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TWO NOVEL TECHNIQUES FOR GRAPH OPTIMIZATION

— CYCLE BASED FORMULATION AND CHANGE OF OPTIMAL VALUES

Abstract

by Fang Bai, Ph.D.
University of Technology Sydney
Jan 2020

Graph optimization (GO) is an essential enabling technique widely used in the simulta-
neous localization and mapping (SLAM), sensor fusion, Lidar based or visual-inertial based
navigation systems (VINS). As its name suggests, the graph optimization lies at the intersec-
tion of probabilistic inference, sparse linear algebra, and graph theory. In its explicit form, it
is a sparse least squares derived from a maximum likelihood estimation (MLE). This thesis
contains two fundamental contributions regarding this topic.

A GO can be conventionally represented as a graph with vertices being (unobserved)
latent variables, and edges being observed measurements. This vertex-edge paradigm has
dominated the GO literature, which in essence solves the problem in the cut space of the
graph. In this thesis, we firstly investigate a special GO instance, i.e., pose-graph opti-
mization (PGO), and propose an orthogonal complementary formulation that solves PGO
in the cycle space. For sparse graphs, which is typically the case for PGO, the cycle based
formulation has a lower dimension of state variables, and takes a form of minimum norm
optimization. By exploiting the sparsity by a minimum cycle basis (MCB), the cycle based
PGO yields a superior convergence property against its vertex-based counterpart while being

cheaper to compute.



The second contribution is the theory on how to forecast the change of optimal values
(COOV) in incrementally constructed GO instances. In specific, this thesis develops analyt-
ical equations to calculate COOV in case of least squares optimization, and minimum norm
optimization. The equation is exactly proved under linear cases, and extends to nonlinear
cases via linearizations. We show that COOV bears the same computational complexity as
the mutual information (MI) in incremental scenarios, while both COOV and MI well com-
plement one another. As a final contribution, we design several derived applications based
on the proposed COOV metric, that demonstrates its effectiveness in outlier detection, cost
forecasting, and enhancing the overall robustness in incremental settings. It can be foreseen
that numerous applications can be generated based on the two cornerstones in this thesis,
and the author would like to leave this part as a future research direction, and open to the

community.
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