

Development of Mixed Hardening Hyper-Viscoplastic Constitutive Models for Soils Incorporating Creep & Fabric Effects

by YE AUNG BEng (1st Class Hons with University Medal, UTS)

Thesis submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

under the supervision of A/Prof. Hadi Khabbaz & A/Prof. Behzad Fatahi

University of Technology Sydney Faculty of Engineering and Information Technology

December 2019

Certificate of Original Authorship

Graduate research students are required to make a declaration of original authorship when they submit the thesis for examination and in the final bound copies. Please note, the Research Training Program (RTP) statement is for all students. The Certificate of Original Authorship must be placed within the thesis, immediately after the thesis title page.

Required wording for the certificate of original authorship

CERTIFICATE OF ORIGINAL AUTHORSHIP
I, Ye Aung, declare that this thesis, is submitted in fulfilment of the requirements for the award of <i>Doctor of Philosophy</i> , in the <i>Faculty of Engineering and Information Technology</i> at the University of Technology Sydney.
This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.
This document has not been submitted for qualifications at any other academic institution. *If applicable, the above statement must be replaced with the collaborative doctoral degree statement (see below).
*If applicable, the Indigenous Cultural and Intellectual Property (ICIP) statement must be added (see below).
This research is supported by the Australian Government Research Training Program.
Signature: Production Note: Signature: Signature removed prior to publication.
Date: 06/12/2019

ABSTRACT

During the past several decades, the constitutive modelling for the prediction of timedependent behaviour of soft soils has attracted an increasing attention within the geotechnical research society due to the scarcity of appropriate types of soil for construction as the regions around the globe have struggled to keep up with the meteoric rise in the infrastructure developments to cater for the substantial growth in population. Therefore, the consideration of time- and rate-dependent behaviour of geomaterials, particularly soft soils, such as creep, strain-rate dependent effects and stress relaxation behaviour, becomes a fundamental concern towards the long-term settlement deformation behaviour.

In this study, a mixed hardening hyper-viscoplastic constitutive model and its extended model are developed for describing the time-dependent stress-strain evolution of soil deformation, with the additional consideration of the arrangement of particles and the interparticle bonding, prominent in deformation of natural soils. The proposed model is intended to capture the loading-rate or strain-rate dependent behaviour of soils, accounting for the variations in the fundamental shapes of the yield loci along with the kinematic hardening and non-associated flow behaviour, with the extended model supplementing the proposed one with a β -line defining the inclination of the non-symmetrical elliptical yield locus in the p'-q plane, along with the auxiliary rotational hardening effects to the kinematic hardening behaviour. The proposed models are formulated within the context of hyperplasticity framework, mainly due to the fact that the hyperplastic constitutive models obey the fundamental laws of thermodynamics, and the resulting approach provides a well-established structure and reduces the need for 'ad hoc' assumptions. The distinctive departure from the existing viscoplasticity

models is the application of thermodynamics, based upon the use of internal variables, to postulate free-energy and dissipation potential functions, from which the elasticity law, the yield condition and corresponding flow behaviour, the isotropic and kinematic hardening laws, are derived based on a standardised systematic procedure. Firstly, the proposed model is presented, in which the free-energy function is decomposed into the elastic and the viscoplastic components, incorporating the dependence on both volumetric and deviatoric viscoplastic strains, and the viscoplastic dissipation potential function accounting for both the instantaneous energy dissipation and the additional energy dissipation due to delayed deformation. The additional viscoplastic component of the free-energy function results in the modified shift stress, to describe the kinematic hardening behaviour of the yield locus. Besides, a non-linear creep formulation is postulated to address the limitation of over-estimating long-term settlement, which is incorporated into the proposed model. Being introduced as a rational and logical extension towards the proposed model, the extended model enhances the free-energy and dissipation potential functions, in which not only the additional viscoplastic free-energy function depends on both volumetric and deviatoric viscoplastic strains, but also the fabric coupling parameter is incorporated into the free-energy and dissipation potential functions. Accordingly, the constitutive relations of the solid soil skeleton are expressed from the perspective of hyperplasticity framework in order to capture a wide variety of viscous behaviour of soils, with the emphasis on the strain-softening or hardening behaviour during the time-dependent delayed deformation in soils. The proposed model and the extended model only require minimal number of material parameters, which can readily be determined using standard laboratory testing equipment.

The performance and applicability of the proposed and extended models are investigated and validated using the triaxial and oedometer experimental results available in the existing literature. Comparisons between the numerical results and the laboratory measurements are

conducted to demonstrate the versatility and capability of the proposed model in reproducing the rate-dependent behaviour of natural soft soils subjected to a variety of loading conditions. Due to the advantages of strong theoretical foundation with rigorous, yet compact and consistent procedure, with a relatively small number of required model parameters, the proposed and extended models have been signified as ideal for the numerical implementations to predict the time-dependent behaviour of soft soils, including long-term settlement behaviour in geotechnical structures.

ACKNOWLEDGEMENTS

The road to the completion of my PhD journey has been mostly enjoyable and challenging, yet frustrating at times. At the jubilation end of this successful completion, I am delighted to look back over the journey and remember the support and encouragement that I have received from my family, friends, and colleagues throughout this lengthy, yet satisfying journey. I would like to take this opportunity to express my sincere gratitude towards everyone, who have helped this thesis come to fruition.

First and foremost, I would like to pay my deepest homage to my principal supervisor, Associate Professor Hadi Khabbaz, and my co-supervisor, Associate Professor Behzad Fatahi, for their continued support, and guidance on not only the research but also the other developments in my life. Under their patience and guidance, I have developed and accumulated many important skills, including technical and interpersonal, from their broad knowledge, ideas, advice and suggestions have inspired and motivated me in achieving the important objectives of my research as well as the major milestones in my life.

Secondly, my appreciation is likewise extended to Dr Lam Nguyen, along with my colleagues and other staff members in the UTS laboratory for their kind assistance and contribution at the commencement of my research project in finding the soil properties and the feasibility of conducting creep tests in the laboratory.

This research has been carried out in the School of Civil and Environmental Engineering Faculty within University of Technology, Sydney, with the support from the International Postgraduate Research Scholarship (IPRS) and the Australian Postgraduate Award (APA) by the Australian Government for three and a half years. All the support from the Faculty and University throughout my study are also gratefully appreciated and acknowledged. Moreover, I would like to thank my friends and colleagues, particularly from my geotechnical group, not only for their help but also for keeping my study life more enjoyable and pleasant.

Last, but not least, I am hugely indebted to my family for their unconditional love, moral support and encouragement throughout this arduous journey. I am deeply grateful towards my parents in always showing the faith and allowing me to study and follow my lifelong pursuit and ambition to achieve this major milestone of my life. Additionally, for my loving, caring and supportive partner, I would like to express much appreciation for her love and mental support throughout my PhD journey.

LIST OF PUBLICATIONS

- Aung, Y., Khabbaz, H. & Fatahi, B. 2019, 'Mixed Hardening Hyper-viscoplasticity Model for Soils Incorporating Nonlinear Creep Rate – H-Creep Model', *International Journal of Plasticity*, vol. 120, pp. 88-114.
- Aung, Y., Khabbaz, H. & Fatahi, B. 2019, 'Extended Mixed Hardening Hyperviscoplasticity Model for Soft Soils Incorporating Soil Fabric', International Journal of Plasticity (Submitted).
- Aung, Y., Khabbaz, H. & Fatahi, B. 2016, 'Review on Thermo-mechanical Approach in the Modelling of Geo-materials Incorporating Non-Associated Flow Rules', 3rd International Conference on Transportation Geotechnics, Procedia Engineering, vol. 143, pp. 331-338.
- Aung, Y., Khabbaz, H. & Fatahi, B. 2016, 'Review on Thermo-mechanical Approach in the Modelling of Geo-materials Incorporating Non-Associated Flow Rules', 3rd International Conference on Transportation Geotechnics (3rd ICTG), 4-7 September, Guimarães, Portugal.
- Aung, Y., Khabbaz, H. & Fatahi, B. 2020, 'A Generalised Hyper-viscoplasticity framework for Developing Rate-dependent Plasticity Models', 4th International Conference on Transportation Geotechnics (4th ICTG), 30 August – 2 September, Chicago, Illinois (Accepted).

Table of Contents

ABST	RAC	Τ	II
CERT	IFIC	ATE OF ORIGINAL AUTHORSHIP	V
ACKN	IOW	LEDGEMENTS	VI
СНАР	TER	1 INTRODUCTION	1
1.1	Ba	ckground	2
1.2	Pro	bblem Statement	5
1.3	Re	search Objectives and Scope	8
1.4	Or	ganisation of Thesis Structure	10
СНАР	TER	2 LITERATURE REVIEW	13
2.1	Int	roduction	14
2.2	Re	al Soil Behaviour	14
2.3	Tiı	ne-dependent Behaviour of Soils	15
2.	3.1	Creep	16
2	3.2	Stages of Creep Process	16
2.	3.3	Strain Rate Effects	17
2.	3.4	Stress Effects	22
2	3.5	Stress Relaxation	23
2	3.6	Consolidation and Creep – Hypotheses A and B	25
2.4	Mo	odelling Time-dependent Behaviour of Soils	
2.4	4.1	Empirical Soil Models	29
2.4	4.2	Rheological Models	
2.5	Co	nstitutive Models for Soil Behaviour	40
2.:	5.1	Classical Constitutive Soil Models	42
2.:	5.2	Advanced Constitutive Soil Models	43
2.:	5.3	Comparisons of Advanced Constitutive Soil Models	60
2.6	Su	mmary and Findings	61
СНАР	TER	3 RATE-INDEPENDENT AND RATE-DEPENDENT	
HYPE	RPL	ASTICITY THEORY	63
3.1	Int	roduction	64
3.2	Ba	sics of Hyperplasticity Theory	64
3.2	2.1	Laws of Thermodynamics	65

8.3 Rate-independent Hyperplasticity Framework	67
8.4 Rate-dependent Hyperplasticity Framework	78
B.5 Comparisons between Rate-independent and Rate-dependent Hyperplastic Formulation	84
IAPTER 4 DEVELOPMENT OF MIXED HARDENING HYPER- SCOPLASTICITY MODELS FOR SOFT SOILS - H-CREEP MODEL & TENDED MODEL	87
1 Introduction	
4.2 Formulation - Proposed Mixed Hardening Hyper-viscoplasticity Model for Soils	90
4.2.1 Theoretical Background	90
4.2.2 Elastic Free-Energy Function	95
4.2.3 Viscoplastic Free-Energy Function – Kinematic Hardening Law	97
4.2.4 Proposed Viscoplastic Dissipation Function	100
4.2.5 Force and Flow Potential Functions	103
4.2.6 Non-Associated Viscoplastic Flow Rule	110
A.3 Non-Linear Creep Formulation	111
4.4 Extended Mixed Hardening Hyper-viscoplasticity Model for Soft Soils neorporating Soil Fabric	113
4.4.1 Theoretical Background	113
4.4.2 Theoretical Formulation and Elasticity Law	118
4.4.3 Extended Viscoplastic Free-Energy Function	118
4.4.4 Extended Viscoplastic Dissipation Potential Function	122
4.4.5 Extended Force and Flow Potential Functions	124
4.4.6 Extended Non-Associated Viscoplastic Flow Rule	129
4.4.7 Compliance with Critical State Concept	130
4.5 Principle of Hyper-viscoplasticity Model	132
4.6 Findings and Observations	134
IAPTER 5 VALIDATIONS AND APPLICATIONS OF PROPOSED HYPER-	
SCOPLASTICITY MODELS	138
5.1 Introduction	139
5.2 Summary and Determination of Model Parameters	141
5.3 Application of the Proposed H-Creep Model to Stress-controlled and Strain- controlled Compression and Extension Tests	146
5.3.1 Stress-controlled Undrained Compression Tests on HKMD Clay	147

5.3.2	Strain-controlled Drained Compression Tests on HKMD Clay	149
5.3.3	Strain-controlled Undrained Compression Tests on Osaka Clay	152
5.3.4 variou	Strain-controlled Consolidated Undrained Triaxial Compression Tests using as OCRs on Kaolin and Bentonite mixture	g 154
5.4 A Using V	application of the Proposed H-Creep Model to Undrained Triaxial Shearing Tex arious Strain Rates	sts 157
5.4.1 Clay	Undrained Triaxial Shearing Tests Using Various Strain Rates on Haney	158
5.4.2 Clay.	Undrained Triaxial Shearing Tests at Various Strain Rates on HKMD	159
5.5 A with Stre	Application of the Proposed H-Creep Model to Undrained Triaxial Shearing Teases-Relaxation and Constant Rate of Strain	sts 161
5.5.1 Clay	Undrained Triaxial Shearing Tests using Step-changed Strain Rates on HK	MD 162
5.6 A Tests	application of the Extended Model to Strain-controlled Undrained Triaxial	165
5.6.1 Clay	Strain-controlled Undrained Triaxial Tests on Soft Wenzhou Marine	166
5.6.2 Clay.	Strain-controlled Undrained Triaxial Loading Tests on Shanghai Soft	172
5.7 A Step-cha	application of the Extended Model to Undrained Triaxial Shearing Tests Using anged Strain Rates	175
5.7.1	<i>K</i> ₀ -consolidated Undrained Triaxial Shearing Tests on HKMD Clay	176
5.8 S	ummary and Observations	184
СНАРТЕ	R 6 CONCLUSIONS AND RECOMMENDATIONS	187
6.1 S	ummary	188
6.2 C	Conclusions	191
6.3 R	ecommendations for Future Studies	196
REFERE	NCES	198
APPEND	ICES	216
Appendi Dissipat	ix A: Relationship between Non-Associated Flow Rule and Stress-dependent ion Potential Function	216
Append	ix B: Derivation of Non-Associated Flow Rule for proposed H-Creep Model	219
Append	ix C: Derivation of Non-Associated Flow Rule for extended Model	221
Append	ix D: Non-Associated Flow Rule using Parametric Representation	223

Appendix E: Sample MATLAB Codes for the Application of Proposed Hyper-viscopla Constitutive Models	stic 225
E.1 MATLAB Code for Strain-controlled Undrained Compression Tests on Osaka Clay	225
E.2 MATLAB Code for Stress-controlled Undrained Compression Tests on HKMD Clay	231
E.3 MATLAB Code for Strain-controlled Drained Compression Tests on HKMD Clay	237
E.4 MATLAB Code for Undrained Triaxial Shearing Tests using Various Constant Strain Rates on Haney Clay	243
E.5 MATLAB Code for Strain-controlled Undrained Compression Tests using Variou OCRs on Kaolin and Bentonite Mixture	ıs 249
E.6 MATLAB Code for Strain-controlled Undrained Triaxial Loading Tests on Shanghai Soft Clay	255

LIST OF FIGURES

Figure 1.1: Requirements for construction in inappropriate ground profiles (Soil Stabilization S	ystem,
viewed 22 November 2019, < https://allustabilization.wordpress.com/>)	2
Figure 1.2: Long-term settlement issues highlighting the importance of modelling rate-dependence	lent
behaviour of soils (What Exactly Causes Foundation Settlement?, viewed 23 November 2019,	<
https://www.therealseallic.com/what-exactly-causes-foundation-settlement>)	9
Figure 2.1: Creen test performed at a low stress level: (a) Stress-strain relationship: (b) stress	history
(a) strain history (after Wood, 1000)	15t0ry,
Figure 2.2: Creep stages for a creep test performed by a triaxial apparatus: (a) Strain versus tir	ne; (b)
log strain rate versus log time (after Augustesen et al. 2004)	17
Figure 2.3: Constant rate of strain (CRS) tests: (a) Strain history, and (b) stress-strain response	(after
Augustesen et al. 2004)	18
Figure 2.4: The results of the constant rate of strain tests on Batiscan clay (after Leroueil et al.	, 1985) 19
Figure 2.5: Stress-strain behaviour of Saint-Jean-Vianny Clay in undrained constant rate of stra	ain
tests (after Vaid et al., 1979)	20
Figure 2.6: (a) Drained stress-strain curves for different constant rate of strain tests (qA , qB , q	<i>jc</i> are
peak strengths), (b) Strain rate effects on yield surface (after Augustesen et. Al, 2004)	20
Figure 2.7: Ranges of strain rates in the in-situ state and laboratory tests (after Leroueil, 2006)	21
Figure 2.8: Special constant rate of strain oedometer tests on Batiscan clay (after Leroueil et a	l
1985)	22
Figure 2.9: (a) Types of compression curves dependent on the stress level (after Leroueil et al.	,
1985); (b) the corresponding strain rate (after Augustesen et al., 2004)	23
Figure 2.10: Stress relaxation test $(A \rightarrow B)$: (a) Stress-Strain relationship; (b) strain history; (c) st	ress
history (after Wood, 1990)	24
Figure 2.11: Stress relaxation: (a) Stress-strain diagram for three different relaxation tests: (b)	stress
decay versus log time for the stress relaxation tests (after Augustesen et al. 2004)	25
Figure 2.12: Void ratio versus time for thick and thin samples using Hypothesis A (after Le et a	1
ngule 2.12. Volu ratio versus time for thick and thin samples using hypothesis A (after Le et a	ı. Эс
2015)	
Figure 2.13: Void ratio versus time for thick and thin samples using Hypothesis B (after Le et a	1. 2015)
	26
Figure 2.14: Void ratio versus effective stress at the end of primary consolidation (after Jamiol	kowski
et al., 1985)	28
Figure 2.15: Classification of Time-dependent soil models (after Liingaard et al., 2004)	29
Figure 2.16: Definition of instant compression and delayed compression compared to primary	and
secondary compression (after Bjerrum, 1967): (a) the change in effective stress; and (b) comp	ression
versus time	34
Figure 2.17: Bjerrum's Time-line system (after Bjerrum, 1967)	35
Figure 2.18: Rheological Models: a) Maxwell model: b) Kelvin-Voigt model: and c) Bingham mo	odel 37
Figure 2.19: Rheological models proposed by Barden: (a) Barden's proposed non-linear model	and
(b) Barden's simplified model (after Barden, 1965) (Note: N and L denote non-linear and linear	r
respectively)	', 20
Tespectivery)	38
Figure 2.20: kneological woodel proposed by kajot (1992) (after Perrone, 1998)	39

Figure 2.21: Schematic representation of typical rheological elements: a. Hookean linear spring; b.
Viscous dashpot; and c. Plastic slider (after Liingaard et al, 2004)
Figure 2.22: (a) Yield Locus of Modified Cam-clay model; (b) Critical State Soil Mechanics
(Likitlersuang, 2006)
Figure 2.23: Place of constitutive laws and physical principles in continuum mechanics (after Desai
and Siriwardane, 1984) 44
Figure 2.24: Schematic representation of the Principles of Bounding Surface Plasticity (after Dafalias
and Herrmann, 1982) 46
Figure 2.25: Schematic representation of the Principles of Kinematic Yield Surface Plasticity (after
Mroz, 1967 and Iwan, 1967)
Figure 2.26: Schematic representation of the Overstress-type EVP Models (after Perzyna, 1963) 51
Figure 2.27: Schematic representation of the NSFS-type EVP Models (after Olszak and Perzyna, 1966)
Figure 3.1: (i) One-dimensional rheological model representing stored and dissipated plastic work;
(ii) total stress-strain response; (iii) total stress-plastic strain response (after Collins, 2005)
Figure 3.2: Schematic representation of the decomposition of the true stress into shift stress and
dissipative stress components76
Figure 3.3: Flow Chart illustrating the steps in constructing the Incremental Form of the
Elastic/Plastic Constitutive Law for the Development of Rate-independent Hyperplasticity Models 77
Figure 3.4: Flow Chart illustrating the steps in constructing the Incremental Form of the
Elastic/Plastic Constitutive Law for the Development of Rate-dependent Hyperplasticity Models 84
Figure 3.5: Flow Chart highlighting the Similarities and Differences between Rate-independent and
Rate-dependent Formulations for the Development of Hyperplasticity Models
Figure 4.1: Changes in the Shapes of Critical Surface in $p'-q$ space, corresponding to the values of
(a) γ and (b) α varying over the range 1.0 to 0.1
Figure 4.2: Transformation of critical surface from (a) dissipative stress space to (b) true stress space
Figure 4.3: Changes in the Shapes of Critical Surface in $pD - qD$ space, corresponding to the values
of γ and α varying over the range 1.0 to 0.1 (Using $\beta = tan 30^{\circ}$)
Figure 4.4: Changes in the Shapes of Critical Surface in $pD - qD$ space, corresponding to the values
of γ and α varying over the range 1.0 to 0.1 (Using $\beta = 0$)
Figure 4.5: The effects of varying creep coefficient on the stress-strain behaviour using undrained
triaxial test results on Haney clay 133
Figure 4.6: Schematic representation of the behaviour of the Hyper-viscoplasticity model in $p^\prime-q$
space
Figure 4.7: Definition of the parametric angle ω
Figure 5.1: Comparison between the measured and predicted results for consolidated undrained
shear test at a constant deviatoric stress rate on HKMD clay: (a) deviatoric stress q versus axial strain
εa ; and (b) effective stress paths
Figure 5.2: Comparison between the measured and predicted results for two consolidated drained
shear tests on HKMD clay: (a) deviatoric stress q versus axial strain $arepsilon a$; (b) volume strain $arepsilon v$ versus
axial strain εa and (c) effective stress paths
Figure 5.3: Comparison between the measured and predicted results for undrained triaxial tests on
Osaka clay (Data from Adachi et al., 1995): (a) deviatoric stress q versus axial strain $arepsilon a$; and (b)
effective stress paths

Figure 5.4: Comparisons between the measured and predicted consolidated undrained triaxial test results on a mixture of kaolin and bentonite: (a) deviatoric stress q versus axial strain εa ; (b) Figure 5.5: Comparison between the measured and predicted results for the relationship between Figure 5.6: Comparison between the measured and predicted results for constant strain rate triaxial shearing tests on the HKMD under compression and extension tests: (a) normalised deviatoric stress Figure 5.7: Comparison between the measured and predicted results for undrained triaxial tests for step-changed axial strain rate combined with stress relaxation on HKMD clay: (a) deviatoric stress qversus axial strain εa ; (b) effective stress paths; and (c) axial strain εa versus pore-water pressure Figure 5.8: Comparison between the measured and predicted results for K0-consolidated undrained triaxial CRS tests at an effective pressure of 75.4 kPa on soft Wenzhou Marine clay in extension: (a) Figure 5.9: Comparison between the measured and predicted results for K0-consolidated undrained triaxial CRS tests at an effective pressure of 150 kPa on soft Wenzhou Marine clay in compression: Figure 5.10: Comparison between the measured and predicted results for K0-consolidated undrained triaxial CRS tests at an effective pressure of 150 kPa on soft Wenzhou Marine clay in Figure 5.11: Comparison between the measured and predicted results for K0-consolidated undrained triaxial CRS tests at an effective pressure of 300 kPa on soft Wenzhou Marine clay in Figure 5.12: Comparison between the measured and predicted results for K0-consolidated undrained triaxial CRS tests at an effective pressure of 300 kPa on soft Wenzhou Marine clay in Figure 5.13: Comparison between the measured and predicted results for K0-consolidated undrained triaxial compression tests on Shanghai soft clay: (a) effective stress paths; and (b) Figure 5.14: Comparison between the measured and predicted results for K0-consolidated stepchanged axial strain compression test with unloading/reloading at effective pressure of 50kPa on HKMD clay: (a) deviatoric stress q versus axial strain εa ; (b) axial strain εa versus pore-water Figure 5.15: Comparison between the measured and predicted results for K0-consolidated stepchanged axial strain compression test with unloading/reloading at effective pressure of 150kPa on HKMD clay: (a) deviatoric stress q versus axial strain εa_i ; (b) axial strain εa versus pore-water Figure 5.16: Comparison between the measured and predicted results for K0-consolidated stepchanged axial strain compression test with unloading/reloading at effective pressure of 400kPa on HKMD clay: (a) deviatoric stress q versus axial strain εa ; (b) axial strain εa versus pore-water Figure 5.17: Comparison between the measured and predicted results for K0-consolidated stepchanged axial strain extension test with unloading/reloading at effective pressure of 50kPa on HKMD clay: (a) deviatoric stress q versus axial strain εa ; (b) axial strain εa versus pore-water pressure u 181

Figure 5.18: Comparison between the measured and predicted results for KO-consolidated step-	
changed axial strain extension test with unloading/reloading at effective pressure of 150kPa on	
HKMD clay: (a) deviatoric stress q versus axial strain εa ; (b) axial strain εa versus pore-water	
pressure <i>u</i>	182
Figure 5.19: Comparison between the measured and predicted results for KO-consolidated step-	
changed axial strain extension test with unloading/reloading at effective pressure of 400kPa on	
HKMD clay: (a) deviatoric stress q versus axial strain εa ; (b) axial strain εa versus pore-water	
pressure <i>u</i>	183

LIST OF TABLES

Table 2.1: Four possible forms of the free-energy potential function	57
Table 3.1: Summary of Derivations for Rate-independent Hyperplasticity Framework	73
Table 3.2: Summary of Derivations for Rate-independent Hyperplasticity Framework (Using
Triaxial Notation)	74
Table 3.3: Basic Formulations for Rate-independent Hyperplasticity Framework	75
Table 3.4: Basic Formulations for Rate-dependent Hyperplasticity Framework	83
Table 3.5: Comparisons between Rate-independent and Rate-dependent Formulations for	or the
Development of Hyperplasticity Models	85
Table 5.1: Values of Model Parameters for HKMD Clay, Osaka Clay and Kaolin and	
Bentonite Clay Mixture	146
Table 5.2: Values of Model Parameters for Haney Clay and HKMD Clay	157
Table 5.3: Test Procedure for Step-changed Triaxial Shearing Test with Constant Strain	Rate
and Stress Relaxation on HKMD Clay	162
Table 5.4: Values of Model parameters for Soft Wenzhou Marine Clay and Shanghai So	oft
Clay	165
Table 5.5: Experimental Conditions for Undrained Triaxial Loading Tests on Shanghai	Soft
Clay	173
Table 5.6: Values of Model Parameters for K0-consolidated HKMD Clay	176

Nomenclature & Abbreviations

Latin Notations

А, В	functions for stress-like quantities
$C_{\alpha e}$	secondary compression coefficient
C_{eta}	material constant controlling the extent of coupling
C _r C _c	swelling index compressive index
D_{eta}	relative contribution from the volumetric and deviatoric viscoplastic strains in determining the extent of coupling
$C_{v}(\eta)$	volumetric target value for β
$C_q(\eta)$	deviatoric target value for β
e_0	initial void ratio
е	void ratio
e_R	reference void ratio
Δe	change in void ratio
F	overstress function
G	elastic shear modulus
G_0	initial elastic shear modulus
g	elastic shear modulus gradient

J	cross-coupling elastic modulus
Κ	elastic bulk modulus
k	elastic bulk modulus gradient
М	slope of the critical state line
	power value (material constant) representing the slope of the
т	$\log \mu - \log e$ curve
n	power order (dimensionless material constant)
p	effective stress
ṗ	change in effective stress
p_R	reference mean stress
p_0	effective stress at initial state (or reference time)
p_c	pre-consolidation pressure
\dot{p}_c	change in pre-consolidation pressure
p_{c0}	initial pre-consolidation pressure
p_s	volumetric shift stress
p_D	volumetric dissipative stress
Q	viscoplastic potential function
q	deviatoric stress
ġ	change in deviatoric stress
q_s	deviatoric shift stress
t_R	reference time (or absolute equivalent time)
V	specific volume
W_L	liquid limit
W_P	plastic limit
W	flow potential function
Ζ	force potential function

Greek Notations

δ_{ij}	Kronecker's delta
α	material constant linking to the amount of deviatoric dissipation
β	cross-coupling between volumetric and deviatoric dissipation
\mathcal{E}_1	strain in axial direction
\mathcal{E}_3	strain in radial direction
ε_{ij}	total strain tensor
\mathcal{E}_{v}	total volumetric strain

\mathcal{E}_q	total shear strain	
$\dot{\varepsilon}_v$	total volumetric strain increment	
$\dot{\varepsilon}_q$	total shear (or deviatoric) strain increment	
ε^{e}_{ij}	elastic strain tensor	
ε_v^e	elastic volumetric strain	
ε_q^e	elastic shear strain	
$\dot{\varepsilon}_v^e$	elastic volumetric strain increment	
$\dot{arepsilon}^e_q$	elastic shear strain increment	
ε^p_{ij}	plastic strain tensor	
ε_{ij}^{vp}	viscoplastic strain tensor	
ε_v^{vp}	viscoplastic volumetric strain	
ε_q^{vp}	viscoplastic shear (or deviatoric) strain	
$\dot{\varepsilon}_v^{vp}$	viscoplastic volumetric strain increment	
$\dot{\varepsilon}_{q}^{vp}$	viscoplastic shear (or deviatoric) strain increment	
γ	material constant linking to the amount of stored plastic work	
κ^{*}	slope of swelling line in $\ln v - \ln p$ plot	
λ^*	slope of normal consolidation line in $\ln v - \ln p$ plot	
η	stress ratio	
μ	creep coefficient	
μ_0	initial creep coefficient	
Q	Thermodynamics-based overstress function (in true stress	
	space)	
Q _D	I hermodynamics-based overstress function (in dissipative	
	effective stress at a reference time	
σ_0	effective stress in avial direction	
σ_1	effective stress in radial direction	
03 1/	Poisson's ratio	
δΦ	dissination increment function	
Ψ^{g}	Gibbs free-energy function	
Ψ^g_{e}	Elastic Component of Gibbs free-energy function	
Ψ_{nn}^{g}	Viscoplastic Component of Gibbs free-energy function	
Ψ	the differential of the free-energy function	
ψ	viscosity function	
$\bar{\chi}'_{ij}$	generalised stress tensor	
X'ii	dissipative stress tensor	
χ_{ij} χ'_{ii}	generalised stress tensor dissipative stress tensor	

Common Acronyms

CRS	Constant Rate of Strain

CSL	Critical State Line
EVP	Elastic-viscoplastic
MCC	Modified Cam-clay
OCR	Over-consolidation Ratio
UTC	Undrained Triaxial Compression (UTC)
UTE	Undrained Triaxial Extension