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Abstract

Cloud platforms are becoming very popular as a means to host business applications, and most
businesses are starting to use the cloud platform in order to reduce costs. A cloud platform is a shared
resource that enables businesses to share the services Software as a service (SAAS), Infrastructure as a
service (IAAS) or Anything as a service (XAAS), which are required to develop and deploy any
business application. These cloud services are provided as virtual machines (VM) that can handle the
end user’s requirements. The cloud providers must ensure efficient resource handling mechanisms for
different time intervals to avoid wastage of resources. Auto-scaling mechanisms would take care of
using these resources appropriately along with providing an excellent quality of service. Therefore, a
process to predict the workload is required so that the cloud servers can handle the end user’s request
and provide the required resources as Virtual Machines (VM) disruptively, so that the businesses using
the cloud service only pay for the service they use, thus increasing the popularity of cloud computing.
The workload consists of the application programs running on the machine and the users connected to
and communicating with the computer’s applications. The computing resources are released based on
the workload identified using the resource provisioning techniques, which are models used for enabling
convenient on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, applications and services).

In order to provide these resources dynamically without any interruption, an auto-scaling system is
required to both manage the load and balance the service. The application should be capable of handling
the load as it comes in and to ensure the cloud resources are not supplied in abundance when there are
fewer requests coming to the server. This thesis introduces a framework to identify the current workload
and predict the future load to the server. The results show the actual workload to the server and the level
of requests expected in the future. But to fully appreciate the flexibility of identifying the future load in
advance, it was important to identify a method that could in turn provide guidance with adjusting the
resources supplied reducing the cost. Also, this would ensure the service level agreement (SLA) was
met. The framework identified in this thesis carefully monitors the inputs to the server and analyses the
load. The researches also applied deep learning techniques to predict the future load to the server, which
produced a result with less root mean square error (RMSE) compared the other techniques. This thesis
investigates five different methods to identify the future workload: Naive, ARIMA, Linear regression,
Exponential smoothing and Forward propagation. The logs of two datasets were analysed to predict the
future resource for different time intervals along with computing the error between the predicted and

actual value.

Auto scaling of cloud resources using time series and machine learning Page 1



	Title Page
	Certificate of Original Authorship
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abstract

