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ABSTRACT 

During the past several decades, the constitutive modelling for the prediction of time-

dependent behaviour of soft soils has attracted an increasing attention within the geotechnical 

research society due to the scarcity of appropriate types of soil for construction as the regions 

around the globe have struggled to keep up with the meteoric rise in the infrastructure 

developments to cater for the substantial growth in population. Therefore, the consideration of 

time- and rate-dependent behaviour of geomaterials, particularly soft soils, such as creep, 

strain-rate dependent effects and stress relaxation behaviour, becomes a fundamental concern 

towards the long-term settlement deformation behaviour.  

In this study, a mixed hardening hyper-viscoplastic constitutive model and its extended model 

are developed for describing the time-dependent stress-strain evolution of soil deformation, 

with the additional consideration of the arrangement of particles and the interparticle bonding, 

prominent in deformation of natural soils. The proposed model is intended to capture the 

loading-rate or strain-rate dependent behaviour of soils, accounting for the variations in the 

fundamental shapes of the yield loci along with the kinematic hardening and non-associated 

flow behaviour, with the extended model supplementing the proposed one with a 𝛽-line 

defining the inclination of the non-symmetrical elliptical yield locus in the 𝑝 -𝑞 plane, along 

with the auxiliary rotational hardening effects to the kinematic hardening behaviour. The 

proposed models are formulated within the context of hyperplasticity framework, mainly due 

to the fact that the hyperplastic constitutive models obey the fundamental laws of 

thermodynamics, and the resulting approach provides a well-established structure and reduces 

the need for ‘ad hoc’ assumptions. The distinctive departure from the existing viscoplasticity 
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models is the application of thermodynamics, based upon the use of internal variables, to 

postulate free-energy and dissipation potential functions, from which the elasticity law, the 

yield condition and corresponding flow behaviour, the isotropic and kinematic hardening laws, 

are derived based on a standardised systematic procedure. Firstly, the proposed model is 

presented, in which the free-energy function is decomposed into the elastic and the viscoplastic 

components, incorporating the dependence on both volumetric and deviatoric viscoplastic 

strains, and the viscoplastic dissipation potential function accounting for both the instantaneous 

energy dissipation and the additional energy dissipation due to delayed deformation. The 

additional viscoplastic component of the free-energy function results in the modified shift 

stress, to describe the kinematic hardening behaviour of the yield locus. Besides, a non-linear 

creep formulation is postulated to address the limitation of over-estimating long-term 

settlement, which is incorporated into the proposed model. Being introduced as a rational and 

logical extension towards the proposed model, the extended model enhances the free-energy 

and dissipation potential functions, in which not only the additional viscoplastic free-energy 

function depends on both volumetric and deviatoric viscoplastic strains, but also the fabric 

coupling parameter is incorporated into the free-energy and dissipation potential functions. 

Accordingly, the constitutive relations of the solid soil skeleton are expressed from the 

perspective of hyperplasticity framework in order to capture a wide variety of viscous 

behaviour of soils, with the emphasis on the strain-softening or hardening behaviour during the 

time-dependent delayed deformation in soils. The proposed model and the extended model 

only require minimal number of material parameters, which can readily be determined using 

standard laboratory testing equipment.  

The performance and applicability of the proposed and extended models are investigated and 

validated using the triaxial and oedometer experimental results available in the existing 

literature. Comparisons between the numerical results and the laboratory measurements are 
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conducted to demonstrate the versatility and capability of the proposed model in reproducing 

the rate-dependent behaviour of natural soft soils subjected to a variety of loading conditions. 

Due to the advantages of strong theoretical foundation with rigorous, yet compact and 

consistent procedure, with a relatively small number of required model parameters, the 

proposed and extended models have been signified as ideal for the numerical implementations 

to predict the time-dependent behaviour of soft soils, including long-term settlement behaviour 

in geotechnical structures. 
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Nomenclature & Abbreviations 

Latin Notations 

𝐴, 𝐵 functions for stress-like quantities 

𝐶  secondary compression coefficient 

𝐶  material constant controlling the extent of coupling 

𝐶  swelling index 
𝐶  compressive index 

𝐷  relative contribution from the volumetric and deviatoric 
viscoplastic strains in determining the extent of coupling 

𝐶 (휂) volumetric target value for 𝛽 
𝐶 (휂) deviatoric target value for 𝛽 

𝑒  initial void ratio 
𝑒 void ratio 
𝑒  reference void ratio 
∆𝑒 change in void ratio 
𝐹 overstress function 
𝐺 elastic shear modulus 
𝐺  initial elastic shear modulus 
𝑔 elastic shear modulus gradient 
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𝐽 cross-coupling elastic modulus 
𝐾 elastic bulk modulus 
𝑘 elastic bulk modulus gradient 
𝑀 slope of the critical state line 

𝑚 
power value (material constant) representing the slope of the 
log 𝜇 − log 𝑒 curve 

𝑛 power order (dimensionless material constant) 
𝑝 effective stress 
�̇� change in effective stress 
𝑝  reference mean stress 
𝑝  effective stress at initial state (or reference time) 
𝑝  pre-consolidation pressure 
�̇�  change in pre-consolidation pressure 
𝑝  initial pre-consolidation pressure 
𝑝  volumetric shift stress 
𝑝  volumetric dissipative stress 
𝑄 viscoplastic potential function 
𝑞 deviatoric stress 
�̇� change in deviatoric stress 
𝑞  deviatoric shift stress 
𝑡  reference time (or absolute equivalent time) 
𝑉 specific volume 
𝑤  liquid limit 
𝑤  
𝑤 
𝑧 

plastic limit 
flow potential function 
force potential function 

  
 

Greek Notations 

𝛿  Kronecker’s delta 

𝛼 material constant linking to the amount of deviatoric 
dissipation 

𝛽 cross-coupling between volumetric and deviatoric dissipation 

휀  strain in axial direction 
휀  strain in radial direction 
휀  total strain tensor 
휀  total volumetric strain 
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휀  total shear strain 
휀̇  total volumetric strain increment 
휀̇  total shear (or deviatoric) strain increment 
휀  elastic strain tensor 
휀  elastic volumetric strain 
휀  elastic shear strain 
휀̇  elastic volumetric strain increment 
휀̇  elastic shear strain increment 
휀  plastic strain tensor 
휀  viscoplastic strain tensor 
휀  viscoplastic volumetric strain 
휀  viscoplastic shear (or deviatoric) strain 
휀̇  viscoplastic volumetric strain increment 
휀̇  viscoplastic shear (or deviatoric) strain increment 
𝛾 material constant linking to the amount of stored plastic work 
𝜅∗ slope of swelling line in ln 𝑣 − ln 𝑝 plot 
𝜆∗ slope of normal consolidation line in ln 𝑣 − ln 𝑝 plot 
휂 stress ratio 
𝜇 creep coefficient 
𝜇  initial creep coefficient 

ϱ Thermodynamics-based overstress function (in true stress 
space) 

ϱ  
Thermodynamics-based overstress function (in dissipative 
stress space) 

𝜎  effective stress at a reference time 
𝜎  effective stress in axial direction 
𝜎  effective stress in radial direction 
𝜈 Poisson’s ratio 

𝛿Φ dissipation increment function 
Ψ  Gibbs free-energy function 
Ψ  Elastic Component of Gibbs free-energy function 
Ψ  Viscoplastic Component of Gibbs free-energy function 
Ψ̇ the differential of the free-energy function 
𝜓 viscosity function 
�̅�  generalised stress tensor 
𝜒  dissipative stress tensor 

 

Common Acronyms 

CRS Constant Rate of Strain 
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CSL Critical State Line 
EVP Elastic-viscoplastic 
MCC Modified Cam-clay 
OCR Over-consolidation Ratio 
UTC Undrained Triaxial Compression (UTC) 
UTE Undrained Triaxial Extension 


	Title Page
	Certificate of Original Authorship
	Abstract
	Acknowledgements
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature & Abbreviations



