Dehydroabietic acid alleviates high fat diet-induced insulin resistance and hepatic steatosis through dual activation of PPAR-γ and PPAR-α

Zhishen Xiea, Gai Gaob, Hui Wangc, Erwen Lid, Yong Yuane, Jianguan Xua,b,s, Zhenqiang Zhanga,s, Pan Wanga, Yu Fua, Huahui Zenga, Junying Songa, Christian Hölschera, Hui Chenb

aAcademy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
bSchool of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia

ABSTRACT

Dual-PPAR-α/γ agonist has the dual potentials to improve insulin resistance (IR) and hepatic steatosis associated with obesity. This study aimed to investigate whether dehydroabietic acid (DA), a naturally occurred compound, can bind to and activate both PPAR-γ and PPAR-α to ameliorate IR and hepatic steatosis in high-fat diet (HFD)-fed mice. We found that DA formed stable hydrogen bonds with the ligand-binding domains of PPAR-γ and PPAR-α. DA treatment also promoted 3T3-L1 differentiation via PPAR-γ activation, and mitochondrial oxygen consumption in HL7702 cells via PPAR-α activation. In HFD-fed mice, DA treatment alleviated glucose intolerance and IR, and reduced hepatic steatosis, liver injury markers (ALT, AST), and lipid accumulation, and promoted mRNA expression of PPAR-γ and PPAR-α signaling elements involved in IR and lipid metabolism in vivo and in vitro, and inhibited mRNA expression of pro-inflammatory factors. Therefore, DA is a dual-PPAR-α/γ and PPAR-α partial agonist, which can attenuate IR and hepatic steatosis induced by HFD-consumption in mice.

1. Introduction

Diabetes mellitus (DM) is a global disease[1,2], 1 in 10 people are living with diabetes, according to the international diabetes federation’s report. Insulin resistance (IR) is the major feature of type 2 diabetes (T2DM), the most common type of diabetes, accounting for around 90% of all DM cases. T2DM is a chronic metabolic disease, usually associated with obesity, hyperlipidemia, hepatic steatosis, etc[3-5].

Peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ belong to the nuclear receptor superfamily[6,7]. PPAR-γ regulates adipogenesis and insulin sensitivity[8], whose selective agonists (thiazolidinediones (TZDs), such as thiazolidinediones and rosiglitazone (RSG)) have been used as 2nd line anti-type 2 diabetic drugs for decades. These two drugs clinically used as PPAR-γ agonists can remodel adipose tissue resulting in adipocyte hypertrophy and hyperplasia, which is used as a mechanism to improve systemic insulin sensitivity[9,10]. On the other hand, such newly differentiated adipocytes are insulin sensitive which facilitates postprandial glucose uptake and conversion into triglycerides (TG) for long-term storage. As such, weight gain is a significant side effect of thiazolidinediones and RSG, in addition to liver toxicity which requires regular surveillance of liver function. Troglitazone, strongly activates PPAR-γ, has been discontinued in clinical use, because of undesirable clinical side effects such as weight gain, liver damage and osteoporosis[11]. PPARα is widely expressed and serves to activate FAO pathways in many tissues and cells including the intestine, vascular endothelium, smooth muscle and immune cells such as monocytes, macrophages and lymphocytes and the liver controls several key genes[12], involved in lipid homeostasis[13,14], including lipolysis and mitochondrial fatty acid β-oxidation[15,16], permit efficient use of mobilized lipids and decrease secretion of triglycerides (TGs) from the liver and promote TG clearance from plasma, and thereby also reduce atherogenic lipoprotein particles. It was this activity that prompted therapeutic development to reduce cardiovascular risk, fat liver in patients with raised plasma lipids[13].

Metabolic disorders such as diabetes, atherosclerosis, hyperlipidemia and obesity, rarely occur in isolation, but usually arise in the same individuals. Large numerous studies have shown that the development of PPAR-α/γ dual agonists or PPAR-γ partial agonists are developed to increase insulin sensitivity and alleviate hepatic steatosis is a promising approach[17-19].

Dehydroabietic acid (DA), is a derivative of abietic acid (AA) which is the primary irritant in pinewood[20]. DA and AA also derive from rosin, which is often used for plucking duck feather. Therefore, DA was found in raw and cooked ducks[21].

*Corresponding authors.

E-mail addresses: xujianyang2008@163.com (J. Xu), zhang_zhenqiang@126.com (Z. Zhang).

Received 5 March 2020; Received in revised form 1 April 2020; Accepted 8 April 2020

0753-3322/ © 2020 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
have anti-aging [22], anti-inflammatory [23–25], anti-bacterial [26], and anti-cancer effects [27,28]. In the genetic obese diabetic KK-Ay mice, DA supplement in the chow has been shown to effectively reduce fasting blood glucose levels [29]. DA increased expression of PPAR-γ and α [23] and stimulated insulin dependent glucose uptake into 3T3-L1 adipocyte in vitro [30]. It is reasonable to assume that DA may overcome such side effects of TZDs due to it proposes dual PPAR-γ/α action. In addition, the anti-inflammatory effects via inhibiting NF-kB signaling pathway elements are commonly proposed mechanisms in improving systemic insulin sensitivity, as inflammation plays a key role in compromising insulin signaling cascade [24,29], in addition to increasing adiponectin and glucose uptake by Glut-4 [29]. It was also shown that the DA treatment suppressed the production of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) (proinflammatory cytokines) [29], inhibited NF-kB signaling pathway [24], increased adiponectin expression (an anti-inflammatory cytokine) [29]. Both in vitro and in vivo studies identified PPAR-γ/α influences on both acute and chronic inflammatory processes [13,31]. Taken together, it is reasonable to assume that DA could alleviate IR and hepatic steatosis via activate PPAR-γ/α and overcome such side effects of TZDs.

In this study, we found that DA is a dual-PPAR-α/γ and PPAR-γ partial agonist and firstly provided visual evidence of how DA and AA bind to PPAR-γ and PPAR-α. The effects on metabolic phenotypes of IR and hepatic steatosis were verified in high fat diet (HFD)-induced obese mice, an animal model more consistent with human diabetes mellitus. DA promotes fatty acid β-oxidation, prevents IR and hepatic steatosis which maybe depend on PPAR-γ and PPAR-α activation. As expected, DA overcome PPAR-γ side effects such as weight gain and fat liver.

2. Materials and methods

2.1. Reagents

Dulbecco’s modified Eagle’s medium (DMEM, Gibco, US); Fetal bovine serum (FBS; Gibco, US); Penicillin-streptomycin solution (Solarbio, China); HEK293 T, 3T3-L1 and HL7702 cell (ATCC, US); Dehydroabietic acid (DA), abietic acid (AA), Rosiglitazone (RSG); Oleic acid, Dexamethasone (Dex), Oil red O, GW9662 (Aladdin, China); Insulin (Ins, MedChemExpress, US); WY14643 (Selleck Chemicals, US); Sodium carboxymethylcellulose, Dimethyl sulfoxide (DMSO, Macklin, China); D12492 (Jiangsu Xietong Pharmaceutical Bio-engineering Co., Ltd., China); GW6471 (PPARγ agonist)), or 2.5, 5, 10 μM DA or 10 μM DA + 10 μM GW6471 (PPARα antagonist) together with 0.6 mM oleic acid for 24 h. The cells were stained with Nile red and observed by fluorescence microscopy and lipid drops observed by transmission electron microscope (JEM-1400; JEOL Ltd., Tokyo, Japan) [35].

2.2. PPAR-γ and PPAR-α binding assays

For the PPAR-γ or PPAR-γ-α activity assay, plasmid pSG5-PPAR-γ or PPAR-γ-α and the PPAR promoter–reporter vector J3-TKLuc were used as previously described [32]. For PPAR-γ-LBD or PPAR-α-LBD assay, plasmid GAL4-PPAR-γ-LBD or GAL4-PPAR-α-LBD fusion protein and a pGlu35.35 reporter were used [33].

HEK293 T cells were seeded at a density of 2 × 10^4 cells per well into 96-well plates for 18 h and transferred over a 6 h period with 100 ng plasmid expressed target genes and 10 ng of β-galactosidase reporter to normalize transfection efficiencies using lip2000 transfection reagents. Then, they were treated with DA or AA (2.5–50 μM) or RSG (0.0001–50 μM) for 24 h. The luciferase was detected using the luciferase reporter assay kit (Promega, US).

2.3. Cell culture

Pre-adipocyte 3T3-L1 and human liver cell HL7702 were maintained in DMEM high glucose medium containing 10 % FBS and 1% penicillin-streptomycin solution and cultured at 37 °C in 5% CO₂ incubator (Thermofisher). Cell viability was tested in 3T3-L1 and HL7702 cells with various doses of DA and AA using MITT assay.

For 3T3-L1 cell differentiation, cells were seeded into 6-well plates to full confluence for 2 days, and then induced by complete medium containing 10 μg/mL insulin, 1 μM dexamethasone. After 2 days of induction, the medium was replaced with a maintenance medium (complete medium including 10 μg/mL insulin) as well as different compounds (20 μM RSG, or 2.5, 5, 10, 15 μM DA) The last incubation lasted for 4 days before Oil Red O staining as previously reported [34]. For quantification, oil red O was extracted by isopropanol for 20 min. at room temperature and then transferred it to a 96-well plate, and measured the absorbance value at 500 nm.

To investigate the effects on the expression of PPAR-γ target genes, 3T3-L1 cells were collected at 0th, 4th and 6th day during the differentiation with test compound for Glut-4, Cyp4a10 and Scd-1 mRNA measurement.
2.6. Bioassays

Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) were measured in the blood by the automatic biochemical analyzer (OLYMPUS AU4000, Japan).

2.7. Histological and immunohistochemical analysis

Fresh liver and fat sections were fixed with 4% paraformaldehyde, embedded in paraffin, and cut into 4 μm sections for hematoxylin-eosin (H&E) staining. Images were obtained with an Olympus microscope-camera system (Tokyo, Japan). Adipocyte cell size was measured in H&E stained tissues [38] and quantified by Image J software (Image J, National Institutes of Health, MD, USA). Immunohistochemical staining was performed using monoclonal anti-PPAR-α (1 : 200, Servicebio), anti-ACADM antibody (1 : 200, Servicebio), mouse anti-UCP-1 (1 : 200, ABclonal) and anti-CPTα (1 : 200, ABclonal) as previously published [37,39] and quantification by ImageJ (Media Cybernetics, Inc, USA). Clinical nonalcoholic steatohepatitis (NASH) Activity Score (NAS) was used to assess the liver as previously described [40].

2.8. Quantitative real-time PCR

Total RNAs were isolated using trizol (Vazyme, China). Equal amounts of RNA from 8 mice were pooled [41,42] for cDNA synthesis using a cDNA synthesis kit (Beyotime, China). Quantitative real-time PCR was performed using SYBR green primers (sequences in Supplementary (2, 6) = 31.34, p < 0.0007; Fig. 3A). DA treatment increased transcription of the insulin sensing adiponectin (F (2, 6) = 31.34, p = 0.0007; vs. DMSO, Fig. 3B), and lipid metabolic marker angiopoietin-like protein 4 (ANGPTL4, F (2, 6) = 114.6, p < 0.0001, Fig. 3C), at much higher levels than RSG treatment (p < 0.001, DA10 vs. RSG). Furthermore, DA had similar effect to RSG to increase the mRNA expression of leptin (F (2, 6) = 7.806, p = 0.0214, Fig. 3D) and the regulator of lipid and glucose metabolism, fibroblast growth factor 21 (FGF21, F (2, 6) = 162.8, p < 0.0001, Fig. 3E), and reduce the mRNA expression of inflammatory regulator angiopoietin-like protein 2 (ANGPTL2, F (2, 6) = 31.51, p = 0.0007, Fig. 3F) and retinoic acid receptor responder 2 (PARRRES2, F (2, 6) = 5.86, p = 0.0388, Fig. 3G) which encodes the adipokine Chemerin involved in adipocyte differentiation and lipolysis.

2.9. Statistical analysis

Data were expressed as the mean ± standard error of the mean (SEM). Comparisons between two groups were assessed using Student’s t-test, and comparisons for more than 2 groups were analyzed using one-way analysis of variance (ANOVA) followed by Dunnett's post hoc tests (GraphPad Prism 7.0). p < 0.05 was considered statistically significant.

3. Results

3.1. DA is a dual-PPAR-α/γ and PPAR-γ partial agonist

Firstly, we investigated the effect of DA on the activity of PPAR-γ and PPAR-α. As shown in Fig. 1A, DA induced more than 3 times activation of PPAR-γ compared with AA, however only to ¼ of which RSG has achieved at the same dose. DA also induced ~5 times the activity of PPAR-γ (LBD) than that of AA (Fig. 1B). Molecular docking results suggest that DA and AA binding to the LBD of PPAR-γ at ARG280 by forming 3 and 2 hydrogen bonds, respectively. DA showed lower binding energy than AA (Fig. 1C, D). More importantly, DA also induced 1.4 times more activities of PPAR-α than AA (Fig. 1E). The PPAR-α-LBD activation was also ~1.8 times higher with DA than AA (Fig. 1F). DA formed hydrogen bonds with PPAR-α-LBD at ARG465 and LYS448, while AA at LYS448 and LYS449. DA also had lower binding energy with PPAR-α-LBD than AA (Fig. 1G, H). Taken together, DA is a natural PPAR-γ partial agonist and also a dual-PPAR-α/γ agonist.

3.2. DA promotes pre-adipocytes differentiation and PPAR-γ related activities in adipocytes

In liver cells line HL7702 and pre-adipocytes 3T3-L1, DA treatment (100 μM) only marginally decreased cell viability, and DA showed less toxicity than AA (Suppl Fig S1A and B). Therefore, DA was used for the rest in vitro and in vivo studies.

Promoting pre-adipocytes differentiation is an important mechanism for how RSG improves glycemic control. We compared the effects of DA and RSG on pre-adipocyte 3T3-L1 differentiation. As shown in Fig. 2A, DA promoted 3T3-L1 adipocyte differentiation in a dose-dependent manner. Oil red O staining also showed a dose-dependent effect of DA to increase lipid deposition in the adipocytes with the strongest effect at 15 μM (F (5, 42) = 388.6, p < 0.001, Fig. 2B). However, 10 μM was chosen for later in vitro studies based on the cell viability assays (Suppl Fig. S1).

mRNA expression of PPAR-γ target genes involved in pre-adipocytes differentiation Glut-4, Scd-1 and Cyp4a10, showed a time-dependent increase during the differentiation. DA exerted similar effect as RSG to increase Glut-4 (Fig. 2C) and Cyp4a10 expression (Fig. 2D), however less effect than RSG on Scd-1 (F (2, 6) = 16.92, p = 0.0034, Fig. 2E) on day 6 of the differentiation.

In differentiated adipocytes, DA at 10 μM exerted similar effects as RSG at 20 μM to upregulate mRNA expression of known PPAR-γ target genes, including those involved in adipogenesis (CAAT/enhancer binding protein β (CEBPB), fatty acid binding protein 4 (FABP4), cortisone reductase 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), mitochondrial carbohydrate metabolic marker Pyruvate Dehydrogenase Lipoamide Kinase Isozyme 4 (PDK4)), while the effect on the lipid metabolic regulator phosphodiesterase 3 (PDE3B) was stronger than the RSG (F (2, 6) = 31.59, p = 0.0007, Fig. 3A). DA treatment increased transcription of the insulin sensing adiponectin (F (2, 6) = 31.34, p = 0.0007; vs. DMSO, Fig. 3B), and lipid metabolic marker angiopoietin-like protein 4 (ANGPTL4, F (2, 6) = 114.6, p < 0.0001, Fig. 3C), at much higher levels than RSG treatment (p < 0.001, DA10 vs. RSG). Furthermore, DA had similar effect to RSG to increase the mRNA expression of leptin (F (2, 6) = 7.806, p = 0.0214, Fig. 3D) and the regulator of lipid and glucose metabolism, fibroblast growth factor 21 (FGF21, F (2, 6) = 162.8, p < 0.0001, Fig. 3E), and reduce the mRNA expression of inflammatory regulator angiopoietin-like protein 2 (ANGPTL2, F (2, 6) = 31.51, p = 0.0007, Fig. 3F) and retinoic acid receptor responder 2 (PARRRES2, F (2, 6) = 5.86, p = 0.0388, Fig. 3G) which encodes the adipokine Chemerin involved in adipocyte differentiation and lipolysis.

3.3. DA decreases lipid accumulation and promotes mitochondrial function via PPAR-α in HL7702 cells

Oleic acid was used to induce lipid accumulation in HL7702 cells. Nile red binds to lipids and gives off orange fluorescence, which is often used to analyze cell lipid contents. As expected, oleic acid increased lipid accumulation in the HL7702 cells, which was prevented by both DA and PPAR-α agonist Wy14643 (Fig. 4A, C; F (4, 25) = 22.93, p < 0.0001; both p < 0.001 vs. Oleic acid). However, GW6471, a selective PPAR-α antagonist, blocked the effect of DA on Oleic acid – induced lipid accumulation, which suggested this effect of DA is PPAR-α mediated (Fig. 4A, C). This was further confirmed by the measurement of the areas of the lipid droplets by electron microscope (F (4, 25) = 36.97; p < 0.0001, Fig. 4B, D).

Using a seahorse assay, mitochondrial oxygen consumption rates (OCR) were measured in HL7702 cells. Wy14643 had the strongest effect to enhance mitochondrial activities including ATP synthesis, followed by DA (Fig. 4E, F). However, GW6471 only partially blocked this effect of DA, suggesting DA also works on other pathways to regulate mitochondrial metabolism (Fig. 4E, F). As shown in Fig. 4G, DA upregulated the expression of classical PPAR-α target genes mostly at 10 μM, including those genes involved in fatty acid β-oxidation (carnitine palmitoyl transferase 1α (CPT-1α, F (3, 8) = 81.52, p < 0.0001), acyl-CoA dehydrogenase, long chain (ACDAL, F (3, 8) = 31.54, p < 0.0001) and uncoupling protein-3 (UCP-3, F (3, 8) = 71.75, p < 0.0001). It needs to be noted that the effect of DA on gene
expression is not always comparable to PPAR-α agonist WY14643, stronger on some genes whereas weaker on the others than WY14643, suggesting that other pathways may be activated by DA.

3.4. DA alleviates HFD-induced glucose intolerance and insulin resistance in vivo

As shown in Fig. 5A (F (4, 35) = 20.47, p < 0.0001), after 21 weeks of HFD consumption, the HFD mice gained ~30% more body weight compared to NCD mice (p < 0.001). However, RSG did not prevent further weight gain in HFD-fed mice, whereas DA significantly
reduced the body weight of HFD-fed mice in a dose-dependent manner (p < 0.05 DA-L vs. HFD; p < 0.001 DA-H vs. HFD, Fig. 5A). Fasting blood glucose level was decreased in the HFD mice as expected (p < 0.001 vs. NCD, Fig. 5B), which was nearly normalized by RSG as expected (Fig. 5B; F (4, 35) = 10.61, p < 0.0001; p < 0.01 vs. HFD). DA-H had a similar hypoglycemia effect as RSG (p < 0.01 vs. HFD) but DA-L not (p < 0.05 vs. HFD). During OGTT, the effects of RSG and DA on blood glucose level mirrored fasting glucose level (Fig. 5C, D; F (4, 35) = 9.875, p < 0.0001). During ITT, both doses of DA showed similar effects as RSG to improve insulin sensitivity (Fig. 5E, F; F (4, 35) = 36.74, p < 0.0001).

Next, we identified whether DA improves IR is PPAR-γ dependent. As shown in Sup Fig S2A (F (3, 28) = 48.64, p < 0.0001), the level of fasted blood glucose was significantly reduced by DA treatment (p < 0.0001 vs. HFD), which was partially reversed by additional GW9662, a selective PPAR-γ antagonist (p < 0.01 DA + GW9662 vs. DA). During OGTT and ITT, the effect of DA on blood glucose levels was completely blocked by additional GW9662 (Sup Fig S2B, C, D and E; C: F (3, 20) = 84.91, p < 0.0001; E:F (3, 28) = 33.02, p < 0.0001). These data suggest that the effect of DA on glycemic control and insulin action is PPAR-γ dependent.

3.5. DA alleviates HFD-induced hepatic steatosis and inflammation in vivo

DA also improved hepatic steatosis and dyslipidemia in vivo. As shown in Fig. 6A–C, both gross anatomy and H&E staining showed severe ectopic fat deposition in the liver of HFD mice reflected by NAFLD score and ballooning (F (4, 35) = 18.4, p < 0.0001; p < 0.001 vs. NCD, Table 1), in addition to increasing inflammatory score (F (4, 35) = 15.15, p < 0.0001; p < 0.001 vs. NCD, Table 1), Compared with RSG, DA had a better effect to ameliorate hepatic steatosis related markers in a dose-dependent manner (Fig. 6A–C, Table 1; C: F (4, 35) = 70.91, p < 0.0001). As such, liver injury markers, ALT and AST were also nearly normalized by DA treatment regardless of the dose (both p < 0.001 vs. HFD, Fig. 6D, E; D: F (4, 40) = 84.91, p < 0.0001; E: F (4, 40) = 25.25, p < 0.0001); whereas both were further increased by RSG treatment (p < 0.05 vs. HFD, Fig. 6D, E) consistent with its side effects in diabetic patients. DA also significantly decreased blood TG, TC and...
LDL-c levels in the HFD mice, and increased their HDL-c levels (Table 2, F (4, 35) = 31.16, p < 0.0001), suggesting better liver lipid metabolic profile. On the other hand, RSG nearly had no effects on these lipids except for reducing LDL-c level, suggesting the advantage of using DA to manage blood glucose and lipid metabolism over RSG.

In the liver, DA also activated PPAR-α and its target gene which were reduced by HFD, including acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain (ACADM; F (3,28) = 111.1, p < 0.0001), CPT1α (F (3, 28) = 177.2, p < 0.0001) both of which are involved in β-oxidation (Fig. 7A, B). In addition, DA, especially at a high dose, upregulated other genes involved in the free fatty acid breakdown and β-oxidation (Fig. 7C). DA also dose-dependently decreased mRNA expression of inflammatory factors commonly involved in liver diseases and injury, IL-1β (F (3, 8) = 35.23, p < 0.0001), IL-6 (F (3, 8) = 95.87, p < 0.0001), TNF-α (F (3, 8) = 52.07, p < 0.0001), COX-1 (F (3, 8) = 45.4, p < 0.0001) and COX-2 (F (3, 8) = 39.15, p < 0.0001) (Fig. 7D).

3.6. DA activates PPAR-γ and decreases proinflammatory genes in adipose tissue

In HFD mice, the area of white fat cells was 1.57 times bigger than that of the NCD mice, which was only reduced by DA at a high dose (p < 0.05 DA-H vs. HFD, Fig. 8A, B; F (4, 25) = 5.691, p = 0.0021). DA, especially at a high dose, upregulated mRNA expression of PPAR-γ, Glut-4, Adipor, FSP27, ACOX-1, FABP4, Adiponectin (Fig. 8C). DA also dose-dependently inhibited the expression of several inflammatory genes (IL-1β: F (4, 10) = 93.66, p < 0.0001; IL-6: F (4, 10) = 30.72, p < 0.0001; TNF-α: F (4, 10) = 108.5 p < 0.0001) in the white tissue (Fig. 8D), which are all associated with insulin resistance. Brown adipose tissue is in charge of thermogenesis in small mammals. DA at a high dose normalized the uncoupling protein UCP-1 protein level (Fig. 8E, F; F (4, 25) = 4.97; p < 0.01 DA-H vs. HFD.), suggesting that heat production restored.

4. Discussion

Based on cell viability assays and binding assays, we found that DA is more suitable than AA for clinical translation due to its higher binding efficiency and lower toxicity (Fig. 1, Supl Fig. S1). Thus, the biological assessments only focused on DA. The major findings in this study are the direct evidence of DA binding to PPAR-α and PPAR-γ to activate both pathways (Fig. 1), and confirm its mechanism of action underlying glycemic control and lipid metabolism by using PPAR-α and PPAR-γ antagonist in vitro (Supl Fig. S2) and in vivo (Fig. 4). The superiority of DA over the classical anti-diabetic medication RSG lies in its ability to reduce blood LDL-c levels (Table 2) and hepatic steatosis (Fig. 6), increase blood HDL-c levels (Table 2), and has liver protection. The effect of DA to promote lipid metabolism may be mitochondrial driven.

PPARs play an important role in metabolic disorders, therefore have attracted significant attentions to develop/discover potent agonists. Previous studies only reported that DA could increase mRNA expression or activities of PPAR-γ and PPAR-α [23]; however, none showed how DA directly connects to these two receptors. There are many pathways to regulate PPARγ, including Axl/HSPP90 [43], or AKT/mTOR [44], SIRT1 [45]. Here, the luciferase reporter gene cloning LBD fusion protein and molecular docking method were used to confirm that DA is able to form hydrogen bonds with LBD-PPAR-γ and PPAR-α, rather than non-specific bindings. These results provide evidence for suggesting that PPAR-γ and PPAR-α are the direct targets of DA (Fig. 1). The additional use of specific PPAR-γ and PPAR-α antagonists in vitro and in vivo further confirmed DA’s dual-action on PPAR-γ and PPAR-α resulting in effective glycemic control and lipid lowering effects in HFD-fed mice (Supl Fig. S2, Fig. 4), respectively, which were further supported by the upregulation of the elements of the pathway for both receptors.

DA regulates glucose metabolism in the white fat, and shares similar mechanisms to the hypoglycemic effects of the 2nd line anti-diabetic drug RSG. This includes upregulating Glut-4 to facilitate the uptake of postprandial glucose surge and promoting adipocyte differentiation to receive more glucose for long-term storage. It needs to be noted that DA requires a higher dose than RSG to achieve similar effects on glycemic control, due to its lower binding efficiency with PPAR-γ that of RSG. Nevertheless, the major discovery here is the advantage of DA.
over RSG, due to its ability to reduce hepatic steatosis and manage blood cholesterol levels in obesity (Fig. 6, Table 2), in addition to its hypoglycemic effects. The excess fat influx from the HFD can increase circulating lipid levels leading to ectopic lipid storage in the liver leading to steatosis. This can, in turn, lead to liver metabolic dysfunction, insulin resistance and dyslipidemia. The deposition in the arteries can lead to the formation of atherosclerosis blocking blood supplies. Thus, obesity is usually associated with a series of metabolic abnormalities, resulting in high risks of cardiovascular and cerebrovascular diseases [3–5]. Diabetes itself can accelerate the development of atherosclerosis due to increased lipid production by the liver. RSG has been taken off the shelf in the US due to the significant cardiovascular side effects, and advised to be used in patients without cardiovascular conditions in other countries [11]. However, DA could improve mitochondrial function in liver cells, while fatty acid β-oxidative is a vital process to generate ATP from the lipids in the mitochondria. This results in a better blood lipid profile and ameliorates hepatic lipid deposition albeit HFD consumption ad libitum, contributing to its additional activation on PPAR-α [13,46].

Another benefit of DA used in HFD-fed mice is its weight loss effect. PPAR-γ agonists can increase body weight due to both hypertrophy and hyperplasia. Although DA can promote pre-adipocyte differentiation, hypertrophy did not occur. On the contrary, fat cell size was nearly normalized to the level of the control group albeit improved glucose uptake ability. Increased thermogenesis reflected by an increase in UCP-1 expression in the brown adipose tissue may mobilize the fat storage, whereas mitochondrial β-oxidative may also increase in the adipocytes.
PPAR-γ agonists (RSG and thiazolidinediones) are known for their liver toxicity which has been shown in the HFD-fed mice here, reflected by increasing liver injury enzymes ALT and AST (Fig. 6). Therefore, regular liver function surveillance is required to patients take thiazolidinediones and RSG. DA seems to overcome such side effects, showing liver protection in this study, reflected by reducing inflammation and liver injury enzymes in HFD-fed mice. The anti-inflammatory effects of DA in both white fat and liver may be still due to its activation on PPAR-α [47,48].

High fat-induced inflammation is considered to be an important pathological result of obesity, and is closely related to the increased risk of various diseases, including IR and hepatic steatosis [49]. HFD induced chronic inflammation, leading to excessive accumulation of fat in various tissues, most notably in adipose tissue, as well as other insulin-responsive organs, including the liver, which pre-disposes an individual to the development of metabolic abnormalities. PPARγ agonists inhibiting NF-κB-mediated proinflammatory cytokine expression via the PPARγ/PTEN pathways [31]. Evidence suggests that PPARα can counter inflammation via multiple, distinct mechanisms [13], including negatively regulates pro-inflammatory and acute phase response (APR) signaling pathways [50,51]. Thus, dual PPAR agonists constitute promising strategies for the treatment of T2DM. PPAR also plays the key regulatory role during the pathogenesis of inflammation induced by HFD [47,48]. There have been some reports of DA anti-inflammatory effects, such as DA reverses several cells response stimulated by TNF-α in human adult dermal fibroblasts [52]. In our research, DA improved HFD-induced inflammatory responses in liver (Fig. 7) and adipose tissue (Fig. 8), this is consistent with the effect activation of PPAR-γ and -α.

In conclusion, our work explored the potential therapeutic value of the naturally occurring compound DA. Our results suggest DA is more superior to the PPAR-γ agonist RSG for its additional beneficial effect on blood lipid management, liver steatosis and liver functional protection, especially in the setting of long-tern HFD consumption.

Funding

This work was supported by the Postdoctoral Foundation of China.
Z. Xie, et al.

Table 1
The nonalcoholic steatohepatitis activity score.

<table>
<thead>
<tr>
<th></th>
<th>NCD</th>
<th>HFD</th>
<th>RSG</th>
<th>DA-L</th>
<th>DA-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steatosis</td>
<td>0.00 ± 0.00</td>
<td>2.50 ± 0.19***</td>
<td>2.38 ± 0.18</td>
<td>1.88 ± 0.23</td>
<td>0.88 ± 0.23***</td>
</tr>
<tr>
<td>Inflammation</td>
<td>0.13 ± 0.13</td>
<td>2.00 ± 0.27***</td>
<td>1.25 ± 0.16*</td>
<td>1.13 ± 0.13*</td>
<td>0.75 ± 0.16**</td>
</tr>
<tr>
<td>Ballooning</td>
<td>0.25 ± 0.16</td>
<td>1.88 ± 0.13***</td>
<td>1.5 ± 0.19</td>
<td>0.50 ± 0.19***</td>
<td>0.38 ± 0.18***</td>
</tr>
</tbody>
</table>

***p < 0.001 vs. NCD group, *p < 0.05, **p < 0.01 and ***p < 0.001 vs. HFD group.

Table 2
DA alleviated dyslipidemia induced by high fat diet consumption in vivo.

<table>
<thead>
<tr>
<th></th>
<th>NCD</th>
<th>HFD</th>
<th>RSG</th>
<th>DA-L</th>
<th>DA-H</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG</td>
<td>0.756 ± 0.0246</td>
<td>1.146 ± 0.0874***</td>
<td>0.963 ± 0.101</td>
<td>0.803 ± 0.070**</td>
<td>0.765 ± 0.0533**</td>
</tr>
<tr>
<td>TC</td>
<td>1.783 ± 0.160</td>
<td>4.148 ± 0.192***</td>
<td>3.708 ± 0.106</td>
<td>3.586 ± 0.082*</td>
<td>3.260 ± 0.170***</td>
</tr>
<tr>
<td>HDL-c</td>
<td>1.704 ± 0.086</td>
<td>2.368 ± 0.074***</td>
<td>2.498 ± 0.114</td>
<td>2.885 ± 0.152***</td>
<td>3.182 ± 0.063***</td>
</tr>
<tr>
<td>LDL-c</td>
<td>0.300 ± 0.007</td>
<td>0.716 ± 0.046***</td>
<td>0.600 ± 0.019*</td>
<td>0.510 ± 0.018***</td>
<td>0.466 ± 0.039***</td>
</tr>
</tbody>
</table>

***p < 0.001 vs. NCD group, *p < 0.05, **p < 0.01 and ***p < 0.001 vs. HFD group.

Fig. 7. DA activates PPAR-α and inhibits mRNA expression of inflammatory factors in the liver. (A) representative immunohistochemistry staining of PPAR-α, ACADM, CPT1α in the liver. (B) Quantification of the immunohistochemistry staining, n = 6. (C) mRNA expression of known PPAR-α signaling genes in the liver. (D) mRNA expression of inflammatory cytokines. Data are expressed as mean ± SEM, n = 3, *p < 0.05, **p < 0.01 and ***p < 0.001. DA-H: high dose of Dehydroabietic acid (20 mg/kg/d); DA-L: low dose of Dehydroabietic acid (10 mg/kg/d); RSG: Rosiglitazone (4 mg/kg/d).
Contributions

Data collection, Gai Gao, Yong Yuan and Junying Song; data analysis, Yu Fu, Pan Wang, Erwen Li; experimental design, Hui Wang; project design, Zhenqiang Zhang, Jiangyan Xu; data interpretation and manuscript writing, Zhishen Xie, Hui Chen; manuscript editing, Christian Hölscher.

Declaration of Competing Interest

The authors declare no conflict of interests.

Acknowledgments

We would like to acknowledge Caili Zhang, Xianghua Liu, and Ning Sun (TEM. center, Henan University of Chinese Medicine) for their help with transmission electron microscope imaging in this study.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.biopha.2020.110155.

References

[12] F. Hong, P. Xu, Y. Zhai, The opportunities and challenges of peroxisome...

[37] M. Pawlik, P. Lefebvre, B. Staels, Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease, J. Hepatol. 62 (3) (2015) 720–733.
