

A FORENSIC INVESTIGATION INTO THE PRESENCE OF PHOSPHODIESTERASE 5 INHIBITORS AS ADULTERANTS IN HERBAL REMEDIES

by Ahmad Yusri Mohd Yusop

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy (Science)

under the supervision of

Professor Shanlin Fu and Doctor Linda Xiao

University of Technology Sydney Faculty of Science

September 2020

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Ahmad Yusri Mohd Yusop declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy (Science), in the Faculty of Science at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 17/09/2020

ABSTRACT

The proliferation of herbal-based male sexual performance products, particularly those adulterated with phosphodiesterase 5 (PDE5) inhibitors, has sparked grave public health and food safety concerns. The advent of their unapproved analogues presents an additional challenge to forensic drug testing laboratories, as these adulterants may evade detection during routine screening. A comprehensive strategy is warranted to address these problems and protect consumers' health and well-being. This study investigated the presence of PDE5 inhibitors as adulterants in herbal remedies, using a two-tier screening strategy of rapid qualitative assay and confirmatory analytical analysis.

A bioactivity-based PDE5 inhibition assay was established using fluoresceinlabelled cyclic-3',5'-guanosine monophosphate as substrates to PDE5 enzyme. The PDE5 inhibitions, measured using a fluorescence polarisation technique, was applied to 50 herbal-based food samples. The results were in agreement with the confirmatory analytical analysis for all food products, except for the instant coffee premix samples, postulated due to the presence of caffeine. The assay, nevertheless, exhibited a promising potential to rapidly screen PDE5 inhibitors in various types of food products, except those containing naturallyoccurring phosphodiesterase inhibitors. A confirmatory liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis was developed using 23 target analytes; selected to represent different groups of PDE5 inhibitors, based on their structural similarities. The targeted analysis was primarily optimised to mitigate the matrix effect (ME), via chromatographic separation, sample extraction, and sample dilution. The insignificant ME percentages, within -9.2%–8.8% for all target analytes in food and pharmaceutical matrices, were evidenced with satisfactory validation results; notably, the accuracy was within 77.4%–124.7%. The development, optimisation, and validation of the targeted analysis provided a solid foundation for suspected-target and non-targeted screenings. The suspected-target screening employed a library comprising 95 PDE5 inhibitors, providing extended coverage of known analytes. Contrarily, the non-targeted screening adopted top-down and bottom-up approaches to flag novel PDE5 inhibitors analogues based on common fragmentation patterns of target analytes.

The confirmatory LC-HRMS analysis was applied to 50 herbal-based food samples and 52 herbal-based pharmaceutical samples. The targeted analysis and the suspected-target screening identified 11 target analytes and detected five suspected analytes, respectively, from 74 adulterated samples. The non-targeted screening returned insignificant signals, indicating the absence of potentially novel analogues. Some of these samples contained up to five different PDE5 inhibitors and quantified at supratherapeutic level, making them unsafe for consumption. The comprehensive strategies provide a superior approach to curb the widespread adulteration of herbal remedies, thus, safeguarding the public's health.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my principal supervisor, Professor Shanlin Fu. He has patiently guided me throughout my PhD journey and shared his knowledge while entrusting me to take charge of my research. I attribute the completion of this research to his guidance, support, and encouragement. He is my mentor, and I am forever in debt to him.

I also wish to express my sincere gratitude to my co-supervisor, Dr Linda Xiao, for her consistent support and guidance during the running of this research. She continuously encouraged me and was always willing and keen to assist in any way she could throughout the research project.

My sincere appreciation goes to all the academic and professional staff who have supported me throughout my time at UTS. Thanks to Dr Ronald Shimmon for helping me in the laboratories as well as the training on NMR spectroscopy, and to Dr Verena Taudte and Dr Dayanne Bordin for the technical support with LC-MS/MS instruments. I also very much valued the feedback I have received from the forensic science and toxicology research group to improve my research. To Professor Claude Roux and the Centre for Forensic Science, thank you for providing financial support, particularly with the attendance of conferences.

I extend my warmest thanks to my family and friends for their moral support, which made my journey endurable. Finally, I am grateful to the Ministry of Health Malaysia for the Study Leave with Full Pay and Federal Training Reward that helped me to achieve my dream.

Table of contents

						i age
Certificate of original authorship i						i
Abstract						
Acknowledge	ment	S				iv
List of tables						xii
List of figures	5					xviii
List of equation	ons					xxiv
List of abbrev	viatio	ns and	symbols			xxvi
List of peer-re	eview	ed jour	nal publicati	ons		xxxiii
List of mai	nuscr	ipts s	ubmitted to	o peer-reviewed	journal	xxxiv
publications						
List of peer-re	eview	ed con	ference proc	eedings		xxxv
CHAPTER 1	Intro	oductio	n			1
	1.1	Backg	round			1
	1.2	Aim ar	nd research o	bjectives		4
	1.3	Refere	ences			5
CHAPTER 2	Lite	rature r	eview			8
	2.1	Phosp	hodiesterase	enzyme		8
	2.2	Phosp	hodiesterase	5 enzyme		11
	2.3	Phosp	hodiesterase	inhibitors		13
	2.4	Phosp	hodiesterase	5 Inhibitors		15
		2.4.1	Background	b		15
		2.4.2	Approved F	DE5 inhibitors		16

		2.4.3	Mechanism of action	20
		2.4.4	Chemical structure	21
		2.4.5	Safety profiles	24
	2.5	Adulte	ration of herbal remedies	27
		2.5.1	Background	27
		2.5.2	Male sexual performance products	28
		2.5.3	PDE5 inhibitors and their analogues	29
	2.6	Analys	is of PDE5 inhibitors	36
		2.6.1	Background and challenges	36
		2.6.2	Sample extraction	39
		2.6.3	Techniques used for the detection and	39
			identification of PDE5 inhibitors	
	2.7	Refere	ences	46
CHAPTER 3	Cor	npariso	n of sample extraction techniques for	76
	the	determi	ination of erectile dysfunction drugs as	
	adu	lterants	s in selected food products	
	3.1	Forew	ord	76
	3.2	Abstra	ct	78
	3.3	Introdu	uction	80
	3.4	Materia	als and methods	83
		3.4.1	Chemicals and reagents	83
		3.4.2	Standard solution preparation	84
		3.4.3	Sample collection and storage	84

		3.4.5	LC-QTOF-MS conditions and data	88		
			analysis			
		3.4.6	Comparison of sample extraction	89		
			techniques			
		3.4.7	Analytical method validation	91		
	3.5	Results	s and discussion	93		
		3.5.1	Method development and optimisation	93		
		3.5.2	Comparison of sample extraction	94		
			techniques			
		3.5.3	Analytical method validation	100		
		3.5.4	Determination of erectile dysfunction	101		
			drugs in food samples			
	3.6	Conclu	sion	107		
	3.7	Refere	nces	108		
	3.8	Supple	mentary data	115		
CHAPTER 4	Dete	erminat	ion of phosphodiesterase 5 (PDE5)	133		
	inhi	nhibitors in instant coffee premixes using liquid				
	chro	omatog	raphy-high-resolution mass			
	spe	ctromet	ry (LC-HRMS)			
	4.1	Forewo	ord	133		
	4.2	Abstra	ct	135		
	4.3	Introdu	ction	137		
	4.4	Materia	als and methods	139		
		4.4.1	Chemicals and reagents	139		
		4.4.2	Standard solution preparation	139		

	4.4.3	Sample collection and storage	140
	4.4.4	Sample preparation	140
	4.4.5	LC-HRMS conditions	141
	4.4.6	Method validation and data analysis	141
	4.4.7	Workflow for determination of PDE5	144
		inhibitors in instant coffee premixes	
4.5	Results	s and discussion	149
	4.5.1	Analytical method optimisation and	149
		validation	
	4.5.2	Analysis of PDE5 inhibitors in instant	151
		coffee premixes	
4.6	Data o	on the optimisation and validation of a	158
	liquid	chromatography-high-resolution mass	
	spectro	ometry (LC-HRMS) to establish the	
	presen	ce of phosphodiesterase 5 (PDE5)	
	inhibito	rs in instant coffee premixes	
	4.6.1	Abstract	158
	4.6.2	Experimental design, materials, and	161
		methods	
	4.6.3	Optimisation of chromatographic	163
		separation	
	4.6.4	Optimisation of MS conditions	166
	4.6.5	Optimisation of sample preparation	167
	4.6.6	Method validation	169

4.7 Conclusion 174

	4.8	Refere	ences	;				175
	4.9	Supple	emen	tary data				180
CHAPTER 5	lsol	ation	and	identification	of	an	isomeric	182
	sild	enafil a	nalo	gue as an adu	lterar	nt in	an instant	
	coff	ee prei	nix					
	5.1	Forew	ord					182
	5.2	Abstra	ict					184
	5.3	Introdu	uctior	ı				185
	5.4	Materi	als a	nd methods				187
		5.4.1	Ch	emicals and rea	agents	5		187
		5.4.2	Sci	reening of food	produ	icts		187
		5.4.3	Sta	indard solution	prepa	iratio	n	189
		5.4.4	Sa	mple preparatic	n			189
		5.4.5	lso	lation of compo	und X	K		189
		5.4.6	LC	-UV analysis				190
		5.4.7	NM	IR Spectroscop	У			190
		5.4.8	Da	ta analysis				191
	5.5	Result	is and	d discussion				192
		5.5.1	Sci	reening of SPL(005			192
		5.5.2	LC	-DAD and LC-L	JV of	comp	ound X	196
		5.5.3	NM	IR spectroscop	y of co	ompo	ound X	197
		5.5.4	Со	nfirmation of co	mpou	ind X		202
	5.6	Conclu	usion					204
	5.7	Refere	ences	;				205
	5.8	Supple	emen	tary data				209

CHAPTER 6	Sus	Suspected-target and non-targeted screenings of					
	pho	sphodi	esterase 5 inhibitors in herbal				
	rem	edies k	edies by liquid chromatography-quadrupole				
	time	∋-of-flig	ht mass spectrometry				
	6.1	Forewo	ord	210			
	6.2	Abstra	ct	212			
	6.3	Introdu	iction	214			
	6.4	Materia	als and methods	217			
		6.4.1	Chemicals and reagents	217			
		6.4.2	Standard solution preparation	218			
		6.4.3	Sample collection and storage	218			
		6.4.4	Sample preparation	219			
		6.4.5	LC-QTOF-MS conditions and data	220			
			analysis				
		6.4.6	Analytical method validation	221			
		6.4.7	Suspected-target and non-targeted	224			
			screenings of herbal remedies				
	6.5	Result	s and discussion	226			
		6.5.1	Method optimisation	226			
		6.5.2	Analytical method validation	228			
		6.5.3	Screenings of herbal remedies for	229			
			PDE5 inhibitors				
	6.6	Conclu	ision	243			
	6.7	Refere	nces	244			
	6.8	Supple	ementary data	251			

CHAPTER 7	Fluc	orescen	nce polarisation for high-throughput	266
	scre	ening	of adulterated food products via	
	pho	sphodi	esterase 5 (PDE5) inhibition assay	
	7.1	Forewo	ord	266
	7.2	Abstra	ct	268
	7.3	Introdu	uction	270
	7.4	Materia	als and methods	273
		7.4.1	Chemicals and reagents	273
		7.4.2	Standard solution preparation	273
		7.4.3	Sample collection and storage	274
		7.4.4	Sample preparation	274
		7.4.5	PDE5 inhibition assay protocol	275
		7.4.6	LC-HRMS analysis	278
		7.4.7	Data analysis	278
	7.5	Result	s and discussion	280
		7.5.1	PDE5 inhibition assay scheme	280
		7.5.2	Optimisation of sample preparation	284
		7.5.3	Assay validation	286
		7.5.4	Analysis of PDE5 inhibitors in food	288
			products	
	7.6	Conclu	usion	296
	7.7	Refere	ences	297
CHAPTER 8	Con	clusior	ns and recommendations for future	306
	wor	k		

List of tables

- Table 2.1Tissue distribution of phosphodiesterase (PDE)10enzymes found in human.
- Table 2.4.2Pharmacokinetic and pharmacodynamic properties19of approved phosphodiesterase 5 (PDE5) inhibitors.
- Table 2.4.5Selectivity of approved phosphodiesterase 5 (PDE5)24inhibitors (fold differences versus PDE5 enzyme) for
clinically relevant phosphodiesterase (PDE) family.
- Table 3.4.3Contents of the blank food matrices based on the85products' label.
- Table 3.5.4The identification of target analytes and the detection102of suspected analytes in 25 food samples.
- Table 3.8AMatrix effect (ME) of 23 targeted phosphodiesterase1155 (PDE5) inhibitors using dilute and shoot (D&S),liquid-liquid extraction (LLE), solid-phase extraction(SPE), and modified quick, easy, cheap, effective,rugged, and safe (QuEChERS) technique at 1:2matrix dilution. (supplementary data)

- Table 3.8BMatrix effect (ME) of 23 targeted phosphodiesterase1175 (PDE5) inhibitors using dilute and shoot (D&S),liquid-liquid extraction (LLE), solid-phase extraction(SPE), and modified quick, easy, cheap, effective,rugged, and safe (QuEChERS) technique at 1:10matrix dilution. (supplementary data)
- Table 3.8CMatrix effect (ME) of 23 targeted phosphodiesterase1195 (PDE5) inhibitors using dilute and shoot (D&S),liquid-liquid extraction (LLE), solid-phase extraction(SPE), and modified quick, easy, cheap, effective,rugged, and safe (QuEChERS) technique at 1:100matrix dilution. (supplementary data)
- Table 3.8DMean extraction recovery (RE) of 23 targeted121phosphodiesterase 5 (PDE5) inhibitors at low (0.1µg/mL); medium (0.4 µg/mL); and high (1 µg/mL)quality control levels using liquid-liquid extraction(LLE) technique. (supplementary data)
- Table 3.8EMean extraction recovery (RE) of 23 targeted123phosphodiesterase 5 (PDE5) inhibitors at low (0.1µg/mL); medium (0.4 µg/mL); and high (1 µg/mL)quality control levels using solid-phase extraction(SPE) technique. (supplementary data)

xiii

- Table 3.8FMean extraction recovery (RE) of 23 targeted125phosphodiesterase 5 (PDE5) inhibitors at low (0.1µg/mL); medium (0.4 µg/mL); and high (1 µg/mL)quality control levels using modified quick, easy,cheap, effective, rugged, and safe (QuEChERS)technique. (supplementary data)
- Table 3.8GRetention time (RT), theoretical accurate mass of127protonated molecule ([M+H]+) precursor ion, productions, coefficient of determination (r²), and limit ofdetection (LOD) of 23 targeted phosphodiesterase 5(PDE5) inhibitors. (supplementary data)
- Table 3.8H Accuracy of 23 targeted phosphodiesterase 5 128 (PDE5) inhibitors at low (0.1 μg/mL); medium (0.4 μg/mL); and high (1 μg/mL) quality control levels. (supplementary data)
- Table 3.8I Repeatability of 23 targeted phosphodiesterase 5 131 (PDE5) inhibitors at low (L, 0.1 μg/mL); medium (M, 0.4 μg/mL); and high (H, 1 μg/mL) quality control levels. (supplementary data)
- Table 3.8JIntermediateprecisionof23targeted132phosphodiesterase 5 (PDE5) inhibitors at low (L, 0.1μg/mL);medium (M, 0.4 μg/mL);and high (H, 1μg/mL)quality control levels. (supplementary data)

- Table 4.5.2The contents of phosphodiesterase 5 (PDE5)153inhibitors in each sachet of instant coffee premix
samples.
- Table 4.6.5Matrix effect (ME) for instant coffee premix using170dilute and shoot (D&S) technique with methanol and
modified quick, easy, cheap, effective, rugged, and
safe (QuEChERS) procedure at three levels of
dilution.
- Table 4.6.6A Retention time (RT), accurate mass of protonated 171 molecule ([M+H]⁺) precursor ion, mass error, and fragment ions of 23 targeted phosphodiesterase 5 (PDE5) inhibitors.
- Table 4.6.6BCoefficient of determination (r²), accuracy, limit of172detection (LOD), and limit of quantification (LOQ) of23 targeted phosphodiesterase 5 (PDE5) inhibitors.
- Table 4.6.6CPrecisions, matrix effect (ME), and extraction173recovery (RE) of 23 targeted phosphodiesterase 5(PDE5) inhibitors.
- Table 5.5.1Proposed common fragmentation patterns shared by195dithiocarbodenafil group of analogues.
- Table 5.5.3¹H and ¹³C nuclear magnetic resonance (NMR) data198(δ in ppm, J in Hz) of compound X and structurallyrelated phosphodiesterase 5 (PDE5) inhibitors.

- Table 6.5.3A Identification of target analytes and detection of 230 suspected analytes in adulterated herbal remedy samples.
- Table 6.5.3BSuspected analytes detected from herbal remedy239samples.
- Table 6.8ASildenafil group of analogues. (supplementary data)251
- Table 6.8BAcetildenafil group of analogues. (supplementary 253
data)
- Table 6.8CCarbodenafil group of analogues. (supplementary254data)
- Table 6.8DVardenafil group of analogues. (supplementary data)255
- Table 6.8ETadalafil group of analogues. (supplementary data)256
- Table 6.8FMiscellaneousphosphodiesterase5(PDE5)257inhibitors. (supplementary data)
- Table 6.8GPhosphodiesterase 5 (PDE5) inhibitors and their258analogues included in the personal compounddatabase and library (PCDL). (supplementary data)
- Table 6.8HMatrix effect (ME) for capsule and tablet blank261matrices using dilute and shoot (D) technique and
modified quick, easy, cheap, effective, rugged, and
safe (Q) extraction at three levels of matrix dilution.
(supplementary data)

xvi

- Table 6.81Retention time (RT), theoretical accurate mass of
protonated molecule ([M+H]+) precursor ion, mass
error, product ions, coefficient of determination (r²),
and limit of detection (LOD) of 23 targeted
phosphodiesterase5(PDE5)
inhibitors.
(supplementary data)
- Table 6.8JAccuracy of 23 targeted phosphodiesterase 5263(PDE5) inhibitors. (supplementary data)
- Table 6.8KPrecision of 23 targeted phosphodiesterase 5 264(PDE5) inhibitors. (supplementary data)
- Table 6.8LExtractionrecovery(RE)of23targeted265phosphodiesterase5(PDE5)inhibitors.(supplementary data)
- Table 7.4.5Schematicthree-stepprotocolofthe277phosphodiesterase 5 (PDE5) inhibition assay.
- Table 7.5.4Phosphodiesterase 5 (PDE5) inhibition assay results290andconfirmatoryliquidchromatography-high-resolutionmassspectrometry (LC-HRMS)analysisof suspectedadulteratedfoodsamples.

List of figures

Page

- Fig. 2.1 Structure of 3',5'-cyclic adenosine monophosphate 8 (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP).
- Fig. 2.2 Phosphodiesterase 5 (PDE5) enzyme molecular 12 structure.
- Fig. 2.4.3Mechanism of action of phosphodiesterase 5 (PDE5)20inhibitors for the treatment of erectile dysfunction.
- Fig. 2.4.4 Chemical structures of zaprinast and approved 23 phosphodiesterase 5 (PDE5) inhibitors.
- Fig. 2.5.3A Chemical structures of sildenafil group of analogues 33 with (a) sulphonamide-bonded analogues, (b) acetylbonded analogues, (c) carbonyl/thiocarbonyl-bonded analogues, and (d) other sildenafil-related analogues.
- Fig. 2.5.3B Chemical structures of vardenafil group of analogues 34 with (a) vardenafil analogues and (b) thiovardenafil analogues.
- Fig. 2.5.3C Chemical structures of tadalafil group of analogues 35 with (a) cis-oriented with diketopiperazine ring analogues, (b) cis-oriented without diketopiperazine ring analogues, (c) trans-oriented with diketopiperazine ring analogues, and (d) transoriented without diketopiperazine ring analogues.

xviii

- Fig. 3.5.2A The matrix effect (ME) of dilute and shoot (D&S); 96 liquid-liquid extraction (LLE); solid-phase extraction (SPE); and modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) at 1:2, 1:10, and 1:100 matrix dilutions.
- Fig. 3.5.2B The extraction recovery (RE) of liquid-liquid extraction 99 (LLE); solid-phase extraction (SPE); and modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) at low (0.1 μg/mL); medium (0.4 μg/mL); and high (1 μg/mL) quality control levels.
- Fig. 3.5.4 Results summary of erectile dysfunction drugs in 105 adulterated food samples; with identification of target analytes and detection of suspected analytes.
- Fig. 4.4.7 Liquid chromatography-high-resolution mass 145 spectrometry (LC-HRMS) workflow for the determination of phosphodiesterase 5 (PDE5) inhibitors in instant coffee premixes.
- Fig. 4.5.1 Representative extracted ion chromatogram (EIC) of 150 the protonated molecule ([M+H]⁺) precursor ion of 23 targeted phosphodiesterase 5 (PDE5) inhibitors mixture in neat solution at a concentration level of 1.2 μg/mL.

- Fig. 4.5.2 Comparison between dithiodesmethylcarbodenafil 157 (20) from the personal compound database and library (PCDL) spectral library with the unknown compound X of sample SPL005 using the suspectedtarget screening approach with (a) overlaid extracted ion chromatogram (EIC) of the protonated molecule ([M+H]⁺) precursor ion, (b) comparison of fragment ions based on common fragments at 20 eV collision energy, and (c) proposed common fragmentation pattern shared by dithiodesmethylcarbodenafil (20) and compound X (only showing two possible isomers, 3,5-dimethylpiperazinyl-dithiodesmethylcarbodenafil and dithiopropylcarbodenafil, among other isomeric variations).
- Fig. 4.6.3 Chromatographic separation of structural isomers 166 with extracted ion chromatograms (EICs) of the protonated molecule ([M+H]⁺) precursor ions of: Group A (m/z 439.2452): desmethylcarbodenafil (1) and N desethylacetildenafil (3); Group B (m/z 467.2765): acetildenafil (4) and dimethylacetildenafil (6); Group C (*m*/*z* 489.2279): vardenafil (7), homosildenafil (9), dimethylsildenafil (10), and propoxyphenyl-sildenafil (13); and Group D (m/z505.2050): thiohomosildenafil (19)and thiodimethylsildenafil (21).

- Fig. 4.9A Chemical structures of 23 targeted 180 phosphodiesterase 5 (PDE5) inhibitors. (supplementary data)
- Fig. 4.9B Results summary of phosphodiesterase 5 (PDE5) 181 inhibitors in instant coffee premix samples. (supplementary data)
- Fig. 5.5.1 (a) Base peak chromatogram (BPC) of SPL005 with 194 one unidentified peak, initially assigned as compound X; (b) full-scan MS with a protonated molecule ([M+H]⁺) precursor ion at *m/z* 499.2310 (also showing the matching scores of the observed mass, isotopic abundance distribution, and isotopic spacing of compound X with $C_{25}H_{34}N_6OS_2$; (c) product ion scan employing non-targeted screening the at *m/z* 343.0682 and m/z 371.0995; (d) common fragmentation patterns shared by compound X and dithiodesmethylcarbodenafil at averaged collision energies.
- Fig. 5.5.2 Overlaid ultraviolet (UV) spectra of three structurally 196
 related phosphodiesterase 5 (PDE5) inhibitor
 standards at 1 µg/mL and compound X isolated from
 SPL005.

- Fig. 5.5.4 Overlaid base peak chromatograms (BPCs) of three 203 structurally related phosphodiesterase 5 (PDE5) inhibitor standards 1 µg/mL with (A) at dithiodesmethylcarbodenafil, (B) 3,5dimethylpiperazinyl-dithiodesmethylcarbodenafil, and (C) dithiopropylcarbodenafil; and (X) compound X isolated from SPL005.
- Fig. 5.8 ¹H nuclear magnetic resonance (NMR) spectrum of 209 the isolated compound X. (supplementary data)
- Fig. 6.5.3A Identification of target analytes and detection of 236 suspected analytes in adulterated herbal remedy samples.
- Fig. 6.5.3B Quantification level of target analytes in adulterated 238 herbal remedy samples.
- Fig. 6.5.3C Representative base peak chromatogram (BPC); 240 overlaid extracted ion chromatograms (EICs) of aminotadalafil and tadalafil; and tandem MS spectra of sample SPT003 demonstrating the non-targeted screening based on top-down and bottom-up approaches.
- Fig. 6.5.3D The proposed common fragmentation pattern shared 242 by the tadalafil group of analogues.

- Fig. 7.5.1A The structure of (a) sildenafil; (b) phosphodiesterase 281 5 (PDE5) enzyme; and (c) fluorescein-labelled cyclic-3',5'-guanosine monophosphate (FAM-cGMP) substrate.
- Fig. 7.5.1B Phosphodiesterase 5 (PDE5) inhibition assay 283 scheme using fluorescence polarisation (FP) technique.
- Fig. 7.5.2 Threshold values for each blank matrices of the food 285 product.
- Fig. 7.5.3The concentration-response plot of sildenafil.288

List of equations

Page

Eq. 3.4.6A

$$ME (\%) = \left[\frac{Slope_{post-extraction spiked matrix}}{Slope_{standards in neat solution}} - 1\right]$$

$$\times 100$$
90

Eq. 3.4.6B
$$RE(\%) = \frac{Peak \ area_{pre-extraction \ spiked \ matrix}}{Peak \ area_{post-extraction \ spiked \ matrix}} \times 100$$
 90

Eq. 4.4.6
$$ME(\%) = \left[\frac{Slope_{matrix\ matched\ standards}}{Slope_{standards\ in\ neat\ solution}} - 1\right] \times 100$$
 144

$$Final \ dose = \frac{Average \ conc. \ from \ reg. \ eq.}{(Analysis \ conc. \times \ Dilution \ level)}$$
147

 $\times Wt.per sachet$

Eq. 7.4.7A
$$FP(mP) = \frac{I_{\parallel} - I_{\perp}}{I_{\parallel} + I_{\perp}} \times 1000$$
 278

Eq. 7.4.7B % of PDE5 activity =
$$\frac{FP_{SPL} - FP_{SUB}}{FP_{POS} - FP_{SUB}} \times 100\%$$
 279

Eq. 7.4.7C % of PDE5 inhibition =
$$100 - \%$$
 of PDE5 activity 279

Eq. 7.4.7D
$$T_{inhibition} = \mu + 3\sigma$$
 279

Eq. 7.4.7E
$$Y = Bottom + \frac{Top - Bottom}{1 + 10^{(Log IC_{50} - X) \times Hill Slope}}$$
279

List of abbreviations and symbols

%	percentage
%RSD	percentage of relative standard deviation
-	minus
+	plus
[M+H] ⁺	protonated molecule
<	less than
>	more than
±	plus, or minus
×	times
°C	degree Celsius
μ	average
μg	microgram
μL	microlitre
μm	micrometre
μΜ	micromolar
¹³ C	carbon-13
¹ H	hydrogen-1 or proton
AMP	5'-adenosine monophosphate
AOAC	The Association of Official Agricultural Chemists
BPC	base peak chromatogram
brs	broad singlet
Ca ²⁺	calcium
cAMP	3',5'-cyclic adenosine monophosphate

Сар	capsule
CDCI ₃	deuterated chloroform
CE	collision energy
cGMP	3',5'-cyclic guanosine monophosphate
CI	chemical ionisation
CID	collision-induced dissociation
СООН	carboxyl
CRM	certified reference material
CWG	chewing gum
CYP3A4	cytochrome P3A4
d	doublet
D&S	dilute and shoot
Da	Dalton
DAD	diode array detector
dd	doublet of doublet
DDA	data-dependent acquisition
DMSO	dimethyl sulfoxide
ED	erectile dysfunction
EFS	electrical field stimulation
EIC	extracted ion chromatogram
Eq.	Equation
ESI	electrospray ionisation
eV	electronvolt
FAM-cGMP	fluorescein-labelled cyclic-3',5'-guanosine monophosphate
FAM-GMP	fluorescein-labelled 5'-guanosine monophosphate

Fig.	Figure
FP	fluorescence polarisation
FPPOS	fluorescence polarisation (positive control)
FP _{SPL}	fluorescence polarisation (sample)
FP _{SUB}	fluorescence polarisation (substrate control)
FT-ICR	Fourier transform-ion cyclotron resonance
FTIR	Fourier transform infrared
g	gravity
g	gram
GC	guanylyl cyclase
GC-MS	gas chromatography-mass spectrometry
GC-QQQ-MS	gas chromatography-triple quadrupole mass spectrometry
GMP	5'-guanosine monophosphate
GTP	guanosine triphosphate
HCD	hard candy
HNY	honey
HPLC	high-performance liquid chromatography
HPTLC	high-performance thin-layer chromatography
HRMS	high-resolution mass spectrometry
Hz	hertz
11	parallel emission light intensities
Ι⊥	perpendicular emission light intensities
IC ₅₀	half-maximal inhibitory concentration
ICH	The International Conference on Harmonisation
ICP	instant coffee premix

IR	infrared					
IS	internal standard					
IT	ion trap					
IUPAC	The International Union of Pure and Applied Chemistry					
J	coupling constants					
JLY	jelly					
L	litre					
LC	liquid chromatography					
LC-DAD	liquid chromatography-diode array detection					
LC-HRMS	liquid chromatography-high-resolution mass spectrometry					
LC-MS	liquid chromatography-mass spectrometry					
LC-MS/MS	liquid chromatography-tandem mass spectrometry					
LC-QTOF-MS	liquid chromatography-quadrupole time-of-flight mass					
	spectrometry					
LC-UV	liquid chromatography-ultraviolet					
LLE	liquid-liquid extraction					
LOD	limit of detection					
Log P	logarithm of the partition coefficient					
Log ₁₀	logarithm with base 10					
LOQ	limit of quantification					
m	multiplet					
Μ	molar mass					
m/z	mass-to-charge ratio					
MDMA	3,4-methylenedioxymethamphetamine					
ME	matrix effect					

mg	milligram
MHz	megahertz
min	minute
mL	millilitre
mm	millimetre
mM	millimolar
mP	millipolarisation
MRM	multiple reaction monitoring
MS	mass spectrometry
ms	millisecond
MS/MS	tandem mass spectrometry
MΩ-cm	megaohm-centimetre
NA	not applicable
ND	not detected
ng	nanogram
NH ₂	amino
NIR	near-infrared
nM	nanomolar
nm	nanometre
NMR	nuclear magnetic resonance
NO	nitric oxide
Р	phosphorylation
PCDL	personal compound database and library
PDA	photodiode array
PDE	phosphodiesterase

PDE5	phosphodiesterase 5
PDM	powdered drink mix
pg	picogram
рН	power of hydrogen
pKa	negative log of acid dissociation constant
PKG	3',5'-cyclic guanosine monophosphate-dependent protein
	kinase
ppm	parts per million
psi	pounds per square inch
psig	pounds per square inch gauge
PTFE	polytetrafluoroethylene
Pty Ltd.	Proprietary Limited
Q	single quadrupole
q	quartet
QC	quality control
QQQ	triple quadrupole
QTOF	quadrupole time-of-flight
QTOF-MS	quadrupole time-of-flight mass spectrometry
QuEChERS	quick, easy, cheap, effective, rugged, and safe
R ²	coefficient of determination (curve)
r ²	coefficient of determination (linear)
RE	extraction recovery
RT	retention time
S	singlet
SD	standard deviation

sec	second
SERS	surface-enhanced Raman spectroscopy
SPE	solid-phase extraction
SPR	supratherapeutic
SUB	subtherapeutic
t	triplet
Tab	tablet
THE	therapeutic
Tinhibition	threshold value of phosphodiesterase 5 inhibition
TLC	thin-layer chromatography
T _{max}	the amount of time that a drug is present at the maximum
	concentration in serum
TOF	time-of-flight
TRC	trace
U	unit
USFDA	The United States Food and Drug Administration
UV	ultraviolet
UV-Vis	ultraviolet-visible
V	volt
v/v	volume/volume
WHO	The World Health Organization
Zn ²⁺	zinc
α	alpha
δ	chemical shifts
σ	standard deviation

List of peer-reviewed journal publications

- Mohd Yusop AY, Xiao L, Fu S. Determination of Chapter 4 phosphodiesterase 5 (PDE5) inhibitors in instant coffee premixes using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). *Talanta* 2019;204:36-43. doi:https://doi.org/10.1016/j.talanta.2019.05.078
- Mohd Yusop AY, Xiao L, Fu S. Data on the optimisation and Chapter 4 validation of a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) to establish the presence of phosphodiesterase 5 (PDE5) inhibitors in instant coffee premixes. *Data Brief* 2019;25:104234. doi:<u>https://doi.org/10.1016/j.dib.2019.104234</u>
- Mohd Yusop AY, Xiao L, Fu S. Suspected-target and non- Chapter 6 targeted screenings of phosphodiesterase 5 inhibitors in herbal remedies by liquid chromatography-quadrupole timeof-flight mass spectrometry. *Drug Test Anal* 2020. doi:<u>https://doi.org/10.1002/dta.2861</u>
- Mohd Yusop AY, Xiao L, Fu S. Fluorescence polarisation for Chapter 7 high-throughput screening of adulterated food products via phosphodiesterase 5 (PDE5) inhibition assay. *Drug Test Anal* 2020. doi: <u>https://doi.org/10.1002/dta.2926</u>

List of manuscripts submitted to peer-reviewed journal publications

- Mohd Yusop AY, Xiao L, Fu S. Comparison of sample Chapter 3 extraction techniques for the determination of erectile dysfunction drugs as adulterants in selected food products. *Manuscript submitted for publication* 2020.
- Mohd Yusop AY, Xiao L, Fu S. Isolation and identification of Chapter 5 an isomeric sildenafil analogue as an adulterant in an instant coffee premix. *Manuscript submitted for publication* 2020.

List of peer-reviewed conference proceedings (presenting author underlined)

- <u>Mohd Yusop AY</u>, Xiao L, Fu S. Mitigating matrix effects: an evaluation of sample extraction techniques for forensic investigations of synthetic aphrodisiacs illegally added into consumable products. *The 56th Annual Meeting of The International Association of Forensic Toxicologists*. Ghent, Belgium. 26–30 August 2018.
- Mohd Yusop AY, Xiao L, Fu S. Strategies to overcome matrix effect for reliable determination of sexual enhancing drugs found as adulterants in premixed coffee. *The Australian and New Zealand Forensic Science Society 24th International Symposium.* Perth, Australia. 9–13 September 2018.
- Mohd Yusop AY, Xiao L, <u>Fu S</u>. Adulterant detection in herbal dietary supplements marketed to enhance male sexual performance. *The Forensic and Clinical Toxicology Association Inc.* 10th Conference. Adelaide, Australia. 16–19 June 2019.
- Mohd Yusop AY, Xiao L, Fu S. Application of liquid chromatography-high resolution mass spectrometry (LC-HRMS) to determine male sexual stimulant in selected food matrices. *The 57th Annual Meeting of The International Association of Forensic Toxicologists.* Birmingham, United Kingdom. 2–6 September 2019.

 Mohd Yusop AY, Xiao L, Fu S. Safeguarding food safety: rapid screening of phosphodiesterase 5 (PDE5) inhibitors as adulterants in selected food matrices using enzyme assay. *The 55th Congress of the European Societies of Toxicology (EUROTOX 2019).* Helsinki, Finland. 8–11 September 2019.