Elsevier required licence: © <2020>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

The definitive publisher version is available online at [https://www.sciencedirect.com/science/article/pii/S0960852420314541?via%3Dihub]

	Journal Pre-proofs
1	Impacts of sulfadiazine on the performance and membrane fouling of a
2	hybrid moving bed biofilm reactor-membrane bioreactor system at
3	different C/N ratios
4 5 6 7	Xinbo Zhang ^{a,b} , Zumin Zhang ^{a,b} , Ying Liu ^{a,b} , Huu Hao Ngo ^{c,a,*} , Wenshan Guo ^{c,a} , Huizhong Wang ^{a,b} , Yufeng Zhang ^{a,b} , Dan Zhang ^{a,b}
8 9 10	^a Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
11 12	^b Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
13 14	^c Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
15 16	
16 17	
18	
19	
20	
21	
22	
23 24	
24 25	
26 26	
27	
28	
29	
30	
31	
32	
33	
34	
35 26	
36 37	
37 38	
39	
40	
41	
42	*Corresponding author: E-mail address: ngohuuhao121@gmail.com (H.H. Ngo)

43	Abstract: The performance and membrane fouling of a hybrid moving bed biofilm
44	reactor-membrane bioreactor (MBBR-MBR) system was evaluated when exposed to 0.5
45	mg/L of antibiotic sulfadiazine (SDZ). Results indicated that although SDZ reduced the
46	removal efficiency of NH_4^+ -N and TN (up to 12%) and TOC (up to 6%) at low C/N (2.5 and
47	4), it had no significant effect at high C/N (6 and 9). It was found that SDZ was removed 75%
48	and 58% at high C/N of 9 and low C/N of 2.5, respectively. SDZ decreased the ratio of
49	volatile biomass/total biomass and sludge particle size and increased the concentrations of
50	extracellular polymeric substance (EPS) and soluble microbial product (SMP) in MBR.
51	Consequently, this accelerated the membrane fouling rates, with an average increase of 6.85
52	kPa/d at low C/N (2.5) and 0.513-0.701 kPa/d at medium and high C/N (4, 6 and 9).
53	Keywords: sulfadiazine; hybrid moving bed biofilm reactor-membrane bioreactor system;
54	impacts; membrane fouling; C/N ratio

55 **1. Introduction**

The large-scale use of antibiotics in human activities and the ever-rapid advances in modern 56 detection technology, many antibiotics are now being detected in large-scale contexts 57 58 (Fatehifar et al., 2018). These contaminants of emerging concern (CECs) discharged into natural water bodies through sewage treatment plants are likely to cause serious harm to 59aquatic animals and plants in natural water bodies (Barbosa et al., 2016; Evgenidou et al., 60 61 2015). Sulfonamide antibiotics (SAs), which constitute a commonly used pharmaceutical for treating infections, are widely used in the medical and aquaculture industries due to its high 62 efficiency and relatively low cost (Mulla et al., 2018; Zhao et al., 2018). SAs such as 63 sulfadiazine (SDZ) which are polar compounds with poor adsorption capacity, are widespread 64

	Journal Pre-proofs
65	in wastewater bodies (Muller et al., 2013). Many municipal wastewater treatment plants
66	(WWTPs) do not specifically design processes to remove certain antibiotics, so subsequently
67	the existence of antibiotics triggers the spread of antibiotic resistant genes (ARGs) into the
68	environment (Rizzo et al., 2013). For this reason, the removal of antibiotics from wastewater
69	has become a subject of increasing research.
70	Hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a new type of
71	sewage treatment process that couples MBBR with MBR (Sombatsompop et al., 2006), on the
72	basis of activated sludge, biofilm processes and membrane technology. Compared with a
73	conventional membrane bioreactor (C-MBR), hybrid MBBR-MBR enhances the removal of
74	pollutants such as organic matter, nutrients and micropollutants; it also relieves MBR unit
75	membrane pollution (Luo et al., 2015). Although hybrid MBBR-MBR has not yet been
76	applied to the actual sewage treatment on a larger industrial scale (Leyva-Diaz et al., 2020),
77	many research studies have confirmed that MBBR-MBR performs excellently in removing
78	nitrogen and organic carbon as well as micropollutants. As reported by Chen et al. (2017),
79	high chemical oxygen demand (COD) removal were observed with average efficiencies of
80	$94.8 \pm 2.6\%$, $93.5 \pm 1.8\%$ and $91.5 \pm 1.3\%$, respectively, under three different solids retention
81	times (SRT) of 20 d, 10 d and 5 d in an MBBR-MBR system. In the meantime, more than
82	99% NH_4^+ -N was removed at all the examined SRTs. Two aerobic MBBR-MBR systems
83	with different biocarriers (sponge modified plastic carrier and plastic carrier) exhibited high
84	COD and NH_4^+ -N removal efficiencies (>94% and 84%) at a filling rate of 20% (Deng et al.,
85	2016). Conversely, Jiang et al. (2018) investigated the removal of 22 frequently detected
86	antibiotics in a hybrid MBBR-MBR at 4 different hydraulic retention times (HRTs) (24 h, 18
87	h, 12 h and 6 h), and most micropollutants were largely eliminated (>70%). However, the

	Journal Pre-proois
88	efficiencies in removing antibiotics and the performance of MBBR-MBR when antibiotics are
89	present, constitute the research focus for the application of hybrid MBBR-MBR in the future.
90	SDZ is widely used and has been detected in large quantities in maricultural wastewater
91	and pharmaceutical factories, which are sometimes discharged directly into wastewater
92	treatment plants without treatment. This greatly affects the influent quality in wastewater
93	treatment plants. The quality deterioration is reflected in the high concentration of antibiotics
94	(up to mg/L) in wastewater. Some researchers investigated the removal performance of SDZ
95	by various biological treatment processes such as MBBR, MBR and sequencing batch biofilm
96	reactor (SBBR). Song et al. (2020) investigated the SDZ removal using polyurethane MBBR
97	at three concentrations (1, 2 and 5 mg/L), and the average removal efficiency of $61.1\pm8.8\%$
98	was achieved. In addition, Li et al. (2017) constructed SBBR to remove of SDZ
99	(concentration from 0-35mg/L), and found the effluent quality deterioration is reflected under
100	the condition of the high concentration of antibiotics (up to mg/L) in wastewater. However, to
101	date, there is no data available on the performance of hybrid MBBR-MBR at high
102	concentration of SDZ under different operation conditions in the literature.
103	Additionally, factors such as sludge particle size, extracellular polymeric substances
104	(EPS), soluble microbial products (SMP), etc., influence membrane fouling in the
105	MBR-based system (Nguyen et al., 2019; Yu et al., 2018). It is well known that the content of
106	protein and polysaccharides in EPS are closely linked to membrane fouling. As an important
107	component of sludge, EPS contains enzymes that can degrade pharmaceuticals (Shi et al.,
108	2017; Wang et al., 2018; Tang et al., 2020). Consequently, as the pretreatment unit in a hybrid
109	MBBR-MBR system, MBBR affects the sludge characteristics in the MBR, in turn
110	influencing the membrane fouling problem. Therefore, membrane fouling characteristics in $\frac{4}{4}$
	1

	Journal Fie-proois
111	the hybrid MBBR-MBR need to be further explored under various operation conditions.
112	For the reasons stated above, to insightfully understand the impact of SDZ on the
113	performance of hybrid MBBR-MBR system at different carbon/nitrogen (C/N) ratios, this
114	study focused on: (i) evaluating the performance of a hybrid MBBR-MBR system with
115	presence of SDZ in the influent; and (ii) investigating the nature of membrane fouling in the
116	hybrid MBBR-MBR due to SDZ.
117	
118	2. Materials and methods

2.1 MBBR-MBR system and operation

120	The hybrid MBBR–MBR system consisted of an MBBR unit (volume 6 L) and a
121	submerged MBR unit (volume 3 L). Four hybrid MBR-MBR systems were operated in
122	parallel named as R_1 (C/N=2.5), R_2 (C/N=4), R_3 (C/N=6) and R_4 (C/N=9), respectively.
123	Simultaneously, the four hybrid systems were operated at room temperature of 25 ± 1 °C. The
124	entire operation period was divided in 2 phases. In phase I, the hybrid MBBR-MBR systems
125	were fed with wastewater (0-25 days), and the impact of C/N ratios on the performance of the
126	hybrid system investigated. In phase II, the hybrid MBBR-MBR systems were still run under
127	C/N in phase I, with the addition of 0.5 mg/L SDZ. The seed activated sludge was taken from
128	a local wastewater treatment plant (Tianjin, China) and the initial mixed liquor suspended
129	solids (MLSS) concentration amounted to approximately 5.69 g/L after acclimation. The
130	diffusion aerators were installed at the bottom of the MBBR and MBR units to supply the
131	oxygen and the air flow was kept at 0.1 m ³ /h in four hybrid MBBR-MBR reactors (dissolved
132	oxygen concentration of 4.5-6 mg/L). The HRT of each MBBR unit was kept at 16 h, while

the MBR unit was kept at 8 h (i.e. constant flux of 9.375 L/m²h). Each MBBR unit was filled 133 with polyurethane sponges (the filling ratio of 20%) as biocarriers (Joyce Foam Pty, 134 Australia) with a diameter of 10 mm, a density of 28 kg/m³. For the MBR unit, a hydrophilic 135polyvinylidene fluoride (PVDF) membrane module was used with a pore size of 0.1 µm and 136 surface area of 0.04 m². The sludge retention time (SRT) was retained at 60 days via sludge 137withdrawal. Each MBR unit operated in a continuous mode and the operation was terminated 138 when the transmembrane pressure (TMP) exceeded 35 kPa, followed by chemical cleaning. 139 2.2 Synthetic wastewater 140 Synthetic wastewater was used to carry out the experiments, in which glucose and 141 (NH₄)₂SO₄ were carbon and nitrogen sources. The influents in the experiments were different 142 for the C/N (total organic carbon /TN) ratios: $R_1(C/N=2.5)$. 75 mg/L total organic carbon 143 (TOC), 30 mg/L TN; R₂(C/N=4). 120 mg/L TOC, 30 mg/L TN; R₃(C/N=6). 180 mg/L TOC, 144 30 mg/L TN; R₄(C/N=9). 75 mg/L TOC, 30 mg/L TN. KH₂PO₄ act as phosphorus sources. 145 The trace nutrient solution consisted of the following: MgSO₄·7H₂O, 5.068 mg/L; FeCl₃, 1.45 146 mg/L; ZnSO₄·7H₂O, 0.44 mg/L; CoCl₂·6H₂O, 0.422 mg/L; CuSO₄·5H₂O, 0.39 mg/L; 147 148CaCl₂·2H₂O, 0.372 mg/L and MnCl₂·7H₂O, 0.28 mg/L. Either NaHCO₃ powder or H₂SO₄(1: 4) was used to adjust the pH to 7-7.2 in the hybrid MBBR–MBR. All chemicals and supplies 149 mentioned were of analytical purity, and purchased from Tianjin, China. Sulfadiazine 150(C₁₁H₁₂N₄O₂S, >99%) has a molecular weight of 250.28 Da, and its CAS number was 68– 151 35-9. This was obtained from Shanghai Dibai Biotechnology Co., Ltd. 152

2.3 Chemical analyses

154	Concentrations of MLSS, mixed liquor volatile solids (MLVSS), attached-growth
155	biomass (AGBS), volatile attached-growth biomass (VAGBS), NH ₄ ⁺ -N, NO ₂ ⁻ -N and NO ₃ ⁻ -N
156	were tested based on the standard methods (APHA, 2005). TOC analyzer (TOC-V WP,
157	Shimadzu, Japan) was used to measure the TOC of influent and effluent. The pretreatment of
158	SDZ was based on Zhang et al. (2020). To sum up, the samples were pretreated by solid phase
159	extraction (SPE) with Oasis (HLB) extraction cartridges (500 mg, 6 cc, Waters, USA). A
160	high-performance liquid chromatography-triple quadrupole mass spectrometer (LC-MS,
161	Shimadzu, Japan) equipped with a Shimadzu Shim-pack GIST C18 column (the dimensions
162	and length are 2.1mm and $2\mu m$) served the quantitative analysis of pharmaceuticals. The
163	column temperature was 40 °C, flow rate was 0.4 ml/min, injection volume was 5μ L, and the
164	system's total run time lasted for 3 min. Mobile phase were 0.1 mol/L ammonium
165	formate+0.1% formic acid water (solvent A) : acetonitrile (solvent B) = $20 : 80 (v/v)$.
166	The extraction of EPS of activated sludge has been previously documented by Deng et al.
167	(2014). The biofilm of biocarriers was extracted into 30 ml ultrapure water by hand extrusion,
168	and EPS of biofilm was extracted in the same method. The total amount of EPS was
169	characterized by measuring the TOC content in the biofilm and sludge. The protein (PN) was
170	determined by the anthrone-sulfuric acid method (Dubois et al., 1956), while the
171	concentration of polysaccharide (PS) was found with the Coomassie brilliant blue method as
172	employed by FØlund et al. (1995).

173 **3. Results and discussion**

174 **3.1 Effects of sulfadiazine on the performance of MBBR-MBR at different C/N ratios**

- 175 3.1.1 Nitrogen removal in hybrid MBBR-MBR system
- Fig. 1 summarizes the removal efficiencies of NH_4^+ -N as well as TN and simultaneous
- nitrification and denitrification (SND) in four hybrid reactors (C/N=2.5, 4, 6 and 9,
- respectively) during the operational period. Fig. 1(c) showed that the average removal
- efficiency of NH_4^+ -N in four reactors without adding SDZ could reach 99.4% at all examined
- 180 C/N ratios. However, the nitrification performance in hybrid MBBR-MBRs with adding SDZ
- 181 at different C/N ratios declined to $87.59 \pm 1.17\%$, $90.66 \pm 1.69\%$, $92.98 \pm 0.94\%$ and $93.44 \pm 1.00\%$
- 182 0.67%, respectively. In a nutshell, compared with phase I, the removal efficiency of NH_4^+ -N
- 183 with SDZ fell by 12%, 9%, 7% and 6%, respectively. The removal rate of NH_4^+ -N in reactors
- 184 after adding SDZ reduced in different degrees because of the inhibition of NH_4^+ -N functional
- gene (AOB amoA) by SDZ (Song et al., 2020). Moreover, the removal of ammonia nitrogen
- 186 gradually rose when the C/N ratio increased, which could explain that the existence of biofilm
- improved the removal rate of ammonia nitrogen. Biofilm alleviated the direct impact of SDZ

188 on microorganisms, the higher the C/N ratio, the thicker the biofilm attached to the biofilm

189 carrier (Enaime et al., 2019). EPS was the main component of the biofilm, due to the presence

- 190 of *heterotropic* bacteria in EPS, it could absorb NH₄⁺-N into cell proteins (Li et al., 2020).
- In phase II, all reactors' effluent under different C/N ratios could still maintain a removal efficiency of more than 88% NH_4^+ -N. This was possible because SDZ was a non-hydrophilic compound, and it exerted a weak influence on the removal of NH_4^+ -N. In the later stage of the reactor operation, R_3 and R_4 performed similarly on NH_4^+ -N removal, indicating that the

195	strong protection mechanism of biofilm under a high C/N ratio made it possible to maintain
196	the high nitrification reaction.

197	From Fig. 1(d), it was found that the removal of TN for R_1 was the lowest, only 65.38 \pm
198	4.21% in phase I, while the removal of TN for other reactors was as much as 70%. Table 1
199	shows the corresponding simultaneous nitrification and denitrification (SND) performance
200	was above $66.66 \pm 4.26\%$. Results confirmed that the C/N ratio had a certain effect on
201	denitrification. The reason for the poor removal efficiency of R_1 on TN was that the activity
202	of heterotrophic denitrifying bacteria was insufficient when the carbon source was
203	insufficient, and low denitrification occurs. R_3 and R_4 made almost no difference in the
204	removal efficiency of TN. This might be because a thicker biofilm was formed on the biofilm
205	carrier in R ₄ , which inhibited the spread of oxygen and substrates, and thus reduced the
206	activity of heterotrophic denitrifying bacteria. The removal efficiency of TN was therefore as
207	same as R_3 . In phase II, the removal efficiency of TN in R_1 , R_2 , R_3 and R_4 fell by 10.37%,
208	8.28%, 6.18% and 6.09%, respectively. Correspondingly, the SND performance declined by
209	3.39%, 3.29%, 1.65%, and 2.26%. The decrease in TN removal was caused by the addition of
210	SDZ which impacted on the activity of nitrifying bacteria attached to the surface of the
211	biofilm carrier. However, due to the protection mechanism of the protein in the biofilm on
212	microorganisms, the denitrifying bacteria inside the carrier was less affected by SDZ, so the
213	performance of SND could be maintained.
214	Fig.1 Variations of (a) NH_4^+ -N concentrations, (b) TN concentrations, (c) NH_4^+ -N removal
215	efficiencies, and (d) TN removal efficiencies in hybrid MBBR-MBRs.
916	Table 1 SND performance in four hybrid MDDD MDD systems

Table 1 SND performance in four hybrid MBBR-MBR systems

	Journal 110 proois
218	3.1.2 Total organic carbon removal in hybrid MBBR-MBR system
219	Table 2 shows the concentration changes of TOC in four hybrid MBBR-MBR systems
220	during the entire experimental operation stages. A can be seen in Table 2, the removals of
221	TOC by all reactors were slightly different but maintained at a high level, with an average
222	removal efficiency of 90% or more being documented. Meanwhile the removal of TOC in
223	phase II had been inhibited to some extent by the addition of sulfadiazine. In phase I, MBR
224	unit membrane could trap the organics of macromolecules in the particles (Chen et al., 2018),
225	therefore, in hybrid MBBR-MBR system, C/N had a little influence on the degradation of
226	TOC. In phase II, after the reactors were stabilized the effluent quality of R_2 , R_3 and R_4 all
227	reached a higher level (>90%) except R_1 . The removal efficiency of R_1 was lower than that of
228	other reactors, and the reason might be that the microbial activity was reduced under low C/N.
229	Furthermore, the addition of SDZ damaged the unstable microbial community in the system
230	to a certain extent, which impacted on the removal efficiency of TOC.
231	Table 2 Removal efficiencies of TOC in four hybrid MBBR-MBR systems
232	
233	3.1.3 Sulfadiazine removal in four hybrid MBBR-MBR systems
234	The removal efficiencies of SDZ in four hybrid MBBR-MBR systems at different C/N
235	ratios (2.5, 4, 6 and 9) were 58.72 \pm 6.07%, 69.00 \pm 4.91%, 72.13 \pm 2.92% and 75.63 \pm
236	5.88%, respectively. During the experiments, all the four hybrid systems achieved more than
237	half of the removal efficiencies when dealing with SDZ. In the experiment, the removal rate
238	of SDZ in the four mixed systems is more than half.
000	

239 The removal methods of refractory organics such as antibiotics in wastewater mainly

240 include biodegradation, adsorption and air blowing. However, for SDZ, due to its

	Journal Pre-proofs
241	non-hydrophilic physical and chemical properties, it is mainly removed by the biodegradation
242	of microorganisms enriched on the carrier (Luo et al., 2014; Yu et al., 2018). When the
243	influent C/N ratio was 3.5, the aerobic MBBR had an average removal efficiency of 61.11 \pm
244	8.82% on SDZ with a concentration of 1-5 mg/L (Song et al., 2020). Moreover, when the
245	aerobic submerged membrane bioreactor system was used to treat wastewater containing SDZ
246	with a concentration of 5 $\mu g/L$ and a C/N of about 5.5, the removal efficiency of SDZ reached
247	91%. As well, biodegradation was the main mechanism for removing SDZ (Yu et al., 2018).
248	In the conventional MBR, the removal efficiency of SDZ was up to 100% at high C/N (>8.5)
249	when SDZ concentration in the influent was lower than 100ng/L (Garcia Galan et al., 2012;
250	Xu et al., 2017). However, when the SDZ concentration exceeded 1000ng/L, the removal
251	efficiency of conventional MBR on SDZ was lower than 85% (Xu et al., 2017). Yu et al.
252	(2018) investigated that adding sponge carrier into the conventional MBR could effectively
253	improve the removal efficiency of SDZ by 15.2% at SDZ concentration of 5µg/L. It indicated
254	that the attached microorganisms enhanced SDZ removal efficiency. In response to high
255	concentration of SDZ (1mg/L), MBBR performed well with an average removal effect of
256	71.1±4.8% under low C/N of 3.5 (Zhang et al., 2020). Therefore, compared with the removal
257	efficiency of SDZ by other bioprocesses, the hybrid MBBR-MBR had a good removal
258	performance at high concentration of SDZ. With the increase in C/N ratios, the removal
259	efficiency of SDZ also improved which was due to the co-metabolism of nutrients and SDZ.
260	When the carbon source was sufficient, organic matter had a positive effect on SDZ' s
261	removal, and because of high C/N, EPS in the relatively thick biofilm had a certain protective
262	effect on microorganisms. This in turn led to better biodegradation.

264	3.2 Effect of sulfadiazine on sludge characteristics and membrane fouling at different
265	C/N ratios
266	3.2.1 Sludge characteristics
267	Fig. 2 illustrates the changes of attached biomass and suspended biomass in phases I and
268	II. As shown in Fig. 2, the order of total biomass in four hybrid MBBR-MBR systems was as
269	follows: $R_1(C/N=2.5) < R_2(C/N=4) < R_3(C/N=6) < R_4(C/N=9)$. The ratio of volatile biomass
270	to total biomass in the two forms (suspended biomass and attached biomass) ranged from 0.66
271	to 0.73.
272	Fig. 2. Changes of MLSS and MLVSS in MBR as well as aAGBS and aVAGBS values in
273	MBBR at C/N ratios (2.5, 4, 6 and 9)
274	
275	MLSS content in MBBR was very small (0.241±0.060 mg/L), and the degradation effect
276	on pollutants was negligible. Yu et al. (2020) have reported that MLSS did not contribute to
277	the removal of refractory pollutants. Therefore, the degradation of pollutants in MBBR
278	mainly depended on the attached biomass, and in each MBBR unit they were significantly
279	different. They increased when an increase in C/N ratios was also evident, which may have
280	been caused by the protective mechanism of biofilm against the degrading functional bacteria.
281	At the same time, the attached biomass also impacted on the degradation performance of
282	SDZ. With the increase of the attached biomass, the removal efficiency of SDZ increased
283	correspondingly. This may be because the C/N ratio directly affected the concentration of the
284	attached biomass and led to differences in the bacterial abundance, thus affecting the
285	degradation performance of SDZ. Although the removal efficiency of SDZ increased with a

286	simultaneously increase in the concentration of attached biomass in the hybrid systems, there
287	was no conclusive evidence that a direct relationship existed between the two. It is worth
288	noting that the suspended biomass in each MBR units were basically unchanged, remaining
289	constant at 5.86 mg/L and 6.38 mg/L, indicating that SDZ had a small impact on the
290	suspended biomass.
291	The ratio of volatile biomass to total biomass (MLVSS/MLSS and aVAGBS/aAGBS)
292	reflects the microbial activity, the higher the ratio, the greater the microbial activity in the
293	mixed system. It could be seen from Fig. 2 that in phase II, the microbial activity of each unit
294	was affected after the addition of SDZ. With the increase of C/N ratios, the impact of SDZ on
295	the microbial activity decreased gradually. MLVSS/MLSS and aVAGBS/aAGBS declined in
296	different amounts due to the addition of SDZ (by 0.02 - 0.05 and 0.105 -0.128). After 10 days
297	since SDZ was added, MLVSS/MLSS and aVAGBS/aAGBS ratios tended to be stable, which
298	indicated that the hybrid systems would gradually adapt to the addition of SDZ after 10 days.
299	However, they were still lower than in phase I, indicating that SDZ inhibited microbial
300	activity.
301	In phase I, the sludge particle size was 12-28µm in MBR units at low C/N ratios of 2.5
302	and 4, while the sludge particle size was 15-46 μ m at high C/N ratios of 6 and 9. In phase II,
303	the average particle size in all reactors decreased, at this time, the sludge particle sizes under
304	the four C/N ratios were 8-17 $\mu m,$ 10-21 $\mu m,$ 14-38 μm and 16-41 $\mu m,$ respectively. The
305	phenomenon suggested that the sludge flocs began to disintegrate due to the addition of SDZ.
306	Because SDZ was toxic to microorganisms, it might lead to the destruction of sludge floc and
307	resulted in the sludge flocculation particles changing size. The broken floc would clog the
308	film hole and accumulate, further leading to serious membrane fouling in the MBR unit.

	Journal Pre-proofs
309	Nguyen et al. (2019) confirmed that adding pharmaceuticals would affect membrane fouling
310	due to the phenomenon of anti-flocculation caused by bacterial death of cells.
311	
312	3.2.2 Changes of EPS in MBBR and MBR
313	EPS produced by microbial metabolism is an important factor affecting its physiological
314	characteristics. Fig. 3 depicts the effect of different C/N ratios on the change in EPS while the
315	system is in operation, in terms of the changes in PS and PN. The total amount of EPS was
316	the highest in R_4 when the C/N ratio was 9, while that of the EPS in R_1 was the lowest, which
317	was related to the total attached biomass in the MBBR units. The attached biomass in four
318	systems was as follows: R_1 (C/N=2.5) < R_2 (C/N=4) < R_3 (C/N=6) < R_4 (C/N=9).
319	The content of EPS also increased in four MBBR units along with the operation time, on
320	account of the microbes constantly accumulating on biofilm carriers. In phase II, the decline
321	in the EPS concentration was due to the addition of SDZ, which resulted in the peeling off of
322	the non-compacted biofilm. Additionally, the self-protection mechanism of microorganisms
323	affected by toxins in the environment would secrete more EPS. The presence of
324	pharmaceuticals inhibited the secretion of polysaccharides (PS), thereby impacting on the
325	polymerization of biofilms. When the reactors stabilized, protein (PN) was basically
326	unaffected by the pharmaceutical and still grew at a slow rate. PN was stable between 94.21
327	mg/L and 165.52 mg/L. Moreover, PN/PS reflected the stability of the environment in these
328	systems (Song et al., 2020). In phase I, PN/PS in the biocarriers gradually decreased,
329	indicating good stability of the reactors, however, in phase II, PN/PS increased to some
330	extent. PN/PS increased with the drop in C/N ratios, suggesting that the stability of the
331	internal environment in the reactor was easily worse under low C/N of 2.5 when SDZ was 14

Journal Pre-proofs present. In contrast, at a high C/N ratio the hybrid system retained better stability. The stable 332 hybrid systems provided favorable conditions for microbial growth, which explained the high 333 efficiency in removing nitrogen, TOC and SDZ at high C/N ratios explained in section 3.1. 334Fig. 3 Concentration of EPS, PN and PS in MBBR units with different C/N ratios 335 336 Fig. 4 describes the changes of EPS and SMP in four MBR units, and the EPS was 337 similar after all the reactors successfully started on all the C/N ratios, with the initial EPS 338 concentration of 4.505±0.266 mg/L. Then after adding SDZ (since day 25) the level of EPS in 339 four MBR units gradually increased to 23.62 mg/L, 18.32 mg/L, 15.39 mg/L and 20.47 mg/L 340 at the end of operation at C/N ratios of 2.5, 4, 6, and 9, respectively. This might be caused by 341 a deterioration in the internal environment of the hybrid systems after SDZ is added. Due to 342 the stimulation of SDZ, the self-protection mechanism of microorganisms was gradually 343 improved, and EPS was then secreted. Under different C/N ratios the order of SMP in four 344 MBR units was as follows: $R_1(C/N=2.5) > R_2(C/N=4) > R_3(C/N=6) > R_4(C/N=9)$, in phase I, 345 the concentrations of SMP were 20.08±0.30 mg/L, 16.12±0.83 mg/L, 10.87±0.28 mg/L and 346 7.22±0.80 mg/L, respectively. As SDZ was added the SMP concentration increased 347 substantially to 25.81±0.57 mg/L, 23.79±0.64 mg/L, 20.16±0.28 mg/L and 15.25±0.80 mg/, 348 corresponding to the C/N of 2.5,4,6 and 9, respectively. Additionally, the concentration of 349 SMP was higher under the low C/N, which aggravated the membrane fouling rate and in 350 effect speeded it up (Jiang et al., 2018). 351

Fig. 4 Variations of EPS and SMP concentrations in MBR units with different C/N ratios (2.5,
4, 6 and 9)

355 **3.2.3** Membrane fouling

356	Fig. 5(a) describes the process of TMP increasing with time in four MBR units. The TMP
357	in the MBR units reached up to 35.325 kPa, 34.524 kPa, 35.958 kPa and 35.625 kPa on days
358	29, 41, 45 and 42 at C/N ratios of 2.5, 4, 6 and 9, corresponding to fouling rates of 1.218,
359	0.842, 0.799 and 0.848 kPa/d, respectively. Therefore, membrane fouling was more likely to
360	occur at low C/N (C/N=2.5). Especially, the TMP value remained at less than 15 kPa for 33
361	days (C/N ratio of 4) and 37 days (C/N ratio of 6) of operation, and even with the addition of
362	SDZ, TMP maintained a growth rate of 0.526 and 0.511 kPa/day, respectively. The cake
363	resistance (R_c) consisted of about 72% of fouling resistance at all C/N ratios, indicating that
364	the main contributor to membrane fouling was formation of cake layer. In 3.2.1, it was
365	mentioned that at high C/N, the sludge particle size was relatively large, and larger floc was
366	not easy to plug holes, and subsequently, membrane fouling did not occur easily at high C/N.
367	However, at a high C/N ratio, membrane fouling in R ₄ reached 35kPa earlier than that in R ₃ ,
368	and the membrane fouling rate of R_4 (1.412kPa/day) after SDZ was added was higher than
369	that of R_3 (1.551kPa /day). This may be explained by the high biomass concentration in R4,
370	rapid microbial metabolism, and the production of small flocs to plug the membrane pores.
371	This phenomenon was also related to the contents of EPS and SMP in the filter cake layer.
372	Fig. 5 (b) describes the contents of proteins (EPSp) and polysaccharides (EPSc) in EPS as
373	well as proteins (SMPp) and polysaccharides (SMPc) in SMP. With the increase of C/N ratio
374	(at medium and low C/N ratios), membrane fouling gradually improved, and the most
375	important factor affecting membrane fouling was EPSp. In the cake layer, EPSc/EPSp

reflected the hydrophobicity of the sludge floc, when the ratio was low, the hydrophobicity

377 increased so as EPS would deposit on the membrane and further worsen the membrane

fouling (Deng et al., 2016b). As can be seen in Figure 6, the ratio of EPSc/EPSp was the
lowest (1.45) at low C/N (2.5), suggesting that low C/N could cause more serious membrane
fouling. It was worth noting that the ratios of SMPc/SMPp were positively correlated with the

growth rate of TMP, R_1 (C/N=2.5) > R_2 (C/N=4) > R_4 (C/N=9) > R_3 (C/N=6), and the ratios

378

379

380

381

were 0.628, 0.604, 0.570 and 0.554, respectively. Results also showed that SMPc was a main factor affecting membrane fouling which is consistent with the view put forward by Chen et al. (2018).

According to the study by Deng et al. (2016), the TMP reached 35 kPa after 110 days or 385 even longer with no pharmaceutical in the wastewater. In the work conducted by Jiang et al. 386 (2018), TMP reached 36.5 kPa after 74 days when 22 micropollutants with a concentration of 387 $5 \mu g/L$ were added to the inflow. Compared with these analyses, the rising rate of TMP in this 388 study was faster due to the addition of 0.5 mg/L of SDZ. The results suggested after the 389 sudden addition of SDZ, the stability of the environment in the reactor was affected. The 390 rapid increase of SMP and EPS as well as sludge floc destroyed by SDZ were the main causes 391 of membrane fouling. Small sludge floc was attached to the membrane surface, blocking the 392 membrane hole and accelerating the formation of a filter cake layer, thus causing serious 393 membrane fouling. In phase II, it was observed that the TMP in R₁ increased rapidly 394 (33.333kPa/day), while the sludge particle size decreased sharply (from 12-28 µm to 8-17 395 μm). Therefore, the main reason why SDZ influenced membrane fouling in the hybrid 396 MBBR-MBR was the filter cake layer formed by the small-sized sludge floc blocking the 397 membrane hole. 398

Fig. 5 Membrane fouling of MBR unit in a MBBR-MBR hybrid system at different C/N
ratios: (a) TMP profiles, (b) EPS and SMP of cake layer.

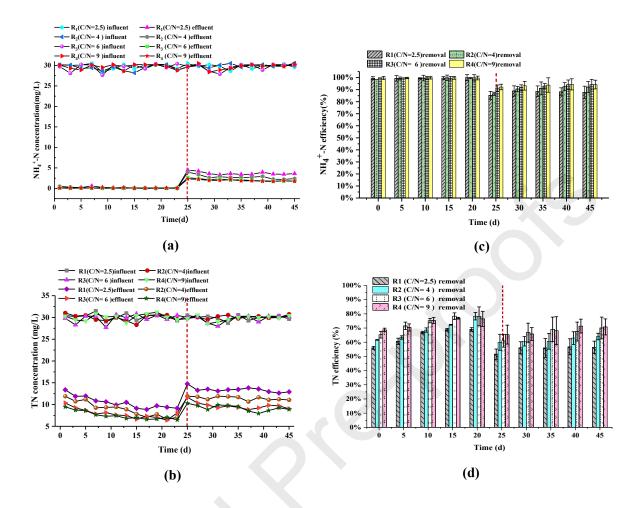
4. Conclusions

402	In the	MBBR-MBR system. TN removal and SND performance are more inhibited by SDZ
403	than t	hat of TOC. However, this negative affect was curtailed at a high C/N ratio (> 4). On
404	accou	ant of co-metabolism, the hybrid system with a high C/N ratio had better SDZ removal
405	effici	ency. Moreover, SDZ affected the sludge characteristics in terms of sludge particle size,
406	EPS a	and SMP in the hybrid bioreactors. The hybrid system affected by SDZ was more likely
407	to rec	over its stability under a high C/N ratio. In short, SDZ in the influent could cause more
408	seriou	as membrane fouling of the MBR.
409		
410	Ackn	owledgment
411	The v	vork was supported by Tianjin Municipal Science and Technology Bureau of China 282
412	(Proje	ect No. 18PTZWHZ00140).
413	E-sup	plementary data for this work can be found in e-version of this paper online.
414	Refei	rences
415	(1)	APHA, AWWA, WEF, 2005. Standard Methods for the Examination of Water and
416		Wastewater. 20th ed. American Public Health Association, Washington, D.C.
417	(2)	Barbosa, M.O., Moreira, N.F.F., Ribeiro, A.R., Pereira, M.F.R., Silva, A.M.T. 2016.
418		Occurrence and removal of organic micropollutants: An overview of the watch list of
419		EU Decision 2015/495. Water Res. 94, 257-279.
420	(3)	Chen, C., Guo, W.S., Ngo, H.H., Chang, S.W., Nguyen, D.D., Zhang, J., Liang, S.,
421		Guo, J.B., Zhang, X.B. 2018. Effects of C/N ratio on the performance of a hybrid

		Journal Pre-proofs
422		sponge-assisted aerobic moving bed-anaerobic granular membrane bioreactor for
423		municipal wastewater treatment. Bioresour Technol. 247, 340-346.
424	(4)	Chen, F., X.Y., Shi, X., Kok, K, N., How, Y, N. 2017. Membrane fouling between a
425		membrane bioreactor and a moving bed membrane bioreactor: Effects of solids
426		retention time. Chem. Eng.J. 309 , 397-408.
427		
428	(5)	Deng, L., Guo, W., Ngo, H.H., Zhang, J., Liang, S., Xia, S., Zhang, Z., Li, J. 2014. A
429		comparison study on membrane fouling in a sponge-submerged membrane bioreactor
430		and a conventional membrane bioreactor. Bioresour Technol. 165, 69-74.
431	(6)	Deng, L., Guo, W., Ngo, H.H., Zhang, X., Wang, X.C., Zhang, Q., Chen, R. 2016.
432		New functional biocarriers for enhancing the performance of a hybrid moving bed
433		biofilm reactor-membrane bioreactor system. Bioresour Technol. 208, 87-93.
434	(7)	Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. 1956. Colorimetric
435		Method for Determination of Sugars and Related Substances. Anal. Chem. 28,
436		350-356.
437	(8) Ei	naime, G., Nettmann, E., Berzio, S., Baçaoui, A., Yaacoubi, A., Wichern, M., Gehring,
438		T., Lübken, M. 2019. Performance and microbial analysis during long - term
439		anaerobic digestion of olive mill wastewater in a packed - bed biofilm reactor. J.
440		Chem. Technol. Biotechnol. 95 (3), 850-861.
441	(9)	Evgenidou, E.N., Konstantinou, I.K., Lambropoulou, D.A. 2015. Occurrence and
442		removal of transformation products of PPCPs and illicit drugs in wastewaters: a
443		review. Sci. Total Environ. 505, 905-26.
444	(10)	Fatehifar, M., Borghei, S.M., Ekhlasi nia, A. 2018. Application of moving bed biofilm

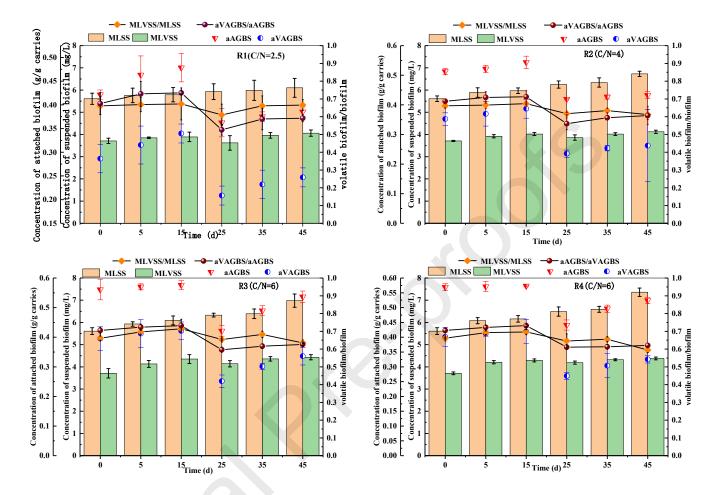
		Journal Pre-proofs
445		reactor in the removal of pharmaceutical compounds (diclofenac and ibuprofen). J.
446		Environ. Chem. Eng. 6(4), 5530-5535.
447	(11)	FØlund, B., Griebe, T., Nielsen, P.H. 1995. Enzymatic activity in the activatedsludge
448		floc matrix. Applid Microbiol. Biotechnol. 43(4), 755-761.
449	(12)	Garcia Galan, M. J., Diaz-Cruz, M. S., Barcelo, D. 2012. Removal of sulfonamide
450		antibiotics upon conventional activated sludge and advanced membrane bioreactor
451		treatment. Anal. Bioanal. Chem. 404(5), 1505-1515
452	(13)	Jiang, Q., Ngo, H, H., Nghiem, L., Hai, F., Price, W., Zhang, J., Liang, S., Deng, L.,
453		Guo, W. 2018. Effect of hydraulic retention time on the performance of a hybrid
454		moving bed biofilm reactor-membrane bioreactor system for micropollutants removal
455		from municipal wastewater. Bioresour. Technol. 247, 1228-1232.
456	(14)	Kora, E., Theodorelou, D., Gatidou, G., Fountoulakis, M.S., Stasinakis, A.S. 2020.
457		Removal of polar micropollutants from domestic wastewater using a methanogenic –
458		aerobic moving bed biofilm reactor system. Chem. Eng. J. 382, 122983.
459	(15)	Leyva-Diaz, J.C., Monteoliva-Garcia, A., Martin-Pascual, J., Munio, M.M.,
460		Garcia-Mesa, J.J., Poyatos, J.M. 2020. Moving bed biofilm reactor as an alternative
461		wastewater treatment process for nutrient removal and recovery in the circular
462		economy model. Bioresour. Technol. 299, 122631.
463	(16)	Li, C., Gu, Z., Zhu, S., Liu, D. 2020. 17beta-Estradiol removal routes by moving bed
464		biofilm reactors (MBBRs) under various C/N ratios. Sci. Total Environ. 741, 140381.
465	(17)	Li, Z., Chang, Q., Li, S., Gao, M., She, Z., Guo, L., Zhao, Y., Jin, C., Zheng, D., Xu,
466		Q. 2017 Impact of sulfadiazine on performance and microbial community of a
467		sequencing batch biofilm reactor treating synthetic mariculture was tewater. Bioresour. 20

		Journal Pre-proofs
468		Technol. 235, 122-130.
469	(17)	Liu, Y., Guo, J., Lian, J., Chen, Z., Li, Y., Xing, Y., Wang, T. 2018. Effects of
470		extracellular polymeric substances (EPS) and N-acyl-L-homoserine lactones (AHLs)
471		on the activity of anammox biomass. Intern. Biodeterior. Biodegrad. 129, 141-147.
472	(18)	Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Kang, J., Xia, S., Zhang, Z.,
473		Price, W.E. 2014. Removal and fate of micropollutants in a sponge-based moving bed
474		bioreactor. Bioresour. Technol. 159, 311-319.
475	(19)	Luo, Y., Qi, J., Ngo, H.H., Long, D.N., Hai, F.I., Price, W.E., Jie, W., Guo, W. 2015.
476		Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed
477		biofilm reactor-membrane bioreactor system. Bioresour. Technol. 191, 355-359.
478	(20)	Mulla, S.I., Hu, A., Sun, Q., Li, J., Suanon, F., Ashfaq, M., Yu, C.P. 2018.
479		Biodegradation of sulfamethoxazole in bacteria from three different origins. J.
480		Environ. Manage. 206, 93-102.
481	(21)	Muller, E., Schussler, W., Horn, H., Lemmer, H. 2013. Aerobic biodegradation of the
482		sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate
483		and sole carbon and nitrogen source. Chemosphere. 92(8), 969-78.
484	(22)	Nguyen, TT., Bui, XT., Dang, BT., Ngo, HH., Jahng, D., Fujioka, T., Chen,
485		SS., Dinh, QT., Nguyen, CN., Nguyen, PTV. 2019. Effect of ciprofloxacin
486		dosages on the performance of sponge membrane bioreactor treating hospital
487		wastewater. Bioresour. Technol. 273, 573-580.
488	(23)	Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M.C., Michael, I.,
489		Fatta-Kassinos, D. 2013. Urban wastewater treatment plants as hotspots for antibiotic
490		resistant bacteria and genes spread into the environment: a review. Sci. Total Environ.


Journal Pre-proofs 447, 345-60. 491 Shi, Y., Huang, J., Zeng, G., Gu, Y., Chen, Y., Hu, Y., Tang, B., Zhou, J., Yang, Y., 492 (24)493 Shi, L. 2017. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An 494 overview. Chemosphere, 180, 396-411. 495 Sombatsompop, K., Visvanathan, C., Ben Aim, R. 2006. Evaluation of biofouling 496 (25) phenomenon in suspended and attached growth membrane bioreactor systems. 497 Desalination, 201(1-3), 138-149. 498 Song, Z., Zhang, X., Sun, F., Ngo, H.H., Guo, W., Wen, H., Li, C., Zhang, Z. 2020. 499(26)Specific microbial diversity and functional gene (AOB amoA) analysis of a 500sponge-based aerobic nitrifying moving bed biofilm reactor exposed to typical 501 pharmaceuticals. Sci. Total Environ. 742, 140660. 502 (27)Tang, J., Jia, H., Mu, S., Gao, F., Qin, Q., Wang, J. 2020. Characterizing synergistic 503 effect of coagulant aid and membrane fouling during coagulation-ultrafiltration via 504 in-situ Raman spectroscopy and electrochemical impedance spectroscopy. Water Res. 505 172, 115477. 506Wang, L., Li, Y., Wang, L., Zhang, H., Zhu, M., Zhang, P., Zhu, X. 2018. Extracellular 507 (28)polymeric substances affect the responses of multi-species biofilms in the presence of 508 sulfamethizole. Environ. Pol. 235, 283-292. 509 Xu, R., Wu, Z., Zhou, Z., Meng, F. 2017. Removal of sulfadiazine and tetracycline in 510 (29) membrane bioreactors: linking pathway to microbial community shift. Environ. 511 512 Technol. 40(2), 134-143.

Yu, Z., Zhang, X., Ngo, H.H., Guo, W., Wen, H., Deng, L., Li, Y., Guo, J. 2018.

513


(30)

514		Journal Pre-proofs Removal and degradation mechanisms of sulfonamide antibiotics in a new integrated
515		aerobic submerged membrane bioreactor system. Bioresour. Technol. 268, 599-607.
516	(31)	Yu, Z., Zhang, Y., Zhang, Z., Dong, J., Fu, J., Xu, X., Zhu, L. 2020. Enhancement of
517		PPCPs removal by shaped microbial community of aerobic granular sludge under
518		condition of low C/N ratio influent. J. Hazard. Mater. 394 , 122583.
519	(32)	Zhang, X., Song, Z., Hao Ngo, H., Guo, W., Zhang, Z., Liu, Y., Zhang, D., Long, Z.
520		2020. Impacts of typical pharmaceuticals and personal care products on the
521		performance and microbial community of a sponge-based moving bed biofilm reactor.
522		Bioresour. Technol. 295, 122298.
523	(33)	Zhao, W., Sui, Q., Mei, X., Cheng, X. 2018. Efficient elimination of sulfonamides by
524		an anaerobic/anoxic/oxic-membrane bioreactor process: Performance and influence of
525		redox condition. Sci. Total Environ. 633, 668-676.

543 Fig.1 Variations of (a) NH₄⁺-N concentrations, (b) TN concentrations, (c) NH₄⁺-N removal

```
544 efficiencies, and (d) TN removal efficiencies in hybrid MBBR-MBRs
```


556 Fig.2. Changes of MLSS and MLVSS in MBR as well as aAGBS and aVAGBS values in

557	MBBR	at C/N ra	atios (2.	5, 4, 6	5 and 9)
-----	------	-----------	-----------	---------	----------

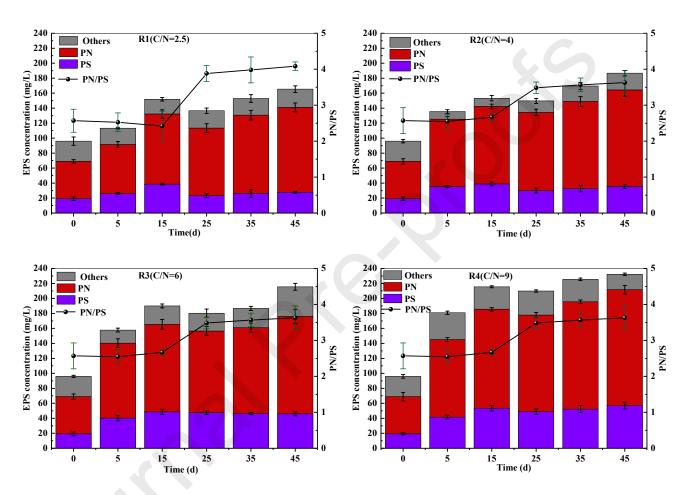
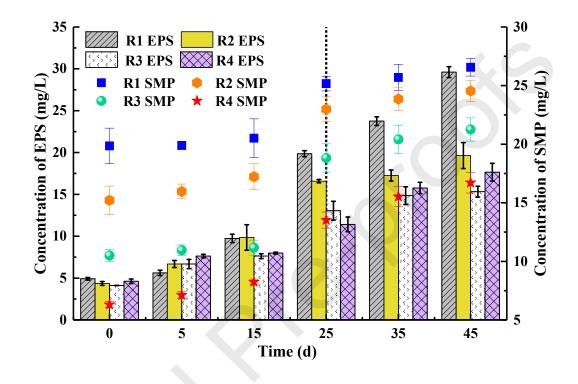
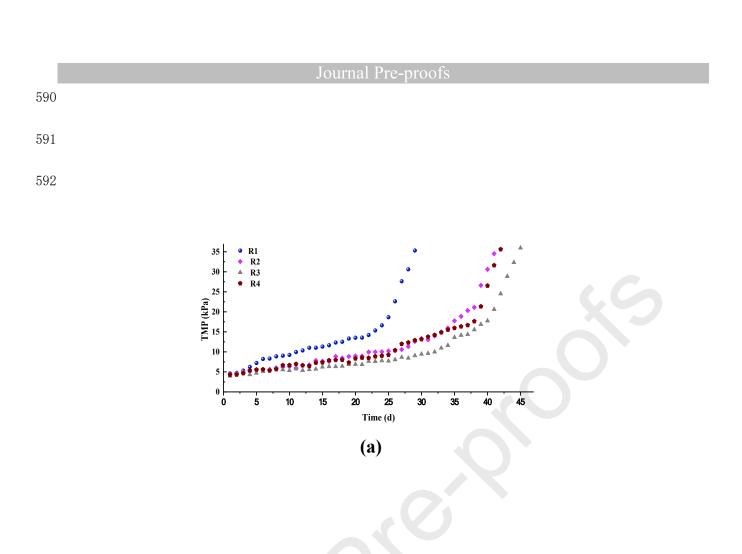




Fig. 3 Concentration of EPS, PN and PS in MBBR units with different C/N ratios

- 581 Fig.4 Variations of EPS and SMP concentrations in MBR units with different C/N ratios (2.5,
- **4, 6 and 9**)

594 Fig.5 Membrane fouling of MBR unit in a MBBR-MBR hybrid system at different C/N

(b)

⁵⁹⁵ ratios: (a) TMP profiles, (b) EPS and SMP of cake layer

_	Period	R ₁ (C/N=2.5)	$R_2(C/N=4)$	R ₃ (C/N=6)	R ₄ (C/N=9)
-	Phase I (without adding SDZ)	$66.66 \pm 4.26\%$	$71.84\pm5.03\%$	$74.23\pm4.20\%$	76.41± 3.74%
	Phase II (with adding SDZ)	$63.26 \pm 1.86\%$	$68.55 \pm 1.25\%$	$72.58 \pm 2.16\%$	74.15 ± 2.28%
- 603					
604					
605					
606	i				
607					
608	1				
509					
610	l i i i i i i i i i i i i i i i i i i i				
511					
612					
613					
514					
615	5				
616	i				
617					
618	:				

602 Table 1 SDN performance in four hybrid MBBR-MBR systems

_	Jou	rnal Pre-proofs		
20				
21				
22				
Table 2 Removal eff	ficiencies of TOC in	a hybrid MBBR-MI	3R system	
Period	R ₁ (C/N=2.5)	R ₂ (C/N=4)	R ₃ (C/N=6)	R ₄ (C/N=9)
Phase I (without adding SDZ)	$90.10\pm1.20\%$	$91.29 \pm 1.66\%$	92.29 ± 1.32%	91.21± 1.31%
Phase II (with adding SDZ)	$84.33 \pm 1.97\%$	85.69 ± 1.08%	90.35 ± 2.35%	$91.08 \pm 1.00\%$
24				
25				
26				
27				
28				
29 30				
31				
32				
33				
34				
35				
36				
37				
38				