Using Big Data from TOTOR ETS to optimise public transport operations

Facilitating a privacy-protecting empirically-driven continuous-optimisation approach to sustainable public transport operations using Big Data recorded by Tap On Tap Off electronic ticketing systems

Mathew Hounsell

+61 2 9514 4961 mathew.hounsell@uts.edu.au www.linkedin.com/in/mathew-hounsell

Institute for Sustainable Futures University of Technology Sydney

Level 10, Building 10, 235 Jones Street Ultimo, NSW, Australia, 2007

PO Box 123, Ultimo, NSW, Australia, 2007

55,000 words.

Use your ETS records to understand your operations and make your customers happy

We can only understand what we can measure; we can only act on what we understand.

Certificate of original authorship

CERTIFICATE OF ORIGINAL AUTHORSHIP	
N	
I, <u>Mathew H</u>	<u>Hounsell</u> declare that this thesis, is submitted in fulfilment of the
requiremen	ts for the award of <u>Masters of Sustainable Futures (95583)</u> , in the <u>Institute</u>
for Sustaina	able Futures at the University of Technology Sydney.
	· · · · · · · · · · · · · · · · ·
This thesis is wholly my own work unless otherwise reference or acknowledged. In	
addition, I certify that all information sources and literature used are indicated in the	
thesis.	
This document has not been submitted for qualifications at any other academic	
institution.	
This research is supported by the Australian Government Research Training Program.	
	Production Note:
Signature:	Signature removed prior to publication.
Date:	15 th September 2020

Acknowledgements

With thanks to:

Michelle Zeibots and Paul van den Bos for their supervision.

Dr John Stone and Matt Faber for reviewing the submitted thesis

Chris Riedy and Suzanne Cronan for their administration

Jason Prior for his advice; Damien Giurco for his support

Claudine Moutou for her help and support

Ben Simons and Darren Lee (UTS Data Arena) for their support and help

The UTS Library and the Australasian Legal Information Institute (AustLII)

Transport for NSW

Transport Performance and Analytics

Transport Research Hub

Open Data Team

Transdev

The Capstone Students

Joel Smalley, Igor Mileusnic, Nathan Murdoch, Opinderjit Samra, Veronica Thorpe

My Group Accountability and Support (GAS) group

Andrea Turner, Anh Nong, Katelyn Bywaters

With special thanks to

Gavin Gatenby and Michelle Zeibots for giving me the push to pursue transport

My mate Delilah Slack Smith

My parents Ken Hounsell & Diana Hounsell

and especially to Bharath Ragothaman

Abstracts

Facilitating a privacy-protecting empirically-driven continuous-optimisation approach to sustainable public transport operations using Big Data recorded by Tap-On Tap-Off electronic ticketing systems

Medium (200 words)

This thesis contributes to development of the trans-disciplinary field of Transport Analytics, which aims to facilitate a sustainable customer-centric approach to transport service delivery through continuously measuring and optimising transport operations and through better targeting of customer preferences and needs.

Sydney's Opal Electronic Ticketing System (ETS) records Tap-On and Tap-Off (TOTOR) pairs and represents a census of passenger responses to the services promised and delivered. Unfortunately, these datasets contain private biographical travel histories of individual customers. This thesis assists practitioners in actualising new analytical opportunities, by describing the methodological barrier that is the intrinsic human right to privacy, and then demonstrating a method to overcome that barrier.

The methods proposed transforms biographical-datasets into privacy-safe activitydatasets through deidentification, disassociation, aggregation and elimination. The method proposes three stages of transformation to create three levels of activity datasets with increasing privacy that can be distributed and shared respectively with service providers, collaborators, and then the general public.

This thesis provides case studies demonstrating how the high-resolution activity datasets enable novel analytic techniques to assist service partners in analysing and interpreting passenger response to transport operations. These case studies leverage inherent aspects of the data that were not available in previous data forms.

Long Abstract (400 words)

This thesis contributes to development of the trans-disciplinary field of Transport Analytics that aims to better target customer preferences and needs while optimising public transport operations. It demonstrates how use of empirical data acquired from Electronic Ticketing Systems (ETS) such as the Opal card system in Sydney, can provide more accurate and unexpected insights into demand patterns for public transport services. Systems that record every Tap-On and Tap-Off (TOTOR) pair, such as Opal, effectively provide a census of passenger responses to the services delivered, potentially increasing certainty and consensus on key aspects of operations such as required capacity, appropriate frequency and interchanging.

Previously, the lack of detailed empirical data led public transport service providers to rely on top-down system-level models of macro-behaviour. The availability of high resolution TOTOR datasets provides an opportunity to develop bottom-up human-level models of micro-behaviour that can then be used to construct more accurate macroscopic system models. As will be shown, this difference in approach can lead to significantly different conclusions about patronage and appropriate service levels.

The thesis approaches this new data and analytical opportunities in two ways. Firstly, by acknowledging and addressing concerns about privacy through development of a method to construct privacy-safe datasets; and secondly through new analytical methods to take advantage of the TOTOR data.

The travel histories of individual customers contained within TOTOR datasets provide detailed biographical information; and so, to protect the privacy of individuals, access to these datasets has been highly restricted. In response, this thesis describes the methodological barrier created by the need for privacy protection, proposing a method to overcome this. The thesis provides several example case studies undertaken using analytics developed for activity datasets to improve public transport operations. These leverage inherent aspects of the data that were not available in previous data forms.

The methods proposed leverages the ability to transform biographical-datasets into privacy-safe activity-datasets through deidentification, disassociation, aggregation and elimination. The method proposes three stages of transformation to create three levels of activity datasets with increasing privacy that can be distributed and shared appropriately between service providers and coordination agencies, to collaborators (such as researchers), and then to the general public.

At all times, the research has been carried out within a customer-centric (customer service) approach to public transport service delivery. In the case studies, improved analytics has been shown to assist service partners in analysing and interpreting passenger behaviour in transport operations.

Structure of this thesis

This is a conventional thesis. There are no papers / publications included. There are no contributions from other authors.

Figure 1: NSW Opal smart-card ticket device on a table of NSW paper tickets

Opal is from NSW, Australia; Octopus is from Hong Kong; Oyster is from London, UK; MyKi (pronounced as My Key) is from Melbourne, Australia); and Gautrain Gold is from Johannesburg, South Africa. Picture from (Giles 2013b)

Figure 2: The Sydney Harbour Bridge – Built for the future

Table of Contents

Abbreviations	1
CHAPTER 1 – INTRODUCTION	3
1.1 Key advantages of Big Data	7
1.1.1 Action research programme	10
1.1.2 Opportunities for continuing the research	14
1.2 The 3 stages of transforming an organisation	16
1.2.1 Customer at the centre	16
1.2.2 Product-Centric Model- to Customer-Centric Empirically-Driven	19
1.2.3 Problem statement for this thesis	20
1.3 Leveraging Big Data to close the knowledge gap	22
1.3.1 Measuring demand	23
1.3.2 The urgent need in NSW	26
1.3.3 Resolution in historical versus TOTOR datasets	28
1.3.4 Distortions in the data	35
1.3.5 Minute by Minute	40
1.4 The Knowledge Gap	42
1.4.1 The Johari Window	43
1.4.2 Knowledge of the operator and the customers	44
1.4.3 Seven Demands	46
1.4.4 Frequency, Span, and Connectivity	47
1.4.5 Knowledge of the operator and the industry	50
1.4.6 Cognitive Blas	51
1.4.7 Requirements Elicitation	53
1.4.8 Putting it together	56
1.5 What do you prescribe?	58
1.5.1 The Is-Ought Dichotomy	59
1.5.2 Service Quality Loop	61
1.6 Summation	63
CHAPTER 2 – PRIVACY	64
2.1 Operating ethically as an Engineer	66
2.2 Risk Management Guidelines	67
2.2.1 Terminology	68
2.2.2 Cyclic Processes of Continuous Risk Management	69
2.2.3 Risk Management Process	70
2.3 Safety of Individuals	74
2.3.1 Steal from person	74
2.3.2 Sexual violence	75
2.3.3 Comparative likelihood of hazards	78
2.3.4 What should be done?	80
2.4 Systemic Risks	81
2.4.1 Social Norms	81
2.4.2 Social Values	82
2.4.3 Liberalism	84

2.4.4 Panopticon	85
2.4.5 Democracy	86
2.5 Summary	88
CHAPTER 3 – PRIVACY PROTECTION	90
3.1 Information Protection Principles	90
3.1.1 Waters v Transport for NSW	94
3.2 Biography with or without consent	99
3.2.1 Identifiers	100
3.2.2 Composite keys	101
3.2.3 Privacy budget	101
3.2.4 Biography	102
3.2.5 Activities	104
3.3 Not what you think	105
3.3.1 Walking distance	105
3.4 Need-to-Know	107
3.4.1 UTS Opal Data Access Guidelines	108
3.5 Derived Datasets	110
3.5.1 Identifying Persons	110
3.5.2 Privacy Budget	111
3.5.3 The four methods of privacy protection	111
3.5.4 Spatial aggregation	113
3.5.5 Aggregation examples	110
	116
CHAPTER 4 – DATA PREPARATION	118
4.1 Derived datasets for privacy protection and empirical analysis	119
4.2 Contextual datasets	121
4.2.1 Holidays & weather	121
4.2.2 Pricing	123
4.2.3 Provide a record for every date and location	124
4.3 Organisational datasets	126
4.3.1 Stops	120
4.3.2 Roules	120
4.3.4 Intermodal transfers	131
A A Primary dataset	133
4.5 Secondary Datasets	136
4.6 Tortion/ Datasets	127
4.6 1 Pules of Thumb	138
4.6.2 High resolution in only one dimension	139
4.7 Future Research	1/1
4.7.1 Sydney Ferries Metro and Trams are Different	142
4.7.2 Other Tertiary Datasets	144
4.8 Summary	145
CHAPTER 5 - CASE STUDIES	149
5.1 Well above forecast	150
5.1.1 Long Term Transport Master Plan	150
	700

5.1.2 Westconnex	151
5.1.3 Modelling the transit	153
5.2 Turn Up and Go Trains	155
5.2.1 Happy to interchange	157
5.3 Passengers travel here, there, and everywhere	158
5.3.1 Mobility datasets	160
5.3.2 Passengers travel not just in the peak	164
5.4 Identifying Transfers from Travel Pairs	167
5.5 Public Transport Screenlines	168
5.5.1 What is a Screenline?	168
5.5.2 Screenlines in TOTOR Analytics	171
5.5.3 Sydney CBD Screenline	173
5.6 Estimating Passenger Load Over Intersections Screenlines	174
5.6.1 Why Person Throughput Matters	176
5.6.2 How to Measure Person Throughput	179
5.7 Passenger Volume Distribution	181
5.8 Bus Stop Durations	184
5.9 Summation	188
Appendix A – Context Maps	190
Appendix B – Terminology	194
B.1 Entities	194
B.2 Laws	195
B.3 Measurement Units	195
B.4 General Terminology	197
B.5 Transport Terminology	197
B.5.1 Ticketing Terminology	199
B.5.2 Transport Analytics Terminology	200
Appendix C – Explanatory Notes	202
C.1 Why use the term dis\embarkation?	202
C.1.1 Examples	202
C.2 Data cleaning	204
C.2.1 A clean workspace is a safe workspace	204
C.3 Measurements by the month	207
Appendix D – Additional Information	210
D.1 Top-100 Locations for Intermodal Continuation Embarkations	210
D.2 Bus Priority Infrastructure Program (BPIP)	213
D.3 The rates of crimes in NSW	214
Appendix E - Reference Texts	217
Engineers Australia General Regulations	217
Schedule 1 Code of Ethics and Guidelines	217
Bibliography	220

Table of Tables

Table 1: Embarkations from Sydney CBD Locations between 2016-11-21 to 27	31
Table 2: Embarkations from Sydney CBD Locations between 2016-11-08 to 14	31
Table 3: Embarkations (,000) from Sydney CBD between 2016-11-21 to 27	32
Table 4: Embarkations (,000) by mode in NSW GMA in August and November 2016	33
Table 5: Comparison of daily IWLR patronage from 2016-01-01 to 2016-06-30	34
Table 6: Top 10 travel pairs by count per date	38
Table 7: Tap-Off stop for a Tap-On at Paddy's Market stop by Fare Minimisation	39
Table 8: Fixed-Route Service Headway (Frequency) LOS	50
Table 9: Fixed-Route Hours-of-Service (Span) LOS	50
Table 10: Flaws in Cognitive Processing and the Consequences for Problem Solving	53
Table 11: ISO Risk Management Guidelines – 2018 Terms & Definitions	68
Table 12: AS/NZS – Risk Management – Guidelines – 2004 Terms and Definitions	69
Table 13: Relationship of Sexual Assault Victim to Offender, 2018	76
Table 14: Sexual Assault Victims, location where offence occurred, Australia 2018	77
Table 15: Sexual Assault Victims, location where offence occurred, Australia 2018	77
Table 16: Leading causes of injury or poisoning hospitalisations, NSW FY 2017-18	79
Table 17: OECD Guidelines on the Protection of Privacy and Transborder Flows of Pers Part Two – Basic Principles Of National Application	onal Data – 91
Table 18: Matrix of privacy principles from OECD, NSW, and Australia.	92
Table 19: NSW additional Information Protection Principles (IPPs)	93
Table 20: Additional Australian Privacy Principles (APPs)	93
Table 21: Average workday CBD peak period disembarkations in Nov. 2016	99
Table 22: Extract of NSW stops table (NSW GTFS & Opal)	100
Table 23: Fake NSW journey segments table for the above example	100
Table 24: ABS ASGS Statistical Area Levels	114
Table 25: IWLR Patronage over the Easter Holidays in 2016	122
Table 26: Extract of an NSW Operator database table	129
Table 27: Extract of NSW Routes Table database table	129
Table 28: Usage statistics on segments per Opal card in six weeks	129
Table 29: Indicative Card Type Table	131
Table 30: Top-10 Locations for Intermodal Transfers on 2016-11-16	132
Table 31: Intermodal Transfers at Key Station on Wednesday 2016-11-16	132
Table 32: Extract of Mode Table	133
Table 33: Primary Dataset – Segments Count Table	134
Table 34: Primary Dataset – Interchange Count Table	135
Table 35: Secondary Dataset – Tap Count Table	136
Table 36: Secondary Dataset – Interchange Count Table	137
Table 37: Tertiary Daily Count Tables	142
Table 38: Tertiary Daily Interchange Count Tables	142
Table 39: Average Sydney Metro embarkations by day in June-July 2019	144

Table 40: Number of embarkations per day for Top 10 bus route Nov 2016	145
Table 41: How much travel time would WestConnex save road users?	153
Table 42: Fields in the Queensland O-D Dataset	162
Table 43: Top-10 Public Transport Origin-Destination Trips for Queensland's TransLink Novem 2018 on Workdays	iber 163
Table 44: Top-10 Public Transport Origin-Destination Trips for Queensland's TransLink Novem 2018 on Weekends	iber 163
Table 45: Screenline volumes (number of weekday vehicles) in 2021	170
Table 46: Screenline volumes (number of weekday vehicles) in 2031	170
Table 47: Number of embarkations not in CBD with disembarkations in the CBD	174
Table 48: Number of Each Day Type in November per Year	208
Table 49: Number of Passengers on Trains per Day	208
Table 50: Top-102 Locations for Transfer Embarkations on Wed 2016-11-16	210
Table 51: Crime recorded by the NSW Police Force: rates^ and trends^^	214

Table of Figures

Equation 1: Key fleet equations	201
Figure 1: NSW Opal smart-card ticket device on a table of NSW paper tickets	VII
Figure 2: The Sydney Harbour Bridge – Built for the future	VII
Figure 3: The spectrum of organisational approaches to decision making	7
Figure 4: Annual IWLR patronage observed and forecast for different scenarios.	10
Figure 5: Saturday load on the IWLR 06:00 to 24:00 showing event crowds	11
Figure 6: Number of vehicles per runtime per headway – two dimensional	12
Figure 7: Inner West Light Rail research team	13
Figure 8: The ideal Service Quality Loop (EN 13816) is Customer Centric	15
Figure 9: Product-Centric operations shown on the Service Quality Loop	16
Figure 10: The three stages of organisational transformation	19
Figure 11: Public transport embarkations in NSW GMA per Financial Year	24
Figure 12: Heavy rail patronage in Australia per FY since FY 1980-81	25
Figure 13: Railway patronage per FY in NSW GMA since FY 1980-81	26
Figure 14: Crush loading can prevent passengers from using a service	27
Figure 15: Progressive passenger loading on T4 Illawarra Line in AM Peak	27
Figure 16: Progressive passenger loading on T1 Western Line in AM Peak	28
Figure 17: Estimated number of journeys from Town Hall per Month	29
Figure 18: Estimated number of journeys for an average day from Town Hall (calculated from monthly patronage)	30
Figure 19: Number of journeys on the IWLR between 2016-01-01 and 2016-06-30	34
Figure 20: Embarkations by day per card type on the IWLR	35
Figure 21: Embarkations by hour per day on the IWLR	36
Figure 22: Count of journey segment by duration per day on the IWLR	36

Figure 23: Embarkations on the IWLR with probable Fare Minimisation highlighted.	38
Figure 24: Diagram of Sydney's Town Hall Station concourse	40
Figure 25: Number of taps at Town Hall per hour – Workday – Nov. 2016	41
Figure 26: Embarkations (Tap-On) at Town Hall per minute – Workday – Nov. 2016	42
Figure 27: Adapted Johari Window – Partners vs Customers	44
Figure 28: Reducing the Blind-Spot and Hidden areas using the Service Quality Loop	45
Figure 29: Seven desires for useful transit, and how transit serves them	47
Figure 30: Houston's Revised Bus Network Map	48
Figure 31: Squaresville ultimate network	49
Figure 32: Adapted Johari Window – Operator vs Industry	51
Figure 33: Classic Waterfall Software Development Life Cycle	53
Figure 34: Elicitation Review Framework	55
Figure 35: Ideal cycle of paradigm changes in service organisations	58
Figure 36: Structure of the research programme - convergent vs divergent	59
Figure 37: Is-Ought Dichotomy as informed by perception and values	60
Figure 38: Service Quality Loop colour coded by Is-Ought Dichotomy	62
Figure 39: Cyclic framework	70
Figure 40: Risk Management – Guidelines – Process	71
Figure 41: Risk management process	73
Figure 42: Risk Assessment sub section of Risk Management Process	74
Figure 43: Sexual Assault Victims in CoA, location where offence occurred, 2018	77
Figure 44: Expanded Hume's Is-Ought Dichotomy – Equivalent Antonyms	84
Figure 45: Privacy expressed as a Johari Window	94
Figure 46: Conceptual structure of PAS and Opal Databases	96
Figure 47: Distribution of walk distance by public transport mode	106
Figure 48: Walking radii from Newtown Station	106
Figure 49: Need-to-Know Spectrum	108
Figure 50: A diagram of disassociation by removing identifiers	112
Figure 51: A diagram of aggregation in time	112
Figure 52: A diagram of aggregation in space	112
Figure 53: A diagram of elimination of unique records	113
Figure 54: ASGS ABS Structures	114
Figure 55: Transit stops in SA4 "Sydney – Inner West", coloured by SA2	115
Figure 56: Station usage from UK Office of Rail and Road for Manchester Piccadilly	116
Figure 57: Using Need-To-Know and Derived Datasets to Control Privacy Risks when creating Empirical Datasets	118
Figure 58: Possible Structure of derived data generation	120
Figure 59: Context dataset showing weather, track work, and holidays.	123
Figure 60: Example context database for ticket price caps.	124
Figure 61: Weather on the IWLR during the demonstration analysis	125
Figure 62: Model of the stable datasets referenced by the primary dataset	126
Figure 63: The GTFS Schema for the data from JSP Skopje	127
Figure 64: Conceptual structure of Opal Database	128

Figure 65: Journey segments recorded per card type over six weeks	130
Figure 66: The Pentagram of Transfers – new intermodal detections desired for the primary dataset	133
Figure 67: Model of primary tables and relationships to the stable tables	135
Figure 68: Conceptual diagram of secondary database tables	137
Figure 69: Number of taps in 15-minutes for trains on 2016-11-23	139
Figure 70: Number of taps in a minute for trains on Wednesday 2016-11-16	140
Figure 71: Tertiary Daily Count and Interchange Tables	142
Figure 72: Light Rail Trips (in a typical day)	143
Figure 73: Ferry Rail Trips (in a typical day)	143
Figure 74: Framework of dataset transformation	149
Figure 75: Projected patronage from 2012 NSW LTTMP	150
Figure 76: Number of NSW railways journeys in comparison to the NSW LTTMP	151
Figure 77: Number of NSW railway and bus journeys in comparison to the LTTMP	151
Figure 78: The Future of Sydney's Motorway Network	152
Figure 79: Peak travel times along strategic corridors for cars (in minutes), 2011 and 2031 'd nothing' scenario	lo 153
Figure 80: Number of Sydney trips by main mode for an average workday	154
Figure 81: Passenger distribution on low- and high- frequency transit	156
Figure 82: Embarkations from Lithgow terminal per minute on Wed. 2016-11-16	157
Figure 83: Embarkations at Bondi Junction terminal per minute on 2016-11-16	157
Figure 84: Number of Intermodal transfers from bus to rail at Bondi Junction Terminal per mir on Wednesday 2016-11-16	าute 158
Figure 85: Train Passenger Journeys between CBD and Internal Districts - 1971	159
Figure 86: Non-CBD Inter-district Public Transport Journeys - 1971	159
Figure 87:Embarkation station for 08:00-09:00 disembarkations at Rhodes	160
Figure 88: G:Link - Riding the G - Frequency	163
Figure 89: Stop Pairs on the Bankstown Line on a Wednesday in 2017	166
Figure 90: Example of detecting transfers from Stop Pairs	167
Figure 91: Vehicle & Public Transport Screenlines and External Cordon Survey	169
Figure 92: Screenline to investigate changes in east-west traffic	169
Figure 93: Using categories to create screenlines to investigate changes in transit	172
Figure 94: Using multiple public transport screenlines	172
Figure 95: Marey chart for the IWLR with different runtimes and the resulting number of vehic required	les 176
Figure 96: Measure, Stabilise and Reduce	177
Figure 97: Inbound IWLR Signal Wait Time	178
Figure 98: Proposed IWLR Wait Consistency	178
Figure 99: Darling/Hay Intersection - TCS 2836 - Hourly Passenger Throughput	179
Figure 100: IWLR stops in sequence broken into categories for Darling St screenline	180
Figure 101: Layout of the Darling St and Hay St Signalised Intersection overlaid with the IWLR Screenline and Categorisation	, 180
Figure 102: Passenger Load visualisation for the IWLR on Wednesday 2016-03-09	182
Figure 103: Conceptualisation of how to calculate the passenger volume distribution	182

Figure 104: Load visualisation for the IWLR on Wednesday 2016-03-09	183
Figure 105: Route 373 Section Map - Randwick	185
Figure 106: Proposed Bus Priority adjacent to High Cross Park	186
Figure 107: Count of time taken to travel between A & B for a 373 by hour	187
Figure 108: Inner West Light Rail Map (IWLR)	190
Figure 109: Sydney Buses 333 Bondi to City Limited Stops	190
Figure 110: Sydney Trains Network Map from 2016-10-05	191
Figure 111: Sydney Trains Network Map from 2019-01-17	192
Figure 112: Opal Coverage Map from 2019-02-25	193
Figure 113: The seven SI base units	195
Figure 114: Diagram of a transport journeys from origin to destination.	198
Figure 115: Opal Electronic Ticketing Systems	200
Figure 116: Embarkation line for 08:00 disembarkations at Rhodes (Hounsell 2017a Figure 2 original (Glazebrook et al. 2017, p. 7, Figure 4)	27) 203
Figure 117: Sequence of ticketing events in the old paper versus the new smart-card ticketing system	្ទ 205
Figure 118: Sequence of ticketing events if Opal users do or do not Tap-On/Off	206
Figure 119: Embarkations on Sydney & NSW trains versus days by month	207
Figure 120: Embarkations on Sydney & NSW trains by year per month	209
Figure 121: Proportion (%) of Recorded Crime in NSW perpetrated by a Stranger	216

Abbreviations

API	Application Programming Interface
APP	Australian Privacy Principles
ASGS	Australian Statistical Geography Standard
ВСР	Best Current Practice
CBD	Central Business District
EIS	Environmental Impact Statement
ETS	Electronic Ticketing System
FY	Financial Year
GCLR	Gold Coast Light Rail
GTFS	General Transit Feed Specification
GHG	Greenhouse Gases ¹
GMA	Greater Metropolitan Area
HTS	Household Travel Survey
IPP	Information Protection Principles
IWLR	Inner West Light Rail
LCP	Least Cost Planning (framework)
LGA	Local Government Area
MAAS	Mobility as a Service
РКТ	Passenger Kilometres Travelled
РКТрс	Passenger Kilometres Travelled per capita
PTPM	Public Transport Project Model (New South Wales) ²
PVD	Passenger Volume Distribution
RFC	Request for Comment
RPI	Responsive Passenger Information (system)
SA1 SA2, SA3, SA4	Statistical Area level 1 etc ³
SATS	Sydney Area Transportation Study ⁴
STM	Strategic Travel Model (New South Wales)
ТАР	Transport Access Program (New South Wales)
TFN	Tax File Number (Commonwealth of Australia)
TOR	Tap-On Recording
ТОТО	Tap-On Tap-Off
TOTOR	Tap-On Tap-Off Recording
TWT	Tuesday, Wednesday, Thursday⁵
UML	Universal Modelling Language
VKT	Vehicle Kilometres Travelled
VKTpc	Vehicle Kilometres Travelled per capita

¹ GHG are climate changing pollutants

 $^{^{\}rm 2}$ The PTPM is a recent addition to the STM in NSW modelling.

³ Statistical Areas are from the ABS Australian Statistical Geography Standard

⁴ (NSW 1974a, 1974b, 1974c, 1974d)

⁵ Tuesday, Wednesday, and Thursday are used to calculate the average for normal workdays