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Abstract

This thesis employs data mining techniques to discover domain knowledge in
epigenetic modification and gene expression profile. Computational methods
are developed for three research questions, namely, how to accurately
predict DNA N*-methylcytosine site, how to precisely identify mRNA NS-
methyladenosine sites, and how to identify lung cancer gene expression
profile markers. The motivations of the proposed methods are improving
the performance of computational methods via constructing efficient feature
space, optimizing machine learning schemes, solving the data imbalance
issue, and employing novel statistical analysis approach to provide researchers

efficient computational tools.

DNA N-methylcytosine (4mC) is a critical epigenetic modification and
plays various roles in the restriction-modification system. The computational
methods have been explored to identify 4mC in the DNA sequence in recent
years due to the high cost of experimental laboratory detection. However,
the state-of-the-art methods have limited performance because of the lack
of effective sequence features and the ad hoc choice of learning algorithms.
Chapter 3 proposes a new method with novel sequence feature space and
machine learning scheme. In sequence encoding, five essential sequence
features are integrated into a 292-dimension feature space, representing both
global and local sequence characteristics. Then a feature selection scheme
is built, where the feature importance score produced from the training
process of XGBoost machine is taken as the criterion of feature selection.

At last, an SVM-based prediction model is trained with the selected features

XV



Abstract

and optimized by 10-fold cross-validations. In the result part, the impact
of feature selection on model performance is evaluated by an independent
test. The proposed method outperforms three state-of-art predictors in both
independent test and 10-fold cross-validation. Furthermore, two case studies

prove the effectiveness of our method in practical situations.

Nb-methyladenosine (m®A) widely involves in mRNA metabolism and
embryogenesis. Multiple computational human mRNA mCA site predictors
have been developed. However, there are two main drawbacks of the existing
methods: first, inadequate learning of the imbalanced training data; second,
the sequence text features are not outstanding in representing m%A sequence
characteristics. Chapter 4 proposes to use the cost-sensitive learning idea to
solve the imbalance data issues in the problem. This cost-sensitive approach
learns from the entire imbalanced dataset without a random selection of
negative samples. In sequence representation, site location, entropy features
and specific single nucleotide polymorphism (SNP) positions are taken as new
features, which improve the performs significantly. In the comparison with
existing predictors, our method achieves better correctness and robustness in
both independent tests and case studies. The results suggest that imbalance

learning is promising to improve the performance of m°A prediction.

The early diagnosis of lung cancer has been a challenging problem in
clinical practice for a long time. The identification of differentially expressed
genes as a disease marker is a promising solution. Chapter 5 presents
a novel approach to identify marker genes and define the boundary of
gene expression profile for human lung cancer. By calculating the kernel
maximum mean discrepancy, the proposed method evaluates the expression
difference between normal, normal adjacent to tumor (NAT) and tumor
samples. The expression level boundaries among different groups are defined
with the information entropy theory for marker genes. Compared with two
conventional methods t-test and fold change, the genes selected by MMD
values have better performance under all metrics in 10-fold cross-validation.

Furthermore, the GO and KEGG enrichment analysis validate the discovered

Xvi



Abstract

marker gene in function pathways. At last, we choose ten most meaningful
genes as lung cancer markers and calculate the expression profile boundaries.
The proposed method is more accurate than conventional DEA methods in
marker gene identification and provides a reliable method for defining the

gene expression level boundaries.
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Chapter 1
Introduction

This chapter presents the research background, questions, contributions, and
the structure of the thesis. In Section 1.1, the epigenetic modifications,
including DNA and RNA base methylations, gene expression biomarker, and
the application of data mining techniques in bioinformatics are introduced.
Then the research questions and contributions of the thesis are discussed
in Section 1.2 and Section 1.3, respectively. At last, the thesis structure is

described in Section 1.4.

1.1 Background

This thesis presents my research topic: data mining applications in epigenetic
modifications and gene expression profile biomarker. This section introduces
the background knowledge of epigenetic modifications, gene expression

biomarker, and data mining techniques in bioinformatics.

1.1.1 Epigenetic modification

Before the DNA was discovered as the molecule of genetic information,
scientists had noticed that the genes were partially active in different
organisms, despite that they shared the same genetic information (Kanwal
& Gupta 2012). Introduced by Conrad Waddington in the early 1940s,
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epigenetics was described as ”the branch of biology which studies the causal
interactions between genes and their products which bring the phenotype into
being.” (Waddington et al. 1939). In the original definition, epigenetics refers
to molecular mechanisms that modulate the expression of genetic information
into observable phenotype (Dupont, Armant & Brenner 2009). In many
cases, the epigenetic gene expressions change the heritable phenotype without
alterations in the primary DNA sequence (Esteller 2008). With the
development of genetics, the definition of genetics was redefined and generally
accepted as ”the study of changes in gene function that are mitotically and/or
meiotically heritable and that do not entail a change in the DNA sequence.”
(Morris et al. 2001)

Epigenetics today refers to changes that impact the gene activity and
expression, resulting from normal cell development or external environmental
factors(Portela & Esteller 2010). As a critical inherited regulation method,
epigenetics is required to be heritable in the progeny (Berger, Kouzarides,
Shiekhattar & Shilatifard 2009). Epigenetic modifications are generally
occurring in the DNA base, amino acids of histone proteins, nucleosome,
and various types of RNAs. On a molecular level, the most widely
studied epigenetic modifications can be categorized into the following groups:
DNA methylation, histone modifications, nucleosome positioning, non-coding
RNA, and message RNA methylation. In this thesis, the DNA methylation

and message RNA methylation site detection are discussed.

DNA methylation

The covalent DNA modifications can modulate the gene expression that
has been discovered by scientists since 1969 (Griffith & Mahler 1969).
The domain modifications in mammalian DNA are methylation of cytosine,
adenine, and guanine methylation (Hotchkiss 1948, Ratel, Ravanat, Berger
& Wion 2006, Das & Singal 2004). Although the cytosine methylation
mostly occurs in the context of CpG islands (Straussman, Nejman, Roberts,

Steinfeld, Blum, Benvenisty, Simon, Yakhini & Cedar 2009), recent researches

2
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find that cytosines in non-CpG sequences can also be methylated (Woodcock,
Crowther & Diver 1987, Ramsahoye, Biniszkiewicz, Lyko, Clark, Bird &
Jaenisch 2000). DNA methylation is catalyzed by a group of enzymes, named
DNA methyltransferases (DNMTs) (Rodriguez-Paredes & Esteller 2011),
known as DNMT1, DNMT1b, DNMT1o, NNMT1p, DNMT2, DNMT3A,
DNMT3b with isoforms and DNMT3L (Bestor, Laudano, Mattaliano &
Ingram 1988, Leonhardt, Page, Weier & Bestor 1992, Robertson 2002). In
the dynamic methylation process, the enzymes that demethylate DNA base
includes 5-methylcytosine glycosylase (Frémont, Siegmann, Gaulis, Matthies,
Hess & Jost 1997) and MBD2b (Bhattacharya, Ramchandani, Cervoni &
Szyf 1999), which removes the methylated group from cytosine. According to
the location where methylated group occurs in the DNA sequence, there are
many kinds of DNA base methylation, in which 5-Methylcytosine (5mC), N°-
methyladenine (6mA) and N%-methylcytosine (4mC) are the most common
types (Davis, Chao & Waldor 2013, Korlach & Turner 2012, Roberts, Vincze,
Posfai & Macelis 2015).

RNA methylation

In the central dogma, the genetic information flows from DNA to RNA and
then to histone protein. The reversible epigenetic modifications in DNA
(Suzuki & Bird 2008, Kohli & Zhang 2013, Jones 2012, Bhutani, Burns
& Blau 2011) and histone (Shi 2007, Klose, Kallin & Zhang 2006, Bird
2001) has been studied for decades. Although RNA has more than 100
chemical modifications, the function of most modifications are still uncertain
(Grosjean, Benne et al. 1998, Grosjean & Grosjean 2005, Machnicka,
Milanowska, Osman Oglou, Purta, Kurkowska, Olchowik, Januszewski,
Kalinowski, Dunin-Horkawicz, Rother et al. 2012, Motorin & Helm 2011).
The RNA modification was thought to be fixed and unalterable, and
not considered as an epigenetic modification for a long time. RNA N&-
methyladenosine (m®A) is the first discovered reversible RNA modifications

with functional proteins ‘writer’, ‘eraser’ and ‘reader’ in the past several years

3
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(Fu, Dominissini, Rechavi & He 2014, Jia, Fu, Zhao, Dai, Zheng, Yang, Yi,
Lindahl, Pan, Yang et al. 2011, Zheng, Dahl, Niu, Fedorcsak, Huang, Li, Vgb,
Shi, Wang, Song et al. 2013). m®A has been widely detected in message RNA
(mRNA) and long non-coding RNAs in higher eukaryotes (Krug, Morgan &
Shatkin 1976, Schibler, Kelley & Perry 1977). Another highly-regarded RNA
modification is 5-methylcytidine (m>C), which exists extensively in tRNA
and rRNA (Helm 2006, Squires & Preiss 2010). The recent evidence shows
that the m°C is dynamically modulated in the cellular response to stress
(Chan, Dyavaiah, DeMott, Taghizadeh, Dedon & Begley 2010, Schaefer,
Pollex, Hanna, Tuorto, Meusburger, Helm & Lyko 2010), and regulating
the translation rates (Chow, Lamichhane & Mahto 2007).

1.1.2 Gene expression biomarker
Biomarker

Biomarkers are features that can be objectively detected and evaluated as a
measurable indicator for biological, pathological, or therapeutic intervention
pharmacological responses (Group, Atkinson Jr, Colburn, DeGruttola,
DeMets, Downing, Hoth, Oates, Peck, Schooley et al. 2001). Generally,
biomarkers are biomolecules found in the blood, other body fluids, or tissues
of the human body. They are signs of normal or abnormal processes, or
signs of illness and disease (Capelozzi 2009, Marshall, Bowman, Yang, Fong
& Berg 2013, Vazquez, Koizumi, Henschke & Yankelevitz 2007). There are
many types of biomarkers, including proteins, such as enzymes or receptors,
nucleic acids, mRNA or other non-coding RNA, antibodies and peptide
sequences, etc. Other landmark changes, such as gene expression, proteome
and metabolome can also be used as biomarker (Rabinowits, Gergel-Taylor,
Day, Taylor & Kloecker 2009, Montani, Marzi, Dezi, Dama, Carletti, Bonizzi,
Bertolotti, Bellomi, Rampinelli, Maisonneuve et al. 2015, Nagrath, Sequist,
Maheswaran, Bell, Irimia, Ulkus, Smith, Kwak, Digumarthy, Muzikansky

et al. 2007, Sozzi, Boeri, Rossi, Verri, Suatoni, Bravi, Roz, Conte, Grassi,
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Sverzellati et al. 2014, Valenti, Huber, Filipazzi, Pilla, Sovena, Villa, Corbelli,
Fais, Parmiani & Rivoltini 2006).

There are many potential applications of biomarkers, and the widest
application at present is to assist the early diagnosis and prognosis of
diseases. Such markers include not only related biochemical indicators
but also genetic indicators, which can reflect potential conditions and the
development process of the disease. Furthermore, biomarkers can be used
to assess the severity of the disease, evaluate the efficacy of treatment and
detect side effects of drugs (Peters, Walters & Moldowan 2005). In the field of
new drug development, biomarkers can also reflect the effectiveness of drugs,
evaluating the pharmacological effects of the reaction of targeted drugs with
receptors or enzymes, and providing useful guidance in the clinical use of
treatment (Vargas & Harris 2016).

Genetic marker

Modern medical research has found that most diseases occur due to the
joint effect of genetic and environmental factors. Gene variation plays a
direct or indirect role in the occurrence of many diseases. At present,
it is noted that the presence of diseases, such as primary hypertension,
diabetes, mental illness, and tumors involves the mutation of multiple genes
(Cowley 2006, Flannick & Florez 2016, Smyth, Plagnol, Walker, Cooper,
Downes, Yang, Howson, Stevens, McManus, Wijmenga et al. 2008, Tarailo-
Graovac, Shyr, Ross, Horvath, Salvarinova, Ye, Zhang, Bhavsar, Lee,
Drégemoller et al. 2016, Jonsson, Stefansson, Steinberg, Jonsdottir, Jonsson,
Snaedal, Bjornsson, Huttenlocher, Levey, Lah et al. 2013). By detecting
the genetic markers related to these diseases, we can assess the risk of the
patient’s morbidity and intervene in the early stage, and delay or avoid the
occurrence of the disease. The presence of most diseases is accompanied or
directly caused by changes at the gene expression profiles. The changes often
start from the beginning of the disease, when the body may have no apparent

symptoms. It is difficult to diagnose the disease via conventional examination



Chapter 1. Introduction

methods. Therefore, early diagnosis and treatment of diseases can be
achieved by detecting changes of genetic markers. The cure rate of high-
risk diseases and the quality of patients’ life can be improved significantly.
In recent decades, the pharmacogenomics studies have discovered many
genetic variations related to drug transport, distribution, metabolism, or
drug targets (McCarthy & Hilfiker 2000, Isla, Sarries, Rosell, Alonso,
Domine, Taron, Lopez-Vivanco, Camps, Botia, Nunez et al. 2004). These
genetic variations may lead to changes in the activities of corresponding
drug metabolic enzymes, transporters, or drug-receptor proteins, causing
individual differences in drug response. Therefore, the identification of
related gene markers before the patient takes the drug can help explore a
reasonable method to optimize the dosing regimen according to the patient’s
genetic characteristics, maximize the drug’s efficacy, and minimize the
adverse reactions (Crews, Hicks, Pui, Relling & Evans 2012, Daly 2010, Ma
& Lu 2011). Besides, most patients with tumors face the risk of tumor
metastasis or recurrence after surgery and medication. For different patients,
the prognosis is related to the treatment plan and the patient’s genetic
background. Therefore, it would be possible to predict the prognosis
of patients and guide clinical advancement by detecting relevant genetic

markers.

1.1.3 Data mining in bioinformatics

In this thesis, two data mining techniques, including machine learning and
statistic analysis, are applied to discover knowledge in epigenetic modification
and gene expression profile. As powerful tools, data mining techniques have
been extensively employed in computational biology. This section is a brief

introduction of data mining technique and its applications in bioinformatics.

Data Mining

With the rapid increase of large, complex datasets, knowledge discovery in

information-rich data has been a big challenge in science, engineering, and
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business (Chakrabarti, Ester, Fayyad, Gehrke, Han, Morishita, Piatetsky-
Shapiro & Wang 2006). Data mining (also named Knowledge Discovery in
Database, KDD) (Fayyad, Piatetsky-Shapiro & Smyth 1996) is the process
of discovering potential significant information and knowledge from the
big quantitative, incomplete, noisy, fuzzy and random practical application
data, with information technologies such as database, artificial intelligence,
statistics, visualization, and parallel computing (Clifton 2010, Han, Pei &
Kamber 2011).

Generally, the data mining process has the following steps: (1)Problem
statement and hypothesis formulation; (2) Data collection and integration;
(3) Data prepossessing including outlier detection, scaling, encoding and
feature selection; (4) Knowledge mining based on appropriate data mining
model; (5) Model interpretation and knowledge representation (Kantardzic
2011, Han et al. 2011). The primary task of data mining includes: (1)
(Classification and regression, developing the predictive learning model to
class data items into predefined labels, or map data items to a prediction
variable.  (2) Clustering, categorizing data into a finite set of groups.
(3) Summarization, describing data with a compact representation. (4)
Dependency modeling, associate rules, and dependency patterns discovery
in data. (5) Deviation detection, analyzing a few extreme cases of analysis

to reveal the fundamental reason for the change.

Applications in bioinformatics

Bioinformatics is a research field that builds methods and software tools for
understanding biological data, especially large and complex data (Baxevanis,
Bader & Wishart 2020, Raza 2012). Some of the grand research area of
bioinformatics contains the image and signal processing in molecular biology,
sequencing and annotating genome in genetics, text mining in biological
literature, gene and protein expression and regulation, and biological system
modeling.

With the great progress in information technology, data mining has been
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applied in following key researches: (1) Semantic integration of heterogeneous
and distributed genetic databases (Sujansky 2001); (2) Protein structure
prediction (McGuffin, Bryson & Jones 2000, Baker & Sali 2001); (3) DNA
sequence similarity search and alignment (Madden 2013, Mount 2007, Noé
& Kucherov 2005); (4) Multiple sequence alignment (Edgar 2004, Chenna,
Sugawara, Koike, Lopez, Gibson, Higgins & Thompson 2003, Katoh &
Standley 2013); (5) Association analysis and pathway analysis (Luo, Peng,
Zhu, Dong, Amos & Xiong 2010, Torkamani, Topol & Schork 2008); (6)
Biological data visualization (Gémez, Garcia, Salazar, Villaveces, Gore,
Garcia, Martin, Launay, Alcantara, Del-Toro et al. 2013, Chen, Chen,
He & Xia 2018); (7) Biomedical text mining (Cohen & Hersh 2005,
Zweigenbaum, Demner-Fushman, Yu & Cohen 2007); (8) Gene micro-
array data analysis (Lock, Hermans, Pedotti, Brendolan, Schadt, Garren,
Langer-Gould, Strober, Cannella, Allard et al. 2002, Quackenbush 2006); (9)
Biomedical data mining based on privacy protection (Holzinger & Jurisica
2014, Jiang, Zhao, Wang, Malin, Wang, Ohno-Machado & Tang 2014).

1.2 Research questions

This thesis mainly focuses on two research topics: computational epigenetic
modification detection and disease genetic biomarker discovery. Under these
two topics, three research questions are raised to be solved, and the detailed

formulations are illustrated below in Q1 to Q3.

Q1: DNA N%-methylcytosine prediction

From the previous section, the N*-methylcytosine has a dynamic methylation
process regulated by enzymes, and the methylated group will change the
physical and chemical properties of the local sequence. Thus, nucleotides in
the flanking window around the 4mC site have specific sequence patterns,
which is the basis of computational detection. In order to identify whether

a cytosine site in the DNA sequence is N*-methylcytosine or not, a local
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sequence includes the flanking windows of cytosine is taken as the input of
algorithm. The DNA fragment sequence has fixed length and target cytosine
in the middle position, where nucleotides types include ‘A’, ‘G’, ‘T’, and ‘C’.

For such DNA sequence S and target C', the DNA 4mC prediction

problem can be expressed as the following formula:

1 if the C is N*-methylcytosine site
f(8,€) = (1.1)

0 else

where f(S,C) is the trained binary classifier to label the target cytosine as
positive (1, if the target cytosine is methylated) or negative (0, otherwise).
The binary classifier is trained with labeled sequences, where the inputs of
the algorithm are feature vectors of the sequence patterns, including local
and global characteristics, and labels are experimentally validated status
of the corresponding cytosine. From the above descriptions, the following
factors are essential in the problem: (1)Sequence feature extraction. How to
define the sequence patterns and convert the sequence into feature vectors
(Chen, Yang, Feng, Ding & Lin 2017, He, Jia & Zou 2019). (2)Feature
dimension reduction. Select the significant feature dimensions and build an
effective feature space (Wei, Luan, Nagai, Su & Zou 2019). (3)Classification
algorithm with high efficiency. The performance of the classifier is related
to the data characteristics, and a proper classifier is vital to achieving better
performance(Manavalan, Basith, Shin, Lee, Wei, Lee et al. 2019, Hasan,
Manavalan, Shoombuatong, Khatun & Kurata 2020).

Q2: mRNA NS-methyladenosine prediction

Like the DNA N%-methyladenosine prediction, the mRNA N°-methyladenosine
prediction is based on sequence patterns around m®A site. The mRNA
fragment sequence centered with adenosine is taken as an algorithm sample.
The nucleotides in mRNA including ‘A’, ‘G’, ‘C’, and ‘U’. Since the
motif is discovered for m®A as [G/A/C] [G/A] A" C [U/A/C] (where
A" stands for the m®A site) (Dominissini, Moshitch-Moshkovitz, Schwartz,
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Salmon-Divon, Ungar, Osenberg, Cesarkas, Jacob-Hirsch, Amariglio, Kupiec
et al. 2012, Meyer, Saletore, Zumbo, Elemento, Mason & Jaffrey 2012), the
adjacent nucleotides near target site in input mRNA sequence should be
conserved to the motif.

For a such mRNA sequence S and target A, the m®A prediction problem

can be expressed as the following formula:

1 if the A is N%-methyladenosine site

15, 4) = (1.2
0 else

Where f(S, A) is learned binary classifier to determine whether the target
adenosine is methylated or not, the inputs of the classifier are feature vectors
extracted from the mRNA sequence, and the labels are still divided into
positive(1) and negative(0). The main problems in m®A prediction question
are: (1)Valid sequence features (Chen, Feng, Ding, Lin & Chou 2015, Chen,
Tran, Liang, Lin & Zhang 2015). Besides the text features of the mRNA
sequence, some biological characteristics should be considered in the feature
space, such as adenosine location, single nucleotide polymorphism(SNP)
variants, and entropy information . (2)Efficient site identification in flanking
window. For biological features such as SNP feature, not all sites near m°A
make sense in the classification, and how to identify the efficient positions
is an important question. (3)Imbalance learning (Zhou, Zeng, Li, Zhang &
Cui 2016). As the number of non-m°A sites (adenosine site that conserves
to motif but is not methylated) is much larger than m°A sites in the
training data, the machine learning algorithm should cope with the imbalance

problem.

Q3: Identification of lung cancer gene markers

The gene markers identification is a knowledge discovery task based on
gene expression profiles produced by next-generation sequencing (NGS)
technology. In this question, there are two main steps: (1) Identify the

differential expressed gene. (2) Provide an expression level boundary for
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each marker gene. For a gene expression profiles matrix G = (g1, 92, .-, gn),

these two steps can be expressed as the following formula:

F(E) = {9'1,9'2, .--,g;n} (1.3)

where F'(F) is an analysis algorithm to select the gene subset, containing
differential expressed genes ¢'_1, ¢’ 2, ..., ¢_m. Then the gene expression

boundary of lung cancer is identified as:

lower boundary,; < g, < upper boundary;

<
lower boundarys < g, < upper boundariys

(1.4)

lower boundary,, < g;n < upper boundary,y,

Where lowerboundary and upperboundary are the expression profiles
boundary of the corresponding gene in lung cancer samples, the challenges for
these questions are (1) Gene differential expression analysis (DEA) algorithm.
Currently, the DEA methods are mainly based on the statistical model
under predefined distribution hypothesis, but it’s hard to determine the
statistical distribution of gene expression profiles in all situations (Soneson &
Delorenzi 2013, Seyednasrollah, Laiho & Elo 2013, Rapaport, Khanin, Liang,
Pirun, Krek, Zumbo, Mason, Socci & Betel 2013). (2) In cancer studies,
the control group is normally collected from the normal tissue adjacent to
tumors (NAT). However, recent research suggests that NAT tissue is not
strictly equal to healthy samples, indicating that true healthy tissue should
be taken into considerations (Aran, Camarda, Odegaard, Paik, Oskotsky,
Krings, Goga, Sirota & Butte 2017). (3) There should be a valid method for
the expression boundary estimation when the expression edge between two

tissue types is not clear.

11



Chapter 1. Introduction

1.3 Research contributions

To solve the above three research questions, we have proposed novel methods
described in Chapter 3 to Chapter 5. In each chapter, computational methods
are built and optimized based on the main problems of the research question.

The contributions of this thesis are summarized as follows (C1 to C3).

C1: Accurate DNA N%methylcytosine prediction

In Chapter 3, we propose a pre-computed method for accurate DNA N*-
methylcytosine prediction with novel sequence feature space and machine
learning algorithm with a feature selection scheme. The main contributions
are: (1) In this study, the sequence logos of training samples are firstly
analyzed, and the particular patterns of adjacent nucleotides are observed.
Along with the global features such as one-hit binary encode and sequential
nucleotide frequency, the sequence features focused on local characteristics.
Three corresponding features, such as k-nucleotide frequency, k-spectrum
nucleotide frequency, and PseDNC, are extracted into feature space. (2)
Unlike the existing predictors (He et al. 2019, Wei, Luan, Nagai, Su &
Zou 2019), which only applied an F-score based feature selection, a novel
embedding feature selection scheme is proposed. An XGBoost machine
is trained to calculate the feature dimension importance with information
entropy theory, more meaningful than F-score. Cross validations are
conducted to evaluate the selected feature subset. (3)According to state-
of-art researches, the SVM machine is efficient in predicting 4mC sites. The
trained model is assessed via not only independent test and 10-fold cross-
validation but also case studies from practical situations to avoid the model

over-fitting.

C2: Accurate mRNA N®%-methyladenosine prediction

Chapter 4 presents a computational method for accurate mRNA NG&-

methyladenosine prediction with novel sequence and biological features and
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an imbalance machine learning algorithm. The contribution of this work
is three folds: (1) Instead of extracting sequence text features only, we
introduce three novel m®A biological features, including location information,
sequence entropy information, and single nucleotide polymorphism (SNP)
variants. Together with the sequence features such as one-hit binary encode,
k-mer adjacent nucleotides frequency, and chemical property with density,
the three novel features make up an efficient feature space. (2) For the
SNP feature, we adopt the Fisher’s exact test and max-Relevance Min-
Redundancy algorithms to identify the significant SNP positions in m°®A
flanking windows. The identification of particular positions helps to reduce
the feature dimensions and improve the feature efficiency for classification.
(3) We learn a high-performance machine learning model based on a weighted
XGBoost classifier to cope with the highly imbalanced training data. Other
than the model trained with selecting negative samples and balanced training
data, our model is more meaningful for the practical situations of m°%A

prediction.

C3: Gene marker identification for lung cancer

In Chapter 3, we proposed a method for lung cancer gene marker identification
through kernel maximum mean discrepancy and information entropy. The
contributions of this part work include: (1) Inspired by transfer learning,
we propose to apply kernel maximum mean discrepancy(kernel MMD) to
conduct the gene differential expression analysis. The kernel MMD method
calculates an MMD score to evaluate the degree of differential expression,
and the genes with high degrees are regarded as the marker gene. (2) We
introduce the true normal tissue in lung cancer marker identification for
the first time. The experiment groups are divided into true normal, normal
adjacent to the tumor, and tumor tissues. The differential expressed genes are
identified between the three groups. (3) We present an information theory-
based method for gene expression boundary detection. The information

theory method can give a certain threshold for diagnosis when there is no
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distinct gene expression gap between normal and tumor tissues.

1.4 Thesis structure

This thesis is composed of six chapters. The structure of this thesis is shown
in Figure [I.1] and introduced briefly below:

Chapter 1 introduces the background knowledge of the research problems.
The research questions and contributions are also described. The thesis
structure is illustrated at the end of the chapter. Chapter 2 reviews the
related work about the studied research problems. The current research
progress of the mentioned research problems is included. Chapter 3
to Chapter 5 describes the proposed three novel methods for solving
the research questions, including accurate prediction of DNA 4mC sites,
imbalance learning for mRNA m°®A prediction, and lung cancer gene
marker identification. The details of method construction, evaluation, and
experiment are presented in these chapters. Chapter 6 provides a conclusion

of this thesis, and future work is also discussed.
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Figure 1.1: Thesis structure. It consists of the following four parts:
introduction, related work, my work, and conclusions and future work. Short

introduction of each part is shown in the right side.
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Chapter 2

Related work and literature

review

This chapter reviews the related work and literature of the research topics
in this thesis. In Section 2.1, the development process of DNA N*
methylcytosine is described. Then, the wet-lab and computational methods
of the NS-methylcytosine identification are introduced. In Section 2.3, the
published lung cancer biomarkers and gene differential expression analysis

methods are presented. Lastly, a brief summary is discussed in Section 2.4.

2.1 DNA N“*methylcytosine prediction

As an essential epigenetic modification, DNA base methylation expands
the DNA content and plays crucial roles in regulating various cellular
processes (Rathi, Maurer & Summerer 2018, Stoiber, Quick, Egan, Lee,
Celniker, Neely, Loman, Pennacchio & Brown 2016, Chen, Zhao & He 2016).
According to the location where methylated group occurs in the DNA
sequence, there are many kinds of DNA base methylation, in which N°-
Methylcytosine (5mC), NS-methyladenine (6mA) and N%-methylcytosine
(4mC) are the most common types (Davis et al. 2013, Korlach & Turner
2012, Roberts et al. 2015). 5mC occurs at the Cb5-position of cytosine
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and is the dominant methylation type in eukaryotic genomes, involving
in differentiation, gene expression, genomic imprinting, preservation of
chromosome stability, aging, suppression of repetitive element, and X
chromosome inactivation (Robertson 2005, Jin, Li & Robertson 2011, Jones
2012, Tahiliani, Koh, Shen, Pastor, Bandukwala, Brudno, Agarwal, Iyer,
Liu, Aravind et al. 2009). In prokaryotes, 6mA and 4mC constitute the
majority of DNA base methylations (Heyn & Esteller 2015). 6mA occurs at
the N6-position of adenine and is a marker in gene regulation, development,
DNA replication, repair, and expression (Fu, Luo, Chen, Deng, Yu, Han,
Hao, Liu, Lu, Doré et al. 2015, Greer, Blanco, Gu, Sendinc, Liu, Aristizabal-
Corrales, Hsu, Aravind, He & Shi 2015, Zhang, Huang, Liu, Cheng, Liu,
Zhang, Yin, Zhang, Zhang, Liu et al. 2015). 4mC exists at the N4-amino
group of cytosine and participates in the restriction-modification system that
provides a bacterial immune response against occupying DNA, DNA repair,
expression, and replication (Cheng 1995, Modrich 1991, Messer & Noyer-
Weidner 1988). Compared to 5mC and 6mA, the further biological function
of 4mC is less studied for the lack of sufficient detection methods.

The precious location of DNA base methylation was a hard problem
in the past for a long time. It is not affordable to locate the DNA
5mC on a large scale until the whole-genome bisulfite sequence, and
the next generation sequence techniques were developed (Cokus, Feng,
Zhang, Chen, Merriman, Haudenschild, Pradhan, Nelson, Pellegrini &
Jacobsen 2008, Lister, O’Malley, Tonti-Filippini, Gregory, Berry, Millar &
Ecker 2008). The detection of 6mA and 4mC in whole-genome became
available after the Single-molecule real-time sequencing (SMRT) technology
was introduced (Davis et al. 2013, Flusberg, Webster, Lee, Travers, Olivares,
Clark, Korlach & Turner 2010). Then a next-generation sequence method
called 4mC-Tet-assisted-bisulphite-sequencing and another method with
engineered transcription-activator like effectors were developed for 4mC
identification (Yu, Ji, Neumann, Chung, Groom, Westpheling, He &

Schmitz 2015). However, the experimental methods were of high cost and
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cannot identify 4mC on a large scale. Recently, the rapid development of
machine learning provides a promising computational approach to address
classification problems in bioinformatics, and researchers have explored using
computational methods to identify 4mC sites in the DNA sequence.

Based on data collected from public SMRT sequence experiments, Ye
built the first DNA 6mA and 4mC database named MethSMRT for 156
species (Ye, Luan, Chen, Liu, Xiao & Xie 2016). In (Chen, Yang, Feng,
Ding & Lin 2017), Chen’s team firstly constructed high-quality DNA 4mC
benchmark datasets for six species and proposed an SVM based prediction
model called iDNA4mC with the nucleotide chemical property and sequential
nucleotide frequency features. Based on the benchmark datasets, 4mCPred
and 4mcPred-SVM were built to improve the site prediction performance (He
et al. 2019, Wei, Luan, Nagai, Su & Zou 2019). In 4mCPred, the authors
used two new features PSTNP and EIIP with a simple feature selection.
Wei‘s team built 4mcPred-SVM with four kinds of sequence features and
a two-step feature optimization. These two predictors improved the 4mC
site prediction by introducing new sequence features and feature selection.
Recently, some other predictors have been developed to identified 4mC site
in the DNA sequence for Mouse (Manavalan, Basith, Shin, Lee, Wei, Lee
et al. 2019, Hasan et al. 2020), Escherichia coli (Lv, Wang, Ding, Zhong &
Xu 2020), Rosaceae (Hasan, Manavalan, Khatun & Kurata 2019) and so on
(Manavalan, Basith, Shin, Wei & Lee 2019, Wei, Su, Luan, Liao, Manavalan,
Zou & Shi 2019).

Although these methods made some progress, the state-of-the-art methods
have limited performance because of the lack of effective sequence features

and the ad hoc choice of learning algorithms to cope with this problem.

2.2 mRNA N®%methyladenosine prediction

Among more than 140 kinds of post-transcription modifications (PTMs)
(Machnicka et al. 2012, Motorin & Helm 2011), NS-methyladenosine (m°A),
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the methylation occurs at 6th nitrogen of adenosine, is one of the most
abundant modifications (Wu, Jiang, Wang & Wang 2016, Fu et al. 2014).
This methylation has been widely found in species such as Arabidopsis
thaliana, Saccharomyces cerevisiae, bacteria, virus, human, and mouse (Wan,
Tang, Zhang, Xie, Zhu, Wang & Lang 2015, Chen, Tran, Liang, Lin &
Zhang 2015, Deng, Chen, Luo, Weng, Ji, Zhou & He 2015, Huang, Xiong,
Yang, Liu, Yuan & Feng 2015). More exactly, these methylation events
have occurred in the mRNAs at the 3" untranslated regions (UTRs) close
to the stop codon, following a conserved sequence motif DRACH, [G/A/C]
[G/A] A" C [U/A/C], (where A" stands for the m°A site) (Dominissini
et al. 2012, Meyer et al. 2012). The dynamic m®A methylation involves many
proteins such as METTL3, METTL14, WTAP, ALKBH5 and YTHDF2 (Wu
et al. 2016, Wang, Li, Toth, Petroski, Zhang & Zhao 2014, Liu, Yue, Han,
Wang, Fu, Zhang, Jia, Yu, Lu, Deng et al. 2014, Ping, Sun, Wang, Xiao,
Yang, Wang, Adhikari, Shi, Lv, Chen et al. 2014).

The functions of m°A in biological processes have been significantly
redefined with the intensive investigation of this dynamic and reversible
methylation in mRNAs recently. It is reported that m®A disruption can
affect translation efficiency (Wang, Zhao, Roundtree, Lu, Han, Ma, Weng,
Chen, Shi & He 2015), cell viability (Bokar 2005) and cell development
(Wang et al. 2014). The level changes of m®A in mRNA can lead to
abnormality of RNA export, protein translation, or RNA editing, causing
cancer, obesity, and other human diseases (Shen, Huang, Huang, Xiong,
Yang, Wu, Jia, Chen, Feng, Yuan et al. 2015, Yang, Huang, Huang,
Shen, Xiong, Yuan, Qin, Zhang, Feng, Yuan et al. 2016, Choi, Ieong,
Demirci, Chen, Petrov, Prabhakar, O’leary, Dominissini, Rechavi, Soltis
et al. 2016, Tsai, Courtney & Cullen 2018). For example, strong relationships
have been observed between m®A and HIV-1 (Lichinchi, Gao, Saletore,
Gonzalez, Bansal, Wang, Mason & Rana 2016, Riquelme Barrios, Pereira-
Montecinos, Valiente-Echeverria & Soto-Rifo 2018), Zika virus infection
(Lichinchi, Zhao, Wu, Lu, Qin, He & Rana 2016) and breast cancer stem cell
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phenotype (Zhang, Samanta, Lu, Bullen, Zhang, Chen, He & Semenza 2016).
The identification of m°®A sites is crucial for understanding the disease

mechanisms and identifying novel medicine targets.

Experimental approaches including two-dimensional thin-layer chromato-
graphy (Keith 1995), high performance liquid chromatography (Zheng
et al. 2013), and high-throughput methods (e.g., m%A-seq (Dominissini
et al. 2012) and MeRIP-Seq (Meyer et al. 2012)) have been applied to
identify mSA sites in mRNAs. However, they can only detect mSA-
containing transcript fragments instead of identifying the exact methylated
adenines (Liu, Flores, Meng, Zhang, Zhao, Rao, Chen & Huang 2014).
Based on the single-nucleotide resolution m®A maps in mRNAs, researchers
have explored computational methods with sequence features and machine
learning algorithms to make mOSA sites prediction. For instance, iRNA-
Methyl (Chen, Feng, Ding, Lin & Chou 2015), mSApred (Chen, Tran,
Liang, Lin & Zhang 2015) and RAM-ESVM (Chen, Xing & Zou 2017)
are predictors aiming at yeast m®A site prediction (Schwartz, Agarwala,
Mumbach, Jovanovic, Mertins, Shishkin, Tabach, Mikkelsen, Satija, Ruvkun
et al. 2013); methods SRAMP (Zhou et al. 2016), Methy-RNA (Chen, Tang
& Lin 2017) and RAM-NPPS (Xing, Su, Guo & Wei 2017) are built on human
and mouse m°A maps (Ke, Alemu, Mertens, Gantman, Fak, Mele, Haripal,
Zucker-Scharff, Moore, Park et al. 2015, Linder, Grozhik, Olarerin-George,
Meydan, Mason & Jaffrey 2015). There are also some predictors developed
for Arabidopsis thaliana (Xiang, Yan, Liu, Zhang & Sun 2016, Chen, Feng,
Ding & Lin 2016, Wang & Yan 2018). Recently, several new methods haven
been developed for RNA m°A site prediction with machine learning (Liu,
Lei, Meng & Wei 2020, Chen, Wei, Zhang, Wu, Rong, Lu, Su, de Magalhaes,
Rigden & Meng 2019, Qiang, Chen, Ye, Su & Wei 2018), deep learning
(Huang, He, Chen, Chen & Li 2018, Zhang & Hamada 2018) and ensemble
learning algorithm (Liu, Lei, Fang, Tang, Meng & Wei 2020). However,
there are two main drawbacks to these methods. The first is the inadequate

learning of the imbalanced m°A samples, which are much less than the non-
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mSA samples by their balanced learning approaches. Second, the features
used by these methods are not outstanding in representing m®A sequence

characteristics.

2.3 Lung cancer gene markers identification

Small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC)
are two main types of lung cancer, comprising the majority of clinic cases
(Schnabel & Junker 2015). As the most common cancer, lung cancer is the
leading cause of cancer-related deaths all over the world (Parkin 2001, Minna,
Roth & Gazdar 2002). However, most lung cancer cases were diagnosed in a
very late stage when symptoms like coughing, coughing up blood, shortness
of breath, and chest pains appeared. Many early-diagnosed lung cancer
cases were detected by accident (Minna et al. 2002, Jemal, Siegel, Ward,
Murray, Xu, Smigal & Thun 2006). In the clinic practice, the most widely
used examinations for lung cancer are chest radiography and computed
tomography (CT), but these two methods require visible and irreversible
histological variants in human lung, resulting in rather low sensitivity in
the early stage (Fontana, Sanderson, Taylor, Woolner, Miller, Muhm &
Uhlenhopp 1984, Frost, Ball Jr, Levin, Tockman, Baker, Carter, Eggleston,
Erozan, Gupta, Khouri et al. 1984, Hussain, Khatri, Casali, Batchelor &
West 2014). Therefore, it is a crucial issue to find more timely and accurate
approaches for lung cancer early-stage diagnosis.

Due to the progress in molecular biology, some molecules which play
vital roles in lung cancer development are possible to diagnose cancer and
distinguish the specific cancer sub-types (Capelozzi 2009, Marshall et al.
2013, Vazquez et al. 2007). Researchers have explored to identify efficient
biomarkers from these molecules as the indicator of the pathogenic process to
improve the diagnosis sensitivity (Jantus-Lewintre, Us6, Sanmartin & Camps
2012). These explorations are mainly focused on genetic mutations, DNA

methylation profile, miRNA synthesis profile, and especially blood proteins
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(Rabinowits et al. 2009, Mitas, Hoover, Silvestri, Reed, Green, Turrisi,
Sherman, Mikhitarian, Cole, Block et al. 2003, Andre, Schartz, Movassagh,
Flament, Pautier, Morice, Pomel, Lhomme, Escudier, Le Chevalier et al.
2002, Montani et al. 2015, Nagrath et al. 2007, Sozzi et al. 2014, Sozzi,
Conte, Leon, Cirincione, Roz, Ratcliffe, Roz, Cirenei, Bellomi, Pelosi
et al. 2003, Valenti et al. 2006). Till now, panels of protein markers have
been identified and intensively used in clinic applications. For example, the
combinations of CEACAM, CYFRA 21-1, ProGRP, CA125, NSE (neuron-
specific enolase) and NY-ESO (cancer-testis antigen) are popular lung cancer
diagnosis markers (Doseeva, Colpitts, Gao, Woodcock & Knezevic 2015,
Goetsch 2011, Mizuguchi, Nishiyama, Iwata, Nishida, Izumi, Tsukioka,
Inoue, Uenishi, Wakasa & Suehiro 2007, Pujol, Grenier, Daures, Daver,
Pujol & Michel 1993, Okada, Nishio, Sakamoto, Uchino, Yuki, Nakagawa &
Tsubota 2004). Recently, researchers also discovered that $-chain of human
haptoglobin (Kang, Sung, Ahn, Park, Lee, Park & Cho 2011), SAA (serum
amyloid A) (Sung & Cho 2008), APOA1 (apolipoprotein A-1) (Maciel,
Junqueira, Paschoal, Kawamura, Duarte, Carvalho & Domont 2005) and
some other proteins (Indovina, Marcelli, Maranta & Tarro 2011) may be
potential biomarkers. Despite the advances in protein marker discovery, some
disadvantages of protein markers are still existing, like genetic heterogeneity
of tumors, poor reproducibility of laboratory tests, and low concentration
of the proteins (Zamay, Zamay, Kolovskaya, Zukov, Petrova, Gargaun,
Berezovski & Kichkailo 2017, Sozzi et al. 2003). In recent years the next-
generation sequence technologies have promoted the study of disease-related
genomes. Projects like The Cancer Genome Atlas (TCGA) (Tomczak,
Czerwiniska & Wiznerowicz 2015) and the Genotype-Tissue Expression
(GTEx) (Lonsdale, Thomas, Salvatore, Phillips, Lo, Shad, Hasz, Walters,
Garcia, Young et al. 2013) have collected a large number of sequencing
experiments and provided tissue-specific gene expression data in public. As
some genes have distinct expression levels between normal and tumor tissues

for the reason of disease development, they are promising to diagnose lung
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cancer more timely and accurately.

During the past years, gene differential expression analysis (DEA) has
been extensively applied in the pre-process of high-throughput profiling data
collected from micro-arrays (Wang, Gerstein & Snyder 2009, Marioni, Mason,
Mane, Stephens & Gilad 2008, Bullard, Purdom, Hansen & Dudoit 2010).
Based on statistical models, researchers developed tools to identify genes
that had distinct expression levels between different experimental groups.
Compared with the micro-array data, the RNA-seq raw data comes with
the unique feature of discrete reads, which should be analyzed under an
appropriate statistical hypothesis (Soneson & Delorenzi 2013). According
to the statistical hypothesis, the existing RNA-seq analysis models can
be categorized into the Poisson model (Kvam, Liu & Si 2012, Bullard
et al. 2010), negative binomial model, beta-binomial model (Robinson,
McCarthy & Smyth 2010, Anders & Huber 2010), and Bayesian model
(Hardcastle & Kelly 2010, Seyednasrollah et al. 2013, Rapaport et al. 2013).
These models can tell whether the gene expression levels are the same
between experiment groups and calculate a confidence coefficient scores (also
named p-value) suggesting the magnitude of expression difference. However,
the most existing gene differential expression analysis (DEA) methods have
two main drawbacks: First, these methods are based on fixed statistical
hypotheses and not always effective; Second, these methods can not identify
a certain expression level boundary when there is no obvious expression level

gap between control and experiment groups.

2.4 Summary

This chapter reviews the state-of-art researches for the research problems,
including DNA N“-methylcytosine prediction, mRNA NS-methylcytosine
prediction, and lung cancer gene marker identification. The development

of these problems and the drawbacks of the existing methods are introduced.

Generally, the computational methods have been explored to reduce
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the wet-lab experiment cost, and the state-of-art methods cannot achieve
satisfactory performance. There are still problems in the existing researches.
For the epigenetic base modification detection problems, the most common
computational technique is machine learning, where the problem is defined as
binary classification problems for machine learning algorithms (Chen, Yang,
Feng, Ding & Lin 2017, Chen, Feng, Ding, Lin & Chou 2015). The limitations
of these methods mainly lie in the lack of meaningful feature representation
and efficient machine learning schemes. Besides, the key problems of gene
marker identification include the significant general statistic DEA theory and

gene expression boundary identification approach.

24



Chapter 3

Accurate prediction of DNA
N4-methylcytosine sites via
boost-learning various types of

sequence features

3.1 Background

As mentioned in Section 2.1, the core idea of the previous DNA N*-
methylcytosine prediction method is to transform 4mC-contained DNA
sequences into various features as the input of the machine learning
algorithms. However, these features are not adequate to make the prediction
methods to achieve excellent performance. Through the analysis of the
sequence logos, we observe that the adjacent nucleotides’ characteristics
are potentially essential. We extract the contiguous nucleotides sequence
characteristics like k-nucleotide frequency, k-spectrum nucleotide pair frequency,
and PseDNC as features to describe the sequences. Besides, two global
sequence features, one-hot binary, and sequential nucleotide frequency are
also merged into our feature space. As global features have the complete

information of DNA sequence and the local features can underline specific
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sequence patterns, the combined feature space is highly expected to improve
the prediction performance.

Since feature selection can reduce the feature space dimension and the
modeling complexities (Wei & Billings 2006), two of the existing 4mC
prediction methods 4mCPred and 4mCPred SVM both employed a feature
selection scheme based on the F-score and sequential forward search (SFS)
strategy (He et al. 2019, Wei, Luan, Nagai, Su & Zou 2019). Although the F-
score can evaluate the feature importance according to the relevance between
the feature and label, the performance of the selected feature subset was
not good enough. In this paper, we propose an embedded feature selection
scheme, in which features are ranked with the feature importance scores
derived by the XGBoost classifier (Chen & Guestrin 2016) training process.
Supported by information entropy theory, the feature importance here is
more meaningful than F-score. Then lower-ranked features are removed one
by one, each round with a cross-validation assessment on the performance of

the selected feature subset.
DNA sequence
OHB SNF KNF KSNPF PseDNC
(164D) (41D) (20D) (48D) (19D)

Feature Encoding

e

XGBOOST Machine
Importance Score Ranking :F1>F2>F3>.....>F292

SVM Cross-validations
Selected Feature Subset:[F1’, F2’, F3/, ..., Fn’]

4mC Predictor

Figure 3.1: Framework of proposed model construction
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The flowchart of our approach is shown in Figure .1, where the new
sequence feature space and feature selection scheme is depicted for DNA
4mC site prediction. First, the DNA sequence is encoded into five kinds of
features, a total of 292 dimensions. Second, an XGBoost machine is trained,
and the feature importance scores from the training are used to rank all the
features. Last, an SVM-based prediction model is built, and the parameters
are optimized with 10-fold cross-validation.

In the results section, we firstly analyze the feature importance in
our feature space and show that feature selection improves the model
performance significantly in the independent test. Besides, we compare the
proposed method with the three state-of-art methods, iDNA4mC, 4mCPred,
and 4mCPred_SVM in independent test and 10-fold cross-validation on
benchmark datasets, and the proposed method can achieve much better
performance. Two detailed case studies for 4mC site prediction on the dlk-1
and DSCAM genes partly prove the effectiveness of our approach in practical

situations.

3.2 Materials and methods

3.2.1 Benchmark datasets

From the DNA 4mC database MethSMRT (Ye et al. 2016), Chen and
his team constructed the benchmark databases containing Caenorhabditis
elegans (C.elegans), Droso-phila melanogaster (D.melanogaster), Arabidopsis
thaliana (A.thaliana), Escherichia coli (E.coli), Geoalkalibacter subterraneus
(G.subterraneus) and Geobacter pickeringii (G.pickeringii) (Chen, Yang,
Feng, Ding & Lin 2017). In the benchmark datasets, the 41-bit 4mC-centred
DNA sequences were obtained from MethSMRT with a Modification QV
threshold of 30. The CD-HIT software (Fu, Niu, Zhu, Wu & Li 2012)
was used to remove the redundant positive samples. The same number of
negative samples were selected randomly to construct a balanced dataset.

The negative samples were also 41-bit cytosine-centered DNA sequences and

27



Chapter 3. Accurate prediction of DNA N*-methylcytosine sites via
boost-learning various types of sequence features

were not detected by SMRT. To compare with the existing predictors, we
use the same division of the datasets for independent tests. The summary of
benchmark datasets is listed in Table [3.1]

Table 3.1: Summary of six benchmark datasets

Species Positive Sample Negative Sample Total
C'.elegans 1554 1554 3108
D.melanogaster 1769 1769 3538
A.thaliana 1978 1978 3956
E.coli 388 388 776

G.subterraneus 906 906 1812
G.pickeringu 569 569 1138

3.2.2 Feature space construction

The sequence logos of all the six species are plotted using the web tool ‘two
sample logos’ (Crooks, Hon, Chandonia & Brenner 2004) to visualize the
difference between the positive and negative sequences. See Figure [3.2
The sequence characteristics are distinct among the six species, especially
positions near the 4mC sites that exhibit different patterns in the positive and
negative samples. Also, nucleotides not in the near flanking window around
4mC show the difference in different labels. Thus an expanded feature space
combining global and local patterns is good to construct accurate models for
all the species.

Among the existing methods, iDNA4mC only use nucleotide chemical
property and frequency feature, which cannot extract the local adjacent
nucleotide patterns; in 4mCPred and 4mCPred_SVM, the features mainly
focus on the trinucleotide or dinucleotide nucleotide patterns, ignoring the
spectrum nucleotide patterns. In this study, the feature space covers five
types of features, one-hot 4-bit binary feature (OHB), sequential nucleotide
frequency (SNF), k-nucleotide frequency (KNF), k-spectrum nucleotide pair
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frequency (KSNPF) and PseDNC. The OHB and SNF feature possess
the information of the whole sequence and represent the global sequential
properties, while KNF, KSNPF, and PseDNC features capture the local

sequence patterns.

TC‘T S

(e) G.subterraneus (f) G.pickeringii

Figure 3.2: Sequence logos for DNA samples in the benchmark

datasets

One-hot Binary Feature

The one-hot binary feature is the most widely used sequence representation
feature. It converts each of the nucleotides in the DNA sequence into a 4-bit
vector, which contains only one ‘1’. The length of the OHB feature is related
to the number of nucleotide types and length of the sequence. Since the
DNA sample sequence here is 41-bit and has four types of nucleotide, the
one-hot binary feature is 164 bits. The encoding rules in this study are as
follows: ‘A’- (1,0,0,0), ‘G- (0,1,0,0), “T’- (0,0,1,0), ‘C’- (0,0,0,1). From the
rule, it is obvious that the OHB feature is sparser than 2-bit or 3-bit binary
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features. The one-hot binary feature makes it more reasonable to calculate
the importance sore for each dimension in feature space and to discover local

motifs.

Sequential Nucleotide Frequency

The sequential nucleotide frequency, also known as nucleotide density, is
the frequency that the corresponding nucleotide occurs before the current
position. SNF is commonly used together with the binary encoding feature as
a global density feature. For an n-bit long sequence, SNF calculates n values
for each position in the sequence and produces an n-dimensional feature that
starts with ‘1’. The SNF feature d; is defined as:

1 ¢ ]. Sj = S;
= g7 20 F(5) S (s3) = {0 o (3.1)

where S; denotes the length of sequence before the current position ¢ and s;
is the nucleotide at position 7. For example, a sequence like ‘AACGTACT’
can be converted into the SNF feature vector (1, 0.5, 0.33, 0.25, 0.2, 0.5,
0.28, 0.25).

k-Nucleotide Frequency

The k-nucleotide (k-mer) frequency is a classic concept in DNA sequence
encoding. KNF feature is the frequency that adjacent k nucleotides occur in
the whole sequence. The length of the KNF feature vector is 4%, determined
by the parameter k. The calculation of KNF is as below:

C(ning...ng)
S—k+1
where nyns...n) donates the adjacent k nucleotides and n; € (A, C, G, T). F

F(ning..ng) = (3.2)

and C' is the feature value and total count of the adjacent nucleotides, while
S is the length of sequence. When k = 1, the KNF is a vector like (Fla, F¢,
Fg, Fr); when k =2, the KNF of a sequence is like (Faa, Fac, Fag, Far,
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Fea, Fee, Fea, For, Fea, Foo, Faa, For, Fra, Fre, Fre, Frr) with a

dimension of 42 = 16.

k-Spectrum Nucleotide Pair Frequency

The KSNPF feature depicts the sequence context by calculating the frequency
of k-spaced nucleotide pairs (e.g., AXXT is a two-spaced nucleotide pair, and
CXXXG is a three-spaced nucleotide pair). Like the adjacent nucleotides pair
above, the feature dimension of the KSNPF is 16 for each k. The calculation
of this feature is as follows:

C(anXng)
S—k—-1

F(mX.. Xny) = (3.3)

where n; X...Xnsy donates the k-spaced nucleotides pair and n; € (A4, C, G,
T).

PseDNC

As an essential sequence feature, PseDNC combines global and local
structural properties and has been widely used in sequence site prediction

problems (Chen, Feng, Lin & Chou 2013). For a DNA sequence, the Pse DNC

feature is a vector:

Fpsepne = [di,di, ...digdis...digsa]” (3.4)
where,
d.. = 21121 fi-iﬁ;z;:l 0; (1 S k S 16) (3 5)
" w16 (16 < k < 16+ \) '

Zzlgl Jitw Z?:l 0;
where f; denotes the normalized frequency of two adjacent nucleotide pairs;
w is the weight factor, and 6 is the correlation factor of j-tier, representing

the correlation of all j-tier from the sequence. The definition of @ is:

L—j—1

=1

1
VI
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where © is the correlation function and given by:

n

Oiss = - O [PuRiRiss) = Pu By (3.7

u=1

where p is the length of sequence; P,(R;R;;1) is the numerical value of the
u-th DNA local property for the adjacent nucleotide pair R;R;.1 at position
i. In this study, PseDNC feature is computed by a python package ‘repDNA’
(Liu, Liu, Fang, Wang & Chou 2015) and the A value is default to 3. The
names of 38 DNA local properties utilized in the definitions here are detailed

in the supplementary Table S1 of Additional File 1.

3.2.3 Feature selection scheme

Feature selection can reduce the dimension of feature space and speed up the
model training. A lot of feature selection strategies have been employed in
machine learning (Li, Cheng, Wang, Morstatter, Trevino, Tang & Liu 2017).
In particular, a filter feature selection scheme has been used to improve the
prediction performance. The filter feature selection scheme has two steps:
first, F-score is calculated for each dimension in feature space according to
the relevance between feature and label; second, a selection strategy called
SE'S is adopted to ascertain the feature subset. In this study, we proposed an
embedded feature selection method also with two steps. However, we rank
features with importance scores produced from the XGBoost training process
(Chen & Guestrin 2016) and select the top features with cross-validations.
In our method, XGBoost is the predefined classifier to analyze the feature
importance. XGBoost has been proven to be an efficient tool in data
science. In the training process, the XGBoost classifier calculates the feature
importance score for each dimension based on the dimension location and the
split efficiency in the boosting tree. In this study, XGBoost is implemented
with a python package ‘xgboost’ of vision 0.90. The feature importance scores
are obtained through the function ‘get_score’. According to the calculation

method, the feature importance score has 5 types: ‘weight’, 'gain’, 'cover’,
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"total_weight', 'total_gain’ and here we use the default ‘weight’ importance
score.

With the importance scores derived by the XGBoost classifier, feature
dimensions are ranked from the highest to the lowest. Then the lower-ranked
features are removed from the feature space one by one, and the feature subset
performance is evaluated by 10-fold cross-validation with a support vector
machine. The feature subset with the best performance is taken as the final

feature space for 4mC prediction.

3.2.4 Support vector machine

Support vector machine (SVM) is a popular machine learning classifier
and has been proven to be more efficient than the other algorithms for
DNA 4mC prediction in the state-of-the-art researches (Wei, Luan, Nagai,
Su & Zou 2019). In this study, SVM machine is implemented with
the python package ’scikit — learn(vision0.22)" (Pedregosa, Varoquaux,
Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg
et al. 2011). The kernel function of the SVM prediction model is set as
a radial basis kernel function (RBF). The hyperparameter C and v are
optimized by a grid search with cross-validations and the search ranges are
listed below:

{25 <C <20 step=2 (3.8)

2710 <y <22 step =271

With the output of the probability scores, the ROV curve can be plotted.
The threshold of probability score is set as 0.5 to obtain the predicted label.

3.2.5 Performance evaluation metrics

To compare with the existing predictors, the evaluation metrics in this
study are consistent with the state-of-the-art methods, including Sensitivity
(Sn), Specificity (Sp), Accuracy (ACC) and Matthews correlation coefficient
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(MCC). The definitions of these four metrics are as follows:

Sp = —LN__ % 100

TN+FP
(3.9)
TP4LTN
ACC = TP+FN—-"1_-TN+FP < 100
MCC — TPXTN—FPxFN

\ \/(TP+FN)(TP+FP)(TN+FN)(TN+FP)

Sn shows the model capability of identifying positive samples, while Sp
tells the capacity of classifying negative samples; ACC is the prediction
accuracy of all samples; MCC evaluates the overall performance of a
predictor. In this study, the receiver operating characteristic (ROC) curve
is also used to analyze model performance. The ROC curve is plotted in a
coordinate graph where the x-axis is the false positive rate (1-Sp) and the y-
axis is the true positive rate (Sn). The area under the curve(AUC) evaluates

the classification performance, and larger AUC means better performance.

3.3 Results

This section reports the feature importance scores obtained from the
XGBoost machine and analyzes the influence of the feature selection on
prediction performance. Then three state-of-the-art predictors are compared
with the proposed method in the independent test and 10-fold cross-
validation on benchmark datasets. At last, we present results from two case
studies which were conducted to identify the 4mC sites in the C.elegans and

D.melanogaster genes.

3.3.1 Feature importance analysis

As stated, five types of sequence features are created to constitute a 292-

dimensional feature space. Among the 292 dimensions, OHB is from D1 to
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D164; SNF is from D165 to D205; KNF is from D206 to 225; KSNPF is from
D226 to 273 and PseDNC is from D274 to D292. The feature importance
scores are obtained from the training process of the XGBoost machine.
The importance score distributions for all the datasets are illustrated in
Figure|3.3] Top 30 feature dimensions are reported in Table S2 of Additional
File 1, and feature importance scores of all the feature dimensions are in
Additional File 2.
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Figure 3.3: Sequence feature importance distribution

It is understood that each feature dimension has distinct importance
scores in different species. OHB and PseDNC features have relatively
high average scores in all species. In particular, OHB features have the
highest average score in C.elegans, D.melanogaster, and A.thaliana. KSNPF
feature not only gets a high importance score in A.thaliana, E.coli, and
G.subterraneus like KNF features but also has the highest average score in
G.pickeringii. SNF feature just stands out in E.coli. The features’ importance
score ranges from 0 to 50, and some feature dimensions’ scores are such low
that they are less important in the classification and may have noise effects
on model performance. Thus, the feature selection before the training is

potentially useful to improve model accuracy.
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3.3.2 Impact of feature selection on classification

We first evaluate the model performance via the independent test without
feature selection before model training. Then the independent test is carried
out with feature selection, where the benchmark datasets divisions and SVM
parameters are kept the same. Table[3.2]and Figure[3.4]show the independent

test performance before and after feature selection.

Table 3.2: The independent test performanc before and after feature
selection(Sn, Sp and ACC:%)
Datasets Selection ~ Sn Sp  ACC MCC
C.elegans before  82.69 75.00 78.85 0.58
after 94.23 78.85 86.53 0.74
D.melanogaster  before  74.57 77.12 75.85 0.52
after 84.74 86.44 85.59 0.71

A thaliana before 82.57 76.51 79.54 0.59
after R0.30 &83.33 81.81 0.64
E.coli before 92.30 69.23 80.76 0.63

after 88.46 88.46 88.46 0.77
G.subterraneus  before  83.33 75.00 79.17 0.59
after 91.67 81.67 86.67 0.74
G.pickeringii before  81.57 78.94 80.26 0.61
after 86.84 89.47 88.15 0.76

The results of independent test after feature selection are improved
significantly in all the species. In C.elegans, feature selection improved Sn,
Sp, ACC and MCC by 7.54%, 3.85%, 7.74% and 0.16. In D.melanogaster,
the model performance has the most considerable improvement by 10.17%,
9.32%, 9.74% and 0.19 for Sn, Sp, ACC and MCC, respectively. For
A.thaliana, Sp increased by 6.82% while ACC and MCC slightly increased
by 2.27% and 0.05. Besides, Sp, ACC and MCC improved by 9.23%, 7.7%

and 0.14 in E.coli dataset. In G.subterraneus, the metrics improvement is
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Figure 3.4: The independent test performanc before and after

feature selection

by 8.34% for Sn, 6.67% for Sp, 7.5% for ACC and 0.15 for MCC. As for
G.pickeringii, the performance is improved by 5.17%, 10.73%, 7.89% and 0.15
in terms of Sn, Sp, ACC and MCC with feature selection. From Figure [3.4]
it’s obvious that the AUCs after feature selection become better in all the
species. The most massive AUC growth exists in C.elegans by 0.06 and the
least growth is by 0.01 in A.thaliana. The results imply that the proposed
feature selection scheme enhances the performance of the SVM model by

selecting effective features from the original feature space.

3.3.3 Comparison with state-of-art predictors

Three state-of-the-art DNA 4mC prediction methods, iDNA4mC, 4mCPred,

and 4mCPred_SVM are compared with the proposed method. The comparison
was conducted using the independent test and cross-validation test on the

benchmark datasets.

The independent test results by iDNA4mC and 4mCPred were reported
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Table 3.3: Independent test results on benchmark datasets(Sn, Sp
and ACC:%)

Methods Datasets Sn Sp  ACC MCC
C.elegans 80.77 73.08 76.92 0.54
D.melanogaster 74.58 77.97 76.27 0.53
iDNA4mC A .thaliana 80.3 77.27 T78.79 0.58
E.coli 96.15 69.23 82.69 0.68
G.subterraneus 85.00 76.67 80.83 0.62
G.pickeringii ~ 81.58 78.95 80.26 0.61
C.elegans 85.58 78.85 8221 0.65
D.melanogaster 83.90 81.36 82.63 0.65
4mCPred A .thaliana 76.52 76.52 76.52 0.53
E.coli 84.62 80.77 82.69 0.65
G.subterraneus 91.67 75.00 83.33 0.68
G.pickeringii  86.84 68.42 77.63 0.56
C.elegans 94.23 78.85 86.53 0.74
D.melanogaster 84.74 86.44 85.59 0.71
this A thaliana 80.30 83.33 81.81 0.64
study E.coli 88.46 88.46 88.46 0.77
G.subterraneus 91.67 81.67 86.67 0.74
G.pickeringii  86.84 89.47 88.15 0.76

in (He et al. 2019), and we cannot find the independent test results
of 4mCPred_SVM method. Since 4mCPred_SVM only provides the final
prediction model, it’s not available to rebuild the independent test. Thus,
here we compare our method with iDNA4mC and 4mCPred in the independent
test under the same division of training and testing data. The results of the
independent test are presented in Table [3.3] Our method outperforms the
other methods in all species. Generally, the proposed method improves ACC
from 3.02% to 7.89% and increases MCC from 0.06 to 0.15. Especially, a

significant improvement of our approach can be observed in G.pickeringii
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(improving Sn by 5.26%, Spby 10.52%, ACC by 7.89%, and MCC by 0.15).

Table 3.4: Cross-validation results on benchmark datasets(Sn, Sp and

ACC:%; TP: true positive, FN: false negative, FP: false positive, TN: true

negative)

Datasets Methods Sn  Sp ACC MCC TP FN FP TN
iDNA4mC 79.7 775 786 0.572 1328 316 349 1205

C.elegans 4mCPred 82.5 82.6 82.6 0.652 1282 272 270 1284
4mCPred SVM 824 80.7 81.5 0.631 1280 274 300 1254

this study 849 80.4 82.6 0.653 1319 235 305 1249

iDNA4mC 83.3 79.1 81.2 0.625 1474 295 369 1400

D.melanogaster 4mCPred 82.4 82.1 82.2 0.646 1458 311 317 1452
4mCPred SVM 83.8 822 83.0 0.661 1483 286 314 1455

this study 85.4 832 843 0.686 1510 259 297 1472

iDNA4mC 75.7 76.2 76.0 0.519 1498 480 471 1507

A.thaliana 4mCPred 75.5 78.0 76.8 0.536 1494 484 435 1543
4mCPred SVM 77.8 79.6 787 0.573 1538 440 404 1574

this study 78.3 80.5 794 0.589 1549 429 385 1593

iDNA4mC 82.0 77.8 799 0.598 318 70 86 302

E.coli 4mCPred 81.9 832 826 0.655 318 70 65 302
4mCPred SVM 85.8 80.7 83.3 0.666 333 51 67 321

this study 86.1 825 843 0.686 334 54 68 320

iDNA4mC 82.2 80.8 81.5 0.630 745 161 174 732

G.subterraneus 4mCPred 81.8 83.7 828 0.662 742 164 148 758
4mCPred SVM 84.0 83.4 83.7 0.674 760 145 150 755

this study 83.6 85.7 84.7 0.694 757 148 129 776

iDNA4mC 82.4 83.8 831 0.663 469 100 92 477

G.pickeringii 4mCPred 85.0 81.0 83.0 0.668 484 85 108 461
4mCPred SVM 86.3 85.8 86.0 0.721 491 78 81 488

this study 86.3 89.1 877 0.754 491 78 62 507

We performed 10-fold cross-validation with the same process as the

existing methods. The cross-validation results of the three state-of-the-art

predictors were reported in the publication of 4mCPred_SVM (Wei, Luan,

Nagai, Su & Zou 2019), where the reported performance of 4mCPred has
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been modified by solving the over-estimated problem. The summary of cross-
validations is illustrated in Table [3.4, Except for the four evaluation metrics,
we also list the sample count of TP (True Positive), FN (False Negative),
FP (False Positive), and TN (True Negative). As shown in the table, in
D.melanogaster, A.thaliana and Gpickeringii, our method has the most TP
and TN counts, increasing ACC by 0.7% to 1.7% and MCC by 0.015 to
0.033. In G.subterraneus, our method has the highest TN, improving more
ACC and MCC by 1% and 0.02% than 4mC_SVM, which has the second-
best performance. Additionally, the TP and TN of our method are not the
highest in C.elegans and E.coli, but our method slightly improves the ACC
and MCC by 1% and 0.02 in E.coli and has a comparative performance with
4mCPred, better than other two methods in C.elegans.

It’s clear that our method achieves better overall performance than
the existing predictors in independent and cross-validation tests. The
improvement of ACC indicates that our method accurately identifies more
4mC sites, and the increase of MCC means that our method has a
more balanced performance for classifying positive and negative samples.
Therefore, our method is more effective in identifying DNA 4mC sites than

the existing predictors.

3.3.4 Case study

Two detailed case studies are conducted to confirm the effectiveness of
our method to solve practical problems. C.elegans and D.melanogaster
are model organisms widely applied in human disease-related research
works, like Parkinson and human aging research investigations (Feany &
Bender 2000, Auluck, Chan, Trojanowski, Lee & Bonini 2002, Van Ham,
Thijssen, Breitling, Hofstra, Plasterk & Nollen 2008, Feng, Li, Ward, Piggott,
Larkspur, Sternberg & Xu 2006). As 4mC plays critical roles in DNA
expression and replication in these models, we describe how our method
can help identify 4mC sites more accurately in the related genes. We focus

on the dlk-1 gene which can promote mRNA stability and local translation
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Figure 3.5: The confidence of predicted label in case studies

in C.elegans (Yan, Wu, Chisholm & Jin 2009), and on DSCAM gene, which
can contribute to the specificity of neuronal connectivity in D.melanogaster

(Schmucker, Clemens, Shu, Worby, Xiao, Muda, Dixon & Zipursky 2000).

Table 3.5: 4mC site identificaiton in case studies(TP: True Postive,;
FN: False Negative)

Case Methods Total TP FN
iDNA4mC 26 19 7
dlk-1 4mCPred 26 25

4mCPred SVM 26 20
This study 26 24 2
iDNA4mC 137 70 67
DSCAM 4mCPred 137 121 16
4mCPred SVM 137 122 15
This study 137 126 11

The 26 and 137 validated 4mC sites in dlk-1 and DSCAM gene are
collected from the MethSMRT database. The collected 4mC-contained DNA
sequences are all 41-bit, which can be directly submitted into the web tools of

three state-of-the-art methods. The prediction result is depicted in Figure|3.5
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and Table Figure shows the label confidence predicted by these four
predictors, where the positive confidence refers that the corresponding site
is predicted to be 4mC site, and the negative confidence means the site is
predicted to be a non-4mC site. As shown in the figure, iDNA4mC achieves
the worst performance in both cases, and half of the predictions are incorrect
in the DSCAM gene. 4mCPred, 4mCPred_SVM, and the proposed method
have similar performance in the DSCAM gene case, while the results made
by 4mCPred and our proposed method on the dlk-1 gene are better than
4mCPred SVM.

More details of the prediction are presented in Table[3.5] Since the testing
data in the case study only contains positive samples, there are only TP and
FN counts in the results. For the dlk-1 case, 4mCPred has only one wrong
prediction, and the proposed method has made two false predictions out
of 26 samples, while iDNA4mC and 4mCPred _SVM have 7 and 6 incorrect
predictions respectively. For the DSCAM case, there are 137 4mC sites
tested, and our proposed method has made 126 correct predictions (i.e., only
11 incorrect predictions). 4mCPred and 4mCPred_SVM have 16 and 15 false
predictions, while iDNA4mC has made 67 false predictions. More detailed
results can be found at the supplementary Additional file 3.

3.4 Discussion and summary

The 4mC site prediction is a typical sequence site classification problem.
The state-of-the-art research work has made some explorations, but their
performance still needs improvement. In this chapter, we designed a novel
computational method for accurate 4mC site prediction, solving the research
question Q1 (see in Section 1.2) This method constructs a more effective
feature space, integrating five types of sequence features, and use a novel
learning algorithm with XGBoost based feature selection scheme. The
results show that the feature selection improves the performance, and the

prediction model outperforms the other three existing predictors in the
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independent tests and the cross-validations. In the future, we will continue
to optimize our feature space with novel sequence features of important
biological characteristics. Furthermore, we will expand the size of the
benchmark datasets to enhance the model’s accuracy and generalization
ability. Also, since the number of 4mC is much smaller than non-4mC sites
in practical situations, the data imbalance will be considered in the next
research. At last, we will apply our method to solve other sequence site

prediction problems.
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Chapter 4

Imbalance learning for the
prediction of NO-methylation
sites in mRNASs

4.1 Background

As mentioned in Section 2.2, one critical issue of N6-Methylation prediction
problem is that non-mC®A sites are much more than m°®A sites in the training
data. The existing computational methods have overlooked this imbalance
issue. They trained the model with balanced datasets containing roughly
equal sizes of m®A samples and randomly selected non-m®A samples. Such
sampling of non-m°A samples may lead to inadequate learning, and the
prediction models would change when the selected non-m®A samples are
different.

Another issue of computational m®A prediction is the lack of valid
features. The state-of-the-art features are usually derived from window
sequences with m®A at the centre position. These features include binary
encoding sequence features (Xiang et al. 2016, Zhou et al. 2016), k-mers
(Xiang et al. 2016), physical-chemical properties (Liu, Xiao, Yu, Jia, Qiu
& Chou 2016, Zhang, Sun, Liu, Ren, Shen & Yu 2016), position-specific
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nucleotide propensities (Li, Liu, Shen & Yu 2016), pseudo nucleotide
compositions (Chen, Xing & Zou 2017, Wan, Duan & Zou 2017, Zou, Wan,
Ju, Tang & Zeng 2016), nucleotide pair spectrums (Zhou et al. 2016) and

multi-internal nucleotide pair positions (Xing et al. 2017).

Here we use a cost-sensitive XGboost classifier to address the imbalance
issue. Similar to previous works, m®A samples and non-m®A samples are
labeled as positive and negative, respectively. The classifier is then trained
with all the samples without selecting a subset of negative samples and
prevents over-fitting by defining different costs for the incorrect classified
positive and negative samples. The model minimizes the cost function in
the learning stage and improves the precision of classifying positive samples.
Besides, ROC rather than accuracy is set as the training cost function. Owing
to training on the whole dataset without sampling noise, our method HMpre

exhibits higher performance and better robustness.

To improve the effectiveness of feature space, we present three types of
novel m®A features. First, we extract novel features to capture specific single
nucleotide polymorphism (SNP) variants in the window sequences through
the MRMR method and Fisher’s exact test (Peng, Long & Ding 2005).
These features are relevant because single nucleotide variants can affect
m®A dynamics (Zheng, Nie, Peng, He, Liu, Xie, Miao, Zuo & Ren 2017).
Moreover, m®A occurs richly in some particular regions of transcripts.
Thus we calculate the absolute and relative locations of m°A sites as new
features. To further exploit the distribution properties of nucleotides, entropy
information is also considered as new features. Together with these newly
proposed features, conventional features including 4-bit binary, overlapping
chemical property with density, and k-mers are integrated into our feature

space to describe comprehensive characteristics of methylation.

In the performance evaluation of our method HMpre, we first report
specific SNP positions as new features. Then we report a detailed comparison
result with three existing balance learning predictors on an independent test

dataset. HMpre achieves a much better performance of precision 0.3035, F1
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0.3961, and MCC 0.3329. Since the ratio of positive sites over negative sites
in a test mRNA is unknown, HMpre and existing predictors are also evaluated
on nine datasets containing different ratios of positive sites over negative sites.
Results show that HMpre works better and has stronger robustness on the
ratio change. In practical use, the inputs to a predictor are always individual
transcripts. Therefore the four methods are then applied to make predictions
on single transcripts. Again, HMpre achieves the best overall performance.
Furthermore, we evaluate the effectiveness of the features with 10-fold cross-
validation and feature importance scores from the XGBoost classifier. The
new features are all meaningful, and the proposed feature space improves
performances notably. In the case studies, the c-Jun gene’s transcript is
taken as an example to demonstrate the prediction details. Then we evaluate
our method on the transcript of the CBFB gene relating to HIV-1 infection,

and our method also achieves better results than the other predictors.

4.2 Materials and methods

Datasets

Currently validated human mRNA mC®A sites were all obtained by Ke
and Linda from single nucleotide resolution maps (Ke et al. 2015, Linder
et al. 2015). To guarantee the reliability of negative samples, non-m°®A sites
conforming to the conserved motif DRACH were all produced from these
validated transcripts. Based on these datasets, Zhou has built a human
mature mRNA m°A dataset, which is the largest human mSA dataset so
far. The dataset used in our experiments is downloaded from Zhou’s work
(Zhou et al. 2016). After removing redundant and unaligned samples, we get
7506 mature human transcripts in total. We reserved 6280 transcripts for
training and 1226 transcripts for independent testing. For each transcript,
the number of non-m°A conforming to the DRACH motif is much larger than
mOA sites. The training dataset contains 26512 positive samples and 271214

negative samples, while the independent test dataset contains 5644 positive
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samples and 54744 negative samples. Each sample contains the transcript
id, the location of the target adenine, and the flanking window sequence. All

samples used in our dataset are listed in Additional File 4.

4.2.1 Feature space construction

Computational prediction methods usually build features from a flanking
window sequence with m®A at the center position. The size of the flanking
window varies from 20 to 50 nts in previous works, and we choose the size
of 25-nt, which is similar to other human predictors. Thus the features are
extracted from the 51-nt long sequence. Based on the sequence characteristics
of the m®A site, we introduce three types of new features: site location-
related features, features related to entropy information, and SNP features.
Three types of conventional features are also used. There are a total of
509 dimensions in our feature space. The transcript sequences, length
information (including coding region and UTRs), and SNP variants are
obtained from the Ensembl online human gene database (GRCh38.p10). A
diagram of the feature space construction is presented in Figure [4.1]

Ensembl Database

flanking window sequence SNP in flanking window

Transcript id:

[ ..eAcGAccAU... | sequence ENSTO0000518693 - ToooToeT
H - ENST00000300571 | ——p ( SNPvariant ) :
CGAC ENST00000230122 Database
....CCAAACAUG.... I N 010101101....

4-bit Binary cPD K-mers Location Inf;;matian
eory MRMR
Mapping: AA,AC,AG, Length:1710
A:111 AU,... 819 1129 Fisher exact
C:001 test

Mapping :
i || o
g :01
G->0010 CECHS AAA,AAC,
U->0001 & AAG,AAU,

Site position
SNP specific position

Density
function

Figure 4.1: Feature space construction
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Three New Types of Sequence Features

Site location Related Features In mature transcripts, m®A sites are rich
in some special regions, such as the 3° UTRs near the stop codon (Meyer
et al. 2012). However, non-m°A sites conforming to the DRACH motif
are randomly distributed over the entire transcript. Thus the location of
the target adenine site in the transcript can be taken as a new feature.
Specifically, site location refers to the distance between the target site and
the transcript start site. The relative location of the target site in the whole
transcript is also taken as a new feature, which is the ratio of the site location
over the transcript length.

Features Related to Entropy Information Because of motif conservation
for regulating protein binding sites, the nucleotides around m®A sites have
some unique distributions. Shannon information theory can be used to
evaluate these nucleotide distributions in the transcript fragment sequences.
We calculate Shannon entropy (En), relative entropy (REn) and information
gain score (IGS) of all samples as a new type of feature. The scores of these

features are calculated as:

En(s)=— > p}log,(p) (4.1)

i€{A,G,U,C}
L
REn(s)=— 3 pilogy(2) (42)
ie{A,G,UC) Po
IGS(s) = En(s) — REn(s) (4.3)

where p{ is the frequency of A, G, U, C in sequence s, and py is the
uniform distribution of each nucleotide occurrence, namely py = 1/4. The
frequency of each nucleotide is then combined with the entropy features as a
7-dimension feature vector.

SNP Features Singe nucleotide polymorphism is a kind of variant at
specific sites in the genome. For SNP sites, several possible nucleotide

variations are alleles for this position. As a synonymous single nucleotide
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variant, SNP changes the sequence of mRNA but does not alter the amino
acid sequence of protein (Sauna & Kimchi-Sarfaty 2011). Also, m°®A is
regulated by some proteins which also have fixed RNA binding sites, which
means the flanking window sequence around m®A site has specific base
groups patterns. The SNP variant of mRNA sequence may disrupt the
DRACH motif or protein binding regions, leading to failures of m®A dynamic
regulations (Zheng et al. 2017). Hence, we attempted to find positions with
unique SNP states. From the Ensembl database, we map SNP variants in
the transcript and convert sample sequence into a 51-bit 0/1 vector (i.e., 0
denotes a non-SNP variant position; 1 donates an SNP variant position).
As there are various methods to select effective features (Zou, Zeng, Cao &
Ji 2016, Saeys, Inza & Larranaga 2007), in this paper Max-Relevance Min-
Redundancy (MRMR) algorithm (Peng et al. 2005) and Fisher’s exact test

are adopted to recognize special SNP positions.

MRMR selects positions with a maximal statistical criterion based
on mutual information. MRMR tries to find a position subset, which
has maximum relevance (dependency) with class and minimum internal
redundancy. MRMR adds positions into the subset one by one, and the
order is determined by relevance to the target class and the redundancy
with the other positions. Fisher’s exact test is a statistical significance
test. For an individual position, it investigates the SNP variant distribution
difference between the positive and negative samples and derives a p-value
from assessing the difference. A low p-value means the SNP variant at this
position has a great difference between the negative and positive samples.
Finally, we can rank positions with Fisher’s exact test p-value and the MRMR
selection order. By calculating the average ranking of MRMR and Fisher’s
exact test, positions with a significant SNP specificity can be identified.
The SNP variant states of such specific positions are considered as SNP
features. The detailed SNP specificity identification algorithm is presented
in Algorithm S1 of Additional file 5.

49



Chapter 4. Imbalance learning for the prediction of N°-methylation sites in
mRNAs

Conventional Sequence Features

4-bit Binary Features Binary encoding is a common feature extraction
method to characterize RNA sequences. As the mRNA sequence contains
four nucleotides A, C, G, and U, this encoding method can map every single
nucleotide into a 4-bit binary code. The mapping rules are: ‘A’- (1,0,0,0),
‘C’- (0,1,0,0), ‘G’- (0,0,1,0), ‘U’ (0,0,0,1). In this way, a 51-nt sequence can

be transformed into a 204-dimension feature vector.

Chemical Property with Density (CPD) Based on differences in chemical
property, four kinds of nucleotides can be categorized into different groups
(Chen, Tang, Ye, Lin & Chou 2016). In terms of ring numbers in a single base
group, C and U have only one ring while A and G have two. Besides, C and
G have strong hydrogen bonds when forming secondary structures, whereas
hydrogen bonds in A and U are both weak. When considering chemical
functionality, amino group contains A and C while keto group includes G
and U. Thus, we can divide the nucleotides by different chemical properties
and use overlapping encoding rules: ‘A’ (1,1,1), ‘C’ (0,0,1), ‘G’ (1,0,0),
‘U’ (0,1,0). In literature work, the density of nucleotide is always used with
chemical property features, which calculates the frequency of a nucleotide

occurring before current position. Density feature d_i is defined as

1 Sj = S
i = ‘S‘Zfs] { (44)

0 sj#sl-

K-mer Features In the mRNA sequence, adjacent nucleotide pairs have
an influence on mRNA structures and functions. K-mer is the frequency of
k-nt adjacent nucleotides. As a global feature, k-mer has been proven to
be effective in many sequence-based site predictions. The length of k-mer
feature is 4* bits. In this paper, we adopt 2-mer and 3-mer. Each sample

has an 80-dimension k-mer feature vector.
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4.2.2 Imbalance learning

Imbalance learning has been explored for protein binding site prediction
(Yu, Hu, Huang, Shen, Qi, Tang & Yang 2013, Hu, He, Yu, Yang, Yang
& Shen 2014, Song, Li, Zeng, Wu, Guo & Zou 2014) and protein-protein
interaction sites identification (Wei, Han, Yang, Shen & Yu 2016, Liu, Shen
& Yu 2016). However, imbalance learning for m®A prediction has not
been explored. An intuitive way to address this problem is to integrate
sampling and ensemble techniques, which trains basic classifiers with different
sampling data and combines the results in an ensemble way to reduce the
random sampling bias. But it requires effective sampling techniques to
select meaningful negative subsets, and there are some researches focuses
on dynamic and cluster ways (Lin, Chen, Qiu, Wu, Krishnan & Zou 2014).
Another viable strategy is to introduce cost-sensitive learning models, like
weighted support vector machine and cost-sensitive decision trees, using
different matrices to describe the costs for classifying samples into the wrong
class (He & Garcia 2009).

Here we use a cost-sensitive XGBoost classifier as a learning model.
XGBoost (eXtreme Gradient Boosting) is a tree boosting algorithm developed
by Chen (Chen & Guestrin 2016). It is an advanced implementation of the
gradient boosting algorithm, which has been widely applied for classification
problems. XGBoost has some advantages over other cost-sensitive classifiers.
Firstly, the regularization can effectively prevent the training model from
over-fitting. Secondly, embedded parallel processing allows a faster learning
speed. Thirdly XGBoost is of high flexibility and allows users to define
custom optimization objectives and evaluation criteria. Moreover, the
XGBoost classifier can learn from imbalance training data by setting class
weight and taking ROC as evaluation criteria. Here we implement the model
with a python package named xgboost (vision 0.6a2). The parameters can be
optimized by 10-fold cross-validation in the learning stage. The parameters
in our model are: ‘lambda’: 700, ‘max-depth’: 6, ‘eta’> 0.1, ‘silent’: 1,

‘objective’: ‘binary:logistic’, ‘booster’: ‘gbtree’, ‘scale-pos-weight’: 6, ‘eval-
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metric’: ‘auc’ and training boost round is 400, while other parameters are

all default values.

In this paper, our method is compared with three recently published
human m®A prediction methods. These three literature methods are:
SRAMP (Zhou et al. 2016), Methy-RNA (Chen, Tang & Lin 2017) and
RAM-NPPS (Xing et al. 2017). They all have open access web predictors,
and SRAMP also provides a tool package for local implementation. The
prediction results of Methy-RNA and RAM-NPPS are obtained from the
web predictors, while the results of SRAMP are derived from tool package

in mature mode.

4.2.3 Performance evaluation metrics

The proposed prediction method is evaluated by 10-fold cross-validations and
independent test dataset with four frequently used metrics: precision, recall,
Fl-score, and Matthews correlation coefficient (MCC). As RAM-NPPS and
Methy-RNA cannot return prediction probabilities, we do not use AUROC

or AUPRC as evaluation metrics.

Precision and recall reflect the tendencies of classifier prediction. Recall
(also called sensitivity in binary classification) illustrates how many positive
samples are rightly classed, and precision shows the ratio of true positive
sample ratio in all predicted positive-label samples. There is always a trade-
off between precision and recall, so we introduce F1 and MCC to evaluate the
overall performance of a predictor. Fl-score combining precision and recall
together can assess the performance on both balanced and unbalanced test
datasets. MCC is also a frequently used metric in classifier evaluation, which
returns a value between -1 to 1: 1 standing for perfect prediction and -1 for

reversed prediction.

52



Chapter 4. Imbalance learning for the prediction of N°-methylation sites in
mRNAs

Table 4.1: Ranking details of top 12 specific SNP positions (FET:

Fisher’s exact test)
No. Position FET MRMR Average Ranking

1 -2 1 1 1 1
2 -1 2 5 3.5 2
3 -24 6 7 6.5 3
4 -21 10 4 7 4
) -19 7 12 9.5 )
6 2 3 23 13 6
7 -25 4 24 14 7
8 -11 19 9 14 7
9 -4 8 21 14.5 8
10 -15 21 11 16 9
11 -9 15 17 16 9
12 -23 9 25 17 10

4.3 Results

We report the specificity results of SNP identification as new features. In the
performance comparison and evaluation, we tested our HMpre method and
other existing predictors on the independent test dataset. To demonstrate the
robustness of our method to deal with the unknown percentages of positive
samples in real transcripts, we compared our method with three existing
human mC®A predictors on datasets of different positive-and-negative sample
ratios. To evaluate the performance for practical use, we tested all the
predictors on single transcripts. Lastly, we report the feature effectiveness

results of HMpre and XGBoost classifier feature importance scores.

4.3.1 Specific SNP status as new features

MRMR and Fisher’s exact test is applied to analyze sequence SNP variant

states in the training dataset and identify positions with specific SNP variant
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states as a new feature. As presented in Figure[4.2) MRMR and Fisher’s exact
test give rankings to all the positions numbered from -25 to 25 in the window

sequemnce.

M Fisher Test B MRMR

40 | I |
30

20I

= Ll |

o al L

-25-23-21-19-17-15-13-1 9% -7 5 3 -1 1 3 5 7 9 11 13 15 17 19 21 23 25

Ranking

Position

Figure 4.2: SNP specificity ranking The black blocks stand for the
Fisher’s exact test rankings and the green blocks stand for the MRMR
rankings. X-axis is the window sequence sites from -25 to 25. Y-axis is the
total ranking of each position. A low ranking means a high SNP specificity

at this position.

In the process of selecting a position subset, MRMR defines mutual
information to evaluate the subset for the inner redundancy and relevance
with the target class, then it gives out the order of position selection, and
we take the order as position importance ranking. The top 12 positions
are -2, 25, 1, -21, -1, 18, -24, 16, -11, 20, -15 and -19. Fisher’s exact test
can statistically recognize the SNP variant distribution difference for these
individual positions between the positive and negative samples, as described
by a p-value. With Fisher’s exact test p-values (details in Table S1 of
Additional file 5), we can also rank all these positions. The top 12 positions
are -2, -1, 2, -25, 15, -24, -19, -4, -23, -21, 12 and -20. Finally, we choose the
top 12 positions with the highest average ranking as SNP features. These
highly ranked positions are illustrated in Table 4.1} These positions have
relatively higher ranking both in MRMR and Fisher’s exact test. Detailed
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results are listed in Table S2 of Additional file 5.

4.3.2 Performance on the independent dataset

Table 4.2: Performance on the independent test dataset (Methy:
Methy-RNA; NPPS: RAM-NPPS)

Methods Precision Recall F1 MCC

Methy 0.065 0.5184 0.1163 -0.1619

NPPS 0.1656  0.6339 0.2626 0.1833

SRAMP  0.2638 0.4812  0.3408 0.2653

HMpre 0.3035 0.5698 0.3961 0.3329

Our proposed HMpre is compared with three existing prediction methods
on the independent test dataset. The prediction results are reported in
Table HMpre achieves the best performance under all metrics except
recall; RAM-NPPS has a better recall of 0.6339 than HMpre. The precision
of HMpre is 0.3035, 0.04 higher than SRAMP, which is the best in the existing
predictors. Overall, HMpre achieves an F1 score of 0.3961, higher than the
best F1 value of the other three predictors (0.3408 by RAM-NPPS). In terms
of MCC, Methy-RNA has a value of -0.1619, and SRAMP is 0.2653, about
0.08 higher than RAM-NPPS, but still lower than HMpre’s 0.3329.

4.3.3 Robust performance when tested on datasets

with different imbalance ratios

In normal situations, the numbers of m®A and non-m°A sites are unknown
before prediction. Therefore, a practical m°®A predictor should have strong
robustness against the imbalance level change. To appraise the robustness of
HMpre and other predictors, we test them on nine datasets whose negative
samples to positive samples ratios range from 1:1 to 9:1. Here we adopt the

overall metrics F1 and MCC as evaluation criteria. The results are reported
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in Figure 4.3l The F1 and MCC values of all the methods have a trend of
decreasing when the imbalance level increases. The F'1 scores of RAM-NPPS
and Methy-RNA decrease more rapidly than HMpre and SRAMP. For the
MCC values, HMpre also has a relatively slow-changing rate while the other
methods are comparable. Moreover, HMpre has a better performance on
all of these datasets under F1 and MCC, proving that HMpre has stronger

robustness.

Methy-RNA RAM-NPPS Methy-RNA RAM-NPPS
--@--SRAMP —a—HMpre «-@-SRAMP —a—HMpre
07 0.5

06 0.4

05 0.3

0.2
0.4

0.1

F1 value

0.3

MCC value

0.2
-0.1

0.1
-0.2

0 03

Figure 4.3: Performance on datasets of different imbalance levels
The F1 and MCC values of four predictors are represented. X-axis k is the
ratio of the negative samples to positive samples (imbalance level) in a test

dataset; Y-axis is metric value.

4.3.4 Performance on 1226 individual transcripts

Since the testing objects are always single transcripts in real cases, the four
predictors are evaluated on individual transcripts. There are 1226 transcripts
in the independent dataset for the four methods to make predictions. The
imbalance levels of the 1226 transcripts are different, and we calculate the
average metric values of all the transcripts as the final results for each
method. The results are reported in Table 4.3] Although RAM-NPPS has
the highest recall of 0.6582, HMpre achieves the best performance under the
remaining four metrics (precision 0.2972, recall 0.6062, F'1 0.3658, and MCC
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0.3239). Especially, the overall metrics F1 and MCC of HMpre are about
0.07 and 0.08 higher than SRAMP, the best existing predictor.

Table 4.3: Average performance on individual 1226 transcripts
(Methy: Methy-RNA; NPPS: RAM-NPPS)

Methods Precision Recall F1 MCC

Methy 0.0723 0.5075  0.1174 -0.1614

NPPS 0.1770  0.6582 0.2529  0.1907

SRAMP  0.2484 0.4759  0.2928  0.2387

HMpre 0.2972 0.6062 0.3658 0.3239

4.3.5 Feature importance analysis

Three types of new features are extracted to add to the existing feature
space to improve the prediction performance. 10-fold cross-validations with
different feature spaces are used to verify whether the new feature space
actually improves the prediction performance. The performance of the three
types of traditional features and their merged features are compared with
the proposed feature space in Table The three types of traditional
features (four-bits binary coding, chemistry property with density, and
k-mers) achieve distinct performance, and the 4-bit binary features are
better than the other two types of features. By joining the three types of
conventional features together, all metrics increase comparing with individual
features. The proposed feature space, combining conventional and new
features together, exhibits the best performance under all metrics.

We also attempted to understand more about the role of each feature in
prediction. XGBoost can make an inner analysis of feature importance during
the learning process and output scores for all the features. The importance
scores can reveal how meaningful the features are when building a model and
tell which features play leading roles in the feature space.

The feature importance scores boxplot is presented in Figure [4.4] There
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Table 4.4: Different feature space performance in cross validation

(CPD: Chemical Property with Density; Joint: joint of conventional features)
Feature Precision = Recall F1 MCC

K-mers 0.1392 0.3426  0.2461  0.1572

CPD 0.0.2460 0.4816 0.3256  0.2532
Binary 0.25 0.4906  0.3312  0.2601
Joint 0.2519 0.5035 0.3358  0.2661

Proposed 0.2669 0.5248 0.3538 0.2877
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Figure 4.4: Boxplot of feature importance scores

are 509 features, and their distribution is presented in Table S3 of Additional
file 5. The importance scores have a wide range from 0 to 1064. The features
with a 0 score are from 4-bit binary and CPD features, corresponding to the
motif adjacent sites, which are ‘GAC’ or ‘AAC’ in all the samples. The
dimension with the highest score 1064 (f501) refers to the site distance
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from the transcript start site, followed by features of relative location in
the transcript (500, scored 943) and sequence entropy (f506, scored 342).
Besides, density features in CPD features have relatively high importance
scores. Detailed importance scores are shown in Figure S1. For the average
score, binary and CPD are much lower than other features, while site
location and entropy information are obviously higher. K-mers and SNP
have comparable average scores. From the results, the three types of new

features are indeed significant in the feature space.

4.4 Case studies

In this section, we report two detailed case studies to understand the
difference between the four predictors and evaluate their capacity in practical
use. First, we describe the prediction results for the c-Jun transcript from
the test dataset. The second case study is about the m°A sites in the mRNAs
of the CBFB gene, which can modulate HIV-1 replication and infection
(Lichinchi, Gao, Saletore, Gonzalez, Bansal, Wang, Mason & Rana 2016).

4.4.1 mSA site prediction for c-Jun transcript

Transcript ENST00000371222 of the c-Jun gene contains 25 verified m°A sites
and 47 non-m®A sites conforming to the DRACH motif. HMpre predicted
21 mPA sites, 18 of which are true positives, and three are false positives,
while SRAMP predicted 12 true positive m®A sites and three false positives.
RAM-NPPS made 14 true positives and 12 false positives. Methy-RNA made
the most 31 false positive predictions and identified only 19 true m®A sites.
Thus, Methy-RNA achieved the highest true positive rate, but it made the
most number of false-positive predictions. See Figure Although SRAMP
achieved a good precision of predicted m°A sites, a large number of true m%A
sites were wrongly classified. RAM-NPPS has more false positives and less
true positive predictions than SRAMP and HMpre.

Table shows detailed prediction performance. Overall, the precision,
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Figure 4.5: Predicted m®A sites in the case studies The x-axis stands
for the potential m°A sites confirming to the sequence motif DRACH and
the y-axis indicates the four predictors. All colored blocks are the predicted
mOSA sites. Red blocks represent true positive sites, and yellow blocks are
false positive ones. (a) the prediction results for the c-Jun case and (b) the

predictions for the HIV-1 case.

F1 and MCC of our HMpre method are much higher than the other prediction
methods. Although Methy-RNA has a high recall of 0.96, it has the lowest
precision, F1 and MCC. The performance of SRAMP is better than RAM-
NPPS, but the recall of SRAMP is the lowest 0.48, suggesting a lot of positive

samples are predicted to be negative.

4.4.2 mPA site prediction for a transcript related to

HIV-1 infection

The longest transcript ENST00000290858 of the CBFB gene from the

Ensembl database was chosen for this case study. There are 62 adenines
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Table 4.5: Results for the c-Jun gene case study (Methy: Methy-RNA;
NPPS: RAM-NPPS)
Case  Methods Precision Recall F1 MCC
c-JUN Methy 0.3428 0.96  0.5052 -0.0542
NPPS 0.5384 0.56 0.549  0.3019
SRAMP 0.75 0.48 0.5853  0.4522
HMpre 0.8571 0.72 0.7826 0.6872

HIV-1 Methy 0.1702  0.6666 0.2711 -0.1045
NPPS 0.1935 0.5 0.279 0
SRAMP 0.6 0.25 0.3529  0.2727
HMpre 0.6256  0.4166 0.5 0.4203

(A) conforming to the motif in this transcript. The experimentally validated
mOA sites of the CBFB gene are acquired from RMBase, an online m%A
database (Sun, Li, Liu, Wu, Zhou, Qu & Yang 2015). Based on these data,

we constructed a test dataset of 12 positive samples and 50 negative samples.

The predicted m°A sites are presented in Figure . HMpre made five
true positives and three false-positive predictions, while SRAMP made three
true positives and two false-positive predictions. RAM-NPPS and Methy-
RNA made more false positives than true positives: RAM-NPPS had six
true positives and 16 false positives, and Methy-RNA had 51 false positives
and eight true positives. The predicted m°A sites by SRAMP are mainly

correct, but it missed a lot of true mSA sites.

The detailed results are reported in Table [1.5] Methy-RNA achieves
the best recall 0.6666 but the worst precision 0.1702. SRAMP has a high
precision 0.7692, but the lowest recall 0.25. Our HMpre method has the best

precision 0.56256 and achieves the best performance on the overall metrics
F1 0.5 and MCC 0.4203.
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4.5 Discussion

In this paper, we adopted an XGBoost classifier as the prediction model. On
the one hand, this classifier can learn from imbalanced data, which is similar
to data in practical prediction situations, and inner regularization rules can
prevent the model from over-fitting. On the other hand, when the scale of
training data is quite large, it would cost classifiers like SVM and Random
forest much longer time than our method in the training stage.

The efficiency of features is crucial to the performance of predictors. Here,
we presented m6A sites with meaningful biological features instead of just
using flank window sequence features. In this work, the size of the flanking
window is 51-nts, which is the same with existing methods. The influence
of sequence size on feature efficiency will be studied in the next stage of
research. In addition, some m6A biological characteristics found recently
can be taken as new features in the prediction, and we will try them in the

future.

4.6 Summary

This chapter has proposed a novel computational method called HMpre to
address the research question Q2 (see Section 1.2) of human mRNA m®A
prediction. The key idea is a cost-sensitive learning model. Three types of
new features are also introduced to learn more from the imbalanced training
data for the further improvement of the prediction performance. Along with
the other three existing methods, HMpre was tested on an independent
dataset. The results show that our method has better correctness and
robustness. The feature importance analysis demonstrates that the new
features are exactly meaningful in the prediction. In the detailed case
studies, our method also outperforms over the existing predictors. Class
imbalance is a long-neglected but important issue in the m%A prediction

problem. Imbalance learning provides a promising way to resolve this issue.
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Chapter 5

Identification of lung cancer
gene markers through kernel
maximum mean discrepancy

and information entropy

5.1 Background

As we pointed in Section 2.3, in cancer studies, the histologically normal
tissue adjacent to the tumor is usually used to compare with the tumor tissue
under the assumption that they are the same with real healthy tissues. This
approach allows researchers to compare samples from the same patient and
reduce the individual-specific effects. However, recent studies have deepened
our understanding of NAT tissue, indicating that NAT is not exactly equal
to the real healthy tissue (Aran et al. 2017). In NAT tissues, the specific
micro-environment surrounding tumor makes the change of gene expression in
various pathways that are related to disease development. In order to identify
efficient and meaningful marker genes, we proposed to detect differentially

expressed genes (DEGs) from real normal, NAT, and tumor tissues.

Here, we present a novel approach to identify genes markers for lung
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cancer with kernel maximum mean discrepancy (MMD) and Information
Entropy. As mentioned above, the conventional DEA methods can calculate
a p-value to evaluate the expression difference based on certain statistical
hypothesis, but it’s hard to decide which distribution assumption is correct
before calculation. Inspired by the distribution measure method of transfer
learning, we use the kernel MMD to detect DEGs between tumor, NAT, and
normal tissues. This method can output the maximum mean discrepancy
score, which indicates the degree of differential expression without requiring
a statistical hypothesis on data distribution. Besides, although the p-value of
conventional techniques can identify DEGs, it is essential to define a threshold
of expression level to distinguish different types of tissue. Commonly,
Researchers would like to take the upper boundary of lower expressed tissue
or lower edge of higher expressed tissue as the threshold when there is a
distinct expression gap. But this kind of gap is not always existing, and then
the threshold is hard to define. As the gene expression level is continuous
data and how to choose a definite threshold point is a tough task. Here we

applied the information theory to solve this problem.

In this paper, we first evaluate the expression level difference of 23368
genes in normal, normal adjacent tumor and tumor tissues with the kernel
maximum mean discrepancy. Then the top-ranked genes selected by the
kernel MMD method are compared with genes selected by two conventional
DEA methods, t-test and fold change. Then GO and KEGG pathway
enrichment analysis are conducted to analyze the top 100 genes ranked by
average MMD scores. Lastly, the top 10 genes are selected as marker genes
for lung cancer, and their expression boundaries between normal, NAT, and

tumor tissues are identified by the proposed information theory method.
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5.2 Materials and methods

5.2.1 Dataset

Three gene expression datasets used in this paper are collected from different
tissue types in reference (Aran et al. 2017), containing the expression data of
23368 genes. Dataset 1 includes the gene expression data of 373 normal
healthy samples. The raw reads file of dataset 1 is obtained from the
GTEx program (phs000424.v6.p1l, 18 November 2015). Dataset 2 has 59
NAT tissues, while dataset 3 has 541 lung cancer tumor tissues. Their raw
feature counts and FPKM values are original from NCBI Gene Expression
Omnibus (GEO) (Barrett, Wilhite, Ledoux, Evangelista, Kim, Tomashevsky,
Marshall, Phillippy, Sherman, Holko et al. 2012). Since the raw values
are from different data sources, the RNA-sequencing raw reads files were
processed and normalized with the Rsubread package and aligned to the
UCSC hgl9 reference genome with the same pipeline. The processed GTEx
expression profiles of dataset 1 are available in GEO under an accession
number GSE86354, and the other two datasets are deposited as GSE62944.

5.2.2 Gene marker identification framework

With the above three datasets, we apply a novel approach to detect DEGs
and determine the expression boundaries between normal, NAT, and tumor
cells as the criterion of the lung cancer diagnosis.

In our method, there are mainly four steps: First, the kernel Maximum
Mean Discrepancy is used to identify DEGs between two types of tissues
respectively, and genes are ranked by the MMD values; Second, the genes
with top average MMD rankings are selected from all genes; Third, genes
selected from the previous step are put into KEGG pathway analysis and
GO enrichment analysis to validate the efficiency of those gene markers; Last,
we define the gene expression boundaries for the top 10 marker genes with

information gain theory. The whole framework of the proposed approach is
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Figure 5.1: Gene marker identification framework

illustrated in Figure 5.1

5.2.3 Kernel maximum mean discrepancy

The problem of comparing the probability distribution between two sample
groups, also referred to as the two-sample problem, widely exists in data
science areas. In the bioinformatics field, this problem is extensively existing
in micro-array data analysis, database attribute matching, data integration
from different platforms, and so on. The two-sample problem’s key point is to
determine if two groups of observations are from the same distribution. Some
statistical test methods were applied to address that in previous researches.

However, these methods have different statistical modelings based on

specific assumptions of data distribution, which is commonly unknown before
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calculation in practical use. In some previous studies, researchers have
explored using the kernel Maximum Mean Discrepancy (MMD) method to
test the distribution difference in RNA-Transcript expression and pathway
differential expression and achieved better performance than traditional
statistical tests (Stegle, Drewe, Bohnert, Borgwardt & Rétsch 2010, Vegas,
Oller & Reverter 2016). Here, we adopt kernel MMD to identify the DEGs
in gene expression data for lung cancer.

Give F to be a class of functions f : y — R. Two samples X =
{x1,29,.. 0} and Y = {y1,v2,..y,} are drawn form two probability
distribution p and ¢, respectively. The empirical estimation of MMD value
is as following (Gretton, Borgwardt, Rasch, Scholkopf & Smola 2007):

MMDIF,pd] = sup(B((0)] = B ) (1)
MMDIF,p,q] := sup(— ZF (x;) ——ZF (vi)) (5.2)
fer m

As the definition above, if the function class F is rich enough, the value of
MMD will be zero if and only if p=¢. But a too rich F will lead to that MMD
differs from zero for most finite sample estimates. Thus some restrictions
ought to be placed on the function class. One trade-off way is to set F as
the unit ball in a universal reproducing kernel Hilbert space H, defined on
the compact metric space y. Since H is a complete inner product space of
functions f: x — R, the function mapping f — f(x) can be expressed as an
inner product via f(x) = (f, ¢(z)),where ¢ : x — H is the feature space

map from z to H. Then MMD can be rewritten as:
MMDIF,p,q) = sup Ep[f(z)] — Eg[f(y)]
1l <1

= sup E,[(f,0(2))y) — EJ(f, o)) ]
£t (5.3)

= §Ssup <Mp - Nq,f>H
1f1l <1

= Hﬂp - /~Lq”H
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Then we can calculate like the following function:

MMD? = (, — g, 1ty = Ha) g
= (Hps ) g + (Has Ha) r — 2 (b Ha) gy
= B, (6(2),0(z)) + B, (o). o))
— 2B,4(8(2), ()

(5.4)

As the inner product can be replaced by Gaussian kernel k(z,z') =

exp(— ||z — x/HQ /(20?)),the value of MM D? can be figured out as:

MMD? = Zkz (2, ;) Z k(i y;)
Z#J mn i,j=1
(5.5)
Z k(i ;)
%#J

In our method, the minimum variance unbiased estimate of MMD value is
obtained according to the above functions based on Shogun package in python
(Sonnenburg, Henschel, Widmer, Behr, Zien, Bona, Binder, Gehl, Franc et al.
2010). The computational complexity of the MMD method is O(n?). The
MMD score can evaluate the gene expression difference between different
sample types, while a higher MMD score means greater gene expression level

difference.

5.2.4 Boundary discovery method

As a biomarker, there should be an expression threshold for the marker gene
as the indicator for disease diagnosis. If the gene expression level is proven to
be different in normal and tumor tissues, it is necessary to define a threshold
of expression level as the boundary. When the gene expression level has a
distinct gap between normal and tumor samples, the threshold is commonly
the lower or upper boundary of this gap. However, the expression level does
not have that kind of obvious gap all the time, thus how to define a reliable

boundary is challenging in these cases.
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Here we propose to identify the threshold with information theory, which
has been widely used in decision tree algorithms for classification problems.
According to the information theory, the change of information entropy,
which is named information gain, can evaluate the classification efficiency
of a threshold point. If there is the expression data of a gene from m normal
samples and n tumor samples in dataset D, p,, and p,, refer to the proportions
of normal and tumor samples in all samples. The original entropy of D is

defined as:
Ent(D) = — Z Dk 10gy Pi: (5.6)

k=mmn
In the boundary identification, all samples are re-classified by the gene
expression level with a split point of x and DV denotes the new dataset re-
classed by x. Then the information gain of this split point can be computed

as:
DV

D v
oy Bt (D) (5.7)

Gain(D,z) = Ent(D) — 22:

Unlike discrete data, the expression level is continuous, and it is
inappropriate to use the expression level values in samples as the split points.
Besides, as the distribution of the expression level is also unknown, we cannot
use the probability function to calculate the entropy. Here, we propose to
deal with continuous data like discrete data. First, the expression level
values are sorted from small to large, and the middle points between two
expression level values are taken as the split points. Second, we calculate the
information gain of the split points respectively and choose the point with
the highest information gain as the boundary. The algorithm of expression

boundary identification with information theory is illustrated in Algorithm
S1 in Additional File 7.

5.2.5 GO and KEGG enrichment analysis

The GO enrichment analysis is the major gene-annotation analysis method

based on the Gene Ontology resource, describing the gene function at a
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molecular level. The Kyoto Encyclopedia of Genes and Genomes (KEGQG)
pathway enrichment analysis has been widely used to model and simulate
the molecular interactions and reaction networks in system biology. In this
paper, these two methods are applied to figure out the molecular functions
of identified potential marker genes and validate whether these genes are
related to lung cancer. Here the enrichment analysis methods are both
implemented based on the R package called ClusterProfiler developed by
Guangchuang Yu’s team (Yu, Wang, Han & He 2012). The GO terms and
enriched pathways are all filtered with the p-value < 0.05.

5.2.6 Conventional DEA method and machine learning

evaluation metrics

In this work, two conventional differentially expressed gene analysis methods,
t-test and fold change, are compared with the proposed kernel MMD. The
t-test is completed based on a python package called ‘Scipy’ (Bressert 2012).

The fold change is calculated as below:

E1

logz(—)‘ (5.8)

FoldCh =
oldChange i)

Where E1 and E2 is the average of gene expression level in two different
issue types. The p-value, fold change value, and MMD score is calculated
for every single gene in our datasets. Then genes are ranked with the same
strategy, and top-ranking genes are regarded as potential markers. Here
10-fold cross-validation based on the random forest classifier is applied to
evaluate the efficiency of these top genes under four frequently used metrics:

recall, Fl-score, accuracy, and Matthews correlation coefficient (MCC).

5.3 Results

In the first part, we present the genes ranking with kernel MMD score and

analysis the gene expression difference between different issue types. Then
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the top-ranked genes are reported and compared with those genes identified
by the conventional t-test and fold change methods. The third part shows
the results of GO and KEGG pathway analysis of the top-ranked genes. At
last, we choose the top ten genes of average ranking as marker genes and
identify the expression boundaries of these gene markers with information

gain theory.

5.3.1 Gene differential expression between different

tissue types

Table 5.1: Top ranking expressed genes between two type of issues

(NAT: Normal Adjacent Tumor)
Ranking Normal-NAT MMD scores  Normal-Tumor MMD scores NAT-Tumor MMD scores

1 LOC442459 81.56 LOC442459 300.89 RS1 67.06
2 DOM3Z 70.85 LOC100132831 293.86 C10orf67 58.85
3 LOC100132831 68.89 LOC401127 288.92 ODAM 57.90
4 LOC401127 67.45 PIN1P1 265.11 LOC100128164 57.16
5 CSNK1A1P1 67.02 CSNK1A1P1 264.75 SH3GL3 56.96
6 MKRN9P 66.54 WNT2B 248.53 JPH4 56.68
7 TPI1P2 65.14 LOC100287632 247.69 SGCG 56.56
8 CYP2D7P1 64.72 CSNK1A1L 247.45 GYPE 55.70
9 CSNK1A1L 63.69 LOC100507373 244.54 LOC643650 53.05
10 PIN1P1 62.24 AOC4 240.66 IHH 52.79

For the three mentioned datasets, kernel MMD values are calculated on
each two of them respectively to discover DEGs. For every single gene, we
calculate three MMD values from Normal-NAT, Normal-Tumor, and NAT-
Tumor groups. The MMD scores indicate the difference in expression levels
among three types of samples. The top 10 ranked genes in each group are
shown in Table As illustrated in the table, the top MMD scores in the
Normal-Tumor group are over 200, which are much higher than the other
two groups. The Normal-NAT group has comparable MMD scores with the
NAT-Tumor group. Gene expression level difference in the normal-tumor
group is much greater than the other two groups. More detailed information
is listed in Additional file 6.
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In addition, the NAT samples have different expression profiles from not
only tumor samples but also the real healthy samples. The NAT samples
are always considered healthy samples in state-of-art researches, and we test
the top 10 ranked genes selected by the NAT-Tumor group, Normal-Tumor
group, and their average ranking to explore the influence of regarding NAT as
real normal samples. The expression data of the top genes above are applied
to classify tumor samples from other samples via 10-fold cross-validation to
evaluate the effectiveness of selected genes. The results of the 10-fold cross-
validation are reported in Table [5.2]

Table 5.2: Cross-validation performance of top ten genes from
different groups (NAT: Normal Adjacent Tumor)
Group Recall F1 Accuracy MCC
Normal-Tumor 0.9857 0.9540 0.9476 0.8659
NAT-Tumor 0.9534 0.9670 0.9640 0.9279
Average 0.9885 0.9914 0.9907 0.9816

As shown in Table [5.2] the selected genes from each group can classify
tumor samples from other samples. However, the performance of the three
groups of genes varies greatly. When considering normal samples and NAT
samples together, the top average ranked genes have the best scores under all
metrics with an accuracy of 0.9907. The highest F1 score of 0.9914 implies
that these genes also have a better classification balance. The results show
that the real normal samples and NAT samples are not exactly the same.
Researchers should take both of them into consideration in cancer study

rather than simply replacing real normal samples with NAT samples.

5.3.2 Identify marker genes in cancer development

In this work, two conventional DEA methods t-test and fold change are
compared with our approach. T-test and fold change methods are both
applied to identify DEGs between different tissue types. The p-value of the
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t-test and fold change values are calculated to evaluate the gene expression
difference. Since the ability to detect tumor samples is more significant in
clinical application, the top 10 genes of average rankings from the Normal-
Tumor group and NAT-tumor group selected by the t-test and fold change
are compared with the genes selected by our method. Another 10-fold cross-
validation is conducted, and the results are reported in Table

Table 5.3: Cross-validation performance of top ten genes selected by
different DEA methods

Method Recall F1 Accuracy MCC
Fold Change 0.7044 0.7992 0.8048 0.6382
T-test 0.9796 0.9815 0.9794 0.9582

Kernel MMD 0.9885 0.9914 0.9907 0.9816

As shown in Table[5.3] the proposed kernel MMD method outperforms the
other two conventional methods under all metrics with the recall of 0.9885, F'1
score of 0.9914, the accuracy of 0.9907, and MCC of 0.9816. The fold change
method has the worst performance, and the selected genes by fold change
method are not efficient enough to classify tumors from other samples. The
t-test has a comparable result with the MMD method. Since the t-test and
fold change methods have been widely used, the kernel MMD method is
promising to improve the differential gene analysis efficiency in practical use.

From Table we can see there are some overlapping genes like
LOC442459, LOC100132831, LOC401127, CSNK1A1P1, CSNK1A1L, and
PIN1P1 in Normal-NAT group and Normal-Tumor group. These genes can
distinguish normal samples from not only NAT samples, but also tumor
samples. Inspired by the previous part, the average ranking of all groups
can identify more significant genes. Thus, the gene average ranking of the
three groups is calculated, and top genes of average ranking are chosen to
be potential marker genes to diagnose lung cancer. In Figure [5.2] expression
levels in normal, NAT, and tumor samples of the top 4 genes of average

ranking are presented. From the figure, the four genes exactly have distinct
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expression levels in different types of tissues.
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e f s { T

Figure 5.2: Box-plot of gene expression levels in three tissue

types.The X-axis is the FPKM expression level; the Y-axis is the tissue
type.

5.3.3 GO and KEGG pathway enrichment

From the average ranking gene list, we choose the top 100 genes to conduct
the GO and KEGG pathway enrichment analysis. In the GO enrichment
analysis, we select ‘Biology Process’ as the enrichment target, and there are
12 GO terms with p-value < 1.0e-04 and count > 5. As shown in Table [5.4]
the top two terms, ‘GO:0051480’ and ‘GO:0007204’, are both related to the
regulation factors of cytosolic calcium ion concentration while term No.5 and
No.6 are also involved in cellular calcium ion homeostasis. The influence of
calcium ion channels on lung cancer has been studied for a long time (Moody,
Murphy, Mahmoud & Fiskum 1987, Moody, Staley, Zia, Coy & Jensen 1992,
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Arbabian, Brouland, Apati, Paszty, Hegediis, Enyedi, Chomienne & Papp
2013), and the cellular calcium ion level change has been explored in lung
cancer development (Arbabian et al. 2013). It suggests that these genes

related to calcium ion regulations are significant in lung cancer.

Table 5.4: Go function analysis for the top ranking genes (p-value <

1.0e-04 and count > 5).
No. GOBPID p-Value Count  Term

1 GO:0051480 7.6032e-07 10 regulation of cytosolic calcium ion concentration

2 GO:0007204  3.0453e-06 9 positive regulation of cytosolic calcium ion concentration

3 G0O:0019229  4.4969¢-06 5 regulation of vasoconstriction

4 GO:0007200 6.6689e-06 6 phospholipase C-activating G-protein coupled receptor signaling pathway
5 GO:0006874  7.5060e-06 10 cellular calcium ion homeostasis

6 GO:0055074  9.4074e-06 10 calcium ion homeostasis

7 GO:0042310 1.4462e-05 5 vasoconstriction

8 GO:0072503 1.5632e-05 10 cellular divalent inorganic cation homeostasis

9 GO:0072507 2.1785e-05 10 divalent inorganic cation homeostasis

10 GO:0097756 2.3563e-05 5 negative regulation of blood vessel diameter

11 GO:0007189 6.5898e-05 5 adenylate cyclase-activating G-protein coupled receptor signaling pathway
12 GO:0019932 7.4403e-05 8 second-messenger-mediated signaling

The results of KEGG pathway enrichment analysis are illustrated in
Figure [5.3] There are 20 pathways with a p-value below 0.05 and count
number over 2. The adrenergic signaling pathway and the cGMP-PKG
signaling pathway are the most significant pathways. Currently, the role
of adrenergic signaling pathways plays in lung cancer development has
not been fully studied. However, the (-adrenergic signaling has been
found to be a possible novel cancer therapy in tumor cells (Schuller 2010).
Besides, some researches have made some explorations about that (Schuller
& Cekanova 2005). The second top significant pathway is the cGMP-PKG
signaling pathway, which mediates the action of cellular ion concentration
and sensitivity, influencing cell proliferation. The regulation relationship
between the cGMP-PKG signaling pathway and lung cancer has been studied
in (Wong, Bathina & Fiscus 2012). The results of GO and KEGG pathway
enrichment analysis show that the top gene selected by the MMD method is
indeed highly related to lung cancer.
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KEGG Pathway Enrichment Analysis

Adrenergic signaling in cardiomyocytes
cGMP-PKG signaling pathway

Salivary secretion
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Aldosterone synthesis and secretion
Endocrine and other factor-regulated calcium reabsorption
Phospholipase D signaling pathway
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Cortisol synthesis and secretion

Renin secretion

Bile secretion
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Arrhythmogenic right ventricular cardiomyopathy (ARVC)
Thyroid hormone synthesis
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Figure 5.3: KEGG pathway enrichment analysis for top ranking

genes.

5.3.4 Expression boundary identification

Although the conventional methods can detect the differential expressed
gene, they can only manually define the expression boundary when there
is a distinct expression level gap. After selecting lung cancer marker genes,
we identify the expression boundaries between normal, NAT, and tumor with
the mentioned information theory method. Here the top 10 genes in MMD
average ranking list are chosen as the lung cancer marker genes, and the
expression boundaries of them are illustrated in Table [5.5l The detailed

results are presented in Additional file 6.

As shown in Table 5, the ten gene markers have a distinct expression
range in normal, NAT, and tumor samples, which can be an indicator of
lung cancer development. Additionally, in practical clinic applications, the
boundary between tumor and other tissues is the most significant for disease
diagnosis. The boundary between normal samples and NAT samples also
implied that there would be some gene expression changes in the disease
development, and the NAT samples may serve to detect cell carcinogenesis,

which can help to understand the lung cancer mechanisms.
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Table 5.5: Expression boundary of lung cancer biomarkers (e : FPKM

expression level)

Gene Name Normal Normal Adjacent Tumor Tumor

ACTN2 e > 3.5247 0.7146 < e < 3.5247 e < 0.7146
MYL3 e > 5.3223 4.9211 < e < 5.3223 e <4.9211
AGPAT4 e > 4.3722 2.3052 < e < 4.3722 e < 2.3052
BEST1 e > 3.7487 1.6216 < e < 3.7487 e < 1.6216
TWIST2 e > 4.2450 1.2030 < e < 4.2450 e < 1.2030
LINC00472 e > 3.4721 0.8045 < e < 3.4721 e < 0.8045
MYOT7B e >4.1723 0.7450 < e < 4.1723 e < 0.7450
CCNF e < 16.4506 16.4506 < e < 20.5656 e > 20.5656
NECABI1 0.9961 < e < 4.7770 e > 4.7770 e < 0.9961
NOTCH4 e > 4.6829 1.9808 < e < 4.6829 e < 1.9808

5.4 Discussion

Since the early-diagnosis of lung cancer has been a long-term critical problem
in clinical practice, researchers have explored various types of biomarkers, like
genetic mutations, blood proteins. Here, this paper proposed a novel method
to identify genes markers for lung cancer. There are two main problems in
efficient gene markers identification: first, how to evaluate the gene expression
difference; second, how to find the reliable expression boundary between
tumor and other samples. The most existing DEA methods were built to
solve the first problem, but they can only give out a p-value to assess the
differential expressing gene without defining the expression boundary. The
motivation of this research is to address both of the problems in biomarker
identifications.

Although the gene markers are given out based on the existing lung cancer
dataset, we think there are two limitations to our work. First, a larger dataset
can help to obtain more accurate results. Second, a threshold of MMD value
to define the differentially expressed gene can be set with a large dataset,

while here we just take the top-ranked genes as potential marker genes.
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5.5 Summary

In this chapter, we proposed a more efficient method, kernel MMD to
evaluate the expression changes, and an information theory-based algorithm
to identify the gene expression boundary. This method addressed the
research question Q3 (see Section 1.2). The experiment results show
our method can select more significant genes than traditional methods and
give out the expression boundary of the marker gene. Through the GO
and KEGG pathway enrichment analysis, the function of marker genes in
lung cancer is studied, and these marker genes are indeed related to lung
cancer development. We will collect more gene expression data related to
lung cancer and calculate more accurate results in the future. Besides, we
will explore the application of our method of biomarker discovery for other

diseases.
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Conclusions and future work

6.1 Conclusions

In this thesis, three research problems are addressed, namely DNA N*-
methylcytosine site prediction, mRNA NS-methyladenosine site prediction,
and lung cancer gene markers identification. The proposed computational
methods for the three problems are discussed in Chapter2-5 and have
been represented in my three published journal papers (see the list of
Publications). Chapter 3 describes the method to predict the 4mC site in
the DNA sequence, and Chapter 4 presents the technique designed to predict
mSA site in imbalanced mRNA situations. Chapter 5 introduce the novel
gene marker identification method with kernel statistics and information
theory. The work, motivation, and contributions of this thesis are concluded

below:

In Chapter 3, a novel method is developed for accurate prediction of
DNA N“-methylcytosine site via a boost-learning of various types of sequence
features. This method has advantages over the existing methods. Firstly, the
adjacent nucleotide patterns are discovered in the sequence logos, which is
important for the feature representation. Secondly, three sequence features,
such as k-nucleotide frequency, k-spectrum nucleotide pair frequency, and

PseDNC, are employed to extract the local contiguous nucleotides sequence

79



Chapter 6. Conclusions and future work

characteristics. Together with two global features, the mentioned features are
integrated into a 292-dimensional feature space. Lastly, an embedding feature
selection scheme based on the XGBoost machine is applied before training
the SVM prediction model. Compared with the existing F-score scheme, the
embedding feature selection is more meaningful. The optimizations of the
feature space and feature selection scheme solve the problems of the existing
methods. The independent test, 10-fold cross-validation, and two case studies

all confirm the reliability and accuracy of the proposed method.

Chapter 4 presents an imbalance learning method named HMPre to
identify mSA site in human mRNA. This method improves the model
computation performance in several aspects. Rather than represent the
sequence only with text feature, this method utilizes three novel biological
features: site location, information entropy gain, and SNP variants. Compared
with the existing methods, these biological features are from the latest
research and proposed for m®A prediction the first time. In the feature
construction process, a feature selection algorithm combining Fisher exact
test and MRMR approach is built to select significant SNP positions,
improve feature efficiency, and reduce noise from feature space. The existing
prediction methods are all trained on balanced data to avoid over-fitting
on negative samples, t, where the negative samples are selected randomly.
However, the proposed method with a weighted XGBoost machine learns
from the imbalance dataset containing all negative data, which is more
similar to the practical situations. In the model evaluation, four metrics
are adopted, such as precision, recall, F1, and MCC. The comparison with
three existing methods in an independent test dataset and two case studies

reveal the correctness and robustness of the HMPre method.

The problem of gene marker identification is addressed in Chapter 5.
This part solves two main problems in gene marker identification: select
differential expressing marker genes, and identify the expression range of
marker genes. The innovations of this work lie in: (1) Since the traditional

research considered the norm tissue adjacent to the tumor as the control
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group, true normal tissue is introduced in the lung cancer biomarker
research for the first time. The tissues are divided into three types: true
normal, normal adjacent to tumor (NAT), and tumor tissue. (2) Unlike
the existing DEA methods with specific statistic hypothesis, this method
proposes to apply a more general kernel approach to evaluate the distribution
difference. The kernel MMD calculates the maxi-mum mean discrepancy
score without presupposing of data distribution, indicating the degree of
differential expression. (3) This method presents a gene expression boundary
detection algorithm based on information theory, which solves the boundary
identification problem when there is no distinct gene expression gap between
groups. Compared with the traditional DEA method, the kernel MMD
method has better efficiency, and results from KEGG and GO enrichment
shows the select marker genes are meaningful. The expression boundaries

detected by the method can be applied in the early diagnosis of lung cancer.

6.2 Future work

This decade has witnessed the fast development of computational biology
and bioinformatics. The rapid progress of information technology promotes
research on epigenetic modification and gene expression significantly. However,
there are still many issues to be addressed in these fields. The NGS
technologies have accelerated the application of machine learning techniques
in genomics studies, and the developed biological tools should aim at practical
situations. Under this background and trend, our future work will focus on

the following problems.

e Sequence feature space optimization
Currently, the computational epigenetic modification site identification
methods are mainly based on base segments in DNA or RNA sequence.
In the existing methods, the target site is in the central position, and
a fixed-length flanking window is taken out as the input of machine

learning. However, there are several aspects to be considered in
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the future: (1). The length of the sequence fragment should be
evaluated before the model construction. The modifications have the
specific binding site of methylation enzymes near the modified site,
and the flanking window should contain these binding sites. (2)
In Chapter 4, the proposed biological features immensely improve
performance. In future work, more biological characteristics of the
epigenetic modifications can be employed. For example, the SNP
variants can be used in the prediction of the 4mC site. The diversity
of sequence features can extract the pattern more accurately. (3)
The feature selection scheme is an efficient way to reduce the feature
dimension and improve model performance. For the classification

problem, more schemes of feature selection should be explored.

e Data driven machine learning algorithm optimization
The machine learning-based prediction model in the existing method is
trained on the experiment validated datasets. However, there are still
several problems that are also widely existing in other bioinformatics
fields. First, the size of training data is limited in these tools. With
the development of relative technology, more data should be collected
to expand the benchmark datasets to improve model accuracy and
generalization ability. Second, the lack of reliable negative samples.
Since the positive samples in training data are validated from the wet-
lab experiment, the negative samples are usually randomly selected,
and reliable negative sample selection algorithms should be studied in
the future. Last, learning from unbalanced data. The positive samples
are much less than negative samples in practical situations, and the
data imbalance issue needs to be considered in the 4mC prediction

problem.

e Regulation mechanism mining for epigenetic modifications
In future work, we will mine the co-regulation relationship between

epigenetic modifications and other regulatory factors. Then, the
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molecular mechanism of disease development related to epigenetic
modifications can be studied. For example, since the dynamic
modification process requires proteins to binding to mRNA, miRNA
may work cooperatively with m6A to regulate an individual gene or
a cohort of genes that participate in similar processes. As the mGA
expression level in genes is applied, we can analyze the relationship
of m6A-related proteins and miRNA binding sites to verify the
results. With the m6A and miRNAs co-regulation pairs, we can build
m6A-gene-miRNA regulation networks for a certain disease. With
network analysis algorithms, we can mine more details about the
molecular mechanisms of post-transcript modifications that affect the

development of diseases and potential medicine targets for treatment.

Disease gene marker identification

The proposed identification method for the lung cancer gene marker
addresses the two fundamental problems: select marker genes and
define the expression range for marker genes. The gene markers are
given out based on the current gene expression profiles. In the future
work, we will focus on three folds to improve the method: First, a larger
dataset containing more expression profiles will be built to obtain more
accurate results; Second, a threshold of MMD value will be studied
for the differentially expressed genes, rather than just taking the top-
ranked genes as potential marker genes; Third, the selected marker
genes are validated with KEGG and GO pathway enrichment analysis,
and the identified gene marker should still be evaluated in the practical

situations, such as disease early-diagnosis and prognosis.
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Appendix A

Appendix: Methodology

foundation

A.1 Applied statistical methods

A.1.1 Information entropy

The information entropy is a basic quantity related to a random variable
to measure the uncertainty for an event with a probability distribution
(Shannon 1948, Borda 2011). In Chapter 4 and Chapter 5, the information
entropy is applied to represent the sequence feature and detect the expression
boundary of the marker gene.

For a given variable X with possible outcome =z, x5, ..., x,, the

information entropy of X is defined as:
E(X) ==Y fulog(fs) (A1)
i=1

where f,, is the frequency of z; in the outcome of variable X. In the
feature representation of Chapter 4, x; € (A,G,U,C), while in Chapter 5, x;
€ (groupl, group2) and the group refers to Normal, NAT or Tumor.
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A.1.2 Fisher’s exact test

Proposed by Ronald Fisher, fisher’s exact test is a statistical significance
test for the analysis of contingency tables (Fisher 1922, Agresti et al. 1992).
The test is applied to cope with a small number of observations, which are
usually presented with a 2*2 contingency table (Bower 2003). In Chapter 4,
fisher’s exact test is adopted to select the specific SNP positions, which helps

construct the novel feature.

Table A.1: The example of 2*2 contingency table

Groups category A | category B

Observation 1 a b

Observation 2 c d

The output of fisher’s exact test is p-value, indicating the significance of
the statistic deviation from the hyper geometric distribution. The example
of observed 2*2 contingency table is shown in Table and the p-value can

be calculated with the formula:

loddsratio, p_value] = stats. fisher_exact(|a, b], [c, d]) (A.2)

In the formula, the function stats.fisher_exact is from Python package
SciPy (vision 1.4.1). The output p_value is calculated with the default

settings.

A.2 Adopted machine learning algorithms

A.2.1 Support vector machine

A support vector machine is a supervised machine learning model with
associated learning algorithms, coping with classification, or regression
analysis. For a dataset containing n samples (z1,rs,...,x,), the label of

samples y; € 0,1. The SVM is optimized with the following formulation:

85



Chapter A. Appendix: Methodology foundation

Given a dataset with [ samples z; (x; € R",i € {1,2,...,1}) and their

labels y; (y; € {1,—1}), the SVM solves the following primal optimization
problem (Chang & Lin 2011):

. 1 n n n
min(la) = 130 S ek ) -0, (A3)
=1 j=1 7j=1
subject toZyiai =0,0<; <C (A.4)

i=1

where «; is the Lagrange multipliers, and C is the parameter to regulate
the support vector. K(xz;,z;) is the kernel fucntion and the Radial Basis
Function (RBF) kernel is used in Chapter 3 as the prediction model. The
RBF kernel is defined as:

1
kaF = exp (—; |z — xj/H2> (A.5)

Where 6 is the parameter to regulate the radial basis width, and it is

optimized by cross-validation in the thesis along with parameter C.

A.2.2 XGBoost

XGBoost (eXtreme Gradient Boosting) is a tree boosting algorithm, which
is an advanced implementation of gradient boosting algorithm developed
by Chen (Chen & Guestrin 2016). XGBoost has several advantages
over other machine learning classifiers: Firstly, there is a regularization
process, effectively preventing model over-fitting. Secondly, embedded
parallel processing allows faster-learning speed. Thirdly XGBoost is of
high flexibility, and users can define customized optimization objectives and
evaluation criteria.

In this thesis, XGBoost is used in Chapter 3 for feature importance
calculation, and in Chapter 4 for imbalance learning. In Chapter 3, we
use the default setting of XGBoost, and ‘auc’ is the learning metric. In

Chapter 4, XGBoost classifier learns from unbalanced training data with class
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weight, and ‘roc’ is taken as evaluation criteria. We implement the model
with a python package named xgboost (vision 0.6a2), which is available at
https://github.com/dmlc/xgboost.

A.3 Cross validation and evaluation metrics

A.3.1 Cross validation

In data mining, the model evaluation is an important process, and cross-
validation is one of the evaluation strategies. In this thesis, cross-validation is
employed in several situations of Chapter 3 and Chapter 4: 1.selected feature
subset evaluation; 2. model parameter optimization; 3. model performance
evaluation.

The cross-validation on existing data can estimate the model performance
and generalization ability on independent data. According to the fold number
n, it’s also named n-fold cross-validation, in which the data is divided into
n equal subgroups. In each round, n-1 subgroups are taken as the training
data, and the rest one is tested. After n rounds, each sample in the dataset
has a predicted label. Then the evaluation metrics are calculated with the

predicted label and original label for the whole dataset.

A.3.2 Performance evaluation metrics

The following evaluation indices are used to evaluate the performance of the

prediction /classification models:

TP

Sensitivity(Sn) = TP N * 100% (A.6)
TN
Speci ficity(Sp) = TN T FP x 100% (A.7)
TP
Precision = 7—'P—|——F1P x 100% (A8)
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TP
Recall = m—m X 100% (Ag)

2 x Preciston x Recall
Fl- = A.10
seore Precision + Recall ( )

TP +TN
A — 100 Al
ceuracy = rp TN+ Fp+FN ¢ 0% (A1)

VOO — TPxTN —-FPxFN (A12)

V(TP + FN)(TP+ FP)(TN + FN)(TN + FP)

Where TP and FP are the counts of correctly and falsely predicted
positive samples, respectively; TN and F'N are the counts of correctly and
falsely predicted negative samples, respectively. Except for the above metrics,
the AUC (area under the receiver operating characteristic curve) is used as
evaluation metrics as well. Sensitivity, Specificity, Precision, recall, accuracy,
F1-score, and MCC can be calculated using the above formulas. AUC can be
calculated with the ROC curve using scientific tool packages (e.g., scikit-learn
in Python).
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Appendix: List of
Supplementary files

The Additional file list and the corresponding download links

name chapter description link
Additional file 1 3 supplementary tables for chapter 3 download
Additional file 2 3 feature importance scores for Chapter 3 download
Additional file 3 3 case study results for Chapter 3 download
Additional file 4 4 human mature mRNA m®A data sets download
Additional file 5 4 supplementary materials for Chapter 4 download
Additional file 6 5 EDA and boundary results for Chapter 5 download
Additional file 7 5 boundary detection algorithm for Chapter 5 |download
Additional file 8 3 code and data for Chapter 3 open
Additional file 9 4 code and data for Chapter 4 open
Additional file 10 5 code and data for Chapter 5 open
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https://drive.google.com/open?id=1FhK1czWc_iEtgg6fw9uQPFJCJf8Q263p
https://drive.google.com/open?id=1Y73ix07kdmRXLsMUyh02XS1-mylUoTRj
https://drive.google.com/open?id=1UovyfZ5dyWC9guwtuedwtRox8YIttGPc
https://drive.google.com/open?id=1U5LKU8-JPHaT7wu6ps5UMkEqzYkombAW
https://drive.google.com/open?id=1YtPX_vwi7HhftHoUS39zCJVQsnuRWblR
https://drive.google.com/open?id=1A3jGvWWqKjyxijbQ1Iu8Tifd3zcM9dI4
https://drive.google.com/open?id=1jJt3yEGFaCzPBqijIGivdDv88HC_ScmO
https://github.com/Zhixun-Zhao/4mCPrediction
https://github.com/Zhixun-Zhao/HMpre
https://github.com/Zhixun-Zhao/GeneMarker

Appendix C

Appendix: List of Symbols

The following list is neither exhaustive nor exclusive, but may be helpful.

4mC' DNA N4-methylcytosine
OHB One hot binary encode
SNF Sequential nucleotide frequency
KNF K-nucleotide frequency
KSNPF K-spectrum nucleotide pair frequency
ROC Receiver operating characteristic curve
MccC Matthews correlation coefficient
ACC Accuracy
m6A N6-Methylation
MRMR Max-Relevance Min-Redundancy algorithm
SNP singe nucleotide polymorphism
PTM post-transcription modifications
NGS next generation sequence
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PCA

CPD

AUC

DEA

MMD

NAT

GO

KEGG

cv

SVM

RBF

Principal component analysis

chemical property with density feature

Area under the receiver operating characteristic curve
differentially expressed analysis

maximum mean discrepancy

normal adjacent to the tumor

Gene Ontology

Kyoto Encyclopedia of Genes and Genomes

Cross validation

Support vector machine

Radial basis function
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