesta Madrilen eta Sidneyn egiteaz gain, Kroazia eta Berlinen
ere izango da.

1. Zenbat jende parte hartzeko Sanferminetako Bullrunnings -
Sanfermin.com - Pamplona

Moses SMT
2. Bilaketa emaitzak 2011/07/02 egunetik aurrera “Zarzuela”-(e)

3. Hori dela eta, ondoren, Madrilera eta Sydney jarraitzen dute,
plan horrek nazioarteko aurkako Zezenketetako @-@ kanpaina
batean Kroazia eta Berlingo.

1. Nola bizi da Sanfermin Bullrunnings - Sanfermin.com - Pam-
plona

OpenNMT
2. Bilaketa emaitzak 2011/07/02 egunetik aurrera “Zarzuela”-
(e)n

3. Hori dela eta, Madrilen, Madrilen, Madrid, bullfighting eta
Berlin, international eta Berlin.

1. Zenbat pertsona parte hartu Sanferminetako entzierroetan -
Sanfermin.com - Iruñean

Google
2. Bilaketaren emaitzak 2011/02/07 “Zarzuela” -en

3. Horregatik, Madrilen eta Sydneyen ondoren, Kroazia eta Berli-
nen kontrako zezenketarako nazioarteko kanpaina aurrera era-
mateko asmoa dute.

Table 4.5: Example of translations over the PaCo2_EnEU (en→eu) test set.



Chapter 5

Regressing Word and Sentence

Embeddings for Regularization of

Neural Machine Translation

5.1 Introduction

Machine translation (MT) is a field of natural language processing (NLP) focussing on

the automatic translation of sentences from a source language to a target language. In

recent years, the field has been progressing quickly mainly thanks to the advances in deep

learning and the advent of neural machine translation (NMT). The first NMT model was

presented in 2014 by Sutskever et al. [Sutskever et al., 2014] and consisted of a plain

encoder-decoder architecture based on recurrent neural networks (RNNs). In the follow-

ing years, a series of improvements has led to major performance increases, including the

attention mechanism (a word-aligment model between words in the source and target sen-

tences) [Bahdanau et al., 2015; Luong et al., 2015] and the transformer (a non-recurrent

neural network that offers an alternative to RNNs and makes NMT highly parallelizable)

[Vaswani et al., 2017]. As a result, NMT models have rapidly outperformed traditional

approaches such as phrase-based statistical machine translation (PBSMT) [Koehn et al.,

2007] in challenging translation contexts (e.g., the WMT conference series). Nowadays,

the majority of commercial MT systems utilise NMT in some form.

However, NMT systems are not exempt from limitations. The main is their tendence

82
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to overfit the training set due to their large number of parameters. This issue is common

to many other tasks that use deep learning models and it is caused to a large extent by the

way these models are trained: maximum likelihood estimation (MLE). As pointed out by

Elbayad et al. [Elbayad et al., 2018], in the case of machine translation, MLE has two

clear shortcomings that contribute to overfitting:

1. Single ground-truth reference: Usually, NMT models are trained with translation

examples that have a single reference translation in the target language. MLE tries

to give all the probability to the words of the ground-truth reference and zero to all

others. Nevertheless, a translation that uses different words from the reference (e.g.

paraphrase sentences, synonyms) can be equally correct. Standard MLE training is

not able to leverage this type of information since it treats every word other than the

ground truth as completely incorrect.

2. Exposure bias[Bengio et al., 2015]: NMT models are trained with “teacher forc-

ing”, which means that the previous word from the reference sentence is given as

input to the decoder for the prediction of the next. This is done to speed up training

convergence and avoid prediction drift. However, at test time, due to the fact that

the reference is not available, the model has to rely on its own predictions and the

performance can be drastically lower.

Both these limitations can be mitigated with sufficient training data. In theory, MLE

could achieve optimal performance with infinite training data, but in practice this is impos-

sible as the available resources are always limited. In particular, when the training data are

scarce such as in low-resource language pairs or specific translation domains, NMT mod-

els display a modest performance, and other traditional approaches (e.g., PBSMT)[Koehn

and Knowles, 2017] often obtain better accuracies. As such, generalization of NMT sys-

tems still calls for significant improvement.

We have proposed two novel regularization terms based on regressing word embed-

dings (ReWE) and regressing sentence embeddings (ReSE). ReWE is a module added

to the decoder of a sequence-to-sequence model so that, during training, the model is

trained to jointly predict the next word in the translation (categorical value) and its pre-

trained word embedding (continuous value). This approach can leverage the contextual
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information embedded in pre-trained word vectors to achieve more accurate translations

at test time. ReSE is an additional regularization method to further improve the accuracy

of the translations. ReSE uses a self-attention mechanism to infer a fixed-dimensional

sentence vector for the target sentence. During training, the model is trained to regress

this inferred vector towards the pre-trained sentence embedding of the ground-truth sen-

tence. Our main contributions in this chapter are:

• The proposal of a new regularization technique for NMT based on sentence embed-

dings (ReSE).

• Extensive experimentation over four language pairs of different dataset sizes (from

small to large) with both word and sentence regularization. We show that using

both ReWE and ReSE can outperform strong state-of-the-art baselines based on

long short-term memory networks (LSTMs) and transformers.

• Insights on how ReWE and ReSE help to improve NMT models. Our analysis

shows that these regularizers improve the organization of the decoder’s output vec-

tor space, likely facilitating correct word classification.

• Further experimentation of the regularizer on unsupervised machine translation,

showing that it can improve the quality of the translations even in the absence of

parallel training data.

5.2 Related Work

The related work is organized over the three main research subareas that have motivated

this work: regularization techniques, word and sentence embeddings and unsupervised

NMT.

5.2.1 Regularization Techniques

In recent years, the research community has dedicated much attention to the problem of

overfitting in deep neural models. Several regularization approaches have been proposed
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in turn such as dropout [Srivastava et al., 2014; Gal and Ghahramani, 2016], data augmen-

tation [Fadaee et al., 2017] and multi-task learning [Gu et al., 2018; Clark et al., 2018].

Their common aim is to encourage the model to learn parameters that allow for better

generalization.

In NMT, too, mitigating overfitting has been the focus of much research. As men-

tioned above, the two, main acknowledged problems are the single ground-truth refer-

ence and the exposure bias. For the former, Fadee et al. [2017] have proposed augment-

ing the training data with synthetically-generated sentence pairs containing rare words.

The intuition is that the model will be able to see the vocabulary’s words in more varied

contexts during training. Kudo [Kudo, 2018] has proposed using variable word segmenta-

tions to improve the model’s robustness, achieving notable improvements in low-resource

languages and out-of-domain settings. Another line of work has focused on “smooth-

ing” the output probability distribution over the target vocabulary [Elbayad et al., 2018;

Chousa et al., 2018]. These approaches use token-level and sentence-level reward func-

tions that push the model to distribute the output probability mass over words other than

the ground-truth reference. Similarly, Ma et al. [Ma et al., 2018] have added a bag-of-

words term to the training objective, assuming that the set of correct translations share

similar bag-of-word vectors.

There has also been extensive work on addressing the exposure bias problem. An

approach that has proved effective is the incorporation of predictions in the training, via

either imitation learning [Daumé et al., 2009; Ross et al., 2011; Leblond et al., 2018] or

reinforcement learning [Ranzato et al., 2015; Bahdanau et al., 2017]. Another approach,

that is computationally more efficient, leverages scheduled sampling to obtain a stochas-

tic mixture of words from the reference and the predictions [Bengio et al., 2015]. In turn,

Xu et al. [Xu et al., 2019] have proposed a soft alignment algorithm to alleviate the miss-

matches between the reference translations and the predictions obtained with scheduled

sampling; and Zhang et al.[Zhang et al., 2018] have introduced two regularization terms

based on the Kullback-Leibler (KL) divergence to improve the agreement of sentences

predicted from left-to-right and right-to-left.
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Figure 5.1: Baseline NMT model. (Left) The encoder receives the input sentence and gen-
erates a context vector cj for each decoding step using an attention mechanism. (Right)
The decoder generates one-by-one the output vectors pj , which represent the probability
distribution over the target vocabulary. During training yj is a token from the ground truth
sentence, but during inference the model uses its own predictions.

5.2.2 Word and Sentence Embeddings

Word vectors or word embeddings [Mikolov et al., 2013b; Pennington et al., 2014; Bo-

janowski et al., 2017] are ubiquitous in NLP since they provide effective input features

for deep learning models. Recently, contextual word vectors such as ELMo [Peters et al.,

2018], BERT [Devlin et al., 2019] and the OpenAI transformer [Radford et al., 2018] have

led to remarkable performance improvements in several language understanding tasks.

Additionally, researchers have focused on developing embeddings for entire sentences

and documents as they may facilitate several textual classification tasks [Kiros et al., 2015;

Conneau et al., 2017; Cer et al., 2018; Artetxe and Schwenk, 2019b].

In NMT models, word embeddings play an important role as input of both the encoder

and the decoder. A recent paper has shown that contextual word embeddings provide ef-

fective input features for both stages [Edunov et al., 2019]. However, very little research

has been devoted to using word embeddings as targets. Kumar and Tsvetkov [Kumar and

Tsvetkov, 2018] have removed the typical output softmax layer, forcing the decoder to

generate continuous outputs. At inference time, they use a nearest-neighbour search in

the word embedding space to select the word to predict. Their model allows for signifi-

cantly faster training while performing on par with state-of-the-art models. Our approach

differs from [Kumar and Tsvetkov, 2018] in that our decoder generates continuous outputs
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in parallel with the standard softmax layer, and only during training to provide regular-

ization. At inference time, the continuous output is ignored and prediction operates as

in a standard NMT model. To the best of our knowledge, our model is the first to use

embeddings as targets for regularization, and at both word and sentence level.

5.2.3 Unsupervised NMT

The amount of available parallel, human-annotated corpora for training NMT systems is

at times very scarce. This is the case of many low-resource languages and specialized

translation domains (e.g., health care). Consequently, there has been a growing inter-

est in developing unsupervised NMT models [Lample et al., 2018; Artetxe et al., 2018;

Yang et al., 2018] which do not require annotated data for training. Such models learn

to translate by only using monolingual corpora, and even though their accuracy is still

well below that of their supervised counterparts, they have started to reach interesting

levels. The architecture of unsupervised NMT systems differs from that of supervised

systems in that it combines translation in both directions (source-to-target and target-to-

source). Typically, a single encoder is used to encode sentences from both languages, and

a separate decoder generates the translations in each language. The training of such sys-

tems follows three stages: 1) building a bilingual dictionary and word embedding space,

2) training two monolingual language models as denoising autoencoders [Vincent et al.,

2008], and 3) converting the unsupervised problem into a weakly-supervised one by use

of back-translations [Sennrich et al., 2016]. For more details on unsupervised NMT sys-

tems, we refer the reader to the original papers [Lample et al., 2018; Artetxe et al., 2018;

Yang et al., 2018].

In this chapter, we explore using the proposed regularization approach also for unsu-

pervised NMT. Unsupervised NMT models still require very large amounts of monolin-

gual data for training, and often such amounts are not available. Therefore, these models,

too, are expected to benefit from improved regularization.
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Figure 5.2: Full model: Baseline + ReWE + ReSE. (Left) The encoder with the atten-
tion mechanism generates vectos cj in the same way as the baseline system. (Right)
The decoder generates one-by-one the output vectors pj , which represent the probability
distribution over the target vocabulary, and ej , which is a continuous word vector. Addi-
tionally, the model can also generate another continuous vector, r, which represents the
sentence embedding.

5.3 The Baseline NMT model

In this section, we describe the NMT model that has been used as the basis for the pro-

posed regularizer. It is a neural encoder-decoder architecture with attention [Bahdanau

et al., 2015] that can be regarded as a strong baseline as it incorporates both LSTMs and

transformers as modules. Let us assume that x : {x1 . . . xn} is the source sentence with n

tokens and y : {y1 . . . ym} is the target translated sentence with m tokens. First, the words

in the source sentence are encoded into their word embeddings by an embedding layer:

xe
i = SrcEmbLayer(xi) i = 1 . . . n (5.1)

and then the source sentence is encoded by a sequential module into its hidden vectors,

h1 . . . hn:

hi = enc(hi−1, xe
i ) i = 1 . . . n (5.2)
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Next, for each decoding step j = 1 . . .m, an attention network provides a context

vector cj as a weighted average of all the encoded vectors, h1 . . . hn, conditional on the

decoder output at the previous step, sj−1 (Eq. 5.3). For this network, we have used the

attention mechanism of Badhdanau et al.[Bahdanau et al., 2015].

cj = attn(h1 . . . hn, sj−1) j = 1 . . .m (5.3)

Given the context vector, cj , the decoder output at the previous step, sj−1, and the word

embedding of the previous word in the target sentence, yej (Eq. 5.4) (Eq. 5.5), the decoder

generates vector sj , where s0 is a fixed vector that indicates the start of a sentence. This

vector is later transformed into a larger vector of the same size as the target vocabulary

via learned parameters W, b and a softmax layer (Eq. 5.6). The resulting vector, pj , is

the inferred probability distribution over the target vocabulary at decoding step j. Fig. 5.1

depicts the full architecture of the baseline model.

yej = TgtEmbLayer(yj) j = 1 . . .m (5.4)

sj = dec(cj, sj−1, yej−1) j = 1 . . .m (5.5)

pj = softmax(Wsj + b) (5.6)

The model is trained by minimizing the negative log-likelihood (NLL) which can be

expressed as:
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LNLL = −
m∑
j=1

log(pj(yj)) (5.7)

where the probability of ground-truth word yj has been noted as pj(yj). Minimizing the

NLL is equivalent to MLE and results in assigning maximum probability to the words

in the reference translation, yj, j = 1 . . .m. The training objective is minimized with

standard backpropagation over the training data, and at inference time the model uses

beam search for decoding.

5.4 Regressing word and sentence embeddings

As mentioned in the introduction, MLE suffers from some limitations when training a

neural machine translation system. To alleviate these shortcomings, we have proposed

two new regularization terms for the objective function based on regressing word and

sentence embeddings.

5.4.1 ReWE

Pre-trained word embeddings are trained on large monolingual corpora by measuring the

co-occurences of words in text windows (“contexts”). Words that occur in similar contexts

are assumed to have similar meaning, and hence, similar vectors in the embedding space.

Our goal with ReWE is to incorporate the information embedded in the word vector in

the loss function to encourage model regularization.

In order to generate continuous vector representations as outputs, we have added a

ReWE block to the NMT baseline (Fig. 5.2). At each decoding step, the ReWE block

receives the hidden vector from the decoder, sj , as input and outputs another vector, ej , of

the same size of the pre-trained word embeddings:

ej = ReWE(sj)

= W2(ReLU(W1sj + b1)) + b2

(5.8)
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where W1, W2, b1 and b2 are the learnable parameters of a two-layer feed-forward net-

work with a Rectified Linear Unit (ReLU) as activation function between the layers. Vec-

tor ej aims to reproduce the word embedding of the target word, and thus the distributional

properties (or co-occurrences) of its contexts.

During training, the model is guided to regress the predicted vector, ej , towards the

word embedding of the ground-truth word, yej . This is achieved by using a loss function

that computes the distance between ej and yej . In the experiment, we have explored two

alternative distance metrics for the ReWEloss: the minimum square error (MSE)1 and

the cosine embedding loss (CEL) 2. This loss and the original NLL loss are combined

together with a tunable hyper-parameter, λ (Eq. 5.9). Therefore, the model is trained

to jointly predict both a categorical and a continuous representation of the words. Even

though the system is performing a single task, this setting could also be interpreted as a

form of multi-task learning with different representations of the same targets.

Lw = LNLL + λLReWE (5.9)

The word vectors of both the source (xe) and target (ye) vocabularies are initialized

with pre-trained embeddings, but updated during training. At inference time, we ignore

the outputs of the ReWE block and we perform translation using only the categorical

prediction.

5.4.2 ReSE

Sentence vectors, too, have been extensively used as input representations in many NLP

tasks such as text classification, paraphrase detection, natural language inference and

question answering. The intuition behind them is very similar to that of word embed-

dings: sentences with similar meanings are expected to be close to each other in vector

space. Many off-the-shelf sentence embedders are currently available and they can be

easily integrated in deep learning models. Based on similar assumptions to the case of

1https://pytorch.org/docs/stable/nn.html#torch.nn.MSELoss
2https://pytorch.org/docs/stable/nn.html#torch.nn.CosineEmbeddingLoss
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word embeddings, we have hypothesized that an NMT model could also benefit from

a regularization term based on regressing sentence embeddings (the ReSE block in Fig.

5.2).

The main difference of ReSE compared to ReWE is that there has to be a single

regressed vector per sentence rather than one per word. Thus, ReSE first uses a self-

attention mechanism to learn a weighted average of the decoder’s hidden vectors, s1 . . . sm:

SelfAttn(s1, . . . , sm) =
m∑
j=0

αjsj (5.10)

αj =
elj∑m
k=0 e

lk
(5.11)

lj = U2 tanh(U1sj) (5.12)

where the αj attention weights are obtained from Eqs. 5.11 and 5.12, and U1 and U2 are

learnable parameters. Then, a two-layered neural network similar to ReWE’s predicts the

sentence vector, r (Eq. 5.13). Parameters W3, W4, b3 and b4 are also learned during

training.

r = ReSE([s1, . . . , sm])

= W3(ReLU(W4SelfAttn([s1, . . . , sm]) + b3)) + b4

(5.13)

Similarly to ReWE, a loss function computes the distance between the predicted sen-

tence vector, r, and the sentence vector inferred with the off-the-shelf sentence embedder,

yr. This loss is added to the previous objective as an extra term with an additional, tunable

hyper-parameter, β:
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Lws = LNLL + λLReWE + βLReSE (5.14)

Since the number of sentences is significantly lower than that of the words, β typi-

cally needs to be higher than λ. Nevertheless, we tune it blindly using the validation set.

The reference sentence embedding, yr, can be inferred with any off-the-shelf pre-trained

embedder. At inference time, the model solely relies on the categorical prediction and

ignores the predicted word and sentence vectors.

5.5 Experiments

We have carried out an ample range of experiments to probe the performance of the pro-

posed regularization approaches. This section describes the datasets, the models and the

hyper-parameters used, and presents and discusses all results.

5.5.1 Datasets

Four different language pairs have been selected for the experiments. The datasets’ size

varies from tens of thousands to millions of sentences to test the regularizers’ ability to

improve translation over a range of low-resource and high-resource language pairs.

De-En: The German-English dataset (de-en) has been taken from the WMT18 news

translation shared task3. The training set contains over 5M sentence pairs collected

from the Europarl, CommonCrawl and Newscommentary parallel corpora. As vali-

dation and test sets, we have used the newstest2017 and the newstest2018 datasets,

respectively. We consider this dataset as a high-resource case.

En-Fr: The English-French dataset (en-fr) has been sourced from the IWSLT 2016

translation shared task4. This corpus contains translations of TED talks of very

diverse topics. The training data provided by the organizers consist of 219, 777

3WMT18: http://www.statmt.org/wmt18/translation-task.html
4IWSLT16: https://workshop2016.iwslt.org/
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Language pair Dataset Train Dev Test
De-En WMT18 News 5M 6K 3K
En-Fr IWSLT16 TED talks 220K 2K 2K
Cs-En IWSLT16 TED talks 110K 3K 2K
Eu-En WMT16 IT-domain 90K 1K 1K

Table 5.1: Approximate number of sentences in the each train, dev and test datasets.

translations which allow us to categorize this dataset as low/medium-resource. Fol-

lowing Denkowski and Neubig [Denkowski and Neubig, 2017], the validation set

has been formed by merging the 2013 and 2014 test sets from the same shared task,

and the test set has been formed with the 2015 and 2016 test sets.

Cs-En: The Czech-English dataset (cs-en) is also from the IWSLT 2016 TED talks

translation task. However, this dataset is approximately half the size of en-fr as

its training set consists of 114, 243 sentence pairs. Again following Denkowski

and Neubig [Denkowski and Neubig, 2017]), the validation set has been formed by

merging the 2012 and 2013 test sets, and the test set by merging the 2015 and 2016

test sets. We regard this dataset as low-resource.

Eu-En: The Basque-English dataset (eu-en) has been collected from the WMT16

IT-domain translation shared task5. This is the smallest dataset, with only 89, 413

sentence pairs in the training set. However, only 2, 000 sentences in the training set

have been translated by human annotators. The remaining sentence pairs are trans-

lations of IT-domain short phrases and Wikipedia titles. Therefore, we consider this

dataset as extremely low-resource. It must be said that translations in the IT domain

are somehow easier than in the news domain, as this domain is very specific and

the wording of the sentences are less varied. For this dataset, we have used the

validation and test sets (1, 000 sentences each) provided in the shared task.

All the datasets have been pre-processed with moses-tokenizer6. Additionally, words

have been split into subword units using byte pair encoding (BPE) [Sennrich et al., 2015].

For the BPE merge operations parameter, we have used 32, 000 (the default value) for

5WMT16 IT: http://www.statmt.org/wmt16/it-translation-task.html
6URL moses
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all the datasets, except for eu-en where we have set it to 8, 000 since this dataset is

much smaller. Experiments have been performed at both word and subword level since

morphologically-rich languages such as German, Czech and Basque can benefit greatly

from operating the NMT model at subword level. When using words as atomic units, we

have limited the vocabulary to the most frequent 50,000 tokens in the training data.

5.5.2 Model Training and Hyper-Parameter Selection

To implement ReWE and ReSE, we have modified the popular OpenNMT open-source

toolkit [Klein et al., 2017]7. Two variants of the standard OpenNMT model have been

used as baselines: the LSTM and the transformer, described hereafter.

LSTM: A strong NMT baseline was prepared by following the indications given

by Denkowski and Neubig [Denkowski and Neubig, 2017]. The model uses a bidi-

rectional LSTM [Hochreiter and Schmidhuber, 1997] for the encoder and a unidi-

rectional LSTM for the decoder, with two layers each. The size of the word embed-

dings was set to 300d and that of the sentence embeddings to 512d. The sizes of

the hidden vectors of both LSTMs and of the attention network were set to 1024d.

In turn, the LSTM’s dropout rate was set to 0.2 and the training batch size was set

to 40 sentences. As optimizer, we have used Adam [Kingma and Ba, 2015] with a

learning rate of 0.001. During training, the learning rate was halved with simulated

annealing upon convergence of the perplexity over the validation set, which was

evaluated every 25, 000 training sentences. Training was stopped after halving the

learning rate 5 times.

Transformer: The transformer network [Vaswani et al., 2017] has somehow be-

come the de-facto neural network for the encoder and decoder of NMT pipelines

thanks to its strong empirical accuracy and highly-parallelizable training. For this

reason, we have used it as another baseline for our model. For its hyper-parameters,

we have used the default values set by the developers of OpenNMT8. Both the en-

coder and the decoder are formed by a 6-layer network. The sizes of the word
7Our code is publicly available on Github at: https://github.com/ijauregiCMCRC/ReWE_and_ReSE.git.

We will also release it on CodeOcean.
8Transformer: http://opennmt.net/OpenNMT-py/FAQ.html
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embeddings, the hidden vectors and the attention network have all been set to either

300d or 512d, depending on the best results over the validation set. The head count

has been set correspondingly to either 6 or 8, and the dropout rate to 0.2 as for the

LSTM. The model was also optimized using Adam, but with a much higher learning

rate of 1 (OpenAI default). For this model, we have not used simulated annealing

since some preliminary experiments showed that it did penalize performance. The

batch size used was 4, 096 and 1, 024 words, again selected based on the accuracy

over the validation set. Training was stopped upon convergence in perplexity over

the validation set, which was evaluated at every epoch.

In addition, the word embeddings for both models were initialized with pre-trained

fastText embeddings [Bojanowski et al., 2017]. For the 300d word embeddings, we have

used the word embeddings available on the official fastText website9. For the 512d em-

beddings and the subword units, we have trained our own pre-trained vectors using the

fastText embedder with a large monolingual corpora from Wikipedia10 and the training

data. Both models have used the same sentence embeddings which have been computed

with the Universal Sentence Encoder (USE)11. However, the USE is only available for En-

glish, so we have only been able to use ReSE with the datasets where English is the target

language (i.e., de-en, cs-en and eu-en). When using BPE, the subwords of every sentence

have been merged back into words before passing them to the USE. The BLEU score for

the BPE models has also been computed after post-processing the subwords back into

words. Finally, hyper-parameters λ and β have been tuned only once for all datasets by

using the en-fr validation set. This was done in order to save the significant computational

time that would have been required by further hyper-parameter exploration. However, in

the de-en case the initial results were far from the state of the art and we therefore repeated

the selection with its own validation set. For all experiments, we have used an Intel Xeon

E5-2680 v4 with an NVidia GPU card Quadro P5000. On this machine, the training time

of the transformer has been approximately an order of magnitude larger than that of the

LSTM.

9Fasttext: https://fasttext.cc/docs/en/crawl-vectors.html
10Wikipedia: https://linguatools.org/tools/corpora/
11USE: https://tfhub.dev/google/universal-sentence-encoder/2
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Models Word/BPE BLEU
LSTM word 34.21
LSTM + ReWE(λ = 20) word 35.43†

Transformer word 34.56
Transformer + ReWE(λ = 20) word 35.3†

LSTM bpe 34.06
LSTM + ReWE(λ = 20) bpe 35.09†

Transformer bpe 35.31
Transformer + ReWE(λ = 20) bpe 36.3†

Table 5.2: BLEU scores over the En-Fr test set. The reported results are the average of 5
independent runs. (†) means that the differences are statistically significant with respect
to the baseline with a p-value < 0.05 over a two-tailed Welch’s t-test.

Models Word/BPE BLEU
LSTM word 20.48
+ ReWE(λ = 20) word 21.81†

+ ReWE(λ = 20) + ReSE(β = 100) word 21.98†

Transformer word 20.56
+ ReWE(λ = 20) word 21.16†

+ ReWE(λ = 20) + ReSE(β = 100) word 20.05†

LSTM bpe 22.56
+ ReWE(λ = 20) bpe 23.72†
+ ReWE(λ = 20) + ReSE(β = 100) bpe 23.56†

Transformer bpe 21.02
+ ReWE(λ = 20) bpe 22.19†

+ ReWE(λ = 20) + ReSE(β = 100) bpe 20.53

Table 5.3: BLEU scores over the Cs-En test set. The reported results are the average of 5
independent runs. (†) means that the differences are statistically significant with respect
to the baseline with a p-value < 0.05 over a two-tailed Welch’s t-test.

5.5.3 Results

We have carried out a number of experiments with both baselines. The scores reported

are an average of the BLEU scores (in percentage points, or pp) [Papineni et al., 2002]

over the test sets of 5 independently trained models. Table 5.2 shows the results over

the en-fr dataset. In this case, the models with ReWE have outperformed the LSTM and

transformer baselines consistently. The LSTM did not benefit from using BPE, but the

transformer+ReWE with BPE reached 36.30 BLEU pp (a +0.99 pp improvement over the

best model without ReWE). For this dataset we did not use ReSE because French was the

target language.
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Models Word/BPE BLEU
LSTM word 10.87
+ ReWE(λ = 20) word 13.83†

+ ReWE(λ = 20) + ReSE(β = 100) word 16.02†

Transformer word 12.15
+ ReWE(λ = 20) word 13.53†

+ ReWE(λ = 20) + ReSE(β = 100) word 6.92
LSTM bpe 17.14
+ ReWE(λ = 20) bpe 19.54†

+ ReWE(λ = 20) + ReSE(β = 100) bpe 20.29†
Transformer bpe 12.70
+ ReWE(λ = 20) bpe 13.21
+ ReWE(λ = 20) + ReSE(β = 100) bpe 9.63

Table 5.4: BLEU scores over the Eu-En test set. The reported results are the average of 5
independent runs. (†) means that the differences are statistically significant with respect
to the baseline with a p-value < 0.05 over a two-tailed Welch’s t-test.

Models Word/BPE BLEU
LSTM word 29.75
+ ReWE(λ = 2) word 30.17†

+ ReWE(λ = 2) + ReSE(β = 2) word 30.23†

LSTM bpe 34.03
+ ReWE(λ = 2) bpe 33.66
+ ReWE(λ = 2) + ReSE(β = 2) bpe 33.91

Table 5.5: BLEU scores over the De-En test set. The reported results are the average of 5
independent runs. (†) means that the differences are statistically significant with respect
to the baseline with a p-value < 0.05 over a two-tailed Welch’s t-test.

Table 5.3 reports the results over the cs-en dataset. Also in this case, all the models

with ReWE have improved over the corresponding baselines. The LSTM+ReWE has

achieved the best results (23.72 BLEU pp; an improvement of +1.16 pp over the best

model without ReWE). This language pair has also benefited more from the BPE pre-

processing, likely because Czech is a morphologically-rich language. For this dataset, it

was possible to use ReSE in combination with ReWE, with an improvement for the LSTM

at word level (+0.14 BLEU pp), but not for the remaining cases. We had also initially

tried to use ReSE without ReWE (i.e., λ = 0), but the results were not encouraging and

we did not continue with this line of experiments.

For the eu-en dataset (Table 5.4), the results show that, again, ReWE outperforms the

baselines by a large margin. Moreover, ReWE+ReSE has been able to improve the results
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even further (+3.15 BLEU pp when using BPE and +5.15 BLEU pp at word level over the

corresponding baselines). Basque is, too, a morphologically-rich language and using BPE

has proved very beneficial (+4.27 BLEU pp over the best word-level model). As noted

before, the eu-en dataset is very low-resource (less than 100, 000 sentence pairs) and it is

more likely that the baseline models generalize poorly. Consequently, regularizers such

as ReWE and ReSE are more helpful, with larger margins of improvement with respect

to the baselines. On a separate note, the transformer has unexpectedly performed well

below the LSTM on this dataset, and especially so with BPE. We speculate that it may

be more sensitive than the LSTM to the dataset’s much smaller size, or in need of more

refined hyper-parameter tuning.

Finally, Table 5.5 shows the results over the de-en dataset that we categorize as high-

resource (5M+ sentence pairs). For this dataset, we have only been able to perform ex-

periments with the LSTM due to the exceedingly long training times of the transformer.

At word level, both ReWE and ReWE+ReSE have been able to outperform the base-

line, although the margins of improvement have been smaller than for the other language

pairs (+0.42 and +0.48 BLEU pp, respectively). However, when using BPE both ReWE

and ReWE+ReSE have performed slightly below the baseline (−0.37 and −0.12 points

BLEU pp, respectively). This shows that when the training data are abundant, ReWE or

ReSE may not be beneficial. To probe this further, we have repeated these experiments by

training the models over subsets of the training set of increasing size (200K, 500K, 1M,

and 2M sentence pairs). Fig. 5.3 shows the BLEU scores achieved by the baseline and

the regularized models for the different training data sizes. The plot clearly shows that

the performance margin increases as the training data size decreases, as expected from a

regularized model.

As a preliminary experiment, we have carried out a sensitivity analysis to determine

the optimal value of the trade-off coefficient, λ, using the en-fr validation set. The results

are shown in Figure 5.4, where each point is the average of three runs trained with dif-

ferent seeds. The figure shows that the MSE loss has outperformed slightly the baseline

for small values of lambda (< 1), but the BLEU score has dropped drastically for larger

values. Conversely, the CEL loss has increased steadily with λ, reaching 38.23 BLEU

points for λ = 20, with a marked improvement of 1.53 points over the baseline. This re-
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Figure 5.3: BLEU scores over the de-en test set for models trained with training sets of
different size.

sult has been encouraging and therefore for the rest of the experiments we have used CEL

as the ReWE loss and kept the value of λ to 20. A similar analysis has been done to tune

β, using only the CEL distance. The results of this analysis over the Cs-En dataset are

shown in Figure 5.5.

Table 5.7 shows two examples of the translations made by the different LSTM models

for eu-en and cs-en. A qualitative analysis of these examples shows that both ReWE

and ReWE+ReSE have improved the quality of these translations. In the eu-en example,

ReWE has correctly translated “File tab”; and ReSE has correctly added “click Create”.

In the cs-en example, the model with ReWE has picked the correct subject “they”, and

only the model with ReWE and ReSE has correctly translated “students” and captured the

opening phrase “What was. . . about this. . . ”.

5.5.4 Understanding ReWE and ReSE

The quantitative experiments have proven that ReWE and ReSE can act as effective reg-

ularizers for low- and medium-resource NMT. Yet, it would be very interesting to under-

stand how do they influence the training to achieve improved models. For that purpose,

we have conducted an exploration of the values of the hidden vectors on the decoder end

(sj , Eq. 5.5). These values are the “feature space” used by the final classification block

(a linear transformation and a softmax) to generate the class probabilities and can provide

insights on the model. For this reason, we have considered the cs-en test set and stored all
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Figure 5.4: BLEU scores of three models over the enfr validation set for different λ values:
baseline (red), baseline + ReWE (MSE) (green), baseline + ReWE (CEL) (blue). Each
point in the graph is an average of 3 independently trained models.

the sj vectors with their respective word predictions. Then, we have used t-SNE [Maaten

and Hinton, 2008] to reduce the dimensionality of the sj vectors to a visualizable 2d. Fi-

nally, we have chosen a particular word (architecture) as the center of the visualization,

and plotted all the vectors within a chosen neighborhood of this center word (Fig. 5.6).

To avoid cluttering the figure, we have not superimposed the predicted words to the vec-

tors, but only used a different color for each distinct word. The center word in the two

subfigures (a: baseline; b: baseline+ReWE) is the same (architecture) and from the same

source sentence, so the visualized regions are comparable. The visualizations also display

all other predicted instances of word architecture in the neighborhood.

These visualizations show two interesting behaviors: 1) from eye judgment, the points

predicted by the ReWE model seem more uniformly spread out; 2) instances of the same

words have sj vectors that are close to each other. For instance, several instances of word

architecture are close to each other in Fig. 5.6b while a single instance appears in Fig.

5.6b. The overall observation is that the ReWE regularizer leads to a vector space that is

easier to discriminate, i.e. find class boundaries for, facilitating the final word prediction.

In order to confirm this observation, we have computed various clustering indexes over

the clusters formed by the vectors with identical predicted word. As indexes, we have

used the silhouette and the Davies-Bouldin indexes that are two well-known unsupervised
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Figure 5.5: BLEU scores over the Cs-En dev set of a baseline + ReWE + ReSE model,
with λ fixed to 20 and different β values. Each point in the graph is an average of 3
independently trained models.

Model Sillhouette Davies-Bouldin
LSTM -0.19 1.87
+ ReWE(λ = 2) -0.17 1.80
+ ReWE(λ = 2) + ReSE(β = 2) -0.16 1.80

Table 5.6: Clustering indexes of the LSTM models over the cs-en test set. The reported
results are the average of 5 independent runs.

metrics for clustering. The silhouette index ranges from -1 to +1, where values closer

to 1 mean that the clusters are compact and well separated, and hence more desirable.

The Davies-Bouldin index is an unbounded non-negative value, with values closer to 0

meaning better clustering. Table 5.6 shows the values of these clustering indexes over the

entire cs-en test set for the LSTM models. As the table shows, the models with ReWE and

ReWE+ReSE have reported the best values. This confirms that applying ReWE and ReSE

has a positive impact on the decoder’s hidden space, ultimately justifying the increase in

word classification accuracy.

For further exploration, we have created another visualization of the s vectors and

their predictions over a smaller neighborhood (Fig. 5.7). The same word (architecture)

has been used as the center word of the plot. Then, we have “vibrated” each of the

sj vector by small increments (between 0.05 and 8 units) in each of their dimensions,
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(a) Baseline

(b) Baseline + ReWE

Figure 5.6: Visualization of the sj vectors from the decoder for a subset of the cs-en test
set. Please refer to Section 5.5.4 for explanations. This figure should be viewed in color.
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creating several new synthetic instances of s vectors which are very close to the original

ones. These synthetic vectors have then been decoded with the trained NMT model to

obtain their predicted words. Finally, we have used t-SNE to reduce the dimensionality

to 2d, and visualized all the vectors and their predictions in a small neighborhood (±10

units) around the center word. Fig. 5.7 shows that, with the ReWE model, all the s vectors

surrounding the center word predict the same word (architecture). Conversely, with the

baseline, the surrounding points predict different words (power, force, world). This is

additional evidence that the s space is evened out by the use of the proposed regularizer.

5.5.5 Unsupervised NMT

Finally, we have also experimented with the use of ReWE and ReWE+ReSE for an unsu-

pervised NMT task. For this experiment, we have used the open-source model provided

by Lample et al. [Lample et al., 2018]12 which is currently the state of the art for un-

supervised NMT, and also adopted its default hyper-parameters and pre-processing steps

which include 4-layer transformers for the encoder and both decoders, and BPE subword

learning. The experiments have been performed using the WMT14 English-French test

set for testing in both language directions (en-fr and fr-en), and the monolingual data from

that year’s shared task for training.

As described in Section 5.2.3, an unsupervised NMT model contains two decoders to

be able to translate into both languages. The model is trained by iterating over two al-

ternate steps: 1) training using the decoders as monolingual, de-noising language models

(e.g., en-en, fr-fr), and 2) training using back-translations (e.g., en-fr-en, fr-en-fr). Each

step requires an objective function, which is usually an NLL loss. Moreover, each step

is performed in both directions (en→fr and fr→en), which means that an unsupervised

NMT model uses a total of four different objective functions. Potentially, the regularizers

could be applied to each of them. However, the pre-trained USE sentence embeddings are

only available in English, not in French, and for this reason we have limited our experi-

ments to ReWE alone. In addition, the initial results have showed that ReWE is actually

detrimental in the de-noising language model step, so we have limited its use to both lan-

guage directions in the back-translation step, with the hyper-parameter, λ, tuned over the

12UnsupervisedMT: https://github.com/facebookresearch/UnsupervisedMT
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(a) Baseline

(b) Baseline + ReWE

Figure 5.7: Visualization of the sj vectors in a smaller neighborhood of the center word.
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(a) en-fr

(b) fr-en

Figure 5.8: BLEU scores over the test set. The reported results are the average of 5
independent runs.. The red line represents the baseline model and the blue line is the
baseline + ReWE.

validation set (λ = 0.2).

To probe the effectiveness of the regularized model, Fig. 5.8 shows the results over

the test set from the different models trained with increasing amounts of monolingual data

(50K, 500K, 1M, 2M, 5M and 10M sentences in each language). The model trained using

ReWE has been able to consistently outperform the baseline in both language directions.

The trend we had observed in the supervised case has applied to these experiments, too:

the performance margin has been larger for smaller training data sizes. For example, in

the en-fr direction the margin has been +1.74 BLEU points with 50K training sentences,

but it has reduced to +0.44 BLEU points when training with 10M sentences. Again, this

behavior is in line with the regularizing nature of the proposed regressive objectives.
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5.6 Conclusion

In this chapter, we have proposed regressing continuous representations of words and sen-

tences (ReWE and ReSE, respectively) as novel regularization techniques for improving

the generalization of NMT models. Extensive experiments over four different language

pairs of different training data size (from 89K to 5M sentence pairs) have shown that both

ReWE and ReWE+ReSE have improved the performance of NMT models, particularly

in low- and medium-resource cases, for increases in BLEU score up to 5.15 percentage

points. In addition, we have presented a detailed analysis showing how the proposed reg-

ularization modifies the decoder’s output space, enhancing the clustering of the vectors

associated with unique words. Finally, we have showed that the regularized models have

also outperformed the baselines in experiments on unsupervised NMT. As future work,

we plan to explore how the categorical and continuous predictions from our model could

be jointly utilized to further improve the quality of the translations.
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Example 1:
Src: Sakatu Fitxategia fitxa Oihal atzeko ikuspegia

atzitzeko ; sakatu Berria . Hautatu txantiloia eta
sakatu Sortu hautatutako txantiloia erabiltzeko
.

Ref: Click the File tab to access Backstage view ,
select New . Select a template and click Create
to use the selected template .

Baseline: Click the default tab of the tab that you want to
open the tab tab . Select the template and select
the selected template .

Baseline + ReWE: Press the File tab to access the view view ; click
New . Select the template and click Add to cre-
ate the selected template .

Baseline + ReWE + ReSE: Press the File tab to access the chart view ;
press New . Select the template and click Cre-
ate to use the selected template .

Example 2:
Src: Na tomto projektu bylo skvělé , že žáci viděli

lokální problém a bum – okamžitě se s ním
snaží vyrovnat .

Ref: What was really cool about this project was that
the students saw a local problem , and boom –
they are trying to immediately address it .

Baseline: In this project , it was great that the kids had
seen local problems and boom – immediately
he’s trying to deal with him .

Baseline + ReWE: In this project , it was great that the kids saw a
local issue , and boom – they immediately try
to deal with it .

Baseline + ReWE + ReSE: What was great about this project was that
the students saw a local problem, and boom ,
they’re trying to deal with him .

Table 5.7: Translation examples. Example 1: Eu-En and Example 2: Cs-En.



Chapter 6

Leveraging Discourse Rewards for

Document-Level Neural Machine

Translation

6.1 Introduction

As mentioned in previous chapters, the recent advances in neural machine translation

(NMT) [Sutskever et al., 2014; Bahdanau et al., 2015; Luong et al., 2015; Vaswani et al.,

2017] have provided the research community and the commercial landscape with effective

translation models that can at times achieve near-human performance. However, this

usually holds at phrase or sentence level. When using these models in larger units of text,

such as paragraphs or documents, the quality of the translation may drop considerably in

terms of discourse attributes such as lexical and stylistic consistency.

In fact, document-level translation is still a very open and challenging problem. The

sentences that make up a document are not unrelated pieces of text that can be predicted

independently; rather, a set of sequences linked together by complex underlying linguis-

tics aspects, also known as the discourse [Maruf et al., 2019b; Jurafsky and Martin, 2019].

The discourse of a document includes several properties such as grammatical cohesion

[Halliday and Hasan, 2014], lexical cohesion [Halliday and Hasan, 2014], document co-

herence [Hobbs, 1979] and the use of discourse connectives [Kalajahi et al., 2012]. En-

suring that the translation retains such linguistic properties is expected to significantly

109
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improve its overall readability and flow.

However, due to the limitations of current decoder technology, NMT models are still

bound to translate at sentence level. In order to capture the discourse properties of the

source document in the translation, researchers have attempted to incorporate more con-

textual information from surrounding sentences. Most document-level NMT approaches

augment the model with multiple encoders, extra attention layers and memory caches to

encode the surrounding sentences, and leave the model to implicitly learn the discourse

attributes by simply minimizing a conventional NLL objective. The hope is that the model

will spontaneously identify and retain the discourse patterns within the source document.

Conversely, very little work has attempted to model the discourse attributes explicitly.

Even the evaluation metrics typically used in translation such as BLEU [Papineni et al.,

2002] are not designed to assess the discourse quality of the translated documents.

Another problem to train document-level translation models is the limited supervised

training data available. Most corpora publicly available on the Internet are at sentence-

level [Bojar et al., 2016; Bojar et al., 2017; Bojar et al., 2018], are completely shuffled

and do not contain document boundaries. On the other hand, the available document-level

datasets are usually small, with little number of documents. This makes document-level

translation a low-resource NLP task, and thus, it is understandable that current NMT

approaches struggle to learn the complex discourse structure of the documents.

For these reasons, in this chapter we propose to train an NMT model by directly

targeting two specific discourse metrics: lexical cohesion (LC) and coherence (COH). LC

is a measure of the frequency of semantically-similar words co-occurring in a document

(or block of sentences) [Halliday and Hasan, 2014]. For example, car, vehicle, engine

or wheels are all semantically-related terms. There is significant empirical evidence that

ensuring lexical cohesion in a text eases its understanding [Halliday and Hasan, 2014]. At

its turn, COH measures how well adjacent sentences in a text are linked to each other. In

the following example from Hobbs [1979]:

“John took a train from Paris to Istanbul. He likes spinach.”

the two sentences make little ‘sense’ one after another. An incoherent text, even if

grammatically and syntactically perfect, is anecdotally very difficult to understand and
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therefore coherence should be actively pursued. Relevant to translation, Vasconcellos

[1989] has found that a high percentage of the human post-editing changes over machine-

generated translations involves the improvement of cohesion and coherence.

Several LC and COH metrics that well correlate with the human judgement have been

proposed in the literature. However, like BLEU and most other evaluation metrics, they

are discrete, non-differentiable functions of the model’s parameters. Hereafter, we pro-

pose to overcome this limitation by using the well-established policy gradient approach

from reinforcement learning [Sutton and Barto, 2018] which allows using any evaluation

metric as a reward without having to differentiate it. By combining different types of

rewards, the model can be trained to simultaneously achieve more lexically-cohesive and

more coherent document translations, while at the same time retaining faithfulness to the

reference translation.

The rest of the chapter is organized as follows. Section 6.2 discusses related work.

Section 6.3 describes the baseline NMT architectures used for the experiments. Section

6.4 presents the proposed training approach and the discourse rewards used with it. Sec-

tion 6.5 presents the experiments and, finally, Section 6.6 concludes the paper.

6.2 Related Work

6.2.1 Document-level NMT

Many document-level NMT models have proposed taking the context into account by

concatenating surrounding sentences or extra features to the current input sentence, with

otherwise no modifications to the model. For example, Rios et al. [2017] have trained an

NMT model that learns to disambiguate words given the context semantic landscape by

simply extracting lexical chains from the source document, and using them as additional

features. Other researchers have proposed concatenating previous source and target sen-

tences to the current source sentence, so that the decoder can observe a proper amount

of context [Agrawal et al., 2018; Tiedemann and Scherrer, 2017; Scherrer et al., 2019].

Their work has shown that concatenating even just one or two previous sentences can

result in a noticeable improvement. Macé and Servan [2019] have added an embedding
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of the entire document to the input, and shown promising results in English-French.

Conversely, other document-level NMT approaches have proposed modifications to

the standard encoder-decoder architecture to more effectively account for the context

from surrounding sentences. Jean et al. [2017] have introduced a dedicated attention

mechanism for the previous source sentences. Multi-encoder approaches with hierar-

chical attention networks have been proposed to separately encode each of the context

sentences before they are merged back into a single context vector in the decoder [Mi-

culicich et al., 2018; Maruf et al., 2019a; Wang et al., 2017]. These models have shown

significant improvements over sentence-level NMT baselines on many different language

pairs. Kuang et al. [2018] and Tu et al. [2018] have proposed using an external cache to

store, respectively, a set of topical words or a set of previous hidden vectors. This infor-

mation has proved to benefit the decoding step at limited additional computational cost.

In turn, Maruf and Haffari [2018] have presented a model that incorporates two memory

networks, one for the source and one for the target, to capture document-level interdepen-

dencies. For the inference stage, they have proposed an iterative decoding algorithm that

incrementally refines the predicted translation.

However, all the aforementioned models assume that the model can implicitly learn

the occurring discourse patterns. Moreover, the training objective is the standard nega-

tive log-likelihood (NLL) loss, which simply maximizes the probability of the reference

target words in the sentence. Only one work these authors are aware of ([Xiong et al.,

2019]) has attempted to train the model by explicitly learning discourse attributes. In-

spired by recent work in text generation [Bosselut et al., 2018], Xiong et al. [2019] have

proposed automatically learning neural rewards that can encourage translation coherence

at document level. However, it is not clear whether the learned rewards would be in good

correspondence with human judgment. For this reason, in our work we prefer to rely

on established discourse metrics as rewards. Finally, Tebbifakhr et al. [2019] have used

a similar reinforcement learning based loss for a different task. Their work has used a

text sentiment scorer to generate translations that improve a downstream sentiment clas-

sifier predict whether a tweet has positive or negative sentiment. They have shown that

their training improves the accuracy of the downstream task classifier in comparison to

translations generated by a general-purpose NMT model.
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6.2.2 Discourse evaluation metrics

As a matter of fact, several metrics have been proposed in the literature to measure dis-

course properties. Early work of Morris and Hirst [1991] have proposed to model docu-

ment’s lexical cohesion by computing lexical chains using a thesaurus as a major knowl-

edge base. Wong and Kit [2012] have suggested an alternative metric that looks for rep-

etitions of words and their related terms (e.g. hyponyms, hypernyms) by using WordNet

[Miller, 1998]. Their work was mainly proposed as additional metric to evaluate the

quality of the output of MT systems at document-level. The proposed LC metric have

shown strong Pearson’s correlation with human translations. Later, Gong et al. [2015]

have proposed a similar metric based on the computation of lexical chains. For COH, two

types of metrics have been proposed: entity-based and topic-based. The former follow

the Centering Theory [Grosz et al., 1995] which states that documents with a high fre-

quency of the same salient entities are more coherent. An entity-based coherence metric

was proposed by Barzilai and Lapata [2008]. At their turn, topic-based metrics assume

that a document is coherent when adjacent sentences are similar in topic and vocabu-

lary. Accordingly, Hearst [1997] has proposed the Textilling algorithm which computes

the cosine distance between the bag-of-word (BoW) vectors of adjacent sentences. Foltz

et al. [1998] have proposed to replace the BoW vectors with topic vectors. They have

applied this metric in the coherence analysis of several texts [Britton and Gülgöz, 1991;

McNamara et al., 1996], discourse segmentation and as a measurement of semantic dis-

tance, and have showed better correlation with human judgment. Li et al. [2017] have

learned topic embeddings with a self-supervised neural network. Other metrics have been

proposed to measure different discourse properties such as grammatical cohesion [Hard-

meier and Federico, 2010; Miculicich and Popescu-Belis, 2017] and discourse connec-

tives [Hajlaoui and Popescu-Belis, 2013].

6.2.3 Reinforcement learning in NMT

Finally, researchers in NMT and other natural language generation tasks have used rein-

forcement learning [Sutton and Barto, 2018] techniques to train the models to maximize

discrete sentence-level and document-level metrics as an alternative or a complement to
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the NLL. For example, Ranzato et al. [2015] have proposed training NMT systems target-

ing the BLEU score, showing consistent improvements with respect to strong baselines.

In addition to training the model directly with the evaluation function, they claim that this

approach mollifies the exposure bias problem [Bengio et al., 2015]. Shen et al. [2016]

have proposed a similar solution using minimum risk training. Paulus et al. [2018] have

proposed a similar approach for summarization using ROUGE as the training loss [Lin

and Hovy, 2000]. Finally, Edunov et al. [2018b] have presented a comprehensive compar-

ison of reinforcement learning and structured prediction losses for NMT model training.

6.3 Baseline Models

This section describes the baseline NMT models used in the experiments. In detail, sub-

section 6.3.1 recaps the standard sentence-level translation model while subsection 6.3.2

describes the recent, strong hierarchical baseline that we augment with discourse rewards.

6.3.1 Sentence-level NMT

Our first baseline is a standard sentence-level NMT model. Given the source document

D with k sentences, the model translates each sentence xi = {x1
i , . . . , x

ni
i }, i = 1, . . . , k,

in the document into a sentence in the target language, y?i = {y1
i , . . . , y

mi
i }:

y?i = argmax
yi

p(yi|xi, θ) i = 1, . . . , k (6.1)

Thus, the model translates every sentence in the document independently. Our sen-

tence model uses a standard transformer-based encoder-decoder architecture [Vaswani et

al., 2017] where the model is trained to maximize the probability of the words in the

training reference sentences using an NLL objective. We train this model for 20 epochs

and select the best model over the validation set.

6.3.2 Hierarchical Attention Network

As a document-level translation baseline, we have used the Hierarchical Attention Net-

work (HAN) of Miculicich et al. [2018]. A HAN network is added to the sentence-level
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Figure 6.1: RISK training. Given the source document, the policy (NMT model) predicts
l candidate translations. Then, a reward function is computed for each such translation.
For supervised rewards, (e.g., BLEU) the reference translation is required, but not for LC
and COH. Finally, the RISK loss is computed using the rewards and the probabilities of
the candidate translations, differentiated, and backpropagated for parameter update.

NMT model both in the encoder and in the decoder (referred to as HANjoin in the fol-

lowing), allowing the model to encode information from t previous source and target

sentences. The prediction can be expressed as:

y�
i = argmax

yi
p(yi|xi, xi−1, . . . , xi−t, yi−1, . . . , yi−t, θ) i = 1, . . . , k (6.2)

where (xi−1, . . . , xi−t) are the previous source sentences and (yi−1, . . . , yi−t) the previous

target sentences that make up the context. At inference time, the target sentences are the

model’s own predictions. Following the indications given by the authors, we have set

t = 3. Additionally, we have used the weights of the sentence-level NMT baseline to

initialize the common parameters of the HANjoin model, and we have initialized the extra

parameters introduced by the HAN networks randomly. The model has been fine-tuned

for 10 epochs and the best model over the validation set has been selected.

6.4 RISK training with discourse rewards

In order to improve the baseline models, we propose to use the LC [Wong and Kit, 2012]

and COH [Foltz et al., 1998] evaluation metrics as rewards during training, so that the

model is explicitly rewarded for generating more cohesive and coherent translation at

document level. For that, we use a reinforcement learning approach, which allows us-

ing discrete, non-differentiable functions as rewards in the objective. Following Edunov

et al. [2018b], we have used the structured loss that achieved the best results in their
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experiments, namely the expected risk minimization (RISK) objective:

LRISK =
∑

u∈U(x)

−r(u, y)p(u|x, θ) (6.3)

where x is the source sentence, y is the reference translation, p(u|x) is the conditional

probability of a translation in our ‘policy’, or NMT model, U(x) is a set of candidate

translations generated by the current policy, and r(·) is the reward function. In our work

we have obtained the candidate translations using beam search, which achieved higher

accuracy than sampling in Edunov et al. [2018b]. The conditional probability of a trans-

lation is computed as:

p(u|x, θ) = f(u, x, θ)∑
u’∈U(x) f(u’, x, θ)

f(u, x, θ) = exp[
1

m

m∑
j=1

log p(uj|u1, . . . , uj−1, x, θ)]

(6.4)

where m is the number of words in the candidate translation. Note that in order to avoid

underflow and put all sentences in a similar scale, the conditional probability is computed

as a sum of logarithms, divided by the number of tokens in the sequence and, finally,

brought back to probability scale with the exponential function.

By minimizing this RISK objective, the NMT model is encouraged to give higher

probability to candidate translations that obtain a higher reward. This function has been

used at sentence level by Edunov et al. [2018b]. However, the same metrics could also

be computed at document level by simply concatenating all the sentences from the same

document together (both for the ground truth and the predictions). As a result, m now

would be the number of words in a document, U(x) the candidate document translations,

x the source document and y the reference document. Computing the RISK objective in

this way permits having document-level reward functions as r(·).

6.4.1 Reward functions

We have explored the use and combination of different reward functions for training:
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LCdoc: For LC, the metric proposed by Wong and Kit [2012] has been adopted. This

metrics counts the number of lexical cohesive devices in the document and then divides

that number by the total number of words in the document (Eq. 6.5). Cohesive devices

include associations such as repetitions of words, synonyms, near-synonyms, hypernyms,

meronyms, troponyms, antonyms, coordinating terms, and so on. WordNet [Fellbaum,

2012] has been used to classify the relationships between words. Note that this reward

function is unsupervised since it does not require the ground-truth reference to compute

it.

LC =
# of cohesive devices in document

# of words in document
(6.5)

COHdoc: To calculate COH, we have used the approach proposed by Foltz et al.

[1998]. This approach first uses a trained LSA model to infer topic vectors (ti) for each

sentence in the document, and then computes the average cosine distance between adja-

cent sentences (Eq. 6.6). For the topic vectors, we have used the pre-trained LSA model

(Wiki-6) from Stefanescu et al. [2014], which was trained over Wikipedia. Note that

COH also does not require a ground-truth reference.

COH =
1

k − 1

k∑
i=2

cos(ti, ti−1) (6.6)

BLEUdoc: In addition to the LC and COH rewards, we have decided to use a reference-

based metric such as BLEU [Papineni et al., 2002]. Due to the unsupervised nature of LC

and COH, the model could trivially boost them by only repeating words and creating very

similar sentences. However, this will come at the expense of producing translations that

are increasingly unrelated to the reference translation (low adequacy) and grammatically

incorrect (low fluency). As such, we encourage the model to also target a high BLEU

score in its predictions.

BLUEsen: Finally, we have also used BLEU at sentence level as a reward. In this way,

we can assess whether it is more beneficial to use this metric at document or sentence

level.
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Language pair Domain train dev test Avg. # sent/doc
Zh-En TEDtalks 0.2M 0.9K 3.9K 122
Cs-En TEDtalks 0.1M 0.5K 5.2K 114
Eu-En subtitles 0.8M 0.8K 1.5K 1018
Es-En subtitles 1.1M 1.9K 4.6K 774
Es-En news 0.2M 2.1K 14K 37

Table 6.1: The datasets used for the experiments.

These four rewards can be combined in several different ways. To limit the experi-

ments, we have decided to use them in their natural range without reweighting. All the

results with the different reward combinations are presented in Section 6.5.2.

6.4.2 Mixed objective

Similar to the MIXER training proposed by Ranzato et al. [2015], we have also explored

mixing the RISK objective with the NLL. The rationale is similar to that of using BLEUdoc

and BLEUsen as rewards: the NLL loss can help the model not to deviate too much from

the reference translation while improving discourse properties. To mix these losses, we

have used an alternate batch approach: either loss is randomly selected in each training

batch, with a certain probability (e.g. RISK(0.8) means that we have selected the RISK

loss with 80% probability and the NLL with 20%).

6.5 Experiments

6.5.1 Datasets and experimental setup

We have performed a broad range of experiments over four different language pairs and

three different translation domains (TED talks, movie subtitles and news) which have

been used by other popular document level NMT research [Miculicich et al., 2018; Tu

et al., 2018]. In this way we aim to facilitate the comparison of our research with the

existing literature, and limit the size of the training datasets required to test the proposed

training loss in a low-resource scenario. For translations of TED talks, we have used

the datasets released in the IWSLT151 shared task for Chinese-English (Zh-En) and in

1https://sites.google.com/site/iwsltevaluation2015/mt-track

https://sites.google.com/site/iwsltevaluation2015/mt-track
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IWSLT162 for Czech-English (Cs-En). TED talks are usually 20 minute talks that focus

around a main topic. Thus, we believe that rewards that encourage lexical cohesion and

topic coherence among the document will help the system to understand the context and

correctly disambiguate the meaning of many words in the document. For both language

pairs, we have used their dev2010 set as the validation set, and sets tst2011-2013 (Zh-En)

and tst2010-2013 (Cs-En), respectively, as test sets. For translations in the movie subtitles

domain, we have used the OpenSubtitles-v2018 dataset [Lison et al., 2018] from OPUS3,

and the language pairs tested have been Basque-English (Eu-En) and Spanish-English

(Es-En). Movie subtitles are usually conversations between the characters in the movie,

where they may be discussions, interruptions, monologues etc. For that reason, we may

expect a lower coherence between adjacent sentences, yet tracking lexical cohesion is

probably still a strong feature in the documents. For Eu-En we have used all the available

data, but for Es-En we have only used a subset of the corpus to limit time and memory

requirements. In both cases, we have divided the data into a training, validation and

test sets4. The last translation domain is news, for which we have used the Es-En News-

Commentary11 dataset5. Similar to the TED talks, these are focused on a single topic, and

usually are shorter documents, written in formal language. As validation and test sets, we

have used its newstest2008 and newstest2009-2013 sets, respectively, from WMT6. All the

datasets have been tokenized using the Moses tokenizer7, with the exception of Chinese

for which we have used Jieba8. Sentences with more than 50 tokens have been excluded.

A truecaser model from moses7 has been learned over the training data of each dataset,

and has been applied for consistent word casing as a final pre-processing step.

For training of the sentence-level baseline model, we have used the hyper-parameters

proposed by Miculicich et al. [2018] in their code repository9. The model uses a 6-layer

transformer network [Vaswani et al., 2017] as the encoder and decoder. The dimension of

the source word embeddings, the target word embeddings and the transformers’ hidden

2https://sites.google.com/site/iwsltevaluation2016/mt-track
3http://opus.nlpl.eu/
4All the datasets will be released publicly, and the reviewers can already see them as supplementary

material.
5http://www.casmacat.eu/corpus/news-commentary.html
6http://www.statmt.org/wmt13/translation-task.html
7https://github.com/moses-smt/mosesdecoder
8https://github.com/fxsjy/jieba
9https://github.com/idiap/HAN_NMT

https://sites.google.com/site/iwsltevaluation2016/mt-track
http://opus.nlpl.eu/
http://www.casmacat.eu/corpus/news-commentary.html
http://www.statmt.org/wmt13/translation-task.html
https://github.com/moses-smt/mosesdecoder
https://github.com/fxsjy/jieba
https://github.com/idiap/HAN_NMT
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vectors have all been set to 512. The default position encoding was added to the input

vectors and a dropout of 0.1 to the hidden vectors. Additionally, label smoothing of 0.1

was applied to the output probabilities. During training, the batch size was set to 4096

tokens with a gradient accumulation of 4. We have used the Adam optimizer [Kingma

and Ba, 2015] with a learning rate of 2, and β2 = 0.998. The parameters of the network

have been initialized with the glorot method [Glorot and Bengio, 2010], and the model

has been warmed up with 8, 000 steps. It has been trained for 20 epochs and the model

with best perplexity over the validation set has been selected.

The document-level HANjoin baseline follows almost exactly the settings of the sentence-

level one. The main difference is the added HAN networks in the encoder and the decoder.

During training, for memory reasons the batch size has been reduced to 1, 024 tokens, and

the learning rate to 0.2. The parameters in common have been initialized with the pre-

trained sentence-level baseline, while the extra HAN networks have been initialized with

glorot. For computational reasons, this model has been trained for only 10 epochs. In the

validation, the best model was selected as that with the highest values in the majority of

the evaluation metrics (BLEU, LC, COH and FBERT).

For our proposed training approach, we have compared multiple models trained with

the RISK objective with different combinations of reward functions. This has allowed us

to select the best reward functions for the translation quality at document level. Then, the

model trained with the best reward combination has been compared against the sentence-

level NMT and HAN baselines. In our experiments, the RISK training objective has been

used as fine-tuning of a pre-trained HANjoin baseline model, in order not to suffer from

a “cold start” due to the large output label class. The main aim of our experiments is to

show that the proposed training objectives can lead to performance improvements over

HANjoin. Candidate translations have been obtained using beam search with a beam size

of only 2, due to memory and computational time limitations. Furthermore, the training

batch size has been set to 15 sentences. Since the objective is computed over the batch,

this is equivalent to subdividing longer documents into sub-documents of 15 sentences

each. Yet, our experimental results show that computing the rewards at such batch level

is still effective for improving the translation quality. The models have been fine-tuned

until convergence of the perplexity on the validation set, and using simulated annealing
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[Denkowski and Neubig, 2017], which repeatedly halves the learning rate when perplexity

convergence is reached. The number of annealing steps was set to 5.

Each of the baselines and proposed models have been trained with three different

seeds over its training set, and the validation set has been used at all times to select the

best model. Then, the average results of the three runs over the test sets have been re-

ported. We have measured four different evaluation metrics: BLEU, LC, COH and FBERT,

an alternative metric to BLEU that compares the BERT sentence embeddings of the pre-

diction and the reference and which has been shown to have better correlation with the

human judgement than BLEU [Zhang et al., 2020]. To select the best model over the

validation set for the sentence-level NMT baseline, we have used the lowest perplexity.

Instead, for the HANjoin baseline and our models, we have chosen the model with the

best results in the majority of the four evaluation metrics (BLEU, LC, COH and FBERT).

This has not altered the relative ranking of the sentence-level NMT baseline since it has

performed the worst in all cases anyway.

6.5.2 Results

Table 6.2 shows the main results from our experiments. Over all datasets, the HANjoin

baseline has consistently outperformed the sentence-level NMT in terms of BLEU score

and FBERT which shows that including surrounding sentences can help to obtain better

translation accuracy. However, HANjoin has not performed significantly better than the

sentence-level model in terms of LC and COH (even worse in a few cases), showing that

it has not been able to specifically learn the discourse properties in the document.

Table 6.2 also shows the results from our best models in comparison to these base-

lines. From preliminary experiments, we have seen that the RISK model that achieved

the best results is the one that combines BLEUdoc, LCdoc and COHdoc as rewards. Yet,

choosing the right proportion of RISK and NLL training has proven very important and

dataset-dependent. In the TED talks domain (Table 6.2a), we can see that the proposed

training approach has been able to improve the LC, COH and FBERT metrics over both

baselines. The Zh-En model with RISK(1.0) has outperformed the HANjoin baseline by

2.46 percentage points (pp) in LC, 1.17 pp in COH and 0.48 pp in FBERT, while the Cs-En

model has improved by 2.68 pp, 0.55 pp and 0.22 pp, respectively. For this dataset, the
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Model
Zh-En (TED talks) Cs-En (TED talks)

BLEU LC COH FBERT BLEU LC COH FBERT

Sentence-level NMT 16.94 55.39 28.02 66.94 22.74 55.62 27.72 69.60
HANjoin 17.52 55.02 28.15 67.21 23.44 55.63 27.62 69.87
RISK(1.0)-BLEUdoc + LCdoc + COHdoc 18.15 57.48∗ 29.32∗ 67.69 23.40 58.31∗ 28.17 70.09
RISK(0.8)-BLEUdoc + LCdoc + COHdoc 17.82 55.18 28.68 67.60 23.43 56.03∗ 27.62 70.01∗

RISK(0.5)-BLEUdoc + LCdoc + COHdoc 17.83 54.70 28.30 67.73 23.42 56.07 27.78 69.95∗

RISK(0.2)-BLEUdoc + LCdoc + COHdoc 17.80 55.10 28.35 67.62 23.48 55.85 27.62 69.95
Human reference – 55.13 29.33 – – 55.91 29.7 –

(a) Results over the TED talks datasets.

Model
Eu-En (movie subtitles) Es-En (movie subtitles)

BLEU LC COH FBERT BLEU LC COH FBERT

Sentence-level NMT 9.12 37.08 19.34 59.18 29.34 58.31 22.70 67.57
HANjoin 9.74 37.19 19.63 59.72 30.14 58.11 22.58 67.73
RISK(1.0)-BLEUdoc + LCdoc + COHdoc 1.19 72.51∗ 27.67 36.72 3.37 67.82 19.53 48.07
RISK(0.8)-BLEUdoc + LCdoc + COHdoc 9.67 40.66∗ 19.60 59.76 29.51 58.34 22.82 67.51
RISK(0.5)-BLEUdoc + LCdoc + COHdoc 9.77 38.85∗ 19.80 59.62 29.79 58.44 22.76 67.53
RISK(0.2)-BLEUdoc + LCdoc + COHdoc 9.99 37.53 19.42 59.72 29.70 58.39 22.96 67.50
Human reference – 41.83 21.93 – – 57.28 24 –

(b) Results over the movie subtitles datasets.

Model
Es-En (news)

BLEU LC COH FBERT

Sentence-level NMT 21.79 32.97 28.10 67.88
HANjoin 22.16 32.87 28.15 68.28
RISK(1.0)-BLEUdoc + LCdoc + COHdoc 20.67 32.81 28.14 67.84
RISK(0.8)-BLEUdoc + LCdoc + COHdoc 22.26 33.70∗ 28.45∗ 68.14
RISK(0.5)-BLEUdoc + LCdoc + COHdoc 22.34 33.51∗ 28.39 68.02
RISK(0.2)-BLEUdoc + LCdoc + COHdoc 22.45∗ 33.32∗ 28.25 68.13
Human reference – 38.66 30.97 –

(c) Results over the news datasets.

Table 6.2: Main results. (∗) means that the differences are statistically significant with
respect to the HANjoin baseline with a p-value < 0.05 over a one-tailed Welch’s t-test. LC
and COH values that come at the expense of a drop in translation accuracy (e.g. BLEU,
FBERT) are highlighted in italics.

best performance has been achieved with RISK(1.0) (pure RISK training, no NLL). In

the case of Zh-En, our best model has also significantly improved the BLEU score, while

in the case of Cs-En the BLEU scores of the HANjoin baseline and our models have been

roughly equivalent. In general, we had not anticipated the improvements in BLEU score

and FBERT since our main aim had only been to improve the translations in terms of dis-

course metrics. However, in some cases the improvements in discourse metrics have also

translated in higher translation accuracy.

In turn, Table 6.2b shows the main results over the movie subtitles datasets which are

characterized by documents with on average more, yet much shorter, sentences than the
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Model BLEU LC COH FBERT

BLEUdoc + LCdoc + COHdoc 18.15 57.48 29.32 67.69
BLEUsen + LCdoc + COHdoc 17.53 56.32 28.79 67.96
BLEUdoc + LCdoc 17.44 59.21 29.87 67.27
BLEUdoc + COHdoc 17.57 55.74 28.82 67.41
BLEUsen + LCdoc 17.60 56.32 28.76 67.87
BLEUsen + COHdoc 17.46 56.31 28.82 67.93
LCdoc + COHdoc 10.56 71.28 31.25 62.27
BLEUsen 17.42 55.93 28.76 67.83
BLEU doc 17.20 54.59 28.15 67.18
LCdoc 10.42 71.70 31.61 62.09
COHdoc 17.26 58.66 29.98 66.92

Table 6.3: Ablation study of the various reward functions over the Zh-En TED talks
dataset with RISK(1.0). Undesirable LC and COH values are highlighted in italics.

TED talks. On these datasets, the RISK(1.0) model has been able to improve the LC and

COH metrics to a large extent, but at a marked cost in BLEU score and FBERT. The trans-

lations generated by this model have often displayed many word and phrase repetitions

that had little correspondence with the reference translation. This shows that improving

the LC and COH metrics beyond a certain extent is undesirable. Conversely, training the

model with the mixed objective has forced it to stay closer to the reference translations

and helped it achieve higher BLEU and FBERT scores. On Eu-En, the RISK(0.8) model

has improved the LC by 3.47 pp at a substantial parity of all the other metrics. On Es-En,

none of the proposed models has clearly outperformed the HANjoin baseline. For instance,

the RISK(0.5) model has improved LC and COH by 0.33 pp and 0.18 pp, respectively,

but at the cost of 0.35 pp in BLEU score and 0.20 pp in FBERT.

The proposed models have achieved better results on the news domain dataset (Table

6.2c) where they have been able to improve the BLEU score, LC and COH at a mild cost

in FBERT. In general, we can argue that the discourse rewards have been more effective on

documents such as the TED talks, which come from single authors and are generally con-

trolled in style, than on documents such as subtitles and news which are more fragmented

in nature.

6.5.2.1 Ablation study

To expand the analysis, Table 6.3 shows the results from an ablation study conducted

over the Zh-En dataset that explores the impact of the various reward functions. The
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best trade-off over the four evaluation metrics seems that returned by BLEUdoc + LCdoc

+ COHdoc which has achieved the highest BLEU score, a high FBERT, and high LC and

COH. The results also show that using BLEUsen as a reward has contributed to improve

the FBERT score in all cases, but at the significant expense of the other evaluation metrics.

However, when BLEUdoc and BLEUsen have been compared head-to-head as the sole

rewards, the sentence-level BLEU has been able to achieve higher scores in all metrics. In

contrast, the BLEUdoc reward has been most effective when used jointly with the cohesion

and coherence rewards. At its turn, the LCdoc reward without a balance from a BLEU

reward has led to LC and COH scores that are likely excessive and undesirable, with a

corresponding drop in BLEU score and FBERT. Conversely, the COHdoc reward has not

displayed a comparable degradation. The main overall result from this ablation analysis

is that the rewards need to be used in a calibrated combination to deliver the best trade-off

across all the evaluation metrics, and that the selection of the best combination can be

effectively carried out by validation.

Moreover, we have also tracked the improvement of the targeted evaluation metrics

(i.e. BLEU, LC and COH) during training. Figure 6.2 shows the BLEU, LC and COH

scores over the Cs-En validation set at different training iterations. This plot reinforces

the idea that improving LC and COH comes at a cost of BLEU score. In the first 2000

training iterations, the LC has improved by more than 2 p.p. and the coherence by more

than 1 p.p., while the BLEU score has dropped by less than 0.5. Additionally, the highest

score of LC and COH matches with the lowest BLEU score (iteration 4000). Overall, we

have concluded that the validation set plays a key role for early stopping of the training

and to achieve a model with the right balance of BLEU, LC and COH (e.g. iteration 2000

or 6800).

6.5.2.2 Translation examples

Finally, Tables 6.4 and 6.5 show two examples of document-level translations made by

our models, in comparison to the reference translation (Ref) and the HANjoin baseline’s,

given the sentence in the source language (Src). The first example is a snippet of a doc-

ument in the Zh-En TED talks dataset. Our best model on this dataset has been that

trained with RISK(1.0) and BLEUdoc, LCdoc and COHdoc as rewards. In this example, we
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Src: . . . 女士们，先生们，见见你的近亲。
这就是野生倭黑猩猩的世界座落于刚果的丛林中。
倭黑猩猩和黑猩猩是我们大家生活里最密切相关的近亲。
这意味我们都享有一个共同的祖先，一个进化了的祖母，她生活在大约6百万年前。 . . .

Ref: . . . ladies and gentlemen , meet your cousins .
this is the world of wild bonobos in the jungles of Congo .
bonobos are , together with chimpanzees , your living closest relative .
that means we all share a common ancestor , an evolutionary grandmother , who lived around six million years ago . . .

HANjoin: . . . ladies and gentlemen , meet your relatives .
this is the world of the wildlife that is in the Congo .
the chimps and chimpanzees are the most closely related to us .
it means we all have a common ancestor , a grandmother who has evolved about six million years ago . . .

RISK(1.0): . . . ladies and gentlemen , meet your close relatives .
and that ’s the world of the wild bonobos that are in the jungle in the Congo .
the bonobos are the most closely related to the chimpanzees that we live in .
it means that we all have a common ancestor , a grandmother who lived about six million years ago . . .

Table 6.4: Translation example. Snippet of a document from the Zh-En TED talks test
set.

Src: . . . no voy a perdonar a ese bastardo !
Digaselo al Dr Chaddha , no me mienta .
le dí el 30 % por adelantado . . .
incluso después de haberme prometido , que él nos daria una esperma de calidad . digale que se joda !. . .

Ref: . . . I wont spare that bas****
tell that Dr. Chaddha of yours , not to lie to me .
he has taken 30 % advance from me . . .
even after promising , he hasn ’t given us a quality sperm . you tell that f * * * er I ’ll hunt him down. . .

HANjoin: . . . I ’m not going to forgive that bastard !
don ’t lie to me .
I gave him 30 % earlier .
even after I was promised , he ’d give us a quality sperm. . .

RISK(0.8): . . . I ’m not going to forgive that bastard !
don ’t lie to me .
I gave him 30 % advance .
even after I was promised , he ’d give us a quality sperm . . .

Table 6.5: Translation example. Snippet of a document from the Es-En subtitles test set.

have observed clearly the positive influence of the LC and COH rewards, as the model

has been able to provide better lexical cohesion and coherence in the translation. The

model has been able to correctly translate words such as bonobos and jungle while the

HANjoin model has uttered a more generic chimps. In addition, the translation generated

by our model seems more faithful to the reference. In the second example, our best model

(RISK(0.8)+BLEUdoc+ LCdoc + COHdoc) seems to have better captured the context of the

snippet, which revolves around money and payments, and has correctly translated the

Spanish word adelanto for advancement. Conversely, the translation from the HANjoin

baseline has been earlier, which could be correct in a different context, but not in this.
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6.6 Conclusion

In this chapter, we have presented a novel training method for document-level NMT mod-

els that uses discourse rewards to encourage the models to generate more lexically cohe-

sive and coherent translations at document level. As training objective we have used

a reinforcement learning-style function, named RISK, that permits using discrete, non-

differentiable terms in the objective. Our results on four different language pairs and three

translation domains have shown that our models have achieved a consistent improvement

in discourse metrics such as LC and COH, while retaining comparable values of accu-

racy metrics such as BLEU and FBERT. In fact, on certain datasets, the models have even

improved on those metrics. While the approach has proved effective in most cases, the

best combination of discourse rewards, accuracy rewards and NLL has had to be selected

by validation for each dataset. In the near future we plan to investigate how to automate

this selection, and also explore the applicability of the proposed approach to other natural

language generation tasks.
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Figure 6.2: BLEU, LC and COH scores over the Cs-En validation set at different training
iterations.



Chapter 7

A Shared Attention Mechanism for

Interpretation of Neural Automatic

Post-Editing Systems

7.1 Introduction

In current professional practice, translators tend to follow a two-step approach: first, they

run a machine translator (MT) to obtain a first-cut translation; then, they manually correct

the MT output to produce a result of adequate quality. The latter step is commonly known

as post-editing (PE). Stemming from this two-step approach and the recent success of

deep networks in MT [Sutskever et al., 2014; Bahdanau et al., 2015; Luong et al., 2015],

the MT research community has devoted increasing attention to the task of automatic

post-editing (APE) [Bojar et al., 2017].

The rationale of an APE system is to be able to automatically correct the systematic

errors made by the MT and thus dispense with or reduce the work of the human post-

editors. The data for training and evaluating these systems usually consist of triplets (src,

mt, pe), where src is the sentence in the source language, mt is the output of the MT, and pe

is the human post-edited sentence. Note that the pe is obtained by correcting the mt, and

therefore these two sentences are closely related. An APE system is “monolingual” if it

only uses the mt to predict the post-edits, or “contextual” if it uses both the src and the mt

as inputs [Béchara et al., 2011]. Due to the fact that APE systems focus on correcting the

128
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errors made by a general-purpose black-box MT system, they usually require less training

data to be able to substantially improve the quality of the translations. Consequently, it is

a suitable approach for low-resource scenarios.

Despite their remarkable progress in recent years, neural APE systems are still elu-

sive when it comes to interpretability. In deep learning, highly interpretable models can

help researchers to overcome outstanding issues such as learning from fewer annota-

tions, learning with human-computer interactions and debugging network representations

[Zhang and Zhu, 2018]. More specifically in APE, a system that provides insights on its

decisions can help the human post-editor to understand the system’s errors and conse-

quently provide better corrections. As our main contribution, in this chapter we propose

a contextual APE system based on the seq2seq model with attention which allows for

inspecting the role of the src and the mt in the editing. We modify the basic model with

two separate encoders for the src and the mt, but with a single attention mechanism shared

by the hidden vectors of both encoders. At each decoding step, the shared attention has

to decide whether to place more weight on the tokens from the src or the mt. In our

experiments, we clearly observe that when the mt translation contains mistakes (word or-

der, incorrect words), the model learns to shift the attention toward tokens in the source

language, aiming to get extra “context” or information that will help to correctly edit the

translation. Instead, if the mt sentence is correct, the model simply learns to pass it on

word by word. In Section 7.4.4, we have plotted the attention weight matrices of several

predictions to visualize this finding.

The model has been trained and evaluated with the official datasets from the WMT16

and WMT17 Information Technology (IT) domain APE English-German (en-de) shared

tasks [Bojar et al., 2016; Bojar et al., 2017]. We have also used the 500K artificial data

provided in the shared task for extra training. For some of the predictions in the test

set, we have analysed the plots of attention weight matrices to shed light on whether the

model relies more on the src or the mt at each time step. Moreover, our model has achieved

higher accuracy than previous systems that used the same training setting (official datasets

+ 500K extra artificial data).
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7.2 Related work

In an early work, [Simard et al., 2007] combined a rule-based MT (RBMT) with a sta-

tistical MT (SMT) for monolingual post-editing. The reported results outperformed both

systems in standalone translation mode. In 2011, [Béchara et al., 2011] proposed the

first model based on contextual post-editing, showing improvements over monolingual

approaches.

More recently, neural APE systems have attracted much attention. [Junczys-Dowmunt

and Grundkiewicz, 2016] (the winner of the WMT16 shared task) integrated various neu-

ral machine translation (NMT) components in a log-linear model. Moreover, they sug-

gested creating artificial triplets from out-of-domain data to enlarge the training data,

which led to a drastic improvement in PE accuracy. Assuming that post-editing is re-

versible, [Pal et al., 2017] have proposed an attention mechanism over bidirectional

models, mt→ pe and pe → mt. The idea of using an attention mechanism has become

very popular, and thus, several other researchers have proposed variations of this tech-

nique to use multi-input seq2seq models for contextual APE to allow the model to fo-

cus on specific sub-phrases of the inputs at each decoding step. [Bérard et al., 2017;

Libovickỳ et al., 2016; Varis and Bojar, 2017; Pal et al., 2017; Libovickỳ and Helcl, 2017;

Chatterjee et al., 2017]. All these systems employ separate encoders for the two inputs,

src and mt. For instance, the winner of the 2017 shared task [Chatterjee et al., 2017],

proposed a system with two encoders, each with its own attention mechanism, with inde-

pendent trainable parameters. Bérard et al. [2017] have proposed a similar approach, but

their model predict edit operations instead of words in the target vocabulary. They have

showed their attention mechanism works very well in low-resource scenarios.

7.2.1 Attention mechanisms for APE

A key aspect of neural APE systems is the attention mechanism. A conventional atten-

tion mechanism for NMT first learns the alignment scores (eij) with an alignment model

[Bahdanau et al., 2015; Luong et al., 2015] given the j-th hidden vector of the encoder

(hj) and the decoder’s hidden state (si−1) at time i− 1 (Equation 7.1). Then, Equation 7.2

computes the normalized attention weights, with Tx the length of the input sentence. Fi-
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nally, the context vector is computed as the sum of the encoder’s hidden vectors weighed

by the attention weights (Equation 7.3). The decoder uses the computed context vector to

predict the output.

eij = aligment_model(hj, si−1) (7.1)

αij =
exp(eij)∑Tx

m=1 exp(e
im)

(7.2)

ci =
Tx∑
j=1

αi,jhj (7.3)

In the APE literature, two recent papers have extended the attention mechanism to

contextual APE. [Chatterjee et al., 2017] (the winner of the WMT17 shared task) have

proposed a two-encoder system with a separate attention for each encoder. The two atten-

tion networks create a context vector for each input, csrc and cmt, and concatenate them

using additional, learnable parameters, Wct and bct, into a merged context vector, cmerge

(Equation 7.4).

cimerge = [cisrc; cimt] ∗Wct + bct (7.4)

[Libovickỳ and Helcl, 2017] have proposed, among others, an attention strategy named

the flat attention. In this approach, all the attention weights corresponding to the tokens

in the two inputs are computed with a joint soft-max:

αij(k) =
exp(eij(k))∑2

n=1

∑T
(n)
x

m=1 exp(e
im
(n))

(7.5)

where eij(k) is the attention energy of the j-th step of the k-th encoder at the i-th decoding

step and T (k)
x is the length of the input sequence of the k-th encoder. Note that because the
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attention weights are computed jointly over the different encoders, this approach allows

observing whether the system assigns more weight to the tokens of the src or the mt at

each decoding step. Once the attention weigths are computed, a single context vector (c)

is created as:

ci =
N∑
k=1

T
(k)
x∑
j=1

αi,j(k)Uc(k)hj(k) (7.6)

where hj(k) is the j-th hidden vector from the k-th encoder, T (k)
x is the number of hidden

vectors from the k-th encoder, and Uc(k) is the projection matrix for the k-th encoder

that projects its hidden vectors to a common-dimensional space. This parameter is also

learnable and can further re-weigh the two inputs.

7.3 The proposed model

The main focus of our chapter is on the interpretability of the predictions made by neural

APE systems. To this aim, we have assembled a contextual neural model that leverages

two encoders and a shared attention mechanism, similarly to the flat attention of [Li-

bovickỳ and Helcl, 2017]. To describe it, let us assume that Xsrc = {x1
src, ..., xNsrc} is

the src sentence and Xmt = {x1
mt, ..., xMmt} is the mt sentence, where N and M are their

respective numbers of tokens. The two encoders encode the two inputs separately:

hjsrc = encsrc(xjsrc,h
j−1
src ) j = 1, ..., N

hjmt = encmt(xjmt,h
j−1
mt ) j = 1, ...,M

(7.7)

All the hidden vectors outputs by the two encoders are then concatenated as if they

were coming from a single encoder:

hjoin = {h1
src, ...,h

N
src,h

1
mt, ...,h

M
mt} (7.8)

Then, the attention weights and the context vector at each decoding step are computed

from the hidden vectors of hjoin (Equations 7.9-7.11):
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eij = aligment_model(hjjoin, s
i−1) (7.9)

αij =
exp(eij)∑N+M

m=1 exp(eim)
(7.10)

ci =
N+M∑
j=1

αi,jhjjoin (7.11)

where i is the time step on the decoder side, j is the index of the hidden encoded vector.

Given that the αi,j weights form a normalized probability distribution over j, this model is

“forced” to spread the weight between the src and mt inputs. Note that our model differs

from that proposed by [Libovickỳ and Helcl, 2017] only in that we do not employ the

learnable projection matrices, Uc(k). This is done to avoid re-weighing the contribution of

the two inputs in the context vectors and, ultimately, in the predictions. More details of

the proposed model and its hyper-parameters are provided in Section 7.4.3.

7.4 Experiments

7.4.1 Datasets

For training and evaluation we have used the WMT17 APE1 IT domain English-German

dataset. This dataset consists of 11,000 triplets for training, 1,000 for validation and 2,000

for testing. The hyper-parameters have been selected using only the validation set and

used unchanged on the test set. We have also trained the model with the 12,000 sentences

from the previous year (WMT16), for a total of 23,000 training triplets.

7.4.2 Artificial data

Since the training set provided by the shared task is too small to effectively train neu-

ral networks, [Junczys-Dowmunt and Grundkiewicz, 2016] have proposed a method for

1http://www.statmt.org/wmt17/ape-task.html
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# encoders 2
encoder type B-LSTM
encoder layers 2
encoder hidden dim 500
# decoders 1
decoder type LSTM
decoder layers 2
decoder hidden dim 500
word vector dim 300
attention type general
dropout 0.3
beam size 5

Table 7.1: The model and its hyper-parameters.

creating extra, “artificial” training data using round-trip translations. First, a language

model of the target language (German here) is learned using a monolingual dataset. Then,

only the sentences from the monolingual dataset that have low perplexity are round-

trip translated using two off-the-shelf translators (German-English and English-German).

The low-perplexity sentences from the monolingual dataset are treated as the pe, the

German-English translations as the src, and the English-German back-translations as the

mt. Finally, the (src, mt, pe) triplets are filtered to only retain sentences with compara-

ble TER statistics to those of the manually-annotated training data. These artificial data

have proved very useful for improving the accuracy of several neural APE systems, and

they have therefore been included in the WMT17 APE shared task. In this chapter, we

have limited ourselves to using 500K artificial triplets as done in [Varis and Bojar, 2017;

Bérard et al., 2017]. To balance artificial and manually-annotated data during training,

we have resampled the official 23K triplets 10 times.

7.4.3 Training and hyper-parameters

Hereafter we provide more information about the model’s implementation, its hyper-

parameters, the pre-processing and the training to facilitate the reproducibility of our

results. We have made our code publicly available2.

To implement the encoder/decoder with separate encoders for the two inputs (src, mt)

and a single attention mechanism, we have modified the open-source OpenNMT code

2https://github.com/ijauregiCMCRC/Shared_
Attention_for_APE
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[Klein et al., 2017].

Table 7.1 lists all hyper-parameters which have all been chosen using only training

and validation data. The two encoders have been implemented using a Bidirectional Long

Short-Term Memory (B-LSTM) [Hochreiter and Schmidhuber, 1997] while the decoder

uses a unidirectional LSTM. Both the encoders and the decoder use two hidden layers.

For the attention network, we have used the OpenNMT’s general option [Luong et al.,

2015].

As for the pre-processing, the datasets come already tokenized. Given that German

is a morphologically rich language, we have learned the subword units using the BPE

algorithm [Sennrich et al., 2015] only over the official training sets from the WMT16 and

WMT17 IT-domain APE shared task (23,000 sentences). The number of merge opera-

tions has been set to 30,000 under the intuition that one or two word splits per sentence

could suffice. Three separate vocabularies have been used for the (src, mt and pe) sen-

tences. Each vocabulary contains a maximum of 50,000 most-frequent subword units; the

remaining tokens are treated as unknown (<unk>).

As mentioned in Section 4.2, we have trained our model with 500K extra triplets as

in [Bérard et al., 2017]. We have oversampled the 23K official triplets 10 times, added

the extra 500K, and trained the model for 20 epochs. We have used Stochastic Gradien

Descent (SGD) with a learning rate of 1 and a learning rate decay of 0.5. The learning

rate decays if there are no improvements on the validation set.

In all cases, we have selected the models and hyper-parameters that have obtained the

best results on the validation set (1,000 sentences), and reported the results blindly over

the test set (2,000 sentences). The performance has been evaluated in two ways following

the evaluation carried out in the shared task [Bojar et al., 2017]: first, as common for this

task, we have reported the accuracy in terms of Translation Error Rate (TER) [Snover

et al., 2006] and BLEU score [Papineni et al., 2002]. Second, we present an empirical

analysis of the attention weight matrices for some notable cases.

7.4.4 Results

Table 7.2 compares the accuracy of our model on the test data with two baselines and two

state-of-the-art comparable systems. The MT baseline simply consists of the accuracy



CHAPTER 7. A SHARED ATTENTION MECHANISM FOR INTERPRETATION OF
NEURAL AUTOMATIC POST-EDITING SYSTEMS 136

Model TER BLEU
MT [Bojar et al., 2017] 24.48 62.49
SPE [Bojar et al., 2017] 24.69 62.97
[Varis and Bojar, 2017] 24.03 64.28
[Bérard et al., 2017] 22.81 65.91
train 11K 41.58 43.05
train 23K 30.23 57.14
train 23K + 500K 22.60 66.21

Table 7.2: Results on the WMT17 IT domain English-German APE test set.

of the mt sentences with respect to the pe ground truth. The other baseline is given by a

statistical PE (SPE) system [Simard et al., 2007] chosen by the WMT17 organizers. Table

7.2 shows that when our model is trained with only the 11K WMT17 official training

sentences, it cannot even approach the baselines. Even when the 12K WMT16 sentences

are added, its accuracy is still well below that of the baselines. However, when the 500K

artificial data are added, it reports a major improvement and it outperforms them both

significantly. In addition, we have compared our model with two recent systems that have

participated in the shared task and have used our same training settings (500K artificial

triplets + 23K manual triplets oversampled 10 times, hence they are directly comparable to

our approach), reporting a slightly higher accuracy than both (1.43 TER and 1.93 BLEU

p.p. over [Varis and Bojar, 2017] and 0.21 TER and 0.30 BLEU p.p. over [Bérard et

al., 2017]). Since their models explicitly predicts edit operations rather than post-edited

sentences, we speculate that these two tasks are of comparable intrinsic complexity.

In addition to experimenting with the proposed model (Equation 5.3), we have also

tried to add the projection matrices of the flat attention of [Libovickỳ and Helcl, 2017]

(Equation 7.6). However, the model with these extra parameters showed evident over-

fitting, with a lower perplexity on the training set, but unfortunately also a lower BLEU

score of 53.59 on the test set. On the other hand, [Chatterjee et al., 2017] and other

participants of the WMT 17 APE shared task 3 were able to achieve higher accuracies

by using 4 million artificial training triplets. Unfortunately, using such a large dataset

sent the computation out of memory on a system with 32 GB of RAM. Nonetheless, our

main goal is not to establish the highest possible accuracy, but rather contribute to the

interpretability of APE predictions while reproducing approximately the same accuracy

3http://www.statmt.org/wmt17/ape-task.html
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of current systems trained in a comparable way.

Figure 7.1: An example of perfect correction of an mt sentence.
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For the analysis of the interpretability of the system, we have plotted the attention

weight matrices for a selection of cases from the test set. These plots aim to show how

the shared attention mechanism shifts the attention weights between the tokens of the src

and mt inputs at each decoding step. In the matrices, the rows are the concatenation of the

src and mt sentences, while the columns are the predicted pe sentence. To avoid cluttering,

the ground-truth pe sentences are not shown in the plots, but they are commented upon

in the discussion. Figure 7.1 shows an example where the mt sentence is almost correct.

In this example, the attention focuses on passing on the correct part. However, the start

(Wählen) and end (Längsschnitte) of the mt sentence are wrong: for these tokens, the

model learns to place more weight on the English sentence (click and Select Profiles).

The predicted pe is eventually identical to the ground truth.

Conversely, Figure 7.2 shows an example where the mt sentence is rather incorrect.

In this case, the model learns to focus almost completely on the English sentence, and the

prediction is very aligned with it. The predicted pe is not identical to the ground truth,

but it is significantly more accurate than the mt. Figure 7.3 shows a case of a perfect

mt translation where the model simply learns to pass the sentence on word by word.

Eventually, Figure 7.4 shows an example of a largely incorrect mt where the model has

not been able to properly edit the translation. In this case, the attention matrix is scattered

and defocused.

In addition to the visualizations of the attention weights, we have computed an at-

tention statistic over the test set to quantify the proportions of the two inputs. At each

decoding time step, we have added up the attention weights corresponding to the src in-

put (αisrc =
∑N

j=1 α
ij) and those corresponding to the mt (αimt =

∑N+M
j=N+1 α

ij). Note

that, obviously, αisrc + αimt = 1. Then, we have set an arbitrary threshold, t = 0.6, and

counted step i to the src input if αisrc > t. If instead αisrc < 1− t, we counted the step to

the mt input. Eventually, if 1 − t ≤ αisrc ≤ t, we counted the step to both inputs. Table

7.3 shows this statistic. Overall, we have recorded 23% decoding steps for the src, 45%

for the mt and 31% for both. It is to be expected that the majority of the decoding steps

would focus on the mt input if it is of sufficient quality. However, the percentage of focus

on the src input is significant, confirming its usefulness.
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Sentence Focus
src 23%
mt 45%
Both 31%

Table 7.3: Percentage of the decoding steps with marked attention weight on either input
(src, mt) or both.

7.5 Conclusion

In this chapter, we have presented a neural APE system based on two separate encoders

that share a single, joined attention mechanism. The shared attention has proved a key

feature for inspecting how the selection shifts on either input, (src and mt), at each de-

coding step and, in turn, understanding which inputs drive the predictions. In addition

to its easy interpretability, our model has reported a competitive accuracy compared to

recent, similar systems (i.e., systems trained with the official WMT16 and WMT17 data

and 500K extra training triplets). As future work, we plan to continue to explore the

interpretability of contemporary neural APE architectures.
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Figure 7.2: Partial improvement of an mt sentence.
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Figure 7.3: Passing on a correct mt sentence.
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Figure 7.4: A completely incorrect prediction.



Chapter 8

Conclusion

NER and MT are two well-established NLP tasks which have greatly benefited from the

recent uptake of state-of-the-art deep learning models. However, through this thesis we

have seen that these models are prone to suffer from overfitting when the annotated train-

ing datasets are small. This thesis has analyzed this problem in depth and proposed a

number of novel approaches to alleviate it.

First, in NER, we have worked with health-domain data. We have used two datasets

popular in the research community, one for drug name recognition and the other for clini-

cal concept extraction. Previous work had mainly focused on using traditional sequential

classifiers such as HMMs, S-SVMs and CRFs with rich feature engineering. Conversely,

we have chosen to use the BiLSTM-CRF deep recurrent neural network given its widely

reported accuracy on a variety of other tasks. In order to overcome the scarcity of data, we

have pre-trained health-domain specialized word embeddings using a publicly available

dataset of ICU patient records, MIMIC-III. Several experiments and ablation studies have

shown that the specialized embeddings have been key in outperforming the traditional

machine learning models.

Second, in neural machine translation, we have carried out the first systematic perfor-

mance comparison between traditional SMT models and the more recent NMT models

over English-Basque (a low -resource language pair). Our study has shown that SMT

models can still outperform current NMT systems when the amount of supervised train-

ing data is limited. Nevertheless, our work have also shown that both models still lack

strong generalization capability, even in-domain. More work will be needed to improve
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the MT accuracy, either on the data or the models side.

The following chapters (Chapters 5-7) have focused on improving NMT models for

low-resource language pairs and translation domains. We have proposed a novel regular-

ization technique based on regressing word and sentence embeddings. This has allowed

us to leverage the semantic and distributional properties of pre-trained embeddings in the

objective function. Our experiments have shown how this regularization method can help

achieve better translation quality. A qualitative analysis has also shown that the proposed

technique contributes to regularizing the decoder’s hidden vectors and, in turn, selecting

the correct words in the translation.

In chapter 6 we have proposed a novel way of training NMT models for document-

level translations that combines a well-established reinforcement-style approach with ex-

isting discourse rewards. We have shown that the proposed objective function can im-

prove the lexical cohesion and coherence of the translated documents. Moreover, we

have shown that this approach does not come at the expense of, and can even improve,

accuracy-based metrics such as the BLEU score.

In chapter 7 we have presented a neural APE model that can learn to edit the errors

made by an existing MT model with significantly smaller training datasets. Our model

uses a shared attention network across two parallel encoders for the source sentence and

the MT output. The proposed approach has achieved a considerable improvement in terms

of BLEU score in two IT-domain and health-domain translation tasks. Furthermore, such

a shared attention makes the decisions made the neural model more easily interpretable.

Many directions would be interesting for future research. To name one, it would be

interesting to explore better rewards for reinforcement-like training in NER and MT mod-

els. Particularly, if we could manage to compute the rewards in an unsupervised manner,

we would be able to train and tune the models with less effort. It would also be interest-

ing to combine transfer learning (e.g. pre-trained language models) with reinforcement

learning, potentially speeding up the convergence of models trained with reinforcement

learning objective functions.

Finally, I would like to highlight that all the code developed during this PhD has been

made publicly available to facilitate the continuing research in this area. The interested

reader can find all the code in the following GitHub repository:
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https://github.com/ijauregiCMCRC/
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[Bojar et al., 2017] Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Gra-
ham, Barry Haddow, Shujian Huang, Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt Post, Raphael Rubino, Lucia Specia,
and Marco Turchi. Findings of the 2017 conference on machine translation. In Pro-
ceedings of the Second Conference on Machine Translation, pages 169–214, 2017.
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