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ABSTRACT 

During the past several decades, the constitutive modelling for the prediction of time-

dependent behaviour of soft soils has attracted an increasing attention within the geotechnical 

research society due to the scarcity of appropriate types of soil for construction as the regions 

around the globe have struggled to keep up with the meteoric rise in the infrastructure 

developments to cater for the substantial growth in population. Therefore, the consideration of 

time- and rate-dependent behaviour of geomaterials, particularly soft soils, such as creep, 

strain-rate dependent effects and stress relaxation behaviour, becomes a fundamental concern 

towards the long-term settlement deformation behaviour.  

In this study, a mixed hardening hyper-viscoplastic constitutive model and its extended model 

are developed for describing the time-dependent stress-strain evolution of soil deformation, 

with the additional consideration of the arrangement of particles and the interparticle bonding, 

prominent in deformation of natural soils. The proposed model is intended to capture the 

loading-rate or strain-rate dependent behaviour of soils, accounting for the variations in the 

fundamental shapes of the yield loci along with the kinematic hardening and non-associated 

flow behaviour, with the extended model supplementing the proposed one with a 𝛽-line 

defining the inclination of the non-symmetrical elliptical yield locus in the 𝑝 -𝑞 plane, along 

with the auxiliary rotational hardening effects to the kinematic hardening behaviour. The 

proposed models are formulated within the context of hyperplasticity framework, mainly due 

to the fact that the hyperplastic constitutive models obey the fundamental laws of 

thermodynamics, and the resulting approach provides a well-established structure and reduces 

the need for ‘ad hoc’ assumptions. The distinctive departure from the existing viscoplasticity 
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models is the application of thermodynamics, based upon the use of internal variables, to 

postulate free-energy and dissipation potential functions, from which the elasticity law, the 

yield condition and corresponding flow behaviour, the isotropic and kinematic hardening laws, 

are derived based on a standardised systematic procedure. Firstly, the proposed model is 

presented, in which the free-energy function is decomposed into the elastic and the viscoplastic 

components, incorporating the dependence on both volumetric and deviatoric viscoplastic 

strains, and the viscoplastic dissipation potential function accounting for both the instantaneous 

energy dissipation and the additional energy dissipation due to delayed deformation. The 

additional viscoplastic component of the free-energy function results in the modified shift 

stress, to describe the kinematic hardening behaviour of the yield locus. Besides, a non-linear 

creep formulation is postulated to address the limitation of over-estimating long-term 

settlement, which is incorporated into the proposed model. Being introduced as a rational and 

logical extension towards the proposed model, the extended model enhances the free-energy 

and dissipation potential functions, in which not only the additional viscoplastic free-energy 

function depends on both volumetric and deviatoric viscoplastic strains, but also the fabric 

coupling parameter is incorporated into the free-energy and dissipation potential functions. 

Accordingly, the constitutive relations of the solid soil skeleton are expressed from the 

perspective of hyperplasticity framework in order to capture a wide variety of viscous 

behaviour of soils, with the emphasis on the strain-softening or hardening behaviour during the 

time-dependent delayed deformation in soils. The proposed model and the extended model 

only require minimal number of material parameters, which can readily be determined using 

standard laboratory testing equipment.  

The performance and applicability of the proposed and extended models are investigated and 

validated using the triaxial and oedometer experimental results available in the existing 

literature. Comparisons between the numerical results and the laboratory measurements are 
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conducted to demonstrate the versatility and capability of the proposed model in reproducing 

the rate-dependent behaviour of natural soft soils subjected to a variety of loading conditions. 

Due to the advantages of strong theoretical foundation with rigorous, yet compact and 

consistent procedure, with a relatively small number of required model parameters, the 

proposed and extended models have been signified as ideal for the numerical implementations 

to predict the time-dependent behaviour of soft soils, including long-term settlement behaviour 

in geotechnical structures. 
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1.1 Background  

As a result of rapid advancement in social, and infrastructural development of the world, 

accompanying the massive growth in its population, there has been an alarming concern for 

the availability of suitable types of soil for construction in recent years. As a consequence, it 

has become increasingly likely that the relatively inappropriate construction areas, such as 

lakes, river and coastal regions, are to be considered as alternative options for future 

construction projects. The most prevalent type of soils found in these areas are mostly soft 

clays, which exhibit low permeability and shear strength, with high compressibility. One of the 

major challenges when dealing with soft soils in geotechnical engineering design and analyses, 

is the long-term deformation associated with soft soils. Inevitably, the constitutive modelling 

for the simulation of time-dependent behaviour of soft soils has captivated much attention in 

the geotechnical research society. The prediction of time-dependent behaviour of geomaterials, 

such as creep, stress-relaxation and strain-rate dependency, bears considerable importance, 

particularly in the ground settlements, which in turn, may result in significant deformation in 

the long-term.  

 

Figure 1.1: Requirements for construction in inappropriate ground profiles (Soil Stabilisation System, 

viewed 22 November 2019, < https://allustabilization.wordpress.com/>) 

https://allustabilization.wordpress.com/
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The experimental investigation of time-dependent deformation in a wide variety of 

materials has been performed by numerous researchers, such as for frozen soils (Lai et al., 

2000; Liu et al., 2018), rock-like materials (Wang et al., 2015; Nguyen et al., 2017; Cao et al., 

2018; Zhao et al., 2018), asphalt concrete (Darabi et al., 2012a,b; Cheng et al., 2016), plasticine 

materials (Feng et al., 2017) and polymeric materials (Ghorbel, 2008). In addition, a multitude 

of geotechnical researchers have developed a plethora of constitutive soil models to consider 

the time- and rate-dependent behaviour of clays, varying from simple Elastic-Plastic to Elastic-

Visco-Plastic (EVP) models (Kelln et al., 2008; Fatahi et al., 2013; Karim and Gnanendran, 

2014; Azari et al., 2016; Le et al., 2015; Yin et al., 2015a,b). Yin (2006) has also discussed the 

fundamental facts related to elastic viscoplastic modelling of the time-dependent stress-strain 

behaviour of geomaterials and stated that the EVP models are more general than the traditional 

elastic-plastic constitutive models. Among the abundance in a variety of constitutive models 

for the time-dependent behaviour of soft soils, the EVP model proposed by Yin and Graham 

(1989) is considered as simple yet practical for the numerical analyses related to long-term 

settlement of soft soils. Afterwards, they have extended this model for triaxial and general 

stress states with the adoption of the elliptical flow surface from Modified Cam-clay model, 

and Mises failure criterion. However, the postulated linear logarithmic function results in the 

creep strain being infinite as time approaches to infinity. In order to rectify this shortcoming, 

Yin (1999) proposed a non-linear creep formulation with the introduction of creep coefficient 

and stress-dependent creep strain limit. Although the non-linear creep model can reproduce 

more accurate results in the simulation of long-term settlement of soft soils, the parameter 

determination related to the non-linear creep parameters exhibited several restrictions for its 

adoption in geotechnical applications. Notwithstanding this improvement, Yin et al. (2015a) 

and Zhu et al. (2016a) pointed out that the non-linear creep formulation postulated by Yin 

(1999) as being only applicable to one particular constant applied stress level, as the non-linear 
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creep coefficient did not continuously decrease with the void ratio when the applied stresses 

were continuously increasing and hence, a negative void ratio could only be avoided under a 

constant applied pressure. In order to address this shortfall, Yin et al. (2015a) have proposed 

an improved non-linear creep formulation with consecutively decreasing consolidation 

coefficient. Besides, Le and Fatahi (2016) have proposed a more rigorous numerical 

optimisation technique, i.e. Trust-Region Reflective Least Square (TRRLS) approach and 

applied the algorithm to obtain the EVP model parameters of the clay samples in the laboratory 

conditions. 

Concomitantly, Zhou et al. (2005) and Leoni et al. (2008) have extended the isotropic 

creep models by Vermeer and Neher (1999) and Yin et al. (2002), in which the volumetric 

viscoplastic strain remains constant on the yield surface, regardless of the stress state. This has 

resulted in the unrealistic predictions of volumetric viscoplastic strains when the stress state 

approaches the critical state line; instead, the value should be nearly zero based on the 

laboratory measurements. In recent years, the modelling of combined anisotropic and 

viscoplastic effects for clays (Yin et al., 2010; Sivasithamparam et al., 2015; Jiang et al., 2017; 

Leal et al., 2017; Castro et al., 2018), along with the consideration of strain rate and temperature 

(Leroueil and Marques, 1996; Laloui et al., 2008) or strain rate and structure (Hinchberger et 

al., 2010; Yin and Karstunen, 2011; Zhang, 2018) have also been carried out.  

Overall, it has been acknowledged that most of the existing viscoplastic constitutive 

models have been based on the elastic viscoplastic modelling (EVP) framework (Perzyna, 

1963; 1966) or the non-stationary flow surface framework (Naghdi and Murch, 1963; Olszak 

and Perzyna, 1970). The most profound impediment in the overstress-based models stems from 

the arbitrariness of the postulated overstress function. Moreover, they do not satisfy with the 

consistency condition and it is also difficult to justify their compliance with the fundamental 

laws of thermodynamics.  
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Besides, although all these models have enlightened the understanding of time-dependent 

behaviour of soils, they still have their own deficiencies. The most profound limitations are the 

basic assumption of the flow surface being elliptical as defined in Modified Cam-clay (MCC) 

model, developed by Roscoe and Burland (1968), the flow rule being associated, and the elastic 

behaviour being strictly isotropic. Moreover, they often require a considerable number of 

assumptions without being related to the physical phenomena of real soils. 

1.2 Problem Statement 

It is important to acknowledge that the most important attribute of the constitutive models 

is their compliance with the physical phenomena. The fact that they must obey certain 

principles or axioms that govern the physical phenomena, such as conservation of mass, 

conservation of energy and the fundamental laws of thermodynamics, should be emphasised. 

Taking this into strong consideration, the aforementioned constitutive frameworks do not take 

into account of the fundamental laws of thermodynamics and they may eventually violate one 

or the other physical phenomena. According to Houlsby and Puzrin (2006), the constitutive 

models that do not comply with the laws of thermodynamics may not be used with any 

confidence to predict the material behaviour. 

To circumvent the problem of having a substantial number of assumptions and using ‘ad 

hoc’ procedures, the major objective of this research is to develop a constitutive soil model 

based on the laws of thermodynamics, from which the constitutive behaviour of soils is derived 

in a systematic procedure. Accordingly, the extraction of plasticity theory with the major 

emphasis on the fundamental laws of thermodynamics was originated from the early works of 

Halphen and Nguyen (1974) and Ziegler (1983), in which the derivation of the entire 
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constitutive response for predicting stress-strain behaviour of plastic materials is based on two 

scalar thermodynamic potential functions. Considerably, this is a relatively new approach to 

the development of elastic-plastic constitutive models, which was termed ‘hyperplasticity by 

Collins and Houlsby (1997) and Houlsby and Puzrin (2000, 2006) for the modelling of time-

independent behaviour of soils. Collins and Houlsby (1997) discussed the application of 

thermomechanical principles to the modelling of geotechnical materials and emphasised on the 

mathematical technique, called Legendre transformation, in developing rate-independent 

hyperplasticity models. 

During recent years, a few attempts have been made for the extension towards rate- 

dependent behaviour of soils (Vlahos et al., 2006; Likitlersuang and Houlsby, 2007; Puzrin and 

Rabaiotti, 2009; Zhang, 2017; Zhang and Buscarnera, 2017), frozen soils (Zhou et al., 2016), 

peat (Boumezerane et al., 2015), rubbers (Guo et al., 2018), polymeric materials (Gudimetla 

and Doghri, 2017) and steel behaviour (Benaarbia et al., 2018). Moreover, Abu Al-Rub and 

Darabi (2012) have proposed a thermodynamic-based framework for the constitutive 

modelling of temperature-, time- and rate-dependent behaviour of viscous materials and Zhu 

et al. (2016b) have presented a coupled EVP model based on thermodynamics to predict the 

cyclic deformation of metals. Furthermore, Darabi et al. (2012a; b) have adopted the former 

approach to simulate the behaviour of asphaltic materials over a wide range of time- and rate-

dependent experiments. Recently, Darabi et al. (2018) have further discussed on a 

thermodynamic-based approach to systematically derive generalised non-associative rate-

independent and rate-dependent plasticity theories. However, most of the existing 

thermodynamic-based models often require a substantial number of parameters and they still 

adopt the aforementioned limitations, such as the assumption of the flow rule being associated 

and the shape of the yield surface being adopted as symmetric elliptical one defined in the 

MCC model, without considering the possibilities of deformed shapes of the yield surface. 
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As suggested by the laboratory experiments presented in Dafalias and Taiebat (2013; 

2014) and Zhou et al. (2017), the yield loci not only expand but also translate in the stress space 

and the shapes of the yield loci do vary depending on the types of soils. In order to address the 

experimental findings, Mroz (1998) introduced the kinematic hardening mechanism to the 

constitutive modelling of soils, along with the hardening function, in order to control the 

movement and the variation in size of the yield loci. Kinematic hardening during inelastic 

deformations is usually described by a so-called ‘back’ or ‘shift’ stress, which is considered as 

an internal variable, for which an adequate constitutive equation is formulated (Sansour et al., 

2006). Recently, Zhou et al. (2018) have proposed a kinematic hardening EVP constitutive 

model, adopting Perzyna's overstress theory, to predict the stress- strain behaviour of saturated 

cohesive anisotropic soils. However, their EVP model still employs associated flow rule and 

requires a sizeable number of parameters based on a considerable number of assumptions. 

From the perspective of hyperplasticity, the kinematic hardening behaviour is considered in 

the form of ‘shift’ stress, referred to as ‘stored plastic work’, which is determined by the 

additional plastic free-energy function, i.e. not contributing to the plastic dissipation. It is to be 

emphasised here that some portion of the plastic work is stored in the form of continuum plastic 

strain (i.e. the residual strain when a continuum element is unloaded back to a particular 

predefined reference loading condition due to the inhomogeneous nature of the micro-level 

deformation). Consequently, some of the micro-level elastic energy is ‘frozen’, resulting in 

recoverable stored plastic work (Collins, 2005). This contradicts the conventional perfect 

plasticity theory, which often assumes that the ‘plastic work’ and ‘plastic dissipation’ are equal 

(i.e. all the plastic work is assumed to be dissipated). Most importantly, this kinematic 

hardening behaviour has not been widely considered in modelling the viscoplastic stress-strain 

behaviour of soils. 
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1.3 Research Objectives and Scope 

This research is a rational effort in adopting the conservative thermodynamics-based 

hyperplasticity concept to propose a simple yet versatile constitutive soil model to simulate the 

non-linear creep behaviour, along with the incorporation of both isotropic and kinematic 

hardening effects. Due to the important fact that the hyperplasticity theory is mainly based on 

the fundamental laws of thermodynamics, it also avoids the need to introduce a considerable 

number of ‘ad hoc’ assumptions without being related to the physical phenomena of soils. One 

of the key benefits bears in the development of relatively rigorous, compact and consistent 

constitutive framework, as the resulting model cannot produce thermodynamically 

unreasonable outcomes. The proposed model is developed in a relatively succinct mathematical 

form, as the entire constitutive response is determined through the specification of two scalar 

thermodynamic potential functions, i.e. the free-energy and dissipation potential functions, 

using a systematic standardised procedure. These two fundamental potential functions are 

related through Legendre transformation, which results in the natural incorporation of non-

associated flow, which is now widely regarded as a proper approximation for improved 

predictions in the behaviour of soils, being derived logically and naturally without postulating 

any further potential functions, which are usually introduced to arbitrate the associativity of the 

flow rule in conventional plasticity theory. In addition, the proposed model takes into account 

of kinematic hardening behaviour of soils in the form of ‘shift’ stress within the context of 

hyperplasticity. It is emphasised that not all the plastic work is dissipated; but some portion is 

stored when an element is unloaded back to a predefined reference stress level at the continuum 

level (Lai et al., 2014). As a result, the kinematic hardening behaviour is modelled by 

incorporating a ‘back or shift stress’, as part of the additional viscoplastic component of the 

free-energy function into the proposed model. The extended thermodynamic potential 
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functions are postulated, considering the variation in shapes of the yield loci, for the simulation 

of time- or rate-dependent stress-strain behaviour of soils. 

 

Figure 1.2: Long-term settlement issues highlighting the importance of modelling rate-dependent 

behaviour of soils (What Exactly Causes Foundation Settlement?, viewed 23 November 2019, < 

https://www.therealsealllc.com/what-exactly-causes-foundation-settlement>) 

Furthermore, the proposed model has been extended to incorporate the effects of the 

arrangement of particles and the interparticle bonding, i.e. termed as ‘structure’ by Mitchell 

(1993; 1956), which was also referred to as “fabric” by Muhunthan et al. (1996). Considering 

the importance of acknowledging the effects of the interparticle bonding of particles and their 

arrangement, particularly in natural soils, the current study furthers in a radical extension of 

the proposed model to incorporate the consideration of ‘fabric’ effects on the time-dependent 

stress-strain behaviour of natural soils. The extended model intends to capture the loading-rate 

or strain-rate dependent behaviour of soils, considering the variations in the fundamental 

shapes of critical surface with a β-line defining the inclination of the non-symmetrical elliptical 

https://www.therealsealllc.com/what-exactly-causes-foundation-settlement
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critical surface in the 𝑝 -𝑞 plane, along with rotational, kinematic hardening effects and non-

associated behaviour, derived as a natural consequence of this approach.  

The proposed model’s predictions demonstrate the capability and versatility in 

reproducing the viscous behaviour of soft soils, including natural ones, under different loading 

conditions, which has been validated by using comparisons with the existing triaxial and 

oedometer laboratory measurements available in the literature.  

1.4 Organisation of Thesis Structure 

The composition of the thesis comprises of six key chapters, which can be described as 

follows: 

Chapter 1 presents a brief introductory background on the constitutive modelling of 

stress-strain behaviour of soils, along with the problem statement, the major objectives and 

scope of the current study. 

Chapter 2 describes a comprehensive literature review on the real soil behaviour and the 

importance of modelling time-dependent viscoplastic behaviour of geomaterials, particularly 

soils. Moreover, the challenges associated with the development of constitutive soil models 

and the distinctive characteristics of the existing advanced constitutive modelling frameworks 

are also presented to emphasise on the problem statement of the current study. 

In Chapter 3, the underlying principles of the Hyperplasticity theory, signifying its 

essential components and requisite foundation towards the development of a new Hyper-

viscoplasticity theory have been elaborated. Moreover, the fundamental laws of 

thermodynamics have been discussed. This has been accompanied by the practical summary 
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of rate-independent hyperplasticity approach, from which the rate-dependent hyperplasticity 

framework has been built upon using a constructive and consistent approach and thus, 

highlighting the rigidity, compactness and reliability acting as a strong foundation for the 

development of hyper-viscoplastic soil models in the current study.  

Chapter 4 proposes a novel mixed hardening hyper-viscoplasticity model to simulate the 

time- or rate-dependent stress-strain behaviour of soils, along with the consideration in varying 

shapes of the yield loci by pursuing non-associated flow and accounting for kinematic 

hardening effects. The important characteristics of the proposed model, including the non-

associated flow rule derived as a natural consequence, rather than imposed arbitrary application 

compared with the traditional viscoplasticity models, the postulated additional viscoplastic 

free-energy function and the dissipation potential function, along with the hypothesised non-

linear creep formulation based on experimental findings, are provided and further elaborated 

in details. Moreover, the proposed model is extended to account for the effects of the 

combination of the arrangement of particles and the interparticle bonding, particularly crucial 

in modelling stress-strain behaviour of natural soils. The extended aspects of the free-energy 

and dissipation potential functions, from which the rotational, kinematic hardening law stems 

from the additional viscoplastic free-energy potential, are elaborated and discussed in details. 

In Chapter 5, the summary and related procedures to determine the required model 

parameters have been extensively elaborated. The proposed H-Creep model requires 10 model 

parameters in total, whereas the extended model introduces only one additional parameter 

compared to its original counterpart, resulting in a relatively straightforward parameter 

determination procedure, which has been discussed. Accordingly, the proposed and extended 

models are applied to a wide range of laboratory experiments, including the normally 

consolidated, overconsolidated and 𝐾 -consolidated undrained strain-controlled and stress-

controlled triaxial compression and extension tests, undrained triaxial shearing tests with 
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stress-relaxation and constant rate of strain tests. Moreover, the comparisons between the 

numerical simulations and the laboratory measurements, are performed to investigate the 

validity and performance of the proposed and extended models in reproducing the viscous 

behaviour of soft soils, including natural ones, under a variety of loading conditions. 

Chapter 6 summarises the significant findings of this research, together with the main 

concluding remarks and recommendations for further research. This is followed by the 

Appendix sections elaborating further details to supplement the important findings throughout 

this research. 
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CHAPTER 2                                           

LITERATURE REVIEW 
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2.1 Introduction  

For several decades, time-dependent behaviour of soils has been a debatable subject for 

many researchers in the area of geotechnical engineering. It has been widely acknowledged 

that Terzaghi’s classical theory of one-dimensional consolidation, published in 1943, can 

provide a reasonable approximation of the settlement induced by the pore water pressure 

dissipation. Although the conventional or simplified methods can offer an appropriate 

estimation of the settlement of soils in relatively simple soil scenarios, they cannot be applied 

to predict the complicated real soil behaviour, such as the relationship between stress-strain-

strain rate or the effects of temperature. This chapter presents a review on the importance of 

understanding the real soil behaviour, along with the most crucial time-dependent aspects 

observed in relation to the mechanical behaviour of soils. Moreover, the time-dependent 

behaviour of geomaterials, including creep, stress relaxation and strain-rate dependency are 

discussed. Furthermore, the significance of capturing such behaviour of geomaterials, 

particularly soils, and the challenges associated with the development of constitutive soil 

models are investigated. In addition, a number of the existing advanced constitutive soil models 

are examined and elaborated in details. 

2.2 Real Soil Behaviour  

In stark contrast to reality, the material behaviour is still often assumed to be linear elastic 

in most of the geotechnical analyses of engineering problems. However, real soils do not 

simply behave linear elastically and the understanding of real soil behaviour is extremely 

crucial to achieve a reasonable level of accuracy in predicting the associated stress-strain 

characteristics. The non-linearity is highly present in the real soil behaviour, i.e. both strength 
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and stiffness are dependent on the stress and strain level. Therefore, considerable knowledge 

and understanding is important to identify some important aspects of these complicated soil 

behaviour before delving into the development of constitutive models. 

In general, the stress-strain characteristics of soils should fall into the following 

categories. For elastic material behaviour, the strain follows the stress immediately, and 

becomes zero after the removal of stress. For elastoplastic material behaviour, the strain also 

follows the stress immediately, but there is some permanent strain after stress release. For 

viscoelastic material behaviour, the strain shows time delayed response on a stress step, 

indicating the time-dependent behaviour. For viscoplastic material behaviour, the time-

dependent behaviour is accompanied by permanent strain. 

2.3 Time-dependent Behaviour of Soils 

Another major aspect in modelling soil behaviour is that soils exhibit time-dependent 

behaviour as well as plastic deformation. It is commonly understood that time-dependent 

settlement in soils, for instance, saturated clay, results mainly due to two important factors: (i) 

volume changes due to viscous deformations, and (ii) volume changes due to pore-water 

dissipation. Consequently, soils are also called as viscous material. The viscous properties 

define the time dependence of the state of stress and strain, whilst plastic properties make these 

states depend on the loading path. This section describes the important constituents of the time-

dependent settlement of soft soils, such as time effects, strain rate effects and stress 

dependency. 
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2.3.1 Creep 

When soil is subjected to a constant load, it will deform over time and this phenomenon 

is called creep. As demonstrated in Figure 2.1, a creep test is performed at a low stress level 

following a strain path from point 1 to point 2. Consider, a soil is sheared to the stress-strain 

state at point 1, from which creep is commenced with the constant stress, as shown in Figure 

2.1b. As depicted in Figure 2.1c, the strain state progress to point 2, as the strain is gradually 

increasing.  

 

Figure 2.1: Creep test performed at a low stress level: (a) Stress-strain relationship; (b) stress history; 

(c) strain history (after Wood, 1990) 

2.3.2 Stages of Creep Process 

The creep response under a constant effective stress performed using triaxial apparatus 

can be classified into three main components: i) primary or transient creep; ii) secondary or 

stationary creep; iii) tertiary or acceleration creep. The primary stage of creep is referred to as 

the transient creep corresponding to the decreasing strain rate, while the secondary and tertiary 

creep stages are the stationary creep with constant creep strain rate and the acceleration creep 

with the increasing strain rate, respectively. The tertiary creep phase gradually and eventually 
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leads to the creep rupture or creep fracture of soils, as observed in the triaxial creep tests 

(Augustesen et al. 2004). The corresponding creep test results can be depicted in either a strain 

vs time graph or logarithm of strain rate vs logarithm of time graph, as shown in Figure 2.2. 

 

Figure 2.2: Creep stages for a creep test performed by a triaxial apparatus: (a) Strain versus time; (b) 

log strain rate versus log time (after Augustesen et al. 2004) 

In drained creep tests, the effective stresses, i.e. the mean effective stress 𝑝  and the 

deviatoric stress 𝑞, are kept constant. In undrained creep tests, 𝑝  decreases due to increase in 

pore pressure, while the deviatoric stress 𝑞 remains constant. Therefore, only the drained creep 

represents a pure creep process, as pointed out in Augustesen et al. (2004). 

2.3.3  Strain Rate Effects 

As pointed out in a number of researchers, such as Leroueil et al. (1985), Mesri and Feng 

(1986) and Jia et al. (2010), strain rate is another significant factor that influences the time-

dependent compressibility of soft soils. In order to study the stress-strain-time relationship at 

different strain rates, Constant Rate of Strain (CRS) consolidation tests have been broadly 

employed, from which a unique relationship is found among stress-strain-strain rate, suggested 

by Leroueil et al. (1985). As emphasised in Feng (1991), a CRS test can provide more direct 
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and accurate relationship between stress-strain, as the stress-strain curve can be continuously 

monitored. In general, a larger strain rate results in a higher effective stress at a certain strain 

and hence, the stiffness of soil increases with the increasing strain rate (Augustesen et al. 2004). 

Moreover, the influence of the strain rate on the pre-consolidation pressure is also observed. 

2.3.3.1 Constant Rate of Strain (CRS) Tests 

In a constant rate of strain (CRS) test, the total strain rate is kept constant throughout the 

test, while the stress is then monitored to determine the stress-strain relationship. In general, it 

can be observed that the effective stress at a constant strain rate increases with the increase in 

the loading rate, as depicted in Figure 2.3. In other words, the stiffness of the soil increases 

with the rising strain rate (Augustesen et al. 2004).  

 

Figure 2.3: Constant rate of strain (CRS) tests: (a) Strain history, and (b) stress-strain response (after 

Augustesen et al. 2004) 

Although CRS tests have some advantages compared to the standard oedometer tests, 

particularly in the relatively shorter test duration required for CRS tests, the major challenge 

in CRS tests is the difficulty in the selection of the imposed strain rate to obtain an appropriate 

stress-strain curve as an output. Hence, it is crucial to emphasise that a rational imposed strain 
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rate, based on the conventional primary consolidation data, is necessary in order to determine 

the information related to End of Primary (EOP) consolidation stress-strain relationship. 

According to Leroueil et al. (1985), a unique relationship among stress – strain – strain 

rate is observed from a series of CRS tests, in one-dimensional and triaxial conditions, on 

Batisan clay (shown in Figure 2.4). Due to the fact that the stress-strain curve can be 

continuously monitored, the stress-strain relationship obtained from a CRS test is more direct 

and accurate (Feng, 1991). Figure 2.5 demonstrates the influence of strain rate on the stress-

strain behaviour of overconsolidated Saint-Jean-Vianny clay, from the CRS tests conducted by 

Vaid et al. (1979). Furthermore, Figure 2.6 depicts the effects of various constant strain rates 

on peak strength and the size of the yield surface, as discussed in Augustesen et al. (2004).  

 

Figure 2.4: The results of the constant rate of strain tests on Batiscan clay (after Leroueil et al., 1985) 

As shown in Figure 2.6, the corresponding yield surface related to the particular constant 

strain rate is denoted as ‘static yield surface’, which is one of the vital ingredients in the existing 

Batiscan CRS tests 
Strain rates: s-1 

휀̇  = 1.43 × 10-5 
휀̇  = 5.30 × 10-6 

휀̇  = 2.13 × 10-6 

휀̇  = 5.33 × 10-7 

휀̇  = 1.07 × 10-7 

휀̇  = 1.69 × 10-8 

 

휺̇풛ퟏ 

휺̇풛ퟐ 

휺̇풛ퟑ 

휺̇풛ퟒ 

휺̇풛ퟓ 

휺̇풛ퟔ 

휺̇풛ퟔ 휺̇풛ퟏ 

휺̇풛ퟐ 

휺̇풛ퟑ 

휀̇ , 휀̇ , 휀̇  
 

𝜎  [𝑘𝑃𝑎] 

휀
 [ %

]  

∆풖
 [ 풌

𝑷
풂]
 

  

0 

10 

0 

20 

15 

25 

5 

50 100 150 200 250 



20 | P a g e  
 

constitutive EVP models developed based on Perzyna’s overstress theory (discussed in details 

in the next section).  

 

Figure 2.5: Stress-strain behaviour of Saint-Jean-Vianny Clay in undrained constant rate of strain tests 

(after Vaid et al., 1979) 

 

Figure 2.6: (a) Drained stress-strain curves for different constant rate of strain tests (𝑞 , 𝑞 , 𝑞  are 

peak strengths), (b) Strain rate effects on yield surface (after Augustesen et. al, 2004) 
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According to Leroueil (2006), the range of strain rates for different soils in in-situ state 

for corresponding strain rates from different laboratory measurements are shown in Figure 2.7. 

As demonstrated in Figure 2.7, the strain rates corresponding to the 24-hour incremental 

loading tests are relatively closer to the strain rates compared to the strain rates obtained from 

other tests. 

 

Figure 2.7: Ranges of strain rates in the in-situ state and laboratory tests (after Leroueil, 2006) 

2.3.3.2 Change in Rate of Strain Tests 

As in the CRS tests, a unique relationship is also obtained among the effective vertical 

stress, strain and strain rate in the specialised CRS tests, in which the strain rates are changed 

at various strain and maintained for a period of time. Based on the two tests conducted by 

Leroueil et al. (1985) on Batisan clay, the influence of the change in strain rate is continuous 

and the resulting curve stays on the same stress-strain graph during the step-changed strain rate 

tests, as shown in Figure 2.8. 
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2.3.4 Stress Effects 

Depending on the applied stress level, three important types of time-depending 

compression curves are identified:  

 

Figure 2.8: Special constant rate of strain oedometer tests on Batiscan clay (after Leroueil et al., 1985) 

i) When the final effective stress is less than the pre-consolidation pressure, the 

compression is not significant and the slope of the compression curve progressively 

increases after EOP, as in the case of overconsolidated soils in Figure 2.9. The slope 

of the corresponding strain rate curve decreases linearly with time.  

ii) When the final effective stress is approximately equal to the pre-consolidation 

pressure, the slope of the compression curve after the EOP is higher than the 

corresponding value observed in Type (i). When the effective stress increases from 

the overconsolidated range to the normally consolidated range, similar compression 

curve is observed. 

iii) When the effective stress is within the normally consolidated range, as commonly 

observed in the behaviour of soft soils, the compression is excessive during the 
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excess pore water pressure dissipation, and the slope of the corresponding strain 

rate curve after EOP keeps decreasing with time. 

 

Figure 2.9: (a) Types of compression curves dependent on the stress level (after Leroueil et al., 1985); 

(b) the corresponding strain rate (after Augustesen et al., 2004) 

2.3.5 Stress Relaxation 

Stress relaxation is a process, in which the decrease in effective stress with time at a 

constant value of strain. As depicted in Figure 2.10, a stress relaxation test is conducted, in 

which the stress relaxation process is commenced at Point 1 by maintaining the identical total 

strain over a certain time period. As time progresses, the stress-strain rate moves towards Point 

2. During this process, the gradual decrease in effective stress is observed, which is called stress 

relaxation.  

Stress relaxation tests are usually conducted using triaxial apparatus in order to observe 

the variation in the deviatoric stress under constant strain level (Drumright and Nelson, 1985; 

Yin and Cheng, 2006). Based on the observations discussed in Silvestri et al. (1988), the 

deviatoric stress reached the stabilised stress relaxation level in less than 1 day from the stress 

relaxation tests performed on Louiseville clay. Based on the observation and the analysis of 



24 | P a g e  
 

several triaxial stress relaxation test data, the normalised deviatoric stress 𝑞 𝑞⁄ , i.e. the ratio 

of the deviatoric stress 𝑞 at time 𝑡 and the deviatoric stress at the beginning of stress relaxation 

𝑞 , decreases linearly with the increase in logarithm of time after an initial time period, as 

shown in Figure 2.11 (Lacerda and Houston, 1973). 

 

Figure 2.10: Stress relaxation test (A→B): (a) Stress-Strain relationship; (b) strain history; (c) stress 

history (after Wood, 1990) 

Moreover, Yin and Cheng (2006) also observed that the corresponding strain rate at the 

beginning of the test had an impact on when the stress-relaxation commenced from the triaxial 

tests performed on Hong Kong marine clay. Hence, it can be concluded that the slower the 

initial strain rate, the longer it takes for the stress relaxation process to commence (Lacerda and 

Houston, 1973). Similar laboratory observations were also reported in Graham et al. (1983) 

and Fodil et al. (1997). It was suggested that the curve joining the stress relaxation states would 

represent a “static effective stress state”, analogic to the term “static yield surface” in the 

Perzyna’s overstress theory (Perzyna 1963; 1966). Furthermore, it was observed that the excess 

pore water pressure remained almost constant during the undrained stress relaxation tests, as 

stress relaxation tests were mostly conducted under undrained conditions (Lacerda and 

Houston, 1973; Sheahan et al. (1994)). 
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Figure 2.11: Stress relaxation: (a) Stress-strain diagram for three different relaxation tests; (b) stress 

decay versus log time for the stress relaxation tests (after Augustesen et al. 2004) 

2.3.6 Consolidation and Creep – Hypotheses A and B 

In the past several decades, a plethora of approaches have been developed for the 

simulation of time-dependent behaviour of soft soils. In the existing EVP models, some 

researchers have insisted that the total strain rate is decomposed into elastic strain rate, plastic 

strain rate and viscoplastic strain rate, whilst others have considered that the total strain rate is 

divided into elastic strain rate and viscoplastic strain rate. The former approach is so-called 

Hypothesis A, and the latter is denoted as Hypothesis B, respectively. Hypothesis A mainly 

assumes that creep only occurs after the end of primary consolidation, i.e. after complete 

dissipation of pore water pressure. Hypothesis A has been adopted in Ladd et al. (1977), Mesri 

and Godlewski (1977), and Mesri and Choi (1985). Hypothesis A has suggested that the value 

of void ratio at the end of primary consolidation (𝑒 ) is unique regardless of the thickness of 

the soil sample, drainage conditions and loading duration. Although the time taken to reach the 

end of primary consolidation (𝑡 ) is longer for the thick sample compared to that of the thin 

sample, the void ratios of both samples remain the same, as illustrated in Figure 2.12. 
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Figure 2.12: Void ratio versus time for thick and thin samples using Hypothesis A (after Le et al. 

2015) 

 

Figure 2.13: Void ratio versus time for thick and thin samples using Hypothesis B (after Le et al. 

2015) 

In Hypothesis B, it is assumed that secondary compression occurs during the whole 

consolidation process. Hypothesis B has been supported by Suklje (1957), Bjerrum (1967), 

Leroueil et al. (1985) and Yin (1999). In contrast to Hypothesis A, Hypothesis B insists that 

the longer it takes to reach the end of primary consolidation results in more compression under 
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a particular effective stress. Therefore, the void ratio at 𝑡  (i.e. 𝑒 ) for a particular applied 

stress depends on the thickness of the soil sample, drainage conditions and loading duration. 

Consequently, the 𝑒  of thin sample tends to be higher compared to that of the thick sample 

due to its shorter drainage path and 𝑡 , as depicted in Figure 2.13. 

According to Ladd et al. (1977), the compression curves for both thin and thick samples 

merge together with time. In contrast, Aboshi (1973) suggested that the compression curve 

after the end of primary consolidation continue to be parallel, based on the laboratory 

observations.  

As a result, two suggestions potentially exist at the end of primary consolidation: 

1) Both compression curves merge together with time 

2) Both compression curves continue to be parallel with time 

Figure 2.14 further illustrates the contradicting nature of Hypotheses A and B based on 

the compression curves at the end of primary consolidation. The adoption of Hypothesis A 

results in a unique 𝑒 , thus leading to a unique value of pre-consolidation pressure (𝜎 ) for 

a particular soil. In contrast, the adoption of Hypothesis B results in the reduction of pre-

consolidation pressure (𝜎 ) due to the accumulation of secondary compression with the 

increasing thickness of the sample; hence, causing the EOP stress-strain curve to shift 

downward, as portrayed in Figure 2.14. 

Therefore, the major difference between Hypotheses A and B is the influence of the soil 

sample thickness on the induced secondary compression with time. As indicated in Figure 2.14, 

the thickness of the soil sample has a significant influence on the pre-consolidation pressure, 

drainage path and 𝑡 , and hence, on the predictions of the total settlement. However, the real 
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soil behaviour lies somewhere between these two extreme hypotheses A and B, based on the 

experimental observations performed by Aboshi (1973). 

 

Figure 2.14: Void ratio versus effective stress at the end of primary consolidation (after Jamiolkowski 

et al., 1985) 

2.4 Modelling Time-dependent Behaviour of Soils 

As proved in Casagrande and Wilson (1951), Tavenas et al. (1978) and Graham, Crooks 

and Bell (1983), the observed stress-strain behaviour of clays and natural soils is time-

dependent. Moreover, Bjerrum (1967) pointed out that the time dependency on the stress-strain 

behaviour of soils, especially highly plastic clays, is generally too significant to be ignored. 

Therefore, the constitutive modelling of time-dependent behaviour of soils has attracted much 

attention towards the geotechnical research community in the past decades. As a variety of 

mathematical models have been developed to capture the time-dependent effects in geological 
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materials, particularly soils, these can be categorised into three major approaches; (i) the 

empirical models, the rheological models, and general constitutive stress-strain-time/strain rate 

models, as shown in Figure 2.15 (Liingaard et al., 2004).  

 

Figure 2.15: Classification of Time-dependent soil models (after Liingaard et al., 2004) 

2.4.1 Empirical Soil Models 

The empirical laws are directly obtained by fitting experimental data from creep, stress 

relaxation, and CRS tests in order to develop empirical relations to describe the time-dependent 

behaviour of soils. In general, these constitutive relationships are expressed in closed-form 

solutions or differential equations. The empirical relationships usually provide a reasonable 

approximation of the behaviour of soils and a good foundation for developing more 

sophisticated constitutive soil models. However, the arbitrary functions are strictly limited to a 

specific boundary and loading conditions, together with the time spans of a particular 

experiment, from which they are derived. Therefore, the empirical models are applicable to 

engineering problems, especially due to their simplicity, as long as the boundary conditions 
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comply with the ones in the laboratory experiments. According to Liingaard et al. (2004), the 

empirical models are classified as primary empirical relations and secondary semi-empirical 

relations. 

2.4.1.1 Primary Empirical Models 

The primary empirical relationships are generally derived from the fitting of observed 

laboratory data with simple mathematical functions, which can reproduce the actual behaviour 

of the test sample. However, they are often strictly limited to specific test phenomena. The 

empirical relations for creep are most commonly based on the semi-logarithmic law, which 

describes the secondary compression observed in oedometer tests against the logarithm of time. 

One of the most common and simplest empirical models is based on the concept of 

constant coefficient of secondary compression 𝐶  or 𝐶 , defined in Mesri and Godlewski 

(1977) and Terzaghi and Karl (1996) as follows: 

𝐶 =
∆𝑒

∆ log 𝑡    𝑜𝑟   𝐶 =
𝐶

1 + 𝑒  (2.1) 

where, 𝑒  is defined as initial void ratio and ∆𝑒 is the change in void ratio. The parameters 

𝐶  and 𝐶  are the coefficients of secondary compression with respect to 𝑒 and 휀, respectively.  

This empirical relationship in Equation (2.1) was modified by Ladd et al. (1977), to 

estimate the secondary settlement, as follows:  

𝐶 =
𝐶

1 + 𝑒    and   𝑆 = 𝐶 𝐻 ∙ log
𝑡
𝑡  (2.2) 

On the other hand, Walker and Raymond (1968) defined the compression index from the 

laboratory tests on sensitive Leda clay, as follows: 
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𝐶 =
∆𝑒

∆ log(𝜎 )    𝑜𝑟   𝐶 =
𝐶

1 + 𝑒  (2.3) 

where, 𝜎  is the effective vertical stress and 𝐶  and 𝐶  are denoted as compression 

indices with respect to 𝑒 and 휀, respectively. Moreover, an average ratio for the value of 𝐶 /𝐶  

was reported to be approximately 0.025. As discussed in Mesri and Godlewski (1977), 𝐶  not 

only depends on the applied effective vertical stress but also relates to the pre-consolidation 

pressure. Both the value of 𝐶  and 𝐶  increase with an increase in effective stress towards the 

pre-consolidation pressure, which then reach their corresponding peak values at or just beyond 

the pre-consolidation pressure, and afterwards, remain reasonably constant. The ratio of 𝐶 /𝐶  

remains approximately constant throughout the changes in effective stresses.  

If the relationship in Equation (2.2) is applied to evaluate in terms of axial strains, Taylor 

(1942) have developed a well-known equation for secondary compression for a given soil, 

expressed as follows: 

휀 = 𝐶 ∙ log
𝑡 + 𝑡

𝑡
    (2.4) 

where, 휀  is axial creep strain, 𝑡 and 𝑡  are denoted as elapsed time and reference time, 

respectively. Besides, Yin (1999) presented the concept, in which the creep parameter varies 

with time. Consequently, the following modified logarithmic function from Equation (2.4) was 

introduced to describe the linear creep behaviour, as follows: 

휀 =
𝜓
𝑉 ∙ ln

𝑡 + 𝑡
𝑡     (2.5) 

The parameter 𝑉 is the specific volume, defined as 𝑉 = 1 + 𝑒, whereas 𝜓 and 휀  are 

denoted as creep parameter and limiting creep strain, respectively. The relationship in. 

Equation (2.5) becomes non-linear logarithmic creep law when the ratio 𝜓 𝑉⁄  depends on time, 

which is to be discussed in the next section.  
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Based on the primary empirical concept, various models have been proposed; for 

instance, the three-parameter viscosity model by Singh and Mitchell (1968), the stress-

relaxation model for clay and sand by Lacerda and Houston (1973), the non-linear stress-

relaxation model based on undrained triaxial tests by Prevost (1976), the viscous model based 

on strain rate approach by Leroueil et al. (1985) and the viscosity model proposed by Yin et al. 

(2011), which was subsequently extended to three-dimensional form, for the modelling of time-

dependent behaviour of clayey soils.  

One of the major benefits of primary empirical models is their ultimate simplicity. 

However, they are strictly restricted to the boundary conditions that are identical to the 

laboratory test conditions, from which the relationships are obtained, and are only applicable 

for one-dimensional conditions; for instance, logarithmic creep law proposed by Yin et al. 

(1999) causing creep to become infinite in infinite time and thus, resulting in the over-

estimation of the long-term creep settlements due to its over-simplified assumption. Moreover, 

they can only describe certain particular aspects of the viscous behaviour of soil, rather than 

being able to express a wider variety of time-dependent characteristics of soil behaviour. 

2.4.1.2 Secondary Semi-Empirical Models 

Basically, the secondary semi-empirical models are the class of models obtained by 

merging one or more primary empirical models. These models are composed of closed-form 

solutions for the different time-dependent phenomena, as for instance, they are capable of 

capturing both creep and stress relaxation behaviour with one particular model. To some extent, 

these models can be employed as stress-strain-time or stress-strain-strain rate models to 

reproduce more than one characteristic of time-dependent behaviour of soils. 

One of the first semi-empirical models was introduced by Kavazanjian and Mitchell 

(1977), based on the decomposition of volumetric and deviatoric strains into instantaneous and 
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delayed components to describe the multi-axial stress-strain-time behaviour of fine-grained 

soils. Similarly, based on the laboratory test results on lightly overconsolidated clay, Tavenas 

et al. (1978) decomposed time-dependent deformation into volumetric and deviatoric 

components, expressed as follows: 

휀̇ = 𝐵 ∙ 𝑓 𝜎′ ∙
𝑡
𝑡  (2.6a) 

휀̇ = 𝐴 ∙ 𝑔 𝜎′ ∙
𝑡
𝑡  (2.6b) 

where, 𝐴 and 𝐵 are material parameters that reflect composition, structure and stress 

history of soil and 𝑚 is the power law constant that controls the rate at which the strain rate 

decreases with time. The stress functions 𝑓 𝜎′  and 𝑔 𝜎′  are expressed in terms of the 

current effective stress state 𝜎′  related to the yield surface. This approach has been further 

studied and improved upon by several researchers, including Feda (1992), Lade and Liu (1998) 

and Tatsuoka (2000).  

Besides, Bjerrum (1967) insisted that the compressions should be classified as “instant” 

and “delayed” components; the former is the volume change due to the increase in the effective 

stress, and the latter deals with the deformation under a constant effective stress, as illustrated 

in Figure 2.16. The major assumption is that the change in void ratio comprises of three 

components: (i) the elastic change (𝑒), (ii) the time-independent elastic-plastic reaction of the 

soil skeleton to effective stress changes (𝑒𝑝), and (iii) the time-dependent change at constant 

effective stress (𝑐). Consequently, Bjerrum (1967) developed a system of lines to represent the 

relationship between compression, applied stress and time, as depicted in Figure 2.17, based 

on two baselines: 

(i) A system of parallel timelines or curves defined in a logarithm of effective 

vertical stress versus void ratio, where each line represents the void ratio 
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equilibrium for different vertical stress values at a given time of sustained 

loading, 

(ii) A unique relationship between effective vertical stress, void ratio and time. 

The Bjerrum’s time-line concept was formulated in terms of logarithmic functions by 

Garlanger (1972), expressed as follows:  

 𝑒 = 𝑒 − 𝐶 log
𝜎′ ,

𝜎′ ,
− 𝐶 log

𝜎′
𝜎′ ,

− 𝐶 log
𝑡 + 𝑡

𝑡     (2.7) 

where, 𝐶  is the slope on 𝑒 − log 𝜎′  diagram of the compression line from 𝜎′ ,  to 𝜎′ , , 𝐶  

is the slope of the instant compression line, 𝐶  is the slope of the 𝑒 − log 𝑡 curve, 𝑒 and 𝑒  are 

the void ratio and the initial void ratio, respectively. Similarly, 𝜎′  and 𝜎′ ,  are the current 

effective vertical stress and the initial effective vertical in-situ stress, respectively, whereas, 𝑡  

is the time corresponding to the instant compression line and 𝑡 is the sustained loading time. 

 

Figure 2.16: Definition of instant compression and delayed compression compared to primary and 

secondary compression (after Bjerrum, 1967): (a) the change in effective stress; and (b) compression 

versus time 



35 | P a g e  
 

However, the individual handling of time-dependent deformations from plastic 

deformation is irrational, as only combined aspects of plastic deformation may be measurable 

(Zienkiewicz and Cormea, 1974). Moreover, the Bjerrum’s formulation is based on logarithmic 

laws, whose major drawbacks have previously been discussed, such as the over-estimation of 

long-term settlements. 

 

Figure 2.17: Bjerrum’s Time-line system (after Bjerrum, 1967) 

Later, Yin and Graham (1989, 1994) have proposed ‘equivalent timeline’ concept based 

on the ‘timeline’ idea introduced by Bjerrum (1967). According to Yin (1990), timelines are 

the lines with the same values of ‘equivalent time’ 𝑡 , other than the loading duration 𝑡, which 

is different from the concept of Bjerrum (1967) and Garlanger (1972). Therefore, the resulting 

timeline system introduces an instant timeline, a reference timeline and a set of equivalent 

timelines with a unique creep strain rate defined by a unique value of 𝑡 . Initially, the creep 

formulation was described by Equation (2.5), in which the loading duration 𝑡 is replaced by 

‘equivalent time’ 𝑡 . Due to the fact that the linear creep compression continues to infinity with 

time, the linear creep formulation was improved by Yin (1999), in which 𝜓 𝑉⁄  is not only time-



36 | P a g e  
 

dependent but also stress-dependent. Additionally, the creep strain limit 휀  was introduced in 

the non-linear creep function, expressed as follows: 

 휀 =
𝜓

𝑉

1 +
𝜓

𝑉
휀 ∙ ln 𝑡 + 𝑡

𝑡

∙ ln
𝑡 + 𝑡

𝑡     
(2.8) 

where, the linear constant 𝜓 𝑉⁄  in Equation (2.5) is replaced by: 

 
𝜓
𝑉 =

𝜓
𝑉

1 +
𝜓

𝑉
휀

∙ ln 𝑡 + 𝑡
𝑡

    
(2.9) 

where, 휀  is the creep strain, 𝜓 𝑉 is the creep coefficient, 휀  is the creep strain limit 

and 𝑡  and 𝑡  are the equivalent time and the reference time, respectively. Hence, the non-linear 

creep function in Equation (2.8) addresses the major drawback of the linear logarithmic creep 

formulation in Equation (2.5), as the resulting creep strain approaches its limit, with the time 

reaching infinity; thus, capturing the decreasing strain rate with time. Subsequently, Yin (1990) 

and Yin and Graham (1999) developed three-dimensional EVP models using the ‘equivalent 

timeline’ approach. Although these non-linear EVP models have many merits in describing the 

time-dependent behaviour of soft soil, the difficulties and uncertainties still exist in the 

parameter determination, with model parameters not being related to the physical phenomena 

of soils. 

2.4.2 Rheological Models 

The term ‘rheological’ models is often used in the description of linear visco-elastic 

behaviour of materials. Although the rheological models are typically developed for metals, 
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steel and fluids, they have been, to some extent, used in studying the time-dependent 

characteristics of geomaterials. Typical rheological models consist of arrangements, including 

springs, sliders and dashpots, to represent soil behaviour, i.e. elastic, viscous, or plastic 

behaviour; for instance, Gibson and Lo (1961)’s model based on the Maxwell model, the 

Barden (1965)’s model as an extended Kelvin-Voigt model, and the Rijot (1922)’s model  as 

an extended Bingham model, as shown in Figure 2.18. 

The first conceptual approach to estimate secondary compression was proposed by 

Gibson and Lo (1961), as a modification of Terzaghi (1923)’s consolidation theory, in which 

it was assumed that a linear spring with a Kelvin element, retarded by the viscosity of the 

dashpot. The former linear spring element was used to model the instantaneous compression 

that represents primary compressibility, while the latter dashpot element is related to the 

secondary compression. 

 

Figure 2.18: Rheological Models: a) Maxwell model; b) Kelvin-Voigt model; and c) Bingham model 

In disagreement to the Terzaghi’s consolidation theory, Barden (1965) highlighted the 

fact that creep is present during primary consolidation stage, and the loading conditions bear 
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an influence on the total settlement. Consequently, Barden (1965) proposed a system with a 

non-linear spring and dashpot (Figure 2.19a), in which the load increment was carried by the 

linear spring, the dashpot and the excess pore pressure. Afterwards, Barden (1965) simplified 

his model by assuming a linear spring, along with the adoption of Kelvin’s element, as shown 

in Figure 2.19b. Although the resulting model depicts creep behaviour reasonably well, it 

should be noted that the yielding of the soil skeleton, as well as non-linear stress-strain 

behaviour of soils are not considered. 

 

Figure 2.19: Rheological models proposed by Barden: (a) Barden’s proposed non-linear model; and 

(b) Barden’s simplified model (after Barden, 1965) (Note: N and L denote non-linear and linear, 

respectively) 

The above rheological models were improved upon by Rajot (1992), by introducing a 

mechanism involving two springs, a dashpot and a slider to simulate the observed phenomena 

of timelines, including secondary compression and stress relaxation. The instantaneous 

compression, i.e. elasto-plastic, is represented by an elastic spring and a rigid plastic slider, in 

which the recoverable changes in volume are simulated by the deformation of the spring and 

the instantaneous irrecoverable changes in volume that occur when the effective vertical stress 

goes beyond the effective yield stress, are simulated by the deformation of the slider. On the 

other hand, the time-dependent non-recoverable changes in volume, i.e. creep, are simulated 
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by the extended Kelvin element. As a result, the instantaneous compression and the 

simultaneous plastic creep deformation are formulated by placing the spring and slider in series 

with the extended Kelvin element, as in Figure 2.20. In general, the schematic representation 

of the response of springs, dashpots and sliders, to represent soil behaviour, is provided in 

Figure 2.21 (Liingaard et al., 2004). 

 

Figure 2.20: Rheological Model proposed by Rajot (1992) (after Perrone, 1998) 

 

Figure 2.21: Schematic representation of typical rheological elements: a. Hookean linear spring; b. 

Viscous dashpot; and c. Plastic slider (after Liingaard et al., 2004) 
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Although these mathematical rheological models provide some intriguing insights and 

foundation for time-dependent effects, particularly creep and relaxation characteristics, they 

may not be sufficient to represent the quantitative behaviour of geomaterials, realistically. 

Since the spring, the dashpot and the slider are assumed to be linear, geomaterials, particularly 

soils, demonstrate highly non-linear elastic and plastic behaviour. Moreover, rheological 

models require too many parameters to describe the strain rate behaviour, along with the 

necessity of significant approximation on the governing equations in order to accommodate the 

time-dependent behaviour of soils. Furthermore, these models are not capable of capturing the 

effects of pre-consolidation pressure; thus, resulting in the requirement of unfamiliar model 

parameters that cannot be directly determined from standard laboratory testing procedures. 

2.5 Constitutive Models for Soil Behaviour 

A general constitutive soil model can be expressed in the following form: 

 𝑑휀 = 𝐹(𝑑𝜎, 𝑑𝑡) (2.10) 

where, 𝑑𝜎 and 𝑑𝑡 are denoted as changes in the effective stresses, i.e. not total stresses, 

as in the models for other materials, such as concrete and steel, and time, respectively. Since 

the development of most constitutive soil models have been based on the experimental results 

using axi-symmetric condition, e.g. triaxial and oedometer tests, the Cambridge parameters for 

stress and strain are used for the description of stress-strain behaviour. For simplicity, it follows 

that: 

𝑝′ =
(𝜎 + 2𝜎 )

3
 (2.11a) 
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𝑞 = (𝜎 − 𝜎 ) (2.11b) 

휀 = (휀 + 2휀 ) (2.11c) 

휀 =
2(휀 − 휀 )

3  (2.11d) 

where, the subscripts 1 and 3 refer to axial and radial directions, respectively. The 

parameters 𝑝′ and 𝑞 are mean effective and deviatoric stress components, respectively; whereas 

휀  and 휀  are volumetric and shear strains, respectively. In general, the bulk modulus 𝐾 and 

the shear modulus 𝐺 are expressed using these parameters as follows:  

𝐾 =
�̇�′
휀̇  

(2.12a) 

3𝐺 =
�̇�
휀̇  

(2.12b) 

According to Graham and Houlsby (1983) a general constitutive equation for soil can be 

expressed as follows: 

휀̇
휀̇ =

1
𝐾

1
𝐽

1
𝐽

1
3𝐺

�̇�′
�̇�  (2.13) 

Where, 𝐽 results in cross-coupling between volumetric and deviatoric components. The 

coupling modulus in Equation (2.13) is being considered as 𝐽 = ±∞ when only isotropic 

consolidation conditions are considered. In such case, the bulk modulus and the shear modulus 

become elastic being defined based on Hooke’s law and the constitutive elastic matrix can be 

extracted from Equation (2.13) as follows: 

휀̇
휀̇ =

1
𝐾 0

0 1
3𝐺

�̇�′
�̇�  (2.14) 
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On the other hand, the elastic bulk and shear moduli can also be defined in terms of 

Young’s modulus 𝐸 and Poisson’s ratio 𝜈 by the expressions 𝐺 = 𝐸 2 ∙⁄ (1 + 𝜈) and 𝐾 =

𝐸 3 ∙⁄ (1 − 2𝜈), respectively.  

2.5.1 Classical Constitutive Soil Models 

In the 1960s, the early developments of constitutive soil models are often collectively 

referred to as Critical State Soil Mechanics (CSSM), initially introduced by Schofield and 

Wroth (1968), including three major concepts, i.e. the Critical State line (CSL), the State 

Boundary surface (SBS) and the normalisation with respect to pre-consolidation pressure, 

which became the foundation of Cam-Clay model developed by Roscoe, Schofield and 

Thurairajah (1963). However, the original Cam-clay model assumed that the energy dissipation 

was only due to plastic shear distortion, which was later found to be invalid for normally 

overconsolidated clay. As a result, Roscoe and Burland (1968) improved the original Cam-clay 

model to consider both plastic volumetric strain and plastic shear deformation in the dissipation 

of energy, and subsequently called as the modified Cam-clay (MCC) model (Figure 2.2(a)). 

As illustrated in Figure 2.22, the yield locus of the MCC model is assumed to be in 

elliptical shape, which is expressed in the following form: 

 𝐹 = (𝑝′) +
𝑞
𝑀 − 𝑝 ∙ 𝑝 = 0 (2.15) 

Where, 𝑝  is denoted as pre-consolidation pressure indicating the size of the yield surface 

dependent upon the stress history. The constitutive response for the plastic behaviour of soil 

can be derived by adopting SBS as a yield surface, together with the adoption of associated 

flow rule. It follows that: 
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휀̇
휀̇ =

[
 
 
 
 (𝜆 − 𝜅)(𝑀 (𝑝′) − 𝑞 )

𝑝𝜈(𝑀 (𝑝′) + 𝑞 ) +
𝜅
𝑝𝜈

2𝑞(𝜆 − 𝜅)
𝜈(𝑀 (𝑝′) + 𝑞 )

2𝑞(𝜆 − 𝜅)
𝜈(𝑀 (𝑝′) + 𝑞 )

4𝑝′𝑞 (𝜆 − 𝜅)
𝜈(𝑀 (𝑝′) − 𝑞 ) +

1
3𝐺]

 
 
 
 

�̇�′
�̇�  (2.16) 

Although the Cam-clay models provide a considerable benefit in modelling soil 

behaviour, they still have some drawbacks, most notably, the prediction of purely elastic 

behaviour inside the yield surface and the ignorance of the effects of immediate soil history. 

Consequently, it cannot provide reasonable accuracy in predicting the behaviour of heavily 

consolidated clay, particularly deviatoric strains, due to the former drawback. Moreover, it 

cannot describe anisotropic consolidation behaviour due to the symmetric nature of the shape 

of the yield surface about the p-axis. 

 

Figure 2.22: (a) Yield Locus of Modified Cam-clay model; (b) Critical State Soil Mechanics 

(Likitlersuang, 2006) 

2.5.2 Advanced Constitutive Soil Models 

For the past few decades, a large plethora of advanced constitutive soil models have been 

developed based on different approaches and concepts and often, a particular soil model exuded 
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its superiority and advantages over the others. However, the reality is that each model can be 

valid within its own realm, and that no universal constitutive model has yet been successful in 

predicting all materials under all possible conditions. As previously mentioned, it must be 

noted that all the constitutive models must obey certain principles, or axioms that govern the 

physical phenomena, such as conservation of mass, conservation of energy, and laws of 

thermodynamics. 

 

Figure 2.23: Place of constitutive laws and physical principles in continuum mechanics (after Desai 

and Siriwardane, 1984) 

2.5.2.1 Multiple-Surface Constitutive Soil Models 

To build upon the deficiencies associated with the CSSM, it was a necessary step to 

introduce plasticity within the State Boundary Surface (SBS) in order to be able to capture 

more realistic soil behaviour. Several approaches have been proposed and developed, in which 

there are two major concepts in introducing plastic strain inside the SBS. The first idea 

postulates a ‘radial mapping rule’, in which the current stress state inside the SBS is projected 
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onto a corresponding image point on an extra surface denoted as the bounding surface. The 

plastic constitutive response is derived from the hardening rule, which relates the stress inside 

the SBS and the image point on the bounding surface. The second one introduces multiple yield 

surfaces to describe a smooth transformation from elastic to plastic behaviour, along with the 

effects of recent loading history. 

 

2.5.2.1.1 Bounding Surface Plasticity Model 

The original bounding surface plasticity model was developed by Dafalias and Herrmann 

(1982), in which a ‘radial mapping rule’ was postulated to map the stress state inside the SBS 

to a correlating image point on the bounding surface. The SBS is defined as the MCC yield 

surface and the image stress point on the bounding surface is defined using a ‘radial mapping 

rule’ to project from the current stress state. 

As illustrated in Figure 2.24, every stress point on the SBS is projected onto the image 

point on a bounding surface based on the mapping rule. The major assumption is that the soil 

behaviour is elastic, when the incremental stress vector is directed inside the bounding surface. 

If the incremental stress vector is directed outward from the loading surface, the behaviour 

becomes elasto-plastic. The schematic representation of the principles associated with 

bounding surface concept is illustrated in Figure 2.24. 
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Fi g ur e 2. 2 4 : S c h e m ati c r e pr e s e nt ati o n of t h e Pri n ci pl e s of B o u n di n g S urf a c e Pl a sti cit y  ( aft er D af ali a s 

a n d H err m a n n , 1 9 8 2)  

C o ns e q u e ntl y,  t h e  pl asti c  c o nstit uti v e  r es p o ns e  is  d et er mi n e d b as e d  o n  t h e  p ost ul at e d 

h ar d e ni n g r ul e usi n g t h e r el ati o ns hi p b et w e e n t h e c urr e nt str es s a n d t h e i m a g e p oi nts, w hi c h is 

e x pr es s e d i n t h e f oll o wi n g f or m:  

 𝐻  𝐻 𝐻 ∙
𝛿

𝛿 𝑐
1  

𝑀

𝜂
 (2. 1 7 ) 

W h er e, 𝐻  is d efi n e d as pl asti c stiff n es s at t h e i m a g e  p oi nt, 𝛿  a n d 𝛿  ar e t h e dist a n c e  

fr o m t h e c urr e nt str es s p oi nt t o t h e S B S a n d t h e r a di al dist a n c e m e as ur e d b et w e e n t h e S B S  a n d 

t h e ori gi n p oi nt p as si n g t hr o u g h t h e c urr e nt str es s p oi nt, r es p e cti v el y. T h e r e m ai ni n g 𝐻  a n d 𝑛  

ar e t h e n o n -li n e ar h ar d e ni n g p ar a m et ers. T h e m o d el c a n b e r etr a c e d b a c k t o t h e M C C m o d el 

w h e n 𝛿 0 , i. e. t h e v al u e of 𝐻  b e c o m es e q u al t o 𝐻 . 

Alt h o u g h t h e m o d els c a n pr e di ct s m o ot h tr a nsiti o ns i n stiff n es s a n d ar e q uit e r e alisti c f or 

m o n ot o ni c l o a di n g, t h e y c a n n ot d es cri b e u nl o a di n g -r el o a di n g or a s u d d e n c h a n g e i n th e str es s 

p at h. S e v er al att e m pts h a v e b e e n m a d e t o i m pr o v e o n t his as p e ct, m ost n ot a bl y b y i ntr o d u ci n g 

el asti c h yst er eti c f or m ul ati o n i n  t h e MI T-E 3 m o d el d e v el o p e d b y  H u e c k el a n d N o v a ( 1 9 7 9); 

r e c e nt  str es s  hist or y   i n  At ki ns o n,  Ri c h ar ds o n  a n d  St all e br as s ( 1 9 9 0)  a n d  i m m e di at e  p ast 
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history’ in Houlsby (1999). The difference between ‘recent stress history’ and ‘immediate past 

history’ is that the former one takes into account of either an abrupt change in the stress path 

direction or the time taken at a constant stress state before an imposed variation in stress, whilst 

the latter considers only the change in the direction of the stress path. More recently, Russell 

and Khalili (2004) and Khalili et al. (2005) have introduced the bounding surface plasticity 

model based on the critical state soil mechanics framework, consisting of a unique three-part 

shaped critical state line to capture pseudo-elastic deformation, particle re-arrangement and 

crushing of particles, to successfully reproduce the stress-strain behaviour of many soil types 

under monotonic and cyclic loading conditions. 

Besides, there have been attempts to incorporate the consideration of viscous effects into 

the bounding surface approach by adopting Dafalias and Herrmann mapping rule (Dafalias and 

Herrmann, 1982, 1986) and either the constant 𝐶  concept (Borja and Kavazanjian, 1985; 

Kutter and Sathialingam, 1992) or the non-linear 𝐶  concept (Islam, 2014). Moreover, Islam 

and Gnanendran (2017) have developed an elastic-viscoplastic constitutive soil model based 

on a bounding surface theory, along with the adoption of a critical-state soil mechanics 

framework. Although the bounding surface models are quite computationally efficient, they 

often have some shortcomings, including the need for a considerable number of arbitrary 

functions, (e.g. the mapping rule and the hardening function), that cannot be related to the 

physical aspects of the materials. 

2.5.2.1.2 Kinematic Yield Surfaces Plasticity Model 

In order to improve upon the deficiencies related to bounding surface plasticity, the 

concept of kinematic hardening surfaces was proposed to describe a more realistic response of 

overconsolidated soil. In this concept, a kinematic hardening surface, which encapsulates the 

elastic nucleus, is located within the SBS. The plastic strains will occur when the stress state 
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reaches the surface, in which the plastic strain increment is determined by means of plastic 

flow rule. Based on a kinematic hardening rule, the surface is then dragged until it comes into 

contact with the SBS. The simplest version of the kinematic yield surfaces model involves only 

two distinctive yield surfaces, illustrated in Figure 2.25. This double-surface kinematic 

hardening model is used to describe three important types of constitutive soil behaviour: 

i) Fully elastic behaviour for stress states within the inner yield surface, i.e. the 

elastic surface 

ii) Elastic-Plastic transition zone, for stress states on the elastic surface but inside 

the outer yield surface 

iii) Fully plastic behaviour for stress states when the elastic surface comes into 

contact with the outer yield surface, i.e. the normally consolidated state. 

The original two-surface kinematic hardening plasticity model was developed by Mroz 

(1967) and Iwan (1967), takes into account of isotropic and kinematic hardening effects. This 

was followed by the extension of two-surface model to include multiple kinematic hardening 

yield surfaces by Prevost (1978). Subsequently, Mroz and Norris (1982) have developed the 

multiple “nested” yield surfaces model, which is the best-known example to highlight the 

capability of multiple yield surfaces concept. The important assumption in the multiple 

“nested” yield surfaces model is that the yield surfaces are only allowed to touch each other 

tangentially, but not permitted to overlap each other. On the other hand, a number of 

researchers have attempted to develop elastic-viscoplastic constitutive models based on two or 

more yield surfaces, including Miao et al. (2008) and most recently, Aldo (2015). 
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Figure 2.25: Schematic representation of the Principles of Kinematic Yield Surface Plasticity (after 

Mroz, 1967 and Iwan, 1967) 

Although the multiple yield surfaces model can competently describe the effects of 

immediate loading effects of soil behaviour, they often require a substantial number of material 

parameters, leading to a sizeable extent of computational analysis. 

2.5.2.2 Elastic Viscoplastic (EVP) Soil Models 

Although the advanced non-linear elasto-plastic models have achieved success in 

predicting the behaviour of geotechnical materials to a considerable extent, these elasto-plastic 

models are not sufficient to describe the full extensive behaviour, such as the long-term excess 

pore pressure dissipation and undrained deformation, as they do not consider the time-

dependent and the subsequent rate effects on the behaviour of geotechnical materials, 

particularly soils. Therefore, the advanced time-independent elasto-plastic models based on 

MCC model, have become incapable of describing the stress-strain behaviour of such soils to 

a more reasonable extent. Consequently, it has become widely accepted that a constitutive soil 

model should combine three important aspects, i.e. elasticity, plasticity and viscosity, to 

provide an accurate description of the stress-strain behaviour of soils.  
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Most of the existing EVP models have so far been based on the overstress EVP 

framework developed by Perzyna (1963, 1966) and the non-stationary flow surface theory 

proposed by Olszak and Perzyna (1966, 1970). The key assumption in the overstress approach 

is the negligence of viscous effects in the elastic region; in other words, viscous strains are not 

allowed to occur within the static yield surface. As a consequence, the total strain rate 휀̇  is 

additively decomposed into the elastic strain rate 휀̇  and viscoplastic strain rate 휀̇ , i.e. 

 휀̇ = 휀̇ + 휀̇  (2.18) 

where, 휀̇ = (𝑖, 𝑗) component of the total strain-rate tensor.  

The elastic strain rate 휀̇  is assumed to follow the generalised Hooke’s law and the 

viscoplastic strain rate 휀̇  is determined based on the flow rule, which is postulated as follows: 

 휀̇ = 𝛾〈∅(𝐹)〉
𝜕𝑄
𝜕𝜎  (2.19) 

where, 𝛾 is a positive viscosity coefficient of the soil skeleton. The ∅(𝐹) is defined as a 

scalar function, denoted as viscoplastic flow function postulated based on experimental data. 

The function 𝑄 is called viscoplastic potential function, which is hypothesised based on either 

associated or non-associated flow behaviour, corresponding to the direction of 휀̇  with respect 

to the flow surface, as illustrated in Figure 2.26. The function 𝐹 is a static yield function, which 

may be provided as follows: 

 𝐹 =
𝑓 − 𝐾

𝐾  (2.20) 

where, 𝑓 is the so-called dynamic loading function and 𝐾  is a work or strain hardening 

parameter. The dynamic loading function 𝑓 may be expressed in the following general form: 
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 𝑓 = 𝑓 𝜎 , 휀 , 𝐾  (2.21) 

 

Figure 2.26: Schematic representation of the Overstress-type EVP Models (after Perzyna, 1963) 

The overstress approach, which is also regarded as a generalisation of the model 

proposed by Hohenemser and Prager (1932), differs from the classical plasticity theory in that 

the consistency condition is not necessarily satisfied, which is of primary importance in the 

derivation of stress-strain response in the general plasticity theory. In general, there are two 

major forms of overstress function, i.e. the power overstress function and the exponential 

overstress function.  

∅(𝐹) =
𝐹
𝐹  (2.22a) 

∅(𝐹) = exp
𝐹
𝐹 − 1 (2.22b) 

where, 𝑁 is an empirical constant and 𝐹  is used as a normalised constant to obtain a 

dimensionless flow function. Following the key assumption in the overstress-type models, i.e. 
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viscous effects are ignored in the elastic domain, the viscoplastic flow function is defined as 

follows: 

 
〈∅(𝐹)〉 = ∅(𝐹)   for   𝐹 > 0 

〈∅(𝐹)〉 = 0   for   𝐹 ≤ 0 
(2.23) 

A large number of EVP models have been developed to validate the overstress theory for 

various types of soils, including Adachi and Okano (1970) and Adachi and Oka (1982) to 

describe the time-dependent behaviour of fully saturated normally consolidated clay, Oka et 

al. (1988) for time-dependent behaviour of overconsolidated clay and Desai and Zhang (1987) 

to simulate the time-dependent behaviour of sand and rock salt. Moreover, Dafalias (1982, 

1986) and Kaliakin and Dafalias (1990) have attempted to extend the overstress EVP models 

with the incorporation of Bounding Surface theory to predict the time-dependent behaviour of 

cohesive soils. A few of the other notable developments based on overstress approach includes 

Matsui and Abe (1988), Graham et al. (1983) and Yin et al. (2002). 

However, the fundamental hypothesis of the conventional overstress models, i.e. the 

viscoplastic strains do not occur when the stress state is within the static yield surface, is 

observed to be in conflict with the experimental interpretation, which indicates that the 

viscoplastic strains always occur and thus, the static yield surface neve exists. Although the 

overstress-based EVP models can capture the effects of strain rate on the soil strength and pre-

consolidation pressure of soils, the major difficulty lies in the arbitrary postulation of the 

overstress function, without the need to satisfy the consistency condition. Therefore, the 

overstress models often require a considerable number of assumptions and parameters without 

being related to the physical phenomena of soils. 

On the other hand, the Non-Stationary Flow Surface (NSFS) theory is founded on the 

basic concept of inviscid theory of elasto-plasticity. The key difference between the NSFS 
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theory and the conventional plasticity theory lies in the definition of the yield condition. In the 

latter approach, the yield surface is time-independent when the plastic strains are held constant; 

in other words, the yield surface in the conventional plasticity theory is denoted as “stationary”. 

In contrast, the former NSFS concept implies that the yield condition is time-dependent, and 

the yield surface becomes “non-stationary”, which may be expressed as follows: 

 𝑓 = 𝑓 𝜎 , 휀 , 𝛽 = 0 (2.24) 

where, 휀  and 𝛽  are viscoplastic strains and a time-dependent function, respectively. It 

can be implied from Equation 2.24 that the yield surface varies with time even when the plastic 

strains are held constant. The difference in the definition of yield surface employed in classical 

elasto-plastic models and the NSFS theory is represented in Figure 2.27 for an elasto-

viscoplastic material, in which the yield surface corresponding to any given viscoplastic strain 

under a particular loading condition is reached at points A, A1, or A2 with respect to time-

dependent function 𝛽. 

 

Figure 2.27: Schematic representation of the NSFS-type EVP Models (after Olszak and Perzyna, 

1966) 



54 | P a g e  
 

Similar to the overstress-type EVP model, the NSFS theory follows the identical 

decomposition of the total strain rate 휀̇  into the elastic strain rate 휀̇  and viscoplastic strain 

rate 휀̇ , as in Equation 2.18. Similarly, the elastic strain rate is calculated by using generalised 

Hooke’s law and the viscoplastic strain rate is defined based on the flow rule expressed as 

follows: 

 휀̇ = 〈Λ〉
𝜕𝑄
𝜕𝜎

 (2.25) 

where, Λ is a non-negative multiplier and 𝑄 is so-called viscoplastic potential function. 

In contrast to the overstress theory, the multiplier Λ in NSFS theory is determined using the 

consistency condition, which is similar to the plastic multiplier defined in the traditional elasto-

plastic models. 

The NSFS theory was first proposed by Naghdi and Murch (1963), and later extended by 

Olszak and Perzyna (1966) and Olszak (1970). The NSFS-based EVP models, developed by 

Sekiguchi (1984), Matsui and Abe (1985, 1986, 1988) and Matsui et al. (1989), can be used to 

describe the time-dependent behaviour of normally consolidated clay under undrained 

conditions. Most recently, Qiao et al. (2016) and Kavvadas and Kalos (2019) have developed 

EVP models based on NSFS theory to capture the creep behaviour of geomaterials. Although 

NSFS theory can achieve better accuracy compared to overstress one, the NSFS-based EVP 

models are not capable of describing the stress relaxation process or the initiation of creep from 

a stress state inside the yield surface (Liingaard et al., 2004). 

Based on the ‘equivalent timeline’ approach, Borja and Kavazanjian (1985), Hsieh et al. 

(1990) and Borja et al. (1990) have proposed the double-surface EVP models for reproducing 

time-dependent stress-strain behaviour of soils. More recently, Kelln et al. (2008b) developed 

an analytical elastic-viscoplastic model by presenting triaxial results in different loading 
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conditions. However, the detailed approaches used in all of these models differ, mainly due to 

the various methods of deriving the scaling function that controls the magnitude of viscoplastic 

strain rates and determining the model parameters. Although all these models achieve 

reasonable accuracy in predicting the time-dependent behaviour of soils, they still have their 

own limitations and require a considerable number of assumptions and parameters without 

being related to the physical phenomena of real soils. 

2.5.2.3 Hypoplasticity Models 

Unlike the traditional plasticity models, the direction of the plastic strain rate depends on 

the stress rate in the hypoplasticity theory, which was first introduced by Wu and Kolymbas 

(1990). The major characteristic of this approach is that the yield surface is defined as a kind 

of material memory. There is no yield function, no elastic domain and all the past stress history 

is concentrated in the current stress. This is in stark contrast to the conventional plasticity, in 

which the yield function and material state parameters define the yield surface, which contains 

the elastic domain. Afterwards, Wu et al. (1993) followed up with several concepts for the 

visco-hypoplastic constitutive models by combining the concept of hypoplasticity with 

viscoplastic overstress theory by Perzyna (1963, 1966). This formulation introduces a 

characteristic viscoplastic strain rate 휀̇  that depends on the stress and other structural tensors, 

considering past deformation history, but not on their rates. In general, a viscous flow rule is 

expressed in the following form: 

 휀̇ = 𝛾 ∙ ∅(𝐹) ∙ 𝑓 = 0 (2.26) 

where, 𝛾 is denoted here as the fluidity parameter and a yield function is introduced inside 

the viscous nucleus function as ∅(𝐹) = (𝑓 𝑓⁄ ) , with 𝑓  and 𝑓  defined as the dynamic yield 

surface and static yield surface, respectively. The parameter 𝑓  represents the direction of the 
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viscous flow, i.e. 𝑓 = 휀̇ 휀̇ . In other words, the direction of the plastic flow corresponds 

to a strain rate in the limited state when the stress is constant. Although Wu et al. (1993) 

outlined a number of visco-hypoplasticity, no specific constitutive formations have been 

proposed. This basic visco-hypoplasticity concept was improved by Niemunis (2003a, b) and 

Niemunis et al. (2009) with the adoption of Olszak and Perzyna (1966)’s overstress theory, 

along with the laboratory measurements using oedometer tests conducted by Niemunis and 

Krieg (1996). Gudehus (2004) and Mašín (2005) have also proposed modified viscous 

hypoplastic model by replacing the Cam-clay component with the genuine hypoplasticity. 

More recently, the Niemunis’ visco-hypoplastic concept has been adopted to perform 

numerical implementations on creeping slope (Van Den Ham et al., 2009), structured soils 

(Fuentes et al., 2010) and footing (Qiu and Grabe, 2011). Although these existing models have 

proved that the concept of visco-hypoplasticity is an appealing and interesting approach for the 

development of constitutive soil models, the resulting models are rather complicated and 

essentially, there is no physical meaning in deriving the formulations and justification in 

complying with the fundamental laws of physics. 

2.5.2.4 Hyperplasticity Model 

Although many variants of the plasticity theory have been developed for improved 

simulations of real soil behaviour, as detailed above, the resulting constitutive models are yet 

flexible enough to disobey the fundamental laws of thermodynamics. It is important that the 

constitutive models that do not comply with the fundamental laws of physics should not be 

used with any confidence, as emphasised in Houlsby and Puzrin (2006). Therefore, the 

constitutive models must be founded on the rudimentary physical phenomena and the 

subsequent developments must also ensure that the fundamental principles or axioms that 

govern the physical phenomena are taken into consideration. Based on this strong foundation, 
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Halphen and Nguyen (1974) and Ziegler (1983) have developed the concept of extracting 

plasticity theory with the major emphasis on the fundamental laws of thermodynamics, in 

which the entire constitutive response for modelling deformable solid is encapsulated within 

two scalar thermodynamic potential functions, namely free-energy and dissipation potential 

functions. This is in stark contrast to some conventional plasticity models, in which 

thermodynamic principles are not taken into consideration, such as the original Cam-clay 

model. In the hyperplasticity approach, the two scalar potential functions are postulated based 

on the first and second laws of thermodynamics, securing the fact that the derived incremental 

stress-strain responses always automatically obey them. This relatively new approach to the 

modelling of elasto-plastic constitutive models was termed ‘hyperplasticity’ by Collins and 

Houlsby (1997) and Houlsby and Puzrin (2000, 2006). The first potential function, i.e. the free-

energy potential function, may be expressed in four possible forms, as provided in Table 2.1. 

Table 2.1: Four possible forms of the free-energy potential function 

Internal Energy Helmholtz free-energy Enthalpy Gibbs free-energy 

𝑈 = 𝑈 휀 , 휀 , 𝑆  𝑓 = 𝑓 휀 , 휀 , 휃  ℎ = ℎ 𝜎 , 휀 , 𝑆  𝑔 = 𝑔 𝜎 , 휀 , 휃  

where, 𝑆 is the specific entropy and 휃 is denoted as temperature constant. The different 

forms of energy function are related by Legendre transformation. The second potential 

function, i.e. the dissipation potential function, basically allows for the Second Laws of 

Thermodynamics to be satisfied within the hyperplasticity framework. It is assumed that the 

dissipation potential function is a homogeneous first order function of the thermodynamic state 

and the rate of change of state of the material, which can also be expressed in four possible 

ways, depending on which the form of specified free-energy potential function: 

 𝛿Φ = 𝛿Φ(𝜎  or 휀 , 𝛼 , 𝑠 or 휃, �̇� ) ≥ 0 (2.27) 
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where, 𝛼  and �̇�  are the internal variable and its corresponding rate of change, 

respectively. It is to be emphasised that the dissipation potential function must always be 

positive to comply with the second laws of thermodynamics. In order to impose the first law 

of thermodynamics, the generalised and dissipative stress tensors are defined as follows: 

 �̅� = −
𝜕𝑢
𝜕𝛼 = −

𝜕𝑓
𝜕𝛼 = −

𝜕ℎ
𝜕𝛼 = −

𝜕𝑔
𝜕𝛼  (2.28a) 

 𝜒 =
𝜕(𝛿𝛷)
𝜕 �̇�

 
(2.28b) 

In this approach, the yield function 𝑌  is derived as a degenerate special case of the 

Legendre transformation of the dissipation function, which can be expressed in general form 

as follows: 

 𝛿Φ 𝜎 ,𝛼 , �̇� + 𝜆 ∙ 𝑌 𝜎 , 𝛼 , 𝜒 = 𝜒 �̇�  (2.29) 

Consequently, the flow rule arises from the properties of Legendre transformation as 

follows: 

 �̇� = 𝜆 ∙
𝜕(𝑌 )
𝜕𝜒  (2.30) 

where, 𝜆 is a non-negative multiplier resulting from the Legendre transformation based 

on homogeneous first order function. Since the current study adopts the core of the 

hyperplasticity framework, the major details related to the hyperplasticity framework is further 

elaborated in details in Chapter 3.  

One of the most profound benefits from this approach is that the identification of the two 

thermodynamic potentials (i.e. the free-energy and dissipation potential functions) is sufficient 

to predict the entire constitutive behaviour of elastic-plastic materials, entailing the elasticity 

law, the yield condition and its associated flow rule. Moreover, the distinctive characteristic of 



59 | P a g e  
 

the resulting constitutive models is their compliance with the physical phenomena, including 

the conservation of mass and energy and the fundamental laws of thermodynamics. Moreover, 

the resulting hyperplastic constitutive models are developed within a compact, rigorous and 

consistent framework for the determination of entire incremental stress-strain response. In 

recent years, Houlsby and Puzrin (2000, 2006) have made an extensive contribution to the 

development of generalised hyperplasticity framework for modelling constitutive stress-strain 

behaviour of soils. Moreover, this approach is then generalised to incorporate multiple yield 

surfaces and then to the case of infinite number of yield surfaces, where the latter is denoted as 

‘continuous hyperplasticity’ framework (Puzrin and Houlsby, 2001a, 2001b). The resulting 

models within this latter approach are capable of simulating smooth transitions from elastic to 

plastic behaviour, where truly elastic region vanishes altogether. Furthermore, this approach 

has subsequently extended to introduce the use of internal functions, within which the stress-

reversal history is memorised, to represent infinite number of internal variables; thus, resulting 

in a couple of scalar thermodynamic functionals, instead of functions. 

On the other hand, Houlsby and Puzrin (2001) have extended the generalised 

hyperplasticity framework to capture the rate-dependent behaviour of soils. To incorporate the 

modelling of rate-dependent behaviour, the description of the free-energy potential function 

remains the same, whereas the dissipation potential function is replaced by two potential 

functions, i.e. the force potential and the flow potential functions. With the use of Legendre-

Fenchel transformation, the force potential and flow potential functions are related and the 

summation of these two potential functions is equal to the dissipation potential function. The 

rudimentary elements related to the extension towards rate-dependent hyperplasticity approach 

is further elaborated in Chapter 3.  
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2.5.3 Comparisons of Advanced Constitutive Soil Models 

Taking the aforementioned discussions into consideration, it is observed that a large 

number of advanced constitutive soil models have been proposed, developed and extended 

based on various concepts and laboratory findings. Each of the existing models possesses its 

own advantages and shortcomings and up until now, no universal constitutive model has yet 

been developed that is applicable for all the geological materials subjected to a wide range of 

loading conditions. 

For the case of multiple-surface constitutive soil models, the bounding surface models 

are more computationally efficient compared to the multiple-surface models. However, the 

former ones often require a considerable number of somewhat arbitrary functions, postulated 

without being related to the physical phenomena of materials. On the other hand, although the 

latter ones are usually considered as the most promising approach, they still require to 

hypothesise inherently complicated functions, consisting of a large number of model 

parameters that are often difficult to obtain from traditional laboratory measurements. 

Moreover, the multiple-surface models are computationally inconvenient for the 

implementation of numerical analyses.  

The hypoplasticity models, basically, are not based on definite physical meanings and 

therefore, usually require a considerable amount of assumptions for the derivations of 

formulations that are difficult to justify for the compliance with the fundamental laws of 

physics. Although they reproduce reasonable simulations, the relationships are often the ones 

fitted by polynomial functions with curve-fitting parameters, which are not suitable to 

physically quantify and hence, inappropriate for very complicated boundary value problems. 

This could also result in misconceptions and misunderstandings of the behaviour of 

geomaterials, particularly soils.  
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The existing EVP models, somehow, enlighten the understanding of time-dependent 

behaviour of soils but they still have their own limitations and drawbacks, particularly with the 

emphasis on the necessity of a considerable number of assumptions, such as constant 

viscoplastic strain rate on the flow surface and the negligence of ‘fabric’ effects observed in 

the behaviour of natural soils, without being in tandem with the physical phenomena of real 

soils’ behaviour.  

2.6 Summary and Findings 

As previously emphasised in the earlier sections, the constitutive models must be 

developed without violating certain principles or axioms that govern the physical phenomena 

of materials; for instance, the fundamental laws of thermodynamics. In order to circumvent the 

problem of having a substantial number of assumptions and using ‘ad hoc’ procedures, while 

complying with the fundamental laws of physics, the current study adopts the hyperplasticity 

framework to describe the time-dependent behaviour of soils. This framework offers a 

rigorous, compact and consistent derivation procedure, making considerable use of potential 

functions and internal variables related to the physical phenomena of materials, for predicting 

the entire stress-strain response of soils subjected to a specified sequence of stress or strain 

increment over time. As a consequence, the resulting models developed within a single 

framework allows for efficient, yet convenient comparisons for further improvements. Most 

importantly, the need for additional ‘ad hoc’ assumptions and somewhat arbitrary formulations, 

can also be minimised to a certain extent, while providing the confidence and reliability for the 

implementation of numerical analyses as the framework is founded upon the fundamental laws 

of thermodynamics. Accordingly, the fundamental elements of the basic hyperplasticity theory, 

with the emphasis on its essential components and requisite foundation towards the 
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development of a new hyper-viscoplasticity theory to overcome the aforementioned drawbacks 

of the conventional approach, is reviewed in Chapter 3. 
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CHAPTER 3                                            

RATE-INDEPENDENT AND 

RATE-DEPENDENT 

HYPERPLASTICITY THEORY 
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3.1 Introduction 

In a conventional plasticity theory, the major specification of the incremental stress-strain 

response requires (i) the elasticity law, (ii) the yield condition, (iii) the flow rule or plastic 

potential, and (iv) the hardening/softening rule to take into account of the expansion and 

translation of yield surface for improved predictions on real soil behaviour. As previously 

highlighted, many existing variants of plasticity theory are flexible enough to violate the 

fundamental laws of thermodynamics. In contrast, the extraction of plasticity approach based 

on the laws of thermodynamics has also been emerged, within which the entire constitutive 

behaviour of a deformable solid is fully encapsulated in two potential functions, i.e. free-energy 

and dissipation potential functions. The general consideration of thermodynamics for the 

modelling of elastic-plastic materials is discussed in Halphen and Nguyen (1974), Ziegler 

(1983), Lubliner (1990) and Maugin (1992). This relatively new approach in developing 

constitutive models based on thermodynamics, was denoted as ‘hyperplasticity’ by Collins and 

Houlsby (1997) and Houlsby and Puzrin (2000) for modeling time-independent behaviour of 

soils. 

3.2 Basics of Hyperplasticity Theory 

The hyperplastic approach commences with the thermodynamic hypotheses and then 

develops plasticity theories from them. In classical thermodynamics, there are the “Zeroth”, 

“First”, “Second” and “Third” laws. In this hyperplasticity framework, it is emphasised 

particularly on the “First” and “Second” laws. Basically, they establish the existence of two 

important properties of a body in thermodynamic equilibrium: the internal free-energy and the 

entropy. 
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3.2.1 Laws of Thermodynamics 

3.2.1.1 The First Law 

In general, the first law can be stated in the following form: there is a property of the 

system in thermodynamic equilibrium, called internal energy U, such that: 

 �̇� = �̇� − �̇� (3.1) 

where, �̇� is the change in the internal energy, �̇� is the work done on the system, and �̇� 

is referred to as the amount of heat dissipated from the system. For any process within a closed 

system, the change in the internal energy (�̇�) is due to a combination of the amount of work 

done towards the system and the amount of heat dissipated from the system. Besides, Equation 

(3.1) also represents the important energy conservation phenomenon. 

3.2.1.2 The Second Law 

The second law of thermodynamics is considerably more subtle than the first law and 

can be expressed in a number of equivalent ways. In general, it imposes certain restrictions to 

the processes that can occur. For instance, one of the basic consequences is that work can be 

dissipated in the form of heat, but that heat cannot be converted back into work without some 

external influences. Within the context of hyperplasticity, it is emphasised that the second law 

simply requires the dissipation of energy. It can best be expressed by making the hypothesis 

that there is a further material property, called entropy (𝑆), which is defined as follows: 

 �̇� =
�̇�
휃  

(3.2) 

where, �̇� is the change in entropy, �̇� is referred to as the flow of heat into or out of the 

system from somewhere else, and 휃 is the absolute temperature. Since the amount of heat 
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dissipated from the element must always be non-negative, the following function is denoted as 

the dissipation potential function (δΦ), provided that the rate of entropy production within the 

element is the irreversible part �̇� , which satisfies the following inequality: 

 δΦ ≡ �̇� = 휃�̇� ≥ 0 (3.3) 

As discussed in Chapter 2, the free-energy function can be expressed using either one of 

the four alternative expressions, which are the internal energy (𝑢), Helmholtz free-energy (𝑓), 

Gibbs free-energy (𝑔) or enthalpy (ℎ). For instance, the internal energy function 𝑈 휀 , 휀 , 𝑆  

is related to the Helmholtz free-energy function Ψ 휀 , 휀 , 휃  by Legendre transformation, 

which is expressed as follows: 

 𝑈 휀 , 휀 , 𝑆 − Ψ 휀 , 휀 , 휃 = 휃. 𝑆 (3.4) 

Along with the property from Legendre transformation that: 

 𝑆 = −
𝜕Ψ
𝜕휃

 (3.5) 

Regarding Equations (3.3) and (3.4), it is much more convenient to control the 

temperature while conducting experiments rather than controlling the entropy. Therefore, on 

the other hand as the replacement of the entropy (𝑆) with temperature (휃), for simplicity, using 

Legendre transformation.  

Replacing the internal energy function (𝑈) with Helmholtz free-energy function (Ψ ) in 

Equation (3.1) results as follows: 

 Ψ̇ = �̇� − δΦ (3.6) 

Using �̇� = 𝜎 휀̇  for the change in work-done, and substituting the relationship from 

Equation (3.3) into Equation (3.6), 
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 𝜎 휀̇𝑖𝑗 = Ψ̇𝑓 + δΦ (3.7) 

Therefore, the power of deformation is equal to the sum of the rate of change of free-

energy and the dissipation in an isothermal deformation. 

3.3 Rate-independent Hyperplasticity Framework 

Referring to Equation (3.7), the basic formulation for an isothermal deformation of 

materials is expressed as follows:  

 �̇� = Ψ̇ + 𝛿Φ, 𝑤ℎ𝑒𝑟𝑒 𝛿Φ ≥ 0 (3.8) 

 

where, �̇� is the effective incremental work done on a continuum element, Ψ̇ is the 

differential of the free-energy defined per unit volume and 𝛿Φ is the dissipation increment 

function defined per unit volume. Since there are four alternative forms available for the free-

energy function, namely the internal energy (Ψ ), Helmholtz free-energy (Ψ ), Gibbs free-

energy (Ψ ), or the enthalpy (Ψ ), the general expression Ψ is used for representation. In 

order to comply with the second law of thermodynamics, 𝛿Φ in Equation (3.8) must be non-

negative. As previously discussed, the free-energy function is defined in terms of total elastic 

strain tensor and plastic strain tensor, 휀  𝑎𝑛𝑑 휀 , respectively. On the other hand, the 

dissipation function is assumed to depend additionally on plastic strain rate tensor, i.e., 

𝛿Φ 휀 , 휀 , 휀̇ . Consequently, the free-energy, in general, is allowed to depend on both elastic 

and plastic strains. This requires additional assumption, in which the material must be 

‘decoupled’ in the sense that the instantaneous elastic moduli do not depend on the plastic 

strains. The special case comes from the above assumption that the free-energy is defined as 
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an additive composition of two separate functions, comprising of only elastic strains in one and 

only plastic strains in the other one. The validity of these assumptions is discussed in Collins 

and Houlsby (1997) and Collins and Kelly (2002). From this ‘decoupled’ assumption, it 

follows that: 

 Ψ = Ψ 휀 + Ψ 휀  (3.9) 

where Ψ  and Ψ  are the elastic and plastic components of the free-energy function, 

respectively; whereas, 휀  and 휀  are the elastic and plastic strain tensors, respectively. The 

expression in Equation (3.9) is also termed as the ‘principle of separation of energy’ by Ulm 

and Coussy (2003). In general, the free-energy should only depend on elastic strain, as it 

represents the elastic energy stored in an individual grain. In conventional plasticity theory, it 

is often assumed that the energy associated with plastic strain is irrecoverable. However, the 

contact stresses acting on an individual grain are not the same during the loading and unloading 

phases due to the highly inhomogeneous nature of the stress distributions found on the micro 

scale (Collins, 2005). As a result, when unloading situation occurs, i.e. the reduction in the 

applied pressure resulting in the negative work increment, the minor portion of elastically 

compressed grains are allowed to expand and give up their stored elastic energy. Afterwards, 

these particles return to their compressed state upon reloading. The changes in energy related 

to this reversible elastic deformation are given by the elasticity component of the continuum, 

free-energy increment Ψ̇ . However, a certain extent of the elastically compressed particles are 

still ‘trapped’ within the compacted volume and these particles have the capacity to expand 

and release their stored elastic energy only when the simultaneous rearrangement occurs in 

some of the surrounding particles. Necessarily, this rearrangement entails frictional dissipation, 

which in turn, results in the induced dilatational plastic strains. 
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Figure 3.1: (i) One-dimensional rheological model representing stored and dissipated plastic work; (ii) 

total stress-strain response; (iii) total stress-plastic strain response (after Collins, 2005) 
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The presence of stored plastic work can also be considered as the remaining plastic strain 

when the ‘system’ returns to its original stress level. The concepts of stored and dissipated 

plastic work is represented using the one-dimensional rheological model in Figure 3.1 (i), 

consisting of a spring that is placed in parallel with a second spring in series with a slider. The 

system is subjected to an increasing total stress, which is followed by unloading until 𝜎 = 0, 

as shown in Figure 3.1 (ii); where, the components of stored and dissipated plastic work are 

depicted in Figure 3.1 (iii). 

Consider the situation in which there were no ‘trapped’ energy, all the energy contained 

within the compressed grain particles should be recovered without resulting in any grain re-

arrangement. According to Thornton and Liu (2000), such re-arrangement strains are observed 

during decompression in discrete element simulations. Moreover, the existence of ‘stored’ or 

‘frozen’ elastic energy has also been explained in the context of general elastic-plastic materials 

by Mroz (1973), Maugin (1992). Furthermore, Palmer (1967) and Houlsby (1981) have 

scrutinised the energy decomposition of the original Cambridge models within this context of 

stored plastic work, and more recently, Jefferies (1997) have corroborated the possibility of 

some portion of plastic work being stored. 

Hence, it is possible to recover the micro-elastic energy associated with these trapped 

particles only if reversed, i.e. dilatational volumetric plastic strains also occur. However, such 

deformations are not allowed to happen within the current yield surface. Correspondingly, the 

magnitude of the plastic strains resulting from the rearrangements taken place within the 

compression phase governs the portion of the trapped micro-elastic energy. Thus, the plastic 

strains are used to determine the magnitude of this locked-in elastic energy at the continuum 

level. Therefore, this frozen energy is termed as the stored plastic work by Collins (2005), and 

its increment, which is not restricted in sign, is denoted by Ψ̇ , as indicated above. As a result, 
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the function Ψ  is not dependent upon the elastic strains, but only on the plastic strains. 

Substituting Equation (3.9) into Equation (3.8) yields: 

 �̇� = Ψ̇ 휀̇ + Ψ̇ 휀̇ + 𝛿Φ (3.10) 

Similarly, the total work increment can also be written as the sum of elastic and plastic 

components: 

 �̇� = �̇� + �̇�  (3.11) 

It follows from Equations (3.10) and (3.11) that: 

 
�̇� = 𝜎𝑖𝑗

′ 휀̇ =
𝜕𝛹 휀

𝜕휀 휀̇   𝑎𝑛𝑑  𝜎𝑖𝑗
′ =

𝜕𝛹 휀
𝜕휀  (3.12) 

where, 𝜎  is the effective stress tensor. The basic elasticity component of the constitutive 

law is then deduced in Equation (3.12). On the other hand, it follows from Equations (3.10) 

and (3.11) that:  

 �̇� = 𝜎𝑖𝑗
′ 휀̇ = Ψ̇ 휀̇ + 𝛿𝛷 휀̇ =

𝜕𝛹 휀
𝜕휀

휀̇ +
𝜕(𝛿𝛷)
𝜕휀̇

휀̇  (3.13a) 

 �̇� =
𝜕𝛹 휀

𝜕휀
휀̇ +

𝜕(𝛿𝛷)
𝜕휀̇

휀̇  (3.13a) 

Since 𝛿Φ is a homogeneous first order function of plastic strain rates 휀̇ , Euler’s theorem 

for homogeneous functions is used to obtain the last term in equation Equation (3.13a). 

Comparing with Equation (3.13a), this relationship is only satisfied if: 

 
𝜌 =

𝜕𝛹 휀
𝜕휀

  𝑎𝑛𝑑  𝜒 =
𝜕(𝛿𝛷)
𝜕휀̇

 (3.14) 
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where, 𝜌  𝑎𝑛𝑑 𝜒  are termed ‘shift’ stress and ‘dissipative’ stress, respectively. This 

derivation in Equation (3.14) is supported by Collins and Hilder (2002) and YangPing et al. 

(2013). However, Equation (3.14) cannot be deduced formally as in the previous case of 

deducing elasticity law in Equation (3.12). In order to achieve this, the status of a constitutive 

postulate termed as ‘Ziegler’s orthogonality postulate’ needs to be satisfied (Collins and 

Houlsby, 1997; Houlsby and Puzrin, 2000). Referring to Equations (3.13a), (3.13a) and (3.14), 

it is deduced that the effective stress is the sum of the ‘shift’ stress and ‘dissipative’ stress, 

expressed as follows: 

 𝜎 = 𝜌𝑖𝑗
′ + 𝜒𝑖𝑗

′  (3.15) 

Therefore, the re-written form of Equation (3.13a) is provided as follows: 

 �̇� = 𝜎𝑖𝑗
′ 휀̇ = Ψ̇ + 𝛿Φ = 𝜌 휀̇ + 𝜒 휀̇  (3.16) 

As similar to the derivation in Equation (3.12), the relationships, i.e. �̇� = 𝜎𝑖𝑗
′ 휀̇ , Ψ̇ =

𝜌 휀̇  𝑎𝑛𝑑 𝛿Φ = 𝜒 휀̇ , are deduced from Equation (3.16). Therefore, it is apparent that the 

product of the true stress with the plastic strain increment results in the plastic work, whereas 

the multiplication of dissipative stress with the plastic strain increment results in the plastic 

dissipation. In contrast to the conventional soil mechanics, where the plastic work and the 

plastic dissipation are normally assumed to be equal, these are only equal if the shift stress 𝜌  

is zero; in other words, the free-energy is assumed to depend only on the elastic strains within 

the context of hyperplasticity. Hence, this viewpoint is a cornerstone of modern soil mechanics. 

The importance of the shift stress in the modelling of the unloading situations is discussed in 

Collins and Hilder (2002). Moreover, Collins and Kelly (2002) recognised the importance of 

this ‘stored plastic work’ as they discussed the concept in terms of both the thermo-mechanical 

and the micromechanical viewpoints.  
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The summary of how the hyperplastic approach is based on the First and Second law of 

thermodynamics is provided in Table 3.1 and Table 3.2 using triaxial notations. In addition, 

the basic formulations for rate-independent hyperplasticity framework is also presented in 

Table 3.3. 

Table 3.1: Summary of Derivations for Rate-independent Hyperplasticity Framework 

  Formulations 

First Law of 

Thermodynamics 
Ψ̇ = �̇� − �̇� 

Second Law of 

Thermodynamics 

(Definition of 

Entropy) 

�̇� =
�̇�
휃  

Work or Energy 

Equation 
�̇� = �̇� 휀  𝑜𝑟 �̇� = 𝜎𝑖𝑗

′ 휀̇  

1. Equation – Power 

of Deformation 
Ψ̇ = �̇� 휀 − 𝛿Φ  Ψ̇ = 𝜎𝑖𝑗

′ 휀̇ − 𝛿Φ  

Where, �̇� ≡ 𝛿Φ, where the amount of heat being dissipated is assumed to be equal to the 

dissipation increment function. 

Free-energy Function Ψ = Ψ 𝜎𝑖𝑗
′ , 휀  Ψ = Ψ 휀 , 휀  

2. Differentiation – 

Free-energy function 
Ψ̇ =

𝜕Ψ
𝜕𝜎 �̇� +

𝜕Ψ
𝜕휀

휀̇  Ψ̇ =
𝜕Ψ
𝜕휀 휀̇ +

𝜕Ψ
𝜕휀

휀̇  

Equating like terms 

from 1 and 2 
휀 =

𝜕Ψ
𝜕𝜎𝑖𝑗

′  𝜎 =
𝜕Ψ𝑓

𝜕휀𝑖𝑗
 

 𝛿Φ = 𝜒 휀̇ = −
𝜕Ψ
𝜕휀

휀̇  𝛿Φ = 𝜒 휀̇ = −
𝜕Ψ
𝜕휀

휀̇  
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Table 3.2: Summary of Derivations for Rate-independent Hyperplasticity Framework (Using Triaxial 

Notation) 

 Formulations 

Equation – Power of Deformation �̇� = 𝜎𝑖𝑗
′ 휀̇ = Ψ̇ 휀 + Ψ̇ 휀 + δΦ 휀̇  

Total Work Increment Equation �̇� = �̇� + �̇�  

Elastic Work Increment Function �̇� = Ψ̇ 휀  

Elastic Component 

 

�̇� = 𝜎𝑖𝑗
′ 휀̇ = Ψ̇ 휀 =

∂Ψ 휀
𝜕휀 휀̇ ;  

𝜎 =
∂Ψ𝑒 휀𝑖𝑗

𝑒

𝜕휀𝑖𝑗
𝑒  

𝑝 =
𝜕Ψ
𝜕휀  𝑞 =

𝜕Ψ
𝜕휀  

Plastic Work Increment Function �̇� = Ψ̇ 휀 + δΦ 휀̇  

Plastic Components �̇� = 𝜎𝑖𝑗
′ 휀̇ =

∂Ψ 휀
𝜕휀

휀̇ +
𝜕(δΦ)
𝜕(휀̇ )

휀̇  

Shift Stress 𝑝 =
∂Ψ𝑝 휀𝑣

𝑝

𝜕휀𝑣
𝑝  𝑞 =

∂Ψ 휀
𝜕휀

 

Dissipative Stress 𝑝 =
𝜕(δΦ)
𝜕(휀̇𝑣

𝑝)
 𝑞 =

𝜕(δΦ)
𝜕(휀̇ )

 

Total Stress Components 𝑝 = 𝑝𝑠
′ + 𝑝𝐷

′  𝑞 = 𝑞 + 𝑞  
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Table 3.3: Basic Formulations for Rate-independent Hyperplasticity Framework 

 Gibbs Free-Energy (품) Helmholtz Free-Energy (풇) 

Free-energy 

Function 
Ψ = Ψ 𝜎 , 휀  Ψ = Ψ 휀 , 휀  

Stress or Strain 휀 = −
𝜕Ψ
𝜕𝜎  𝜎 =

𝜕Ψ
𝜕휀  

Generalised Stress �̅� = −
𝜕Ψ
𝜕휀

 �̅� = −
𝜕Ψ
𝜕휀

 

Dissipation 

Function 
𝛿Φ = 𝛿Φ 𝜎 , 휀 , 휀̇ ≥ 0 𝛿Φ = 𝛿Φ 휀 , 휀 , 휀̇ ≥ 0 

Dissipative Stress 𝜒 =
𝜕(𝛿Φ𝑔)
𝜕 휀̇𝑖𝑗

𝑝  𝜒 =
𝜕 𝛿Φ𝑓

𝜕 휀̇𝑖𝑗
𝑝  

Legendre 

Transformation 

𝛿Φ 𝜎 , 휀 , 휀̇

+ 𝜆 ∙ (𝑌 ) 𝜎 , 휀 , 𝜒𝑖𝑗
′ = 𝜒𝑖𝑗

′ 휀̇  

𝛿Φ 휀 , 휀 , 휀̇ + 𝜆

∙ (𝑌 ) 휀 , 휀 , 𝜒𝑖𝑗
′ = 𝜒𝑖𝑗

′ 휀̇  

Yield Function in 

Dissipative Stress 

Space 

(𝑌 ) = (𝑌 ) 𝜎 , 휀 , 𝜒𝑖𝑗
′ = 0 (𝑌 ) = (𝑌 ) 휀 , 휀 , 𝜒𝑖𝑗

′ = 0 

Flow Rule in 

Dissipative Stress 

Space 

휀̇ = 𝜆
𝜕[(𝑌 ) ]

𝜕𝜒𝑖𝑗
′  휀̇ = 𝜆

𝜕 (𝑌 )
𝜕𝜒𝑖𝑗

′  

Yield Function in 

True Stress Space 
𝑌 = 𝑌 𝜎 , 휀 = 0 𝑌 = 𝑌 휀 , 휀 , 𝜎 = 0 

Flow Rule in True 

Stress Space 
휀̇ = 𝜆

𝜕𝑌
𝜕𝜎  휀̇ = 𝜆

𝜕𝑌
𝜕𝜎  

Consistency 

Condition 
�̇� =

𝜕𝑌
𝜕𝜎 �̇�𝑖𝑗

′ +
𝜕𝑌
𝜕휀

휀̇  

 
If 𝑌 < 0, stress state fully within the elastic domain. 

𝜆 = 0 (No plastic deformation) 

 

If 𝑌 = 0, plastic deformation occurs.  

𝜆 > 0; 𝜆 = −
𝜒𝑖𝑗
′ ̇
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The flow rule in the dissipative stress space is extracted as part of the property of 

Legendre transformation performed using the dissipation potential function. The non-negative 

multiplier 𝜆, results from the degenerate special case of Legendre transformation due to the 

assumption of dissipation potential being a homogeneous first order function. If plastic 

deformation occurs, i.e. the stress state is on the yield surface (𝑌 = 0), the non-negative plastic 

multiplier, i.e. 𝜆, is determined based on the consistency condition of the corresponding yield 

criterion to ensure that the stress states do not go beyond the yield limit. 

 

Figure 3.2: Schematic representation of the decomposition of the true stress into shift stress and 

dissipative stress components 

As previously mentioned, this formulation adopts the Ziegler’s orthogonality principle, 

which in the form of �̅� = 𝜒 , in order to transform the yield function and the flow rule from 

the dissipative stress space to true stress space. Ziegler’s orthogonality condition is effectively 

considered as a much stronger statement than the laws of thermodynamics (Collins and 

Houlsby, 1997; Houlsby and Puzrin, 2000). Besides, it can loosely be stated as a principle of 

maximal dissipation in some cases, due to the assumption that the amount of heat dissipated, 

i.e. �̇� used in the first law of thermodynamics, is equal to the dissipation increment function. 

Ziegler (1983) also stated that the difference between the generalised stress �̅�   and dissipative 
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stress 𝜒  is zero and if it is accepted that the knowledge of the dissipation function 𝛿Φ is 

sufficient to determine the corresponding dissipative stress 𝜒 , then the relationship, i.e. 𝜒 =

𝜕(𝛿Φ ) 𝜕 휀̇  is the only feasible solution, as the normal to the level surfaces is the only 

vector field uniquely determined by a scalar valued dissipation function 𝛿Φ. Moreover, Ziegler 

(1981) provided some clarities for the criticisms on the status of this postulate on a number of 

grounds. Since the debate on the justification of ‘Ziegler’s orthogonality condition’ is not 

visited in this study, it is simply emphasised that this condition enables a compact formulation 

of constitutive behaviour that is consistent with the laws of thermodynamics. 

 

Figure 3.3: Flow Chart illustrating the steps in constructing the Incremental Form of the 

Elastic/Plastic Constitutive Law for the Development of Rate-independent Hyperplasticity Models 

Therefore, the entire constitutive stress-strain response for soils is fully determined by 

using two thermodynamic potential functions, i.e. free-energy function and dissipation 

function, based on hyperplasticity theory. Hence, the flow chart for representing the step-by-

step development of the rate-dependent hyperplasticity approach is deduced as in Figure 3.3. 

It is important to note here that thermal effects are not considered in this rate-independent 

scenario.  
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3.4 Rate-dependent Hyperplasticity Framework 

Considering the benefits, rigidity and transparency of the hyperplasticity framework, it 

is rational to study the extension of rate-independent hyperplasticity concepts towards the 

incorporation of time-dependent effects for exploring the feasibility to build a strong 

foundation for the development of mixed hardening hyper-viscoplasticity model. In reality, 

almost all the materials in nature exhibit the rate-dependent behaviour and thus, soil is not an 

exception. As a result, these materials, while primarily classified as rate-independent, do 

demonstrate minor dependence on time and/or rate effects. Therefore, the consideration of 

modelling rate-dependent behaviour becomes a major necessity, particularly for the 

constitutive modelling of soil behaviour. Typically, it is observed from most frictional 

geomaterials that the yield stress may increase marginally with the strain rate, along with creep 

under sustained loading and stress relaxation at fixed strain. 

Although many existing constitutive soil models have attempted to reproduce the 

aforementioned types of rate-dependent effects, these are often modelled semi-empirically by 

applying various plasticity theories to predict the rate dependence of strength, creep and stress 

relaxation. However, all these rate-dependent phenomena should be encompassed within a 

single approach with rigidity, compactness and consistency, which also allows for competing 

models to cast within the same framework for convenient comparisons. The extension of rate-

independent hyperplasticity concept towards the rate-dependent one begins by overcoming the 

assumption that the dissipation increment function is a homogeneous first order function in 

plastic strain increments. 

Consequently, the dissipation potential function, which is still homogeneous but of 

certain order “n” instead of one, is considered in this rate-dependent case. However, the general 

form of the dissipation potential function remains identical to the one provided in Table 3.3. 
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Considering the developments in Equations (3.13a), (3.13a) and (3.14), the following 

expression is obtained using the Euler’s theorem for homogeneous functions of certain order 

“n”: 

 
𝑛 ∙ 𝛿Φ =

𝜕(𝛿Φ)

𝜕 휀̇
휀̇  (3.17) 

It is emphasised in Equation (3.17) that 𝑛 = 1 for homogeneous first order dissipation 

functions for the rate-independent case. Re-arranging Equation (3.17): 

 
𝛿Φ =

1
𝑛

∙
𝜕(𝛿Φ)

𝜕 휀̇
휀̇  (3.18) 

Here, a scalar factor 𝑣 is introduced in Equation (3.18), which is re-written as follows: 

 
𝛿Φ = 𝑣 ∙

𝜕(𝛿Φ)

𝜕 휀̇
휀̇  (3.19) 

As similar to Equation (3.17), it is emphasised in Equation (3.19) that 𝑣 = 1 for the rate-

independent case. For any dissipation function 𝛿Φ, which is a homogeneous function of degree 

𝑛 in plastic strain rate 휀̇ , the factor 𝑣 is simply equal to 1 𝑛. Then, the dissipative stress 𝜒  

in rate-independent case, i.e. from Table 3.3, is required to be modified as follows: 

 
𝜒 = 𝑣 ∙

𝜕(𝛿Φ)

𝜕 휀̇
  (3.20) 

As a result, if the Orthogonality principle, i.e. �̅� = �̅� , is applied, the expressions from 

the rate-independent case are modified as follows: 

 
−

𝜕Ψ
𝜕휀

= 𝑣 ∙
𝜕(𝛿Φ)

𝜕 휀̇
  (3.21) 

The introduction of a scalar factor 𝑣 in Equations (3.20) and (3.21) specifies that the 

dissipation function 𝛿Φ is referred to as pseudo-potential function for the dissipative stress 𝜒 . 
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The following assumption is adopted, in which it is adequate to consider that the function “z” 

is only dependent upon the rate of change of the internal variable (e.g. plastic strain 

increments), as in the case of dissipation function; thus, resulting in the expression of the 

dissipation potential function 𝛿Φ as follows: 

 𝛿Φ =
𝜕𝑧

𝜕 휀̇
 휀̇  (3.22) 

If 𝛿Φ is homogeneous first order in 휀̇ , i.e. 𝑛 = 1, then it is emphasised that 𝑧 ≡ 𝛿Φ, by 

comparing Equation (3.17) to Equation (3.22). The advantages of the above assumption are 

explored later in the section. 

Since 𝛿Φ is homogeneous but not first order in 휀̇  for the rate-dependent case, the 

following generalised definition for the dissipative stress, rather than Equation (3.20), is 

expressed as follows: 

 𝜒 =
𝜕𝑧

𝜕 휀̇
 (3.23) 

As similar to the rate-independent case, Ziegler’s orthogonality principle, i.e. �̅� = 𝜒 , 

is still adopted for the rate-dependent case. However, the principal advantage is that the 

function 𝑧, unlike the dissipation potential function 𝛿Φ, serves as a potential for the dissipative 

stress 𝜒 . Hence, the function 𝑧 could properly be defined as the dissipative generalised stress 

potential using Equation (3.23). However, the function 𝑧 is referred to as the force potential 

function for simplicity and brevity, as also suggested by Houlsby and Puzrin (2002). 

Consequently, a simple Legendre-Fenchel transformation, like Legendre transformation, is 

applied to the force potential function 𝑧 to introduce a new potential function "𝑤", which is as 

follows: 
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 𝑧 𝜎𝑖𝑗
′ , 휀 , 휀̇ + 𝑤 𝜎𝑖𝑗

′ , 휀 , 𝜒 = 𝜒 휀̇  (3.24) 

Accordingly, the following property from Legendre-Fenchel transformation is deduced 

from Equation (3.24), such that: 

 휀̇ =
𝜕𝑤
𝜕𝜒

 (3.25) 

The corresponding fact is deduced from Equations (3.24) and (3.25) that the function 

𝑤 𝜎𝑖𝑗
′ , 휀 , 𝜒  has a clear analogy with the yield function 𝑌 𝜎 , 휀 , 𝜒  in dissipative stress 

space obtained from 𝛿Φ in the previous rate-independent case, compared with Table 3.3. Since 

the force potential function 𝑧 is not homogeneous first order in 휀̇ , the Legendre-Fenchel 

transformation, no longer, results in a degenerate special case. Therefore, in contrast to the 

condition, i.e. 𝑌 𝜎 , 휀 , 𝜒 = 0, in the rate-independent case, 𝑤 𝜎 , 휀 , 𝜒 = 0 from 

Equation (3.24) does not apply in this case of rate-dependency. Similar to the force potential 

function 𝑧, the function 𝑤 could properly be defined as the plastic strain rate potential function, 

but for simplicity and brevity, function 𝑤 is referred to as the flow potential function, as also 

suggested by Houlsby and Puzrin (2002). Re-arranging Equation (3.24) results in the following 

expression: 

 𝛿Φ = 𝑧 𝜎 , 휀 , 휀̇ + 𝑤 𝜎 , 휀 , 𝜒  (3.26) 

It is determined from Equation (3.26) that the sum of the force and flow potential 

functions is equal to the dissipation potential function 𝛿Φ. As previously mentioned that 𝑣 =

1 𝑛, if 𝛿Φ is a homogeneous function of order 𝑛 in the plastic strain rates, it is deduced from 

Equations (3.18), (3.19) and (3.22) as follows: 

 
𝑧 =

𝛿Φ
𝑛 , 𝑠𝑜 𝑡ℎ𝑎𝑡 𝛿Φ = n ∙ z =

𝜕𝑧

𝜕 휀̇
휀̇  (3.27) 
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Hence, the factor 𝑣 = 1 𝑛  is simply a constant when 𝛿Φ is a homogeneous function of 

휀̇ . Taking into consideration of Equation (3.27), consider if the dissipation function can be 

represented in the following form: 

 
𝛿Φ = (𝛿Φ)  (3.28) 

where, (𝛿Φ)  itself is homogeneous and of order 𝑛  in the plastic strain increments in 

each of the 𝑁 functions. Accordingly, the force potential function is defined from Equations 

(3.27) and (3.28) as follows: 

 
𝑧 =

(𝛿Φ)
𝑛  (3.29) 

According to Valanis (1966), all smooth functions can be approximated by a finite 

polynomial series. Similar types of functions in the form of Equation (3.28) are denoted as 

pseudo-homogeneous functions, and in such case, the dissipation potential function acts as a 

pseudo-potential function. 

As discussed above, the entire rate-dependent hyperplastic constitutive framework is 

encapsulated within two thermodynamic potential functions, i.e. the free-energy and 

dissipation potentials. Hence, the following Table 3.4 summarises the rate-dependent 

hyperplastic approach based on Gibbs free-energy function, Ψ , and Helmholtz free-energy 

function, Ψ . Moreover, the flow chart representing the step-by-step development of rate-

dependent hyperplasticity framework is depicted in Figure 3.4. 
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Table 3.4: Basic Formulations for Rate-dependent Hyperplasticity Framework 

Rate-dependent 

Formulation 
Gibbs Free-Energy (품) Helmholtz Free-Energy (풇) 

Free-energy Function Ψ = Ψ 𝜎 , 휀  Ψ = Ψ 휀 , 휀  

Stress or Strain 휀 = −
𝜕Ψ
𝜕𝜎  𝜎 =

𝜕Ψ
𝜕휀  

Generalised Stress �̅� = −
𝜕Ψ
𝜕휀

 �̅� = −
𝜕Ψ
𝜕휀

 

Force Potential Function 

(풛) 
𝑧 = 𝑧 𝜎 , 휀 , 휀̇  𝑧 = 𝑧 휀 , 휀 , 휀̇  

Dissipative Stress 𝜒 =
𝜕(𝑧 )

𝜕 휀̇
 𝜒 =

𝜕 𝑧

𝜕 휀̇
 

Flow Potential Function 

(풘) 
(𝑤 ) = (𝑤 ) 𝜎 , 휀 , 𝜒  (𝑤 ) = (𝑤 ) 휀 , 휀 , 𝜒  

Flow Rule in Dissipative 

Stress Space 
휀̇ =

𝜕[(𝑤 ) ]
𝜕𝜒  휀̇ =

𝜕 (𝑤 )
𝜕𝜒  

In this case of rate-dependency, the flow rule is extracted from the property of Legendre-

Fenchel transformation using Equation (3.24). Unlike a degenerate special case in the rate-

independent case, the flow rule does not contain the non-negative multiplier (𝜆) due to the fact 

that the force potential function (𝑧) is homogeneous but not first order in 휀̇ . However, the 

rate-dependent formulation still conform to the Ziegler’s orthogonality principle, which is in 

the form �̅� = 𝜒 , in order to transform the yield function and the flow rule from the 

dissipative stress space to true stress space. 
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Figure 3.4: Flow Chart illustrating the steps in constructing the Incremental Form of the 

Elastic/Plastic Constitutive Law for the Development of Rate-dependent Hyperplasticity Models 

3.5 Comparisons between Rate-independent and Rate-dependent 

Hyperplastic Formulation 

Therefore, the comparisons between rate-independent and rate-dependent formulations 

based on hyperplasticity framework, highlighting the similarities and differences, are 

summarised in Table 3.5 and presented in the flow chart provided in Figure 3.5. 
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Table 3.5: Comparisons between Rate-independent and Rate-dependent Formulations for the 

Development of Hyperplasticity Models 

Definition Rate-independent Formulation Rate-dependent Formulation 

First Potential 

Function 
The same definition for free-energy functions (Ψ) 

Second Potential 

Function 

Dissipation function (𝛿Φ) or 

Yield Function (𝑌) 

Force Potential Function (𝑧) and 

Flow Potential Function (𝑤) 

Generalised Stress �̅� = −
𝜕Ψ
𝜕휀

 �̅� = −
𝜕Ψ
𝜕휀

 

Dissipative Stress 𝜒 =
𝜕(𝛿Φ)

𝜕 휀̇
 𝜒 =

𝜕(𝑧)

𝜕 휀̇
 

Legendre and  

Legendre-Fenchel 

Transformations 

𝛿Φ 𝜎 , 휀 , 휀̇ + 𝜆𝑌 𝜎 , 휀 , 𝜒

= 𝜒 휀̇  

𝑧 𝜎 , 휀 , 휀̇ + 𝑤 𝜎 , 휀 , 𝜒

= 𝜒 휀̇  

Flow Rule in 

Dissipative Stress 

Space 

휀̇ = 𝜆
𝜕𝑌
𝜕𝜒  휀̇ =

𝜕𝑤
𝜕𝜒  

Flow Rule in True 

Stress Space 
휀̇ = 𝜆

𝜕𝑌
𝜕𝜎  휀̇ =

𝜕𝑤
𝜕𝜎  
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Figure 3.5: Flow Chart highlighting the Similarities and Differences between Rate-independent and 

Rate-dependent Formulations for the Development of Hyperplasticity Models  

Considering the rigidity, and compactness of the hyperplasticity framework, along with 

its provision of confidence and reliability for building a strong foundation for the development 

of constitutive models, it is rational and logical that the development of a constitutive soil 

model is based on the rate-dependent hyperplasticity approach. Consequently, the following 

Chapter 4 discusses the development of a simple and versatile constitutive soil model based on 

hyperplasticity theory to simulate the non-linear creep behaviour, along with the prediction of 

both isotropic and kinematic hardening behaviour of soils. As distinctively different from most 

of the existing viscoplasticity models, the model avoids the need to introduce a considerable 

number of assumptions without being related to the physical phenomena of soils as it is based 

on the fundamental laws of thermodynamics.  
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4.1 Introduction 

In the early stages of the current study, the time-dependent behaviour of soils has been 

investigated comprehensively within the field of soil mechanics. Considerably, the 

sophisticated behaviour of soils, along with the associated complexities, including the highly 

non-linear time- and rate-dependent behaviour soil matrix and complicated interaction of fluid 

flow and deformation responses result in the necessity for further understanding of various 

observed time- and rate-dependent phenomena of soils, such as creep, stress relaxation and 

rate-dependency of strength characteristics. Therefore, there has been a burgeoning interest in 

studying the time-dependent behaviour of geomaterials to develop constitutive models has 

become the major subject of interest for researchers in the field of modern geomechanics. As 

previously discussed, several approaches have been developed to capture the time-dependent 

behaviour of soils, including empirical models, rheological models, and the elasto-viscoplastic 

constitutive models. Although a plethora of research work has been carried out to reproduce 

the time-dependent behaviour realistically, most of the existing constitutive models have had 

to compensate with a considerable number of assumptions and/or a large number of parameters 

and a lot of questions still remain to be answered due to the problematic nature of predicting 

the time-dependent deformation characteristics of real soils. As a consequence, the existing 

constitutive viscoplasticity models are yet flexible enough to disobey the fundamental laws of 

thermodynamics. Moreover, they often require a considerable number of assumptions without 

being related to the physical phenomena of real soils. 

To circumvent the drawbacks of having a substantial number of assumptions, this chapter 

introduces a unique mixed hardening hyper-viscoplasticity model (H-Creep Model), based on 

the fundamental laws of thermodynamics, for the derivation of the time-dependent constitutive 

behaviour of soils, with the intention to capture the variation in the shapes of the yield loci by 



89 | P a g e  
 

pursuing non-associated flow rules and accounting for kinematic hardening effects. The most 

distinctive characteristic of the proposed model is their compliance with the physical 

phenomena, such as the conservation of mass and energy and the fundamental laws of 

thermodynamics. One of the most profound benefits from this approach, is that the 

identification of two thermodynamic potentials (i.e. the free-energy and the dissipation 

functions) is sufficient to predict the entire constitutive behaviour of elastic-plastic materials, 

entailing the yield condition and flow rule, along with the isotropic and kinematic hardening 

laws, as well as the elasticity law. 

The next section of this chapter, i.e. Section 4.2, summaries the major characteristics of 

the proposed mixed hardening hyper-viscoplasticity model for soils incorporating non-linear 

creep rate, accompanied with the aforementioned attributes, based on the principles of 

hyperplasticity discussed in Chapter 3. Section 4.3 introduces the non-linear creep formulation, 

which is incorporated as part of the time-dependent viscosity scaling function embedded in the 

dissipation potential function. The following Section 4.4 outlines the rational extension 

towards the proposed mixed hardening hyper-viscoplasticity model for soils by incorporating 

soil fabric to emphasise on the importance of modelling strain-softening effects during time-

dependent delayed deformation, particularly in natural soils. This is followed by a brief 

discussion on the major principle and one of the key characteristics of the proposed model in 

Section 4.5. This chapter concludes with the findings and observations on both the proposed 

and extended components of the mixed hardening hyper-viscoplasticity model in Section 4.6. 

In this chapter, the majority of the formulations are expressed using principal stresses. 

The principal stresses are ordered, in which 𝜎  is the most tensile, whereas 𝜎  is the most 

compressive, i.e. 𝜎 ≤ 𝜎 ≤ 𝜎 . In tandem with the geotechnical sign convention, compressive 
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stresses are denoted as positive, whilst tensile stresses are negative. All the stresses throughout 

this chapter are considered as effective stresses with prime notation. 

4.2 Formulation - Proposed Mixed Hardening Hyper-viscoplasticity 

Model for Soils 

4.2.1 Theoretical Background 

The extraction of plasticity theory with the major emphasis on the fundamental laws of 

thermodynamics stems from the early works of Halphen and Nguyen (1974) and Ziegler 

(1983), in which the derivation of the entire constitutive response for modelling plastic 

materials was based on two scalar thermodynamic potential functions. Collins and Houlsby 

(1997) and Houlsby and Puzrin (2000) have termed this relatively new approach as 

‘hyperplasticity’ for developing constitutive models for time-independent behaviour of soils. 

Basically, the hyperplastic approach begins with the thermodynamic hypotheses, from which 

plasticity theories are developed for the modelling of constitutive models for soil behaviour. 

The entire constitutive response for stress-strain behaviour of soils is specified with two 

thermodynamic scalar potential functions, i.e. free-energy and dissipation potential functions. 

Firstly, a free-energy potential function is defined as one of its four alternative free-

energy forms, namely the internal energy (𝑢), Helmholtz free-energy (𝑓), Gibbs free-energy 

(𝑔), or the enthalpy (ℎ). These four alternative forms of free-energy function are not 

independent, but instead, they are related by Legendre transformations, as discussed in the 

previous Chapter 3.  
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Secondly, a dissipation potential function is postulated, in which it is a function of the 

thermodynamic state and the rate of change of material state. Consequently, it is sufficient to 

consider that the dissipation function depends only on the rate of change of the internal variable 

(e.g. plastic strain increments), but not on the total strain rate, as this indicates that purely elastic 

deformation would contribute to the dissipation. The influence of changes in temperature is 

neglected for simplicity. For rate-independent case, the dissipation potential function is 

assumed to a homogeneous first order function of plastic strain increments. Although the 

general form of the dissipation function remains unchanged, the dissipation potential function 

is still homogeneous but not first order in the plastic strain increments for the case of rate-

dependency, as also emphasised in the previous Chapter 3. Hence, this serves as the strong 

foundation for the development of the proposed H-Creep model for modelling time-dependent 

behaviour of soils. 

On the other hand, the non-associated flow rule is derived as a necessary consequence of 

the dependence of the dissipation potential function on the actual stress components (Aung et 

al., 2016) (See – Appendix A for detailed demonstrations). Compared with the conventional 

plasticity theory, in which it is common to express the plastic strain increments in terms of a 

plastic potential function to instigate the non-associated flow rule, there is no need to introduce 

arbitrary plastic flow potential function in this context of hyperplasticity. Although there was 

a constructive proof related to the existence of the plastic potential function (e.g. Hunter, 1976) 

for an isotropic incompressible material, where the plastic strain rates depend on the second 

and third stress invariants. However, such a potential cannot be expected to exist when the 

incompressibility condition (휀̇ + 휀̇ + 휀̇ = 0), i.e. the summation of strain rates along 

Cartesian co-ordinate, is relaxed. Therefore, plastic potential not always exist (Vardoulakis and 

Sulem, 1955; Collins and Hilder, 2002). In most of the existing conventional plasticity models, 

the yield surfaces and flow rules are postulated, and these surfaces are normally joined together 
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in an arbitrary condition at a certain transitional stress ratio. In contrast, the derivation of non-

associated flow rule as a natural consequence from the stress-dependent dissipation function 

from the hyperplastic perspective is considered as more general, in which this transition is more 

seamless and continuous. 

Besides, the observations from laboratory experiments have indicated that the yield loci 

not only expand but also translate in the stress space and the shapes of the yield loci do vary 

depending on the types of soils (Dafalias and Taiebat, 2013, 2014; Zhou et al., 2016). In order 

to take into consideration of the expansion and translation of the yield loci, one of the major 

developments in the constitutive modelling of soils is the introduction of kinematic hardening 

mechanism by Mroz (1967). In general, the kinematic hardening formulation not only controls 

the movement of the yield loci but also describes the variation of the plastic modulus. 

Accordingly, kinematic hardening during inelastic deformations is usually described by a so-

called ‘back’ or ‘shift’ stress, which is considered as an internal variable, for which an adequate 

constitutive equation is formulated (Sansour et al., 2006). Within the context of hyperplasticity, 

the plastic work done by shift stress is referred to as ‘stored plastic work’, and hence, this work 

function determines the translational, kinematic hardening behaviour, and the dissipative stress 

determines the isotropic hardening or softening, i.e. the expansion or contraction of the yield 

surface (Collins, 2005). However, there has been insufficient recognition in that the shift stress 

and the dissipative stress share an important role, in tandem, for the formulation of mixed 

hardening constitutive soil models of geomaterials with different strengths in tension and 

compression (Collins and Kelly, 2002; Lai et al., 2016). 

Therefore, a thorough knowledge of the mechanical processes governing the creation and 

release of stored plastic work is crucial in understanding the physical meaning behind the 

translation laws governing the motion of such surfaces. Consequently, ‘kinematic hardening’ 
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models are frequently developed to model the ‘memory’ of the soil, which leads to the fact that 

the stored plastic work plays the prominent role in such models. Hence, the hardening terms 

are introduced to the free-energy function to take into account of kinematic hardening effects, 

whereas the hardening terms are introduced into the dissipation potential function to consider 

for isotropic hardening effects, as inspired by the discussions in Likitlersuang (2003). 

This section continues with the theoretical development of the proposed mixed hardening 

hyper-viscoplasticity (H-Creep) model for describing the time-dependent deformation of soils, 

to capture the variation in the shapes of the yield loci with the consideration of isotropic and 

kinematic hardening effects by pursuing the non-associated flow behaviour. To start with, the 

proposed model is developed based on the classical additive decomposition of the infinitesimal 

strain tensor, as it is a priori accepted that the total strain rate 휀̇  is additively composed of the 

elastic strain rate 휀̇  and viscoplastic strain rate 휀̇ , which is expressed as follows: 

휀̇ = 휀̇ + 휀̇  (4.1) 

where, 휀̇ = (𝑖, 𝑗) component of the total strain-rate tensor. The proposed model adopts 

the definition of the Cambridge parameters for stress and strain, as triaxial notation, to describe 

the stress-strain behaviour, which is provided as follows: 

𝑝′ =
(𝜎 + 2𝜎 )

3  (4.2a) 

𝑞 = (𝜎 − 𝜎 ) (4.2b) 

휀 = (휀 + 2휀 ) (4.2c) 

휀 =
2(휀 − 휀 )

3  (4.2d) 
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where, the subscripts 1 and 3 refer to axial and radial directions, respectively. The 

parameters 𝑝′ and 𝑞 are mean effective stress and deviatoric stress, respectively; whereas 휀  

and 휀  are volumetric and deviatoric strains, respectively. 

Since the free-energy function can be expressed in four alternative forms, as discussed 

above, each of the different forms of free-energy are most convenient for particular types of 

problems. For instance, the Helmholtz or Gibbs free-energy functions are most appropriate for 

isothermal conditions because they employ temperature as a state variable. In contrast, the 

internal energy or enthalpy forms are most suitable for isentropic (constant entropy) problems. 

As the thermal effects are not being considered, the proposed model pursues the form of Gibbs 

free-energy function (𝑔), compared to that of Helmholtz free-energy function (𝑓), due to its 

relative convenience in expressing formulations in terms of stress components. 

In general, the free-energy is allowed to depend on both the elastic and inelastic strains. 

This contradicts with the common assumption in the conventional plasticity theory that the 

energy associated with plastic strains is irrecoverable, resulting in the assertion that the free-

energy should depend only on the elastic strains, as it represents the elastic energy stored in an 

individual grain. As elaborated in Chapter 2, a certain portion of the micro-level elastic energy 

is ‘trapped’ or ‘frozen’ and thus, resulting in some of the inelastic deformation being stored 

due to the highly heterogeneous nature of the stress and inhomogeneous nature of the 

deformations at the micro level. Hence, the possibility of ‘trapped’ energy situation is much 

higher when the particles or sub-particles (platelets) are irregular in shapes and also when the 

cohesion between the particles/platelets is induced by the electrostatic forces. Consequently, it 

is very likely that a greater proportion of ‘trapped’ energy is expected in clays than in sands, 

which justifies the consideration of inelastic free-energy function in the proposed model. This 

magnitude of ‘trapped elastic energy’ or ‘stored plastic work’ at the continuum level is 
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determined by the inelastic strains. This, in conjunction with the ‘decoupled’ assumption that 

the instantaneous elastic moduli do not depend on the plastic strains, the proposed model 

embraces the additive decomposition of the free-energy function into the elastic component of 

the free-energy function Ψ  and the viscoplastic component of the free-energy function 

Ψ , inspired by Collins and Houlsby (1997) and Zhou et al. (2016), which is expressed as 

follows: 

Ψ = Ψ + Ψ𝑣𝑝 (4.3) 

The additional inelastic term takes into consideration of the frozen energy increment, 

which is unrestricted in sign, either positive or negative, as the energy described by this term 

can be both stored and released. The existence of additional energy terms, arising from internal 

variable formulation, is also in agreement with the early energy theory for clays, developed by 

Palmer (1967). 

4.2.2 Elastic Free-Energy Function 

In soil mechanics, a logarithmic elastic stress-strain relationship is applicable to describe 

the consolidation behaviour (Butterfield, 1979). Based on the semi-logarithmic elasticity in 

volumetric behaviour, and the linear elasticity in the deviatoric behaviour (e.g. Coombs, 2017), 

the elastic component of the free-energy function Ψ  is defined as follows: 

Ψ = −
𝜅∗

𝑉
𝑝 ilog 𝑝′

𝑝 −
𝑞
6𝐺 

(4.4) 

where, ilog function is defined as ilog(𝑥) = 𝑥𝑙𝑜𝑔(𝑥) − 𝑥, so that ilog(𝑥) = log(𝑥), 

𝑝  and 𝐺 are denoted as the reference pressure and the elastic shear modulus, respectively, and 

𝜅∗ is the slope of the elastic swelling lines in the 𝑣 - ln 𝑝 plane.  
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Taking the partial derivative of Equation (4.4) with respect to corresponding applied 

pressure and total strains, the elastic stress-strain relationships can be determined as follows: 

휀 = −
𝜕Ψ
𝜕𝑝′ =

𝜅∗

𝑉 ∙ log 𝑝′
𝑝  (4.5a) 

휀 = −
𝜕Ψ
𝜕𝑞

=
𝑞
3𝐺

 (4.5b) 

where, the parameters 휀  and 휀  are the elastic volumetric and elastic shear strains, 

respectively. In the (𝑝 − 𝑞) plane, the incremental elastic stress-strain relationship is 

determined using a compliance matrix (Sun and Shen, 2017; Sun et al., 2018), which is as 

follows: 

휀̇
휀̇ =

1
𝐾

1
𝐽

1
𝐽

1
3𝐺

�̇�′
�̇�  or �̇�′

�̇� = 𝐾 𝐽
𝐽 3𝐺

휀̇
휀̇  (4.6) 

The elastic bulk modulus (𝐾) is then deduced from Equations (4.5a) and (4.6) and it is 

presumed that the shear modulus (𝐺) is related to the elastic bulk modulus (𝐾) by assuming a 

constant value of Poisson’s ratio (𝑣), rather than assuming a constant value of 𝐺. This is due 

to the fact that the variable bulk modulus, when used in conjunction with the constant Poisson’s 

ratio, leads to pressure-dependent shear modulus. Besides, experimental evidence also suggests 

that the shear modulus does vary with the mean pressure (Yang et al., 2010; Zhou and Ng, 

2015; Lai et al., 2016). Houlsby (1985) clearly pointed out that the adoption of a constant shear 

modulus could also lead to non-conservative behaviour. As in the case of the existing elastic-

viscoplastic models for clays (Wroth and Houlsby, 1985; Zhou and Ng, 2015; Lai et al., 2016), 

the proposed model has been formulated within infinitesimal deformation hypothesis by 

adopting variable shear modulus. 
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On the other hand, the incremental elastic stress-strain relationship is also obtained by 

double-differentiation of the Gibbs free-energy function defined in Equation (4.4) can be 

written as following: 

 �̇�′
�̇� = 𝐾 𝐽

𝐽 3𝐺
휀̇
휀̇ =

[
 
 
 
 −

𝜕 Ψ
𝜕𝑝 −

𝜕 Ψ
𝜕𝑝𝜕𝑞

−
𝜕 Ψ
𝜕𝑝𝜕𝑞 −

𝜕 Ψ
𝜕𝑞 ]

 
 
 
 

휀̇
휀̇  (4.7) 

Besides, the elastic bulk and shear moduli are deduced as follows: 

𝐾 =
𝑉𝑝′
𝜅∗  

(4.8a) 

𝐺 =
3(1 − 2𝑣)𝐾
2(1 + 𝑣)  (4.8b) 

The coupling modulus in Equation (4.6) is being considered as 𝐽 = ±∞ when only the 

isotropic consolidation conditions are considered. Although most natural clays will exhibit 

anisotropy of elastic behaviour (Einav and Puzrin, 2004; Castro and Sivasithamparam, 2017), 

incorporation of elastic anisotropy could result in a considerable extent of complexity of any 

model where anisotropy is not fixed.  

Since plastic deformations are likely to impose huge influence on many problems of 

practical interest, with elastic strains often being relatively insignificant, it is reasonable to 

assume the elastic behaviour to be isotropic in this model. 

4.2.3 Viscoplastic Free-Energy Function – Kinematic Hardening Law 

On the other hand, the additional inelastic (or viscoplastic) component of the free-energy 

function, which stems from the amount of stored plastic work, is defined as follows: 
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Ψ = 𝛾 ∙ (𝜆∗ − 𝜅∗)𝑝 exp 휀
(𝜆∗ − 𝜅∗)  (4.9) 

where, the new parameter 𝛾 is referred to as a material constant linking to the amount of 

stored plastic work. The parameters 𝜆∗ and 𝜅∗ are used to retain their usual relationship to the 

slopes of the virgin compression and swelling lines in a 𝑣 − ln 𝑝′ plot, respectively. A similar 

form of plastic free-energy function was proposed by Collins and Hilder (2002), but it was 

limited to rate-independent axisymmetric case. Hence, the inclusion of viscoplastic strains in 

the free-energy function or in other words, the addition of the inelastic component of the free-

energy function makes it discernible from most of the conventional plasticity theories, in which 

the energy associated with plastic strains is often assumed to be non-recoverable. This is the 

key feature of the hyperplasticity approach to the modelling of elastic/plastic materials, in 

which it is explicitly acknowledged that not all the plastic work is dissipated, but some portion 

is stored.  

Within the context of hyperplasticity, this additional viscoplastic free-energy function 

results in the shift stress to describe the kinematic hardening behaviour, accommodating the 

effect of stress history on stiffness of soils. In this study, it is assumed that this part of the free-

energy potential function depends only on the volumetric part of the viscoplastic strain, similar 

to the model proposed by Samat (2016). 

Taking the derivative of Equation (4.9) with respect to 휀 , results in the volumetric 

component of the shift stress (i.e. 𝑝 ): 

𝑝 =
𝜕Ψ  
𝜕휀

= 𝛾 ∙ 𝑝 exp 휀
(𝜆∗ − 𝜅∗) =

1
2 𝛾𝑝  (4.10) 

where, the pre-consolidation pressure 𝑝  is defined as: 
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𝑝 = 2𝑝 exp 휀
(𝜆∗ − 𝜅∗)  (4.11) 

Since the inelastic free-energy function in Equation (4.9) is assumed to depend only on 

the viscoplastic volumetric strain, the deviatoric component of the shift stress (i.e. 𝑞 ) is zero 

in this paper. Due to the fact that the shift stress only has an isotropic component, the 

viscoplastic component of the free-energy function can also be expressed by using the 

volumetric shift stress components determined in Equation (4.10), which is as follows: 

Ψ = 𝑝  휀̇ + 𝑞  휀̇ =
1
2

𝛾𝑝  휀̇ =
1
2

𝛾 𝑝  휀̇  (4.12) 

It can be stated from Equation (4.12) that a fraction 𝛾 2⁄  is stored and the other portion 

(i.e. 1 − 𝛾 2⁄ ) is dissipated, from all the plastic work done. The resulting shift stress defines 

the moving ‘centre’ of the critical surface, which is defined in Section 4.2.5, as the stored 

plastic work plays the role of a scalar memory parameter. According to Collins and Kelly 

(2002), the stored plastic work could be considered as the trapped elastic reversible energy 

related to the elastic deformations of the grains occurring in the relatively weak sub-networks 

and the resulting shift stress is integral to describe the isotropic compression and expansion of 

a material. Although the presence of shift stress in the modified Cam-clay model was 

acknowledged by Houlsby (1981) and Collins and Houlsby (1997), it is demonstrated as a 

natural component within the proposed model and hence, the resulting shift stress indicates 

that it is possible to induce ‘plastic decompression’ at zero effective stress in the proposed 

model.  Considering the effects of isotropic compression and expansion, the determination of 

pre-consolidation pressure is not possible from Equation (4.11), as a total form of the inelastic 

strain is, typically, not available. Therefore, the evolution law must be formed to determine the 

extent of coupling, which can then be integrated to obtain a usable incremental response 

between the inelastic strains and the internal variables used in the hardening laws. 
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Assuming that the pre-consolidation pressure evolves as an independent variable and 

applying the chain rule to the relationship in Equation (4.11), the incremental evolution of the 

pre-consolidation pressure is determined as follows: 

�̇� =
𝜕𝑝
𝜕휀

휀̇ =
𝑝

(𝜆∗ − 𝜅∗) 휀̇  (4.13) 

Although the pre-consolidation pressure is a function of the current specific volume, 

which depends on both the elastic and the plastic volumetric strains in classical critical state 

theory, this has led to unnecessary theoretical complications. Moreover, Butterfield (1979) has 

proved that the dependence of pre-consolidation pressure only on the volumetric components 

is pertinent to the laboratory observations as well as the traditional models. Therefore, it is 

reasonable to assume that the pre-consolidation pressure depends only on the plastic 

component of the volumetric strain (as in MCC), which was also pointed out by Nguyen et al. 

(2014) and Lai et al. (2016). 

4.2.4 Proposed Viscoplastic Dissipation Function 

In this time-dependent model, the viscoplasticity component is modelled by proposing 

the incremental dissipation in the form of the square root of a quadratic function of the 

viscoplastic strain increments, together with the incorporation of rate-dependent effects. 

Overall, the dissipation potential function is postulated in the form, provided in Equation 

(3.28), which is homogeneous but of order “𝑛” in the plastic strain increments. Following the 

investigation of the isotropic two-parameter family of models, there are certain benefits in 

adopting dissipation functions, similar to those presented in Lai et al. (2014) and Coombs 

(2017). Consequently, the dissipation function used to define the rate-dependent viscoplastic 
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constitutive behaviour is proposed based on the existing triaxial compression data, which is 

expressed as follows: 

𝛿Φ = 𝐴 휀̇ + 𝐵 휀̇ + Λ 𝐴 휀̇ + 𝐵 휀̇ ≥ 0 (4.14) 

where, the first square-root term on the right-hand side of the equation is referred to as 

the instantaneous dissipation and the second term takes into account of the additional 

dissipation due to delayed deformations. As distinctively different from the similar dissipation 

functions proposed by Lai et al. (2014) and Coombs (2017), the dissipation potential function 

defined in Equation (4.14) is no longer a homogenous first order function. The inequality in 

Equation (4.14) must be strictly positive when viscoplastic deformations are occurring to 

comply with the first and second laws of thermodynamics, valid for isothermal deformations 

(Ziegler, 1983). The volumetric and deviatoric components of the viscoplastic strain (i.e. 휀̇  

and 휀̇ ) are used as the internal variables. The time-dependent effects are incorporated by 

assuming non-zero value for the parameter Λ, which is referred to as a time-dependent viscosity 

scaling function. Since the second term in Equation (4.14) represents the delayed plastic 

deformations, it is logical that both terms share the similar mathematical structure, with a 

particular case being considered as a power law function of 𝑛, which is a material constant. 

Inspired by the discussions provided in Collins & Kelly (2002) and Coombs (2017), the 

functions 𝐴 and 𝐵 have the dimensions of stress, and it is assumed that 𝐴 and 𝐵 are linear 

functions of the three defining effective stress variables (i.e. 𝑝′, 𝑞 and 𝑝 ). The stress-like 

quantities, 𝐴 and 𝐵, are given by  

𝐴 = (1 − 𝛾)𝑝′ + (1 2⁄ )𝛾𝑝  and 𝐵 = (1 − 𝛼)𝑀𝑝′ + (1 2⁄ )𝛼𝛾𝑀𝑝  (4.15) 

where, 𝑀 is the slope of the Critical State Line (CSL). The parameter 𝑀 can be related 

to the effective friction angle via 𝑀 = 6 sin𝜙 (3 − sin𝜙 )⁄ . The new parameters 𝛾 and 𝛼 are 
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material constants linked to the amount of stored plastic work and the deviatoric dissipation, 

respectively. It is important to note that it is still possible to make use of 𝑝′ and 𝑞 defined in 

Equations (2.11a) and (2.11b) as long as the triaxial states of stress are assumed to exclude 

principle stress rotation (i.e. 𝜎 = 𝜎 ). Moreover, the introduction of 𝑝′ or 𝑞 as parts of the 

functions 𝐴 and 𝐵 still complies with the thermodynamic rule, which does not require to specify 

work conjugate variables together as independent state variables (see Collins and Hilder (2002) 

for more discussion on this aspect). 

On the other hand, the viscosity scaling function (Λ) incorporates viscosity parameter 

(𝜓 ), which takes a particular form in this model similar to Leoni et al. (2008), provided as 

follows: 

𝜓 = 𝑉 ∙ 𝑡 𝜇⁄  (4.16) 

where, the parameter 𝑉 is the specific volume, defined as 𝑉 = 1 + 𝑒, in which 𝑒 is 

referred to as void ratio. The reference time 𝑡  depends on the duration of incremental loading 

used in the conventional triaxial compression test, from which the initial reference pre-

consolidation pressure is obtained. The parameter 𝜇 is referred to as creep parameter, defined 

as 𝜇 ≈ 𝐶 ln10⁄ , where 𝐶  represents secondary compression coefficient and it is generally 

assumed as constant in the traditional elasto-viscoplastic (EVP) models (e.g. Yin and Graham, 

1999; Vermeer and Neher, 2000; Yin et al., 2011b).  

If time-dependent effects are to be neglected, along with the condition when 𝛾 = 1 and 

𝛼 = 1, the dissipation function in Equation (4.14) returns to the one used to derive the isotropic 

yield surface for the MCC model. Moreover, it can be deduced from Equation (4.12) that half 

the value of the total plastic work done is actually stored in the MCC model when using 𝛾 = 1 

and 𝛼 = 1 within the context of hyperplasticity. As pointed out in Chapter 3, due to the 
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presence of the stress-like quantities (i.e. functions 𝐴 and 𝐵) in the dissipation function 

presented in Equation (4.14), the hardening terms (e.g. 𝑝 ) are included in the dissipation 

function, capturing the isotropic hardening behaviour of soils (Collins and Hilder, 2002; Lai et 

al., 2016). Since the stress-strain behaviour of soils demonstrates both isotropic and kinematic 

hardening responses, it is rational for the proposed model to merge these two hardening 

approaches to predict the time-dependent behaviour of a wider class of soils. Moreover, the 

existence of stress components in the dissipation function can eventually result in the non-

associated flow rule (Aung, et al., 2016), which is also demonstrated in the Appendix A. 

4.2.5 Force and Flow Potential Functions 

In this case of rate-dependency, the dissipation potential function in Equation (4.14) is 

separated into the force potential function and flow potential function, based on the principles 

outlined in Equation (3.26) and the definitions summarised in Table 3.4. Following the 

procedure discussed in Equations (3.27) - (3.29), the force potential function (𝑧) is derived 

from Equation (4.14) as follows: 

𝑧 = 𝐴 휀̇ + 𝐵 휀̇ +
Λ
𝑛

𝐴 휀̇ + 𝐵 휀̇  (4.17) 

Based on the procedure outlined in Equations (3.24) and (3.26), the flow potential 

function (𝑤) is obtained using the Legendre-Fenchel transformation. Combining Equations 

(4.14) and (4.17), it follows that: 

𝑤 = 𝛿Φ − z =
𝑛 − 1

𝑛 Λ 𝐴 휀̇ + 𝐵 휀̇  (4.18) 
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The volumetric and deviatoric components of the dissipative stresses (i.e. 𝑝  and 𝑞 ) can 

then be derived from the force potential function determined in Equation (4.17) as follows: 

𝑝 =
𝜕𝑧

𝜕휀̇
=

𝐴 휀̇
Π

+ Λ ∙ [Π] ∙
𝐴 휀̇

Π
 (4.19) 

𝑞 =
𝜕𝑧

𝜕휀̇
=

𝐵 ∙ 휀̇
Π + Λ ∙ [Π] ∙

𝐵 ∙ 휀̇
Π  (4.20) 

where, Π = 𝐴 휀̇ + 𝐵 휀̇ . Re-arranging Equations (4.19) and (4.20), and 

substituting the corresponding components of viscoplastic strain increments into the flow 

potential function in Equation (4.18) results in the flow potential function, being re-written as 

follows: 

𝑤 =
𝑛 − 1

𝑛
1

(Λ) ( )
[〈ϱ 〉]  (4.21) 

where, 〈 〉 = Macaulay brackets; 〈𝑥〉 = 0, 𝑥 < 0; and 〈𝑥〉 = 𝑥, 𝑥 ≥ 0 and ϱ  is denoted 

as dissipative critical surface function, which is derived as follows: 

ϱ =
(𝑝 )
𝐴 +

(𝑞 )
𝐵 − 1 (4.22) 

It is to be emphasised that the function ϱ  in Equation (4.22) resembles the plastic 

criterion, which is derived when the time-dependent viscosity scaling function (Λ) is zero in 

Equation (4.14), i.e. when the dissipation potential function in Equation (4.14) becomes 

homogeneous first order in the plastic strain increments for the rate-independent case. In the 

proposed model, the function ϱ  defines a surface, which is to be denoted as critical surface. 

The parameters 𝛾 and 𝛼, as part of the stress functions 𝐴 and 𝐵, have considerable implications 
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on the shape of the critical surface (as demonstrated in Figure 4.1) and the degree of non-

association of the viscoplastic flow rules, described in the following section.  

Although most of the existing EVP models have employed the commonly adopted 

assumption of the yield surface being a symmetric elliptical about the mean effective stress 

axis, a few notable shortcomings have been observed, as pointed out in Leoni et al. (2008). As 

also signalled by Graham et al. (1983b), the behaviour of most plastic clays is more 

appropriately described by skewed ellipses that vary in orientation during loading. Moreover, 

one of the significant drawbacks, which the proposed model has intended to address, is the 

provision of poor predictions related to the undrained stress path and the loading response in 

one-dimensional normal compression.  

In the proposed model, the emphasis also lies on the fact that the critical surface changes 

in time due to creep behaviour when considering rate-dependent effects. Considering Equations 

(4.21) and (4.22), it is to be accentuated that the critical surface presented in Equation (4.22) 

does not separate viscous from viscous-free behaviour and that the plastic strain is always 

occurring due to soil viscosity and this critical surface represents a nominal viscoplastic strain 

rate. 

As depicted in Figure 4.1, when viscous scaling function is set to zero, the critical surface 

becomes narrower deviatorically with the reducing values of 𝛾, whilst the critical surface 

becomes more tear-drop shaped with the declining values of 𝛼. When 𝛾 = 0, the radius of the 

critical surface disappears, whereas the critical surface lies entirely beneath the CSL when 𝛼 =

0. The value of 𝛾 has an influence on the intersection of the CSL and the critical surface, 

whereas the value of 𝛼 has no effect on the location of that intersection. 
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Figure 4.1: Changes in the Shapes of Critical Surface in 𝑝′ − 𝑞 space, corresponding to the values of 

(a) 𝛾 and (b) 𝛼 varying over the range 1.0 to 0.1  

Here, the viscoplastic flow rules in the dissipative stress space are then determined by 

differentiating the flow potential function in Equation (4.21) with respect to the corresponding 
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dissipative stress, as outlined in Equation (3.24) following the property of Legendre-Fenchel 

transformation. This yields: 

휀̇ =
𝜕𝑤
𝜕𝑝

=
1

(Λ)
[〈ϱ 〉]

𝜕ϱ
𝜕𝑝  (4.23) 

휀̇ =
𝜕𝑤
𝜕𝑞 =

1

(Λ)
[〈ϱ 〉]

𝜕ϱ
𝜕𝑞  (4.24) 

The above expressions for the viscoplastic strain rates in Equations (4.23) and (4.24) 

have clear analogy with the following general forms used in the viscoplastic framework 

proposed by Perzyna (1963, 1966): 

휀̇ = 𝜇 ∙ 〈 𝐹 〉
𝜕𝑄
𝜕𝜎 = 𝑆 ∙

𝜕𝑄
𝜕𝜎  (4.25) 

where, the scaling function 𝑆 = 𝜇 ∙ 〈 𝐹 〉 and 𝑄 is a viscoplastic potential function, termed 

as a plasticity potential function. The parameter 𝜇 is referred to the viscosity parameter and 𝐹 

represents the overstress function employed in the Perzyna’s EVP modelling framework. Such 

form of viscoplasticity framework has been used in a variety of approaches for the modelling 

of time-dependent behaviour of soils (Adachi and Oka 1982; Borja and Kavazanjian 1985; Yin 

and Graham, 1999).  

In analogous to the overstress function 𝐹, the function ϱ  in Equation (4.22) can also be 

interpreted as a thermodynamics-based overstress function. The condition, (ϱ = 0), 

represents the rate-independent yield threshold and increasing values of ϱ  result in higher 

corresponding yield values; with the subscript "𝐷" being used to denote the dissipative stress 

space, (i.e. 𝑝 − 𝑞  space). Furthermore, when 𝑛 = 2, the flow potential function in Equation 

(4.21) leads to an overstress-based viscous model with a linear viscous nucleus function as 

reported by Perzyna (1966). Such linear hyperplastic viscous form (i.e. 𝑛 = 2) has also been 
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employed by Likitlersuang and Houlsby (2007), but their model is limited to the isotropic 

hardening, along with the arbitrary adoption of elliptical critical surface defined in the MCC 

model for viscous-free materials. 

The incremental stress-strain response is then obtained by adopting Equations (4.23) and 

(4.24) for the incremental updating of 휀̇  and 휀̇ , together with Equation (4.10) by applying 

the Orthogonality principle. However, these viscoplastic strain rates are in dissipative stress 

space, (i.e. 𝑝 − 𝑞  space), and not in true stress space, (i.e. 𝑝′ − 𝑞 space). In order to transform 

them into true stress space, the orthogonality principle is pursued, in which the effective stress 

is the sum of the shift stress and the dissipative stress, as outlined in Equation (3.15). 

Consequently, the corresponding shift stress components obtained in Equation (4.10) is 

substituted into the critical surface function in dissipative stress space, reported in Equation 

(4.22): 

ϱ =
𝑝′ − 1

2 𝛾𝑝
𝐴 +

(𝑞)
𝐵 − 1 (4.26) 

Similarly, the corresponding shift stress components determined in Equation (4.10) is 

again substituted into the dissipative viscoplastic strain rates derived in Equations (4.23) and 

(4.24): 

휀̇ =
𝜕𝑤
𝜕𝑝′

=
1

(Λ)
[〈ϱ〉]

𝜕ϱ
𝜕𝑝′

 (4.27) 

휀̇ =
𝜕𝑤
𝜕𝑞 =

1

(Λ)
[〈ϱ〉]

𝜕ϱ
𝜕𝑞  (4.28) 

The representative graphs for the transformation of the critical surface from the 

dissipative stress space to true stress space are provided in Figure 4.2. 
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Figure 4.2: Transformation of critical surface from (a) dissipative stress space to (b) true stress space 
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At this stage, the proposed model formulates creep by incorporating the concept of a 

constant rate of viscoplastic multiplier, inspired by Grimstad et al. (2010), into the viscosity 

scaling function (Λ) as follows: 

Λ = 𝜓 ∙
𝑝
𝑝

( ∗ ∗)

∙
[(𝑀) ]

[(𝑀) − (휂) ] (4.29) 

where, the parameter 𝑝  is referred to as the equivalent mean effective stress 

corresponding to an equivalent condition, in which the current stress lies on the normal 

consolidation surface, i.e. the soil state is normally consolidated. Accordingly, the intersection 

of the vertical tangent from the inner critical surface that represents the current effective stress 

state with the horizontal axis is termed as the equivalent effective mean stress, i.e. 𝑝 . For 

instance, the normal consolidation surface can be defined as 𝑝 = 𝑝  when the current stress 

state reaches the normally consolidated state, from which the equivalent effective stress 𝑝  is 

determined from the critical surface expression in Equation (4.26). The final term in Equation 

(4.29) is added to imply that the stress state is related to the critical state, which is reached 

when 𝑀 = 휂, thus resulting in zero viscoplastic volumetric strain rate. Moreover, this term 

ensures that the resulting creep strain corresponds to the measured volumetric creep strain rate 

under one-dimensional loading conditions. Besides, the term 𝑝 𝑝⁄  represents the dependence 

of the volumetric creep strain on the current stress state in relation to the critical surface. 

4.2.6 Non-Associated Viscoplastic Flow Rule 

One of the promising characteristics of the proposed model is the derivation of non-

associated viscoplastic flow rule as a natural outcome due to the presence of the effective stress 

components in functions 𝐴 and 𝐵 in the dissipation function provided in Equation (4.14) and 
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the force potential function derived in Equation (4.17). By solving and re-arranging the 

proposed energy equation using the dissipation function reported in Equation (4.14), the flow 

rule for the proposed model is derived (See Appendix B for detailed derivation) as follows:  

휀̇
휀̇

=
2휂

(𝑀[1 − 𝛼 + 𝛼𝛾]) − 휂  (4.30) 

where, the viscoplastic flow rules in Equations (4.27) and (4.28) become non-associated 

in the actual stress space, unless 𝛾 = 𝛼 = 1. Although most of the existing EVP models have 

adopted an associated flow rule based on the MCC model, in which the plastic potential surface 

is assumed to be identical to the yield surface, it has now been widely acknowledged that non-

associated flow rule does offer better predictions for pressure-sensitive materials, such as soils, 

as the vectors of the strain parameter are not normal to the yield locus (Bousshine et al., 2002; 

Nguyen et al., 2017; Sun et al., 2018).  

4.3 Non-Linear Creep Formulation 

The experimental evidence from the long-term creep tests has demonstrated that the slope 

of the creep strain (or void ratio) to log(time), commonly denoted as creep coefficient, is not 

constant (Leroueil et al., 1985). However, creep coefficient decreases over time with the 

decreasing void ratio. Although Yin (1999) defined a non-linear creep function with time to 

overcome the limitation of infinite strains resulting in the negative void ratio during creep, it is 

only applicable to one particular constant applied stress level. The non-linear creep coefficient 

does not continuously decrease with the void ratio when applied stresses are continually 

increasing and hence, a negative void ratio can be avoided only under a constant applied stress 

level, which is also pointed out by Yin et al. (2015). However, in real situations, applied stresses 
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do vary from time to time not only within construction period but also along the service life of 

the structure. Taking this into consideration, this paper proposes the following non-linear creep 

function, assuming the creep parameter as a sole function of void ratio: 

𝜇 = 𝜇 ∙ [1 − 휀 − 휁 ]  (4.31) 

where, 𝜇 is referred to as creep coefficient and the subscript "0" is used to denote the 

corresponding initial/reference value. The power value 𝑚 is a material constant representing 

the slope of the log 𝜇 − log 𝑒 curve, which can be measured in a straight-forward way. The 

parameter 휁  represents the ratio of residual void ratio to initial void ratio to acknowledge the 

existing experimental evidence of the minimum void ratio not being exactly equal to zero (i.e. 

휁 = 𝑒ℛ 𝑒⁄ ).  

According to Mitchell (1956), the void ratio can reach a minimum value regardless of 

the pressure or initial orientation for a particular soil. It is to be emphasised that the relatively 

minute gaps would still exist between the soil particles due to their irregular shapes (Le et al., 

2012). This means the minimum void ratio may not be zero and also infinite deformation of 

the soil structure would not be possible. Referring to Equation (4.31), the creep coefficient 𝜇 

approaches zero when the void ratio approaches 𝑒ℛ, thus ensuring the void ratio would never 

be unrealistically negative. Moreover, 𝜇 continuously decreases with the continually 

decreasing void ratio, due to varying applied pressures during loading. Furthermore, 𝜇 also 

decreases over time at a particular stress level, as the void ratio decreases during creep 

deformation. In the proposed model in this study, the creep coefficient (𝜇) is no longer a 

constant but treated as a function of void ratio determined from Equation (4.31), in order to 

incorporate non-linear creep formulation as part of the time-dependent viscosity scaling 

function (Λ) in Equation (4.29). On the other hand, 𝜇 can be treated as a constant by assuming 

𝑚 = 0 to consider linear viscosity cases for the sake of simplicity.   
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In order to take into account of the non-linear creep behaviour, the creep coefficient (𝜇) 

determined from Equation (4.31) is substituted into the specified viscosity function (𝜓 ) 

defined in the earlier Section 4.2.4, as part of the time-dependent viscosity scaling function 

(Λ), discussed in Equation (4.29). As a result, the modified viscosity function (𝜓 ) is then 

substituted into the expressions for the viscoplastic strain rates presented in Equations (4.27) 

and (4.28). 

4.4 Extended Mixed Hardening Hyper-viscoplasticity Model for Soft 

Soils Incorporating Soil Fabric 

4.4.1 Theoretical Background 

This section presents the logical and rational extension towards the proposed mixed 

hardening hyper-viscoplasticity (H-Creep) model in an attempt to address a few of the observed 

limitations, by particularly highlighting the necessity to emphasise on the importance of 

modelling strain-softening effects during the time-dependent delayed deformation, particularly 

in natural soils. The extended free-energy and dissipation potential functions, in which not only 

the additional viscoplastic component of the free-energy function incorporates the dependence 

on both volumetric and deviatoric viscoplastic strains, but also the fabric coupling parameter 

is introduced into the free-energy and dissipation potential functions, are discussed. The 

extended model intends to capture the loading-rate or strain-rate dependent behaviour of soils, 

considering the variations in the fundamental shapes of critical surface with a 𝛽-line defining 

the inclination of the non-symmetrical elliptical critical surface in the 𝑝 -𝑞 plane, along with 
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rotational, kinematic hardening effects and non-associated behaviour, derived as a natural 

consequence of this approach. 

As the mechanical characteristics of natural soft clays, is considered as very complicated 

and the associated stress-strain behaviour being unpredictable owing to the composition of the 

material, the irregularity of the clay platelets, one-dimensional consolidation and deposition 

process, the sedimentary and stress history and so on. The deposition procedure of natural clays 

results in K0-consolidation without lateral deformation. The soil properties and the associated 

behaviour, such as strength, stiffness and hydraulic conductivity in a K0-consolidation 

condition normally differs for the vertical and horizontal directions, but essentially, identical 

in the horizontal plane. Consequently, the effects of structure in natural soft soils differ from 

reconstituted soils, being attributable to the arrangement of particles and the interparticle 

bonding, termed as “structure” by Mitchell (1993, 1956), which was also referred to as “fabric” 

by Muhunthan et al. (1996). Such an arrangement of particles and the particle contacts of most 

natural clays are initially anisotropic due to the platy shape of the clay particles, deposition 

process and the subsequent consolidation history of the deposit (Karstunen and Koskinen, 

2008). The negligence regarding the effects of structure in natural clay behaviour may lead to 

inaccurate predictions of the stress-strain response under different loading conditions 

(Zdravkovic et al., 2002; Zhou et al., 2005; Rezania et al., 2016). From the practical 

perspective, the existing models have considered the initial orientation of soil fabric to be of 

cross-anisotropic nature, which is a realistic assumption due to the deposition of natural soils 

only in a one-dimensional vertical direction. Due to the initial orientation of soil fabric in the 

soil structure, it has been shown that the yield surfaces obtained from laboratory tests on 

undisturbed samples of natural clays are inclined in the stress space (Dafalias, 1986; Wheeler 

et al., 2003). Consequently, the plasticity models with skewed yield surfaces have been 

developed to recognize the laboratory observations and to address the shortcoming that the 
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elliptic yield surfaces result in a poor approximation to the stress-strain response of clays, 

particularly on the dry side of the CSL, where substantial over-prediction of the peak deviatoric 

stress is observed (Crouch and Wolf, 1995; Karstunen et al., 2005). Moreover, there has been 

a recent interest in incorporating material ‘fabric’ as one of the extensions towards the MCC 

model, with so-called structured Cam-clay models (Horpibulsuk et al., 2010; Suebsuk et al., 

2010). These models introduce a destructuration index to model the changes in the internal 

fabric under deformation, resulting in the additional complications related to the calibration of 

model parameters. Moreover, it is very difficult to associate the destructuration index to the re-

arrangement of the fabric through empirical relationships, without being related to the actual 

physical phenomena of structured soils (Karstunen et al., 2005). Besides, the modelling of 

material ‘fabric’ has been incorporated into the bounding surface plasticity model, originally 

proposed by Dafalias (1975) and developed by Dafalias and Herrmann (1982), through the use 

of a projection centre and an image point on the outer bounding surface (Gajo and Muir, 2001; 

Dafalias et al., 2006; Yao et al., 2009). However, the resulting bounding surface models enforce 

the consistency condition on the bounding surface and a simple proximity rule is employed to 

determine the plastic strain increment and hence, the consistency condition, explicitly on the 

inner loading surface, is not satisfied. Thus, overall, the elasto-plastic constitutive models 

involving an inclined yield surface that is either fixed (e.g. Sekiguchi & Ohta, 1977; Zhou et 

al., 2005) or varying inclination by adopting a rotational hardening law (e.g. Castro and 

Sivasithamparam, 2017; Leal et al., 2017; Zhang, 2018) have been developed to simulate the 

evolution of anisotropy during plastic straining. However, most of the latter-type of models 

have commonly assumed that the variations in the inclination of the yield curve are controlled 

by either plastic volumetric strains only (e.g. Dafalias, 1986; Whittle and Kavvadas, 1994; Lai 

et al., 2016) or plastic deviatoric strains only (e.g. Nova, 1985; Banerjee et al., 1988). This has 
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led to unrealistic prediction of certain stress paths and thus, contradicting the findings from 

laboratory observations, as pointed out in Wheeler (2003) and Zhang (2018).  

In recent years, anisotropic EVP models have been developed by Zhou et al. (2005) and 

Leoni et al. (2008) as an extension of the isotropic creep models by Vermeer and Neher (1999) 

and Yin et al. (2002), in which the volumetric viscoplastic strain remains unchanged on the 

yield surface, which is independent of the stress state. This has resulted in the unrealistic value 

of volumetric viscoplastic strains, as the stress state approaches the critical state line; instead, 

the value should be nearly zero based on the laboratory observations. Moreover, the modelling 

of combined anisotropic and viscoplastic effects for clays (Yin et al., 2010; Sivasithamparam 

et al., 2015; Jiang et al., 2017; Leal et al., 2017; Castro et al., 2018), along with the 

consideration of strain rate and temperature (Leroueil and Marques, 1996; Laloui et al., 2008) 

or strain rate and structure (Hinchberger et al., 2010; Yin and Karstunen, 2011; Zhang, 2018) 

have also been carried out in the past decades. Moreover, the bounding surface concept has 

been adopted to combine ‘fabric’ effects and time-dependent deformation to predict the 

viscoplastic stress-strain response of soft clays (e.g. Al-Shamrani and Sture, 1998; Yue, 2001; 

Jiang et al., 2017). However, most of the existing EVP models have not been constructed based 

on a strong thermodynamic foundation, but rather from an empirical or semi-empirical 

approach. 

Taking into consideration of the fact that comprehensive incorporation of the effects of 

structure require large number of parameters, which makes it highly impractical, the extended 

model places the emphasis on the reduced number of parameters while maintaining the 

reasonable capability of the model, as also prioritised in Leoni et al. (2008) and 

Sivasithamparam et al. (2015). Considering the importance of acknowledging the effects of 

structure in natural soils, this logical extension of the mixed hardening hyper-viscoplasticity 
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(H-Creep) model introduces the ‘fabric’ coupling parameter into both the modified viscoplastic 

free-energy potential function and dissipation potential function. Moreover, the viscoplastic 

component of the free-energy function, now depends on both volumetric and deviatoric 

viscoplastic strains to model the rotational kinematic hardening behaviour of soils. This 

viscoplastic free-energy potential function results in the shift stress, with the addition of 

rotational effects related to the kinematic hardening behaviour, which is crucial in 

accommodating the effect of stress history of stiffness of soils. The rotational kinematic law, 

based on Sivasithamparam and Castro (2016) and Zhang (2018), is incorporated in order to 

maintain a unique asymptotic critical state surface for stress paths that involve unloading, 

whilst making sure that the critical state surface concept is satisfied. 

Correspondingly, this section extends the proposed H-Creep model by (a) incorporating 

fabric coupling effects to account for the combination of the arrangement of particles and the 

interparticle bonding, i.e. by allowing the critical surface to shear off the hydrostatic axis; (b) 

introducing the ‘fabric’ coupling parameter is introduced into the free-energy and dissipation 

potential functions; and (c) including the additional dependence on the deviatoric viscoplastic 

strains in the viscoplastic free-energy potential function to address for fundamental 

inconsistency of the existing constitutive plasticity models, in which the pre-consolidation 

pressure only depends on the volumetric strain component.   

In tandem with the geotechnical sign convention used in the previous sections, 

compressive stresses are positive, while tensile stresses are negative. All the stresses are to be 

considered as effective stresses, i.e. total stress minus the pore pressure, with the use of prime 

notation. The definition of the Cambridge parameters for stress and strain, as triaxial notation, 

is adopted to describe the stress-strain behaviour. 
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4.4.2 Theoretical Formulation and Elasticity Law 

In the extended model, the triaxial notation as specified in Equations (4.2a) - (4.2d) are 

adopted for the general quantities of stress and strain. Moreover, the extended model in this 

chapter adopts the same elastic free-energy function, together with the identical isotropic 

elastic relationship, as described in Section 4.2.2. Although most natural clays exhibit elastic 

anistropic behaviour (Castro and Sivasithamparam, 2017; Gu et al., 2017), the consideration 

of elastic anisotropy could potentially result in the additional 21 independent elastic 

parameters, which makes it rather impractical for implementation. Moreover, the incorporation 

of fully generalised elastic anisotropy could add enormous complexity to any constitutive 

mode, where anisotropy is not fixed. Since the viscoplastic deformations are most likely to 

impose huge influence on many problems of practical interest, it is rational to still assume the 

isotropic elastic relationship due to the fact that elastic strains are often considered as relatively 

insignificant. 

4.4.3 Extended Viscoplastic Free-Energy Function 

The extended model modifies the viscoplastic free-energy potential function in Section 

4.2.3 by including the additional dependence on the deviatoric viscoplastic strains, together 

with the volumetric component. The importance rationale behind this inclusion is the intention 

to correct the fundamental inconsistency of plasticity theories and keep the hyperplasticity 

theory internally consistent due to the increasing appreciation that it is necessary to consider 

shear as well as volumetric strains in the hardening law (Nova, 1977; Krenk, 1996; Hashiguchi 

and Chen, 1998). Consequently, the modified viscoplastic free-energy function with its 

dependence on both volumetric and deviatoric viscoplastic strains, in combination with the 

introduction of ‘fabric’ parameter, is expressed as follows: 
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Ψ = 𝛾 ∙ (𝜆∗ − 𝜅∗) ∙ 𝑝 exp 
휀 + 𝐹 휀

(𝜆∗ − 𝜅∗)  (4.32) 

where, the function 𝐹 휀  is defined as 𝐹 휀 = 𝛽 ∙ 휀 , in which 𝛽 is referred to the 

‘fabric’ parameter, whilst the other parameters retain the same properties as described in 

Equation (4.9). In order to avoid additional complexity of the proposed model, the evolution 

of ‘fabric’ arrangements is assumed to be controlled by the value of a single scalar ‘fabric’ 

parameter 𝛽, partly inspired by the similar assumption pursued in Wheeler et al. (2003), Castro 

and Sivasithamparam (2017) and Zhou et al. (2018). This extended viscoplastic free-energy 

function in Equation (4.32) results in the modified shift stress, which now adds rotational 

effects to the kinematic hardening behaviour, which is crucial in describing the effect of stress 

history of stiffness of soils. A similar form of plastic free-energy function was proposed by 

Collins and Hilder (2002), it was limited to rate-independent axisymmetric case.  

Taking the derivative of Equation (4.32) with respect to volumetric viscoplastic strain 

(휀 ), results in the volumetric component of the shift stress, (i.e. 𝑝 ): 

𝑝 =
𝜕𝛹  
𝜕휀

= 𝛾 ∙ 𝑝 𝑒𝑥𝑝
휀 + 𝐹 휀

(𝜆∗ − 𝜅∗) =
1
2

𝛾𝑝  (4.33) 

where, pre-consolidation pressure 𝑝  is now defined as: 

𝑝 = 2𝑝 𝑒𝑥𝑝 
휀 + 𝐹 휀

(𝜆∗ − 𝜅∗)  (4.34) 

In this extended form, the deviatoric component of the shift stress, (i.e. 𝑞 ), is no longer 

zero as soon as the deviatoric strain components are included in Equation (4.32). Thus, 
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deviatoric shift stress 𝑞 , is determined by taking the derivative of Equation (4.32) with respect 

to deviatoric viscoplastic strain (휀 ): 

𝑞 =
𝜕𝛹  
𝜕휀

= 𝛾 ∙ 𝑝 𝑒𝑥𝑝
휀 + 𝐹 휀

(𝜆∗ − 𝜅∗)
𝜕𝐹 휀

𝜕휀

= 𝑝
𝜕𝐹 휀

𝜕휀
 

(4.35) 

Referring to Equation (4.35), the derivative of 𝐹 휀  with respect to its argument is 

determined as the ‘fabric’ parameter (i.e. 𝛽), which is discussed further in the next section, 

with regards to the modified dissipation potential function. As similar to Equation (4.12), the 

volumetric and deviatoric shift stress components determined in Equations (4.33) and (4.35) 

are used to represent the viscoplastic free-energy function in Equation (4.32), which is re-

written as follows: 

𝛹 = 𝑝  휀̇ + 𝑞  휀̇ =
1
2𝛾𝑝  휀̇ + 𝛽 ∙

1
2 𝛾𝑝  휀̇

=
1
2𝛾 𝑝 휀̇ + 𝛽 ∙ 휀̇  

(4.36) 

Thus, of all the work done related to viscoplastic strains, a fraction 𝛾 2⁄  is stored and the 

other portion, (1 − 𝛾 2⁄ ) is dissipated when Equation (4.36) is viewed from the hyperplastic 

perspective. The discussion related to hardening and stored or frozen plastic energy is provided 

at length in Ulm and Coussy (2003). 

Applying the chain rule to Equation (4.34), the incremental evolution law for the pre-

consolidation pressure, being considered as an independent variable, is derived as follows:  
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�̇� =
𝜕𝑝
𝜕휀

휀̇ +
𝜕𝑝
𝜕휀

휀̇ =
𝑝

(𝜆∗ − 𝜅∗) 휀̇ + 𝛽휀̇  (4.37) 

The inclusion of a deviatoric component in the modified shift stress leads to the 

dependence of the evolution of the pre-consolidation pressure on viscoplastic shear strain rate. 

However, most of the existing constitutive models consider hardening laws that depend only 

on volumetric plastic strains, ignoring the coupling between volumetric and deviatoric plastic 

strains (Yin and Graham, 1999; Yin et al., 2015; Islam and Gnanendran, 2017). As previously 

emphasised, it is now widely acknowledged that it is necessary to include both deviatoric as 

well as volumetric strain components in the hardening law to properly model the stress-strain 

behaviour of soils, including granular materials (Nova, 1977; Collins & Hilder, 2002; 

Krabbenhoft, 2009). 

 

Figure 4.3: Changes in the Shapes of Critical Surface in 𝑝 − 𝑞  space, corresponding to the values 

of 𝛾 and 𝛼 varying over the range 1.0 to 0.1 (Using 𝛽 = 𝑡𝑎𝑛 30°) 

Hence, the inclusion of 𝛽 results in the rotational effects being introduced to the 

kinematic hardening law of the model (as shown in Figures 4.3 and 4.4), due to the assumption 
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of keeping the origin on the yield loci in true stress space. This fact regarding rotational 

hardening was also highlighted by Coombs (2017) and Castro et al. (2018) as an integral feature 

of constitutive soil models but these models have been limited to the rate-independent 

scenarios, in comparison to the modelling of rate-dependent effects by the proposed model. 

Besides, the modelling related to rotational hardening with regards to the necessity of 

complying with the Critical State concept is presented and discussed in Section 4.4.7. Although 

the shift stress defining the moving ‘centre’ of the yield surface is most familiar in the existing 

kinematic hardening models, it is demonstrated that the shift stress is also required to describe 

the isotropic compression and expansion behaviour of rate-dependent materials.  

 

Figure 4.4: Changes in the Shapes of Critical Surface in 𝑝 − 𝑞  space, corresponding to the values 

of 𝛾 and 𝛼 varying over the range 1.0 to 0.1 (Using 𝛽 = 0) 

4.4.4 Extended Viscoplastic Dissipation Potential Function 

In the extended model, the viscoplastic dissipation potential function incorporates the 

‘fabric’ parameter 𝛽 to take into consideration of the arrangement of particles and the 

interparticle bonding, especially observed in natural soils. Based on the existing triaxial 
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compression data, the extended viscoplastic dissipation increment function is postulated as 

follows: 

𝛿𝛷 = 𝐴 휀̇ + 𝛽휀̇ + 𝐵 휀̇

+ 𝛬∗ 𝐴 휀̇ + 𝛽휀̇ + 𝐵 휀̇ ≥ 0 

(4.38) 

where, 𝛽 takes into account of fabric coupling effects, whilst 𝐴 and 𝐵 are the same stress-

like functions, given by Equation (4.15). The expression in Equation (4.38) must still be non-

negative for all the viscoplastic deformations, under isothermal conditions, to comply with the 

first and second laws of thermodynamics (Einav and Collins, 2008; Lai et al., 2014). The 

inclusion of term 𝛽, which measures the slope of the inclination of the critical surface in the 

𝑝 -𝑞 plane, accounts for the association between the volumetric and deviatoric dissipation 

components. This seems physically feasible due to the fact that some form of coupling should 

exist between the dissipation resulting from volumetric and shear straining, as the shearing of 

particles results in the volumetric change in the material due to the sliding and re-arranging of 

grains causing dilation or compaction. This ‘fabric’ parameter 𝛽 is further elaborated, along 

with the determination of its initial value is discussed in the following section, in which 𝛽 is 

defined based on the non-associated flow naturally derived from this approach, along with one-

dimensional straining assumption. Similar forms of dissipation function were proposed by 

Muhunthan et al. (1996), Collins and Hilder (2002) and Coombs (2017), as an extension 

towards the isotropic family of critical state models but these models have been limited to 

elasto-plastic modelling of stress-strain behaviour of soils. Moreover, the fact that the extended 

dissipation potential function in Equation (4.38) is no longer a homogeneous first order 

function is to be emphasised, which is distinctively different from the ones used in the existing 

soil models (e.g. Lai et al., 2014 and Coombs, 2017).  
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Here, the first term on the right-hand side of Equation (4.38) describes the instantaneous 

dissipation, while the second term details the additional dissipation associated with delayed 

deformations. Hence, the investigation and consideration of the H-Creep model have suggested 

that it is still logical to retain the similar mathematical structure given in Equation (4.15). 

Although cross-coupling exists in the initial state of the soil sample, it is still possible to make 

use of the definition of 𝑝  and 𝑞 from Equations (4.2a) and (4.2b), as long as the triaxial stress 

states are assumed to be without principle stress rotation (i.e. 𝜎 = 𝜎 ) and the coupling being 

controlled by a single scalar fabric parameter (Zhang, 2018; Zhou et al., 2018). Moreover, the 

inclusion of 𝑝′ or 𝑞 in functions 𝐴 and 𝐵 still abides with the thermodynamic rule, which 

requires not to identify work conjugate variables together as independent state variables, as 

supported by Lai et al. (2016) and Darabi et al. (2018). 

In the extended model, the dissipation potential function in Equation (4.38) returns back 

to the one in Equation (4.15) when fabric’ effects are ignored, i.e. 𝛽 = 0, while retaining the 

characteristics and the capabilities of the presented H-Creep model. Moreover, this goes a step 

further when the consideration of rate-dependent effects is neglected, i.e. Λ∗ = 0, together 

when 𝛾 = 1 and 𝛼 = 1, the dissipation potential function in Equation (4.38) can be retracted 

all the way back to the one used in the MCC model for the derivation of the symmetrical yield 

surface, which has been widely adopted in most of the existing EVP models.  

4.4.5 Extended Force and Flow Potential Functions 

Following the principles and procedure outline in Equations (3.26) - (3.29), the force 

potential function (𝑧) is derived from Equation (4.38) as follows: 
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𝑧 = 𝐴 휀̇ + 𝛽휀̇ + 𝐵 휀̇

+
𝛬∗

𝑛 𝐴 휀̇ + 𝛽휀̇ + 𝐵 휀̇  

(4.39) 

The volumetric and shear dissipative stresses (i.e. 𝑝  and 𝑞 ) are derived from Equation 

(4.39) using the standard procedure outlined in Table 3.4, as follows: 

𝑝 =
𝜕𝑧

𝜕휀̇
=

𝐴 휀̇ + 𝛽휀̇
𝛱∗ + 𝛬∗ ∙ [𝛱∗] ∙

𝐴 휀̇ + 𝛽휀̇
𝛱∗  (4.40) 

𝑞 =
𝜕𝑧

𝜕휀̇
=

𝐴 ∙ 𝛽 휀̇ + 𝛽휀̇ + 𝐵 ∙ 휀̇
𝛱∗

+ 𝛬∗ ∙ [𝛱∗] ∙
𝐴 ∙ 𝛽 휀̇ + 𝛽휀̇ + 𝐵 ∙ 휀̇

𝛱∗  

(4.41) 

where, Π∗ = 𝐴 휀̇ + 𝛽휀̇ + 𝐵 휀̇  . On the other hand, the flow potential 

function (𝑤) is derived using Legendre-Fenchel transformation based on the procedure 

outlined in Equations (3.24) and (3.26). Thus, it follows from Equations (4.38) and (4.39) that: 

𝑤 = 𝛿Φ − z =
𝑛 − 1

𝑛 ∙ Λ∗ 𝐴 휀̇ + 𝛽휀̇ + 𝐵 휀̇  (4.42) 

The above expression for the flow potential function is re-written using the 

corresponding viscoplastic strain components obtained from re-arranging Equations (4.40) and 

(4.41) in terms of dissipative stresses, which is as follows: 

𝑤 =
𝑛 − 1

𝑛
1

(Λ∗) ( )
[〈ϱ∗ 〉]  (4.43) 

Although the general structure of the flow potential function remains the same, as in 

Equation (4.21), the difference lies in the inclusion of the ‘fabric’ parameter 𝛽 in the extended 
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critical surface function, which is automatically derived from the dissipation potential function 

in Equation (4.38) when the viscosity scaling function (Λ∗) is zero.  

ϱ∗ =
(𝑝 )
𝐴 +

(𝑞 − 𝛽 ∙ 𝑝 )
𝐵 − 1 (4.44) 

The asterisk is used to denote the difference in the critical surface function from Equation 

(4.22). Accordingly, the presence of parameter 𝛽 results in the critical surface being sheared 

off the hydrostatic axis, in which 𝛽 is accountable for this traceless measure of deviatoric 

straining. In combination with the assumption that the origin of the critical surface must still 

lie on the locus in true stress space, the inclusion of parameter 𝛽 adds rotational effects to the 

kinematic hardening behaviour of the critical surface. Hence, it is demonstrated that the 

dissipation parameters, 𝛾 and 𝛼, in combination with 𝛽, have a significant bearing on the shape 

of the critical surface (as demonstrated in Figures 4.3 and 4.4), and the degree of non-

association of the viscoplastic flow rules, derived in the next section.  

When 𝛽 = 0, the isotropic dissipative critical surface presented in Section 4.2.5, with the 

ellipsoid’s major axis being coincident with the volumetric axis (i.e. 𝑝 -axis), is recovered (as 

shown in Figure 4.4). Moreover, when 𝛽 = 0 is combined with 𝛼 = 1 and 𝛾 = 1, the 

traditional MCC yield surface with an associated flow rule is retrieved (see Figure 4.4). 

Moreover, we can observe from Figure 4.4 that the slope of the critical surface at CSL depends 

only on 𝛼, and is independent of 𝛾 value, which influences only on the deviatoric aspect of the 

critical surface. Furthermore, the increasing 𝛽 value reduces the deviatoric radius of the critical 

envelope, while retaining the deviatoric shape, whereas, the value of 𝛾 reduces with increasing 

anisotropy, whilst 𝛼 increases with increasing anisotropy to maintain the critical state. Most 

importantly, the evolution of fabric parameter to achieve a unique asymptotic critical state 
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surface enables the two non-physical material constants, 𝛼 and 𝛾, to be associated with an 

experimentally quantifiable constant, i.e. 𝑝 , which is further discussed in Section 4.4.7.  

Following the standard procedure, the flow potential function in Equation (4.43) is then 

differentiated with respect to the corresponding dissipative stress components to derive the 

viscoplastic flow rules in the dissipative stress space, which results as follows: 

휀̇ =
𝜕𝑤
𝜕𝑝

=
1

(Λ∗)
[〈ϱ∗ 〉]

𝑝
𝐴 + (𝑞 − 𝛽 ∙ 𝑝 ) ∙ (−𝛽)

𝐵
ϱ∗ + 1  (4.45) 

휀̇ =
𝜕𝑤
𝜕𝑞 =

1

(Λ∗)
[〈ϱ∗ 〉]

(𝑞 − 𝛽 ∙ 𝑝 )
𝐵

ϱ∗ + 1  (4.46) 

Having clear analogy with the general forms used in the Perzyna (1963, 1966)’s 

viscoplasticity framework, as provided in Equation (4.25), the function ϱ∗  can also be 

elucidated as a hyper-viscoplastic overstress function (e.g. Rezania et al., 2016; Zhou et al., 

2018). Besides, the flow potential function results in a linear overstress-based viscous nucleus 

function, as initially reported by Perzyna (1966) and further adopted in Zhou et al. (2016), 

Castro et al. (2018). Unlike classic Perzyna-type overstress models, it is to be emphasised from 

Equations (4.43) and (4.44) that the critical surface is regarded as a nominal viscoplastic strain 

rate; thus, not separating viscous from viscous-free behaviour and allowing viscoplastic strain 

to occur within the critical surface in the proposed model. This is crucial in the determination 

of the rate-dependent parameters, which can be extracted directly from the laboratory 

measurements without the need to calibrate the values using test simulations. 

Adopting the Ziegler’s Orthogonality postulate, as in the standard procedure outlined in 

Equation (3.15), the dissipative viscoplastic flow rules derived in Equations (4.45) and (4.46) 
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are transformed into true stress space by substituting the corresponding shift stress components 

from Equations (4.33) and (4.35) into Equations (4.45) and (4.46): 

휀̇ =
𝜕𝑤
𝜕𝑝′ =

1

Λ∗
[〈ϱ∗〉]

[
 
 
 
 𝑝′ − 1

2 𝛾𝑝
𝐴 + (𝑞 − 𝛽 ∙ 𝑝′) ∙ (−𝛽)

𝐵
ϱ∗ + 1

]
 
 
 
 
 (4.47) 

휀̇ =
𝜕𝑤
𝜕𝑞

=
1

(Λ∗)
[〈ϱ∗〉]

(𝑞 − 𝛽 ∙ 𝑝′)
𝐵

ϱ∗ + 1  (4.48) 

where, the dissipative critical surface function in Equation (4.44) is also transformed into 

true stress space using a similar procedure, which results as follows: 

ϱ∗ =
𝑝′ − 1

2 𝛾𝑝
𝐴 +

(𝑞 − 𝛽𝑝′)
𝐵 − 1 

(4.49) 

Similar to the H-Creep model, the extended model considers rate-dependent effects by 

adopting constant rate of viscoplastic multiplier approach, partly influenced by 

Sivasithamparam et al. (2015). Accordingly, the creep parameter 𝜓  is incorporated into the 

viscosity scaling function (Λ∗), which is defined as follows: 

Λ∗ = 𝜓 ∙
𝑝
𝑝

( ∗ ∗)

∙
[(𝑀) − (𝛽) ]
[(𝑀) − (휂) ] 

(4.50) 

The asterisk is used to denote the difference from the viscosity scaling function defined 

in Equation (4.29). The difference lies in the inclusion of the parameter 𝛽 in the final term in 

Equation (4.50) to make sure that the critical state concept is adhered to, whilst the resulting 

viscoplastic strain corresponds to the measured volumetric viscoplastic strain rate under one-
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dimensional 𝐾 -consolidation condition, where 휂 is denoted as the associated stress-ratio (i.e. 

휂 = 휂 ) and the related coupling term, i.e. 𝛽 = 𝛽 , defined later in Section 5.2.  

4.4.6 Extended Non-Associated Viscoplastic Flow Rule 

As previously highlighted, the non-associated viscoplastic flow behaviour is derived as 

a necessary consequence from the extended dissipation potential function in Equation (4.38) 

due to the presence of the effective stress components as part of functions 𝐴 and 𝐵 (see 

Appendix A for more details). Hence, the viscoplastic flow rule for the extended model is 

derived from solving and re-arranging of the energy equation using the extended dissipation 

potential function in Equation (4.38), which is as follows (Refer to Appendix C for detailed 

derivation): 

휀̇
휀̇

=
𝛽 + (𝑀[1 − 𝛼 + 𝛼𝛾]) − 휂

2(휂 − 𝛽)  (4.51) 

where, the non-associated viscoplastic flow rule in Equation (4.51) becomes associated 

when  𝛾 = 𝛼 = 1. Moreover, the viscoplastic flow expression derived in the H-Creep model, 

i.e. Equation (4.30), is recoverable when 𝛽 = 0. This, in turn, is particularly important in 

retaining the hierarchical nature of the extended viscoplastic dissipation function postulated in 

Equation (4.38). As previously been emphasised, there has been an increasing appreciation that 

non-associated flow rule does offer marked improvements in simulating the behaviour of 

geomaterials, being recently supported by Nguyen et al. (2017) and Sun et al. (2018). 
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4.4.7 Compliance with Critical State Concept 

Considering the critical surface and the non-associated flow behaviour derived in 

Sections 4.4.5 and 4.4.6, it is necessary that the coupling term approaches zero when the stress 

state reaches the critical state, (i.e. 𝛽 → 0 at CS) so that the original critical state surface is 

retained, while also making sure that the stress ratio at the final critical state is independent of 

the stress path taken to reach that state. Inspired by the developments in Sivasithamparam and 

Castro (2016) and Zhang (2018), the proposed model employs a limit, representing the 

development of erasure of ‘fabric’ with viscoplastic strains, which is expressed as follows: 

�̇� = 𝐶
3
4휂 − 𝛽 〈휀̇ 〉 + 𝐷

1
3휂 − 𝛽 휀̇  (4.52) 

where, the soil constant, 𝐷 , controls the relative contribution from the volumetric and 

deviatoric viscoplastic strains in determining the overall target value for 𝛽. The other soil 

constant, 𝐶 , controls the absolute rate at which 𝛽 approaches its target value. The use of 

Macaulay brackets 〈 〉, i.e. 〈𝑥〉 = 0, 𝑥 < 0; and 〈𝑥〉 = 𝑥, 𝑥 ≥ 0, results in the evolution of 𝛽 

being insensitive to negative (dilative) viscoplastic strains. Moreover, this implies that it is only 

the isochoric component of the rate that influences the value of 𝛽 when subjected to dilative 

plastic straining. When 𝐷 = 0, the development of 𝛽 becomes solely dependent on the 

compressive viscoplastic strains and the value of 𝛽 will asymptotically approach the target 

value of 3휂 4⁄ . However, setting 𝐷 = 0 would imply that the unique critical state condition 

could not be attained, as the value of 𝛽 being dependent on the accumulated volumetric 

viscoplastic strains along the stress path to the critical state surface. On the other hand, the 

evolution of 𝛽 will be largely controlled by the deviatoric viscoplastic strains when 𝐷 → 0. 

Accordingly, the volumetric component of viscoplastic strain diminishes and the evolution of 

𝛽 is influenced by the deviatoric viscoplastic strains when the stress state approaches the 
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critical state conditions. In this limiting case, where 휀̇ = 0, the evolution law for 𝛽 is 

expressed as follows: 

�̇� ̇ = 𝐶 ∙ 𝐷
1
3

휂 − 𝛽 휀̇  (4.53) 

Consequently, the value of 𝛽 is given by 휂 3⁄  at the CS (where, 휂 is equal to 𝑀 at the 

CS). This seems physically plausible, provided that the CS corresponds to a condition, where 

the degree of coupling is being continuously disappeared and reappeared. This unique CS value 

for 𝛽 results in the prediction of a unique CSL in the 𝑣 − ln 𝑝 plane, which is one of the most 

imminent features lacking in many of the existing soil constitutive models (e.g. in Dafalias, 

1986; Whittle and Kavvadas, 1994). Therefore, the unique 𝛽 value at the CS is solely dependent 

on stress conditions at the CS and should be independent of both the initial degree of coupling 

and the stress path taken to the CS.  

One of the key novelties that differentiates the proposed model from a host of existing 

EVP models is embedded in the procedure to determine the reasonable approximations for the 

initial value of  𝛽, together with the additional parameters 𝐶  and 𝐷 , using the non-associated 

flow expression systematically derived in Equation (4.51). Correspondingly, the close estimate 

values for the parameters 𝐶  and 𝐷  are calculated in conjunction with an initial rotatory state 

of the critical surface, in contrast to the common adoption of associated flow rule for the 

estimation of these parameters in most of the existing EVP models (e.g. Wheeler et al., 2013; 

Rezania et al., 2016). Although, ideally, a diversity of specialised testing methods and a 

multitude of numerical simulations are required in order to calibrate the parameters 𝐶  and 𝐷 , 

the current study employs a simple empirical relation in tandem with the non-associated flow 

condition for the determination of the parameters, 𝛽, 𝐶  and 𝐷 , which is presented and 

elaborated in Section 5.2. 
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Besides, it is also feasible to determine the appropriate value for 𝑀 to maintain the unique 

asymptotic stress ratio at the CS (휂 ) (for provided values of 𝛼 and 𝛾), provided the fact that 

휂  can be experimentally determined at the critical state conditions, by defining the degree of 

coupling 휂 3⁄  at the critical state using Equation (4.53). This argument for a unique CS value 

for 𝛽, regardless of their stress history, has been strengthened by recent two-dimensional 

discrete element analysis on granular materials carried out by Fu and Dafalias (2010, 2011). 

4.5 Principle of Hyper-viscoplasticity Model 

The key principle embedded in the proposed models are further illustrated in Figure 4.6, 

in which point 'A' represents the initial stress state, being assumed to correspond to the normally 

consolidated state, and point ‘B’ represents the stress state corresponding to the expansion of 

the critical surface in the stress space due to the presence of volumetric viscoplastic strains 

during loading along the stress path of a creep test. As the stress state 'B' approaches the CSL 

at 'C', the size of the critical surface remains the same, as the increments of the volumetric 

viscoplastic strains becoming zero. Since the critical state is reached, the soil is subjected to a 

constant amount of overstress, which leads to an increase in deviatoric viscoplastic strains at 

constant strain-rate.  
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Figure 4.5: The effects of varying creep coefficient on the stress-strain behaviour using undrained 

triaxial test results on Haney clay 

One of the major characteristics of the proposed model is that it is hierarchical, which 

means that a viscoplastic version of the Modified Cam-clay model can be retraced back from 

the proposed model, by setting the coupling factor (𝛽) to zero and the value of parameters, 𝛼 

and 𝛾, to one. In combination with a sufficiently small creep parameter, the proposed model 

converges to the universally acclaimed elastoplastic model (i.e. Modified Cam-clay model), as 

shown in Figure 4.5. 

 Unless the parameters 𝛼 and 𝛾 are equal to one, the non-associated flow rule is naturally 

derived as a necessary consequence from the postulated stress-dependent dissipation increment 

function (see Appendix B), which enhances the versatility and usefulness of the proposed 

model in predicting the behaviour of a wider class of soils. 
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Figure 4.6: Schematic representation of the behaviour of the Hyper-viscoplasticity model in 𝑝′ − 𝑞 

space 

4.6 Findings and Observations  

The proposed model attempts to solve the problems encountered in the existing creep 

models developed by Yin et al. (2002) and Islam and Gnanendran (2017), in which the 

volumetric viscoplastic strain rate is determined from the secondary compression coefficient 

𝐶  defined in 𝑒 − ln 𝑡 space, while the deviatoric viscoplastic strain rate is obtained from the 

volumetric strain-rate by means of associated flow rule. Moreover, the volumetric viscoplastic 

strain rate is assumed to be independent of the stress ratio (휂), resulting in an unrealistically 

large volumetric strain rate when the stress ratio approaches the CSL (Yin et al., 2010). This is 
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in stark contrast to the experimental investigations, in which the volumetric strain rate is nearly 

zero when the stress state approaches CSL. Consequently, these models cannot predict the 

stress-strain response when the stress path overpasses the CSL in a step-changed undrained 

triaxial test, resulting in strain-softening behaviour for isotropically consolidated samples due 

to unreasonably large volumetric contraction, as pointed out by Yin et al. (2010). 

In the proposed model, the volumetric viscoplastic strain rate is not constant, but instead, 

the viscosity scaling function is assumed to be constant and applied for both volumetric and 

deviatoric components of the time-dependent behaviour of soils. The volumetric and deviatoric 

viscoplastic strain rates are derived separately from the flow potential function, as discussed in 

Equations (4.23) and (4.24) from the original H-Creep model and Equations (4.45) and (4.46) 

from the extended model, which has clear analogy with the elliptical yield surface adopted by 

Zhou et al. (2018). Non-associated flow rules can also be derived as a natural consequence 

from the postulated stress-dependent dissipation function provided in Equations (4.14) and 

(4.38) (i.e. functions 𝐴 and 𝐵 consists of pressure components), which is discussed further in 

Appendix A. Most importantly, the volumetric viscoplastic strain rate is dependent on the stress 

ratio (휂) and it approaches zero as the stress state approaches the CSL. 

Besides, the extended study has also been carried out to consider for the fabric coupling 

effects, emphasising on the importance of strain-hardening or softening behaviour during the 

rate-dependent delayed deformation in natural soils. The viscoplastic free-energy function and 

the dissipation increment function are further extended with the introduction of fabric 

parameter, whilst the former also incorporates the dependence on both volumetric and 

deviatoric viscoplastic strains to address the fundamental inconsistency of existing EVP 

models. The viscoplastic free-energy component results in the modified shift stress, with the 

rotational effects being implied on the kinematic hardening law in a simplified standard 
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procedure. Not only the free-energy function but also the dissipation function are based on the 

fundamental laws of thermodynamics, whilst no separate arbitrary plastic potential function is 

required to instigate non-associated flow rule, as non-associated flow behaviour is derived as 

a natural consequence from the stress-dependent dissipation potential function, as previously 

been emphasised. 

Hence, the following summaries are deduced from this chapter: 

(i) the entire constitutive viscoplastic stress-strain response is encapsulated within two 

thermodynamic potential functions, namely the free-energy and the dissipation 

potential functions based on the fundamental laws of thermodynamics to describe non-

linear behaviour of time-delayed deformations of soils; 

(ii) the derivations of critical surface and non-associated flow rule from the postulated 

viscoplastic dissipation potential function in the proposed model are closely connected, 

while being demonstrated as necessary outcomes; 

(iii) non-associated flow is naturally derived from the stress-dependent dissipation potential 

function, rather than having to establish an arbitrary plastic potential function for 

instigating the associativity of the flow rule; 

(iv) the variations in the shape of the critical (or yield) loci, which can be retraced back to 

the shape of the yield surface employed in the MCC model, are taken into account; 

(v) a novel non-linear creep formulation, which acknowledges the experimental evidence 

for the creep strain limit, is postulated and incorporated into the proposed model as part 

of the time-dependent viscosity scaling function in the dissipation potential function; 

(vi) the extended model goes a step further in consideration of the variations in the 

fundamental shapes of critical surface, accounting for a 𝛽-line defining the inclination 

of the non-symmetrical elliptical critical surface in the 𝑝 -𝑞 plane, along with the non-
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linear creep formulation considering the residual void ratio not being exactly equal to 

zero observed in the experiments, as discussed above; 

(vii) the extended model also demonstrates the intimate association between the extended 

viscoplastic free-energy and dissipation potential functions, from which the critical 

surface, along with the rotational hardening and non-associated flow behaviour are 

derived as necessary outcomes; 
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5.1 Introduction  

In this chapter, the performance and capabilities of the proposed mixed hardening Hyper-

viscoplasticity model and its extended model are evaluated by comparing the numerical 

outcomes generated by the proposed models with the experimental data available from the 

existing literature. Firstly, the summary of the model parameters required for the proposed and 

extended H-Creep models, along with the explanations on how these parameters are 

determined in a relatively straightforward means are elaborated in Section 5.2. The application 

of the proposed H-Creep model for the prediction of time- and rate-dependent stress-strain 

behaviour of various types of soils, including Osaka clay (reported by Adachi et al., 1995), 

Hong Kong marine deposit (HKMD) clay (reported by Yin and Zhu, 1999 and Yin et al., 2002), 

Haney clay (reported by Vaid and Campanella, 1977), and Kaolin and Bentonite mixture 

(reported by Herrmann et al., 1981), has been investigated in: 

 Section 5.3 for stress-controlled and strain-controlled undrained or drained compression 

and extension tests; 

 Section 5.4 for undrained triaxial shearing tests using various strain rates; 

 Section 5.5 for undrained triaxial shearing tests with stress-relaxation and constant rate of 

strain. 

Moreover, comparisons are made between the predictions of the proposed model in this 

current study and the predictions produced by the recent EVP model developed by Islam (2014) 

and the refined EVP model developed by Yin and Zhu (1999).  

In addition, the application of the extended model for the prediction of the rate- 

dependent stress-strain behaviour of 𝐾 -consolidated soft soils, including soft Wenzhou 

Marine clay (reported by Yin et al., 2015), Shanghai soft clay (documented by Huang et al., 
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2011) and Hong Kong marine deposit (HKMD) clay (outlined by Zhou et al., 2005), has been 

examined and scrutinised in: 

 Section 5.6 for strain-controlled undrained triaxial compression and extension tests; 

 Section 5.7 for undrained triaxial shearing tests using step-changed strain rates. 

For the purpose of evaluating the performance of the proposed and extended models 

using triaxial tests, the numerical implementations have considered the triaxial soil specimen 

as an element of soil and hence, a single representative stress point was adopted. In the current 

study, the numerical simulations, employing Runge Kutta Fehlberg method, as applied in 

Wang (2017), for time-integration, were implemented using MATLAB software, inspired by 

executions in Gong et al. (2009). Using the proposed and extended models, a few of the 

prepared MATLAB codes are provided in Appendix E for further details. Although the 

laboratory measurements presented in this study might have involved finite strain values, the 

finite strain effects were not considered in both the proposed and extended models, as the 

proposed formulations have adopted infinitesimal-strain hypothesis, as in Wroth and Houlsby 

(1985), Zhou and Ng (2015) and Lai et al. (2016), developing in terms of effective stresses, 

and thus, relating to the fundamental stress-strain behaviour of the soil skeleton, as in Yin et 

al. (2002) and Yin (2006). The conclusion of this chapter in Section 5.8 summarises the 

findings and observations on the investigation and assessment of the performance and 

applicability of the proposed and extended models in predicting the time- and rate- dependent 

stress-strain behaviour of various types of soils under different loading and drainage 

conditions. 
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5.2 Summary and Determination of Model Parameters 

This section presents the summary of the model parameters required for the proposed H-

Creep, which, basically, is divided into three major categories: 

1. The first set of parameters are termed as Modified Cam-clay parameters, including 

initial void ratio (𝑒 ), slope of the swelling line (𝜅∗), slope of the compression line 

(𝜆∗), Poisson’s ratio (𝜈), the initial reference pre-consolidation pressure (or the size 

of the initial reference surface) (𝑝 ) and the stress ratio at the Critical State in 

compression (𝑀). 

2. The second set is pertinent to time-dependent parameters, including the creep 

parameter (𝜇 ) and the material constant (𝑚) representing the slope of the log 𝜇 −

log 𝑒 curve required for the non-linear creep function. 

3. The third set includes the dissipation parameters 𝛾 and 𝛼. 

Besides, the extended model introduces one additional category, while the other three 

sets remain identical as described above. The additional group of parameters is pertinent to the 

consideration of the arrangement of particles and the bonding between the particles,  

4. The fourth set includes the initial fabric parameter (𝛽 ), the soil constants 𝐶  and 

𝐷 . 

The calibration procedure for the parameters of the first set is relatively straightforward, 

and no additional test is required, compared to the procedure used in the Modified Cam-clay 

(MCC) model (Roscoe and Burland, 1968). Accordingly, the slope of the Critical State Line 

(𝑀) is obtained from drained or undrained triaxial compression tests.  
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The time-dependent parameters (i.e. the creep coefficients, 𝜇 and 𝜇 ) as well as the values 

for the void ratio, 𝑒 and 𝑒 , is determined from either triaxial compression tests or conventional 

1-day oedometer tests. The power value 𝑚 is a curve-fitting parameter, which is determined 

from the log  𝜇 − log 𝑒 curve, in a straightforward way. 

The additional dissipation parameters 𝛾 and 𝛼 are the material constants, which are 

determined from undrained triaxial and one-dimensional consolidation test data. The parameter 

𝛾 is determined from Undrained Triaxial Compression (UTC) or Extension (UTE) data at a 

specific over-consolidation ratio (OCR). This depends on the distance between the CSL and 

the consolidation line, as this distance provides the ratio of the size of the yield surface to the 

pressure at the Critical State (Collins and Hilder, 2002). The value for 𝛾 is selected in the way 

that the position of the CSL relative to the size of the yield surface is close to that of the MCC 

model, (e.g. (𝑝′ 𝑝⁄ ) = 0.5). The parameter 𝛼 can be considered as constant fixed at a 

particular value corresponding to the shape of the yield surface, in order to reduce the over-

prediction of the peak deviatoric stress at high OCRs generated by the MCC model. The most 

appropriate values for 𝛾 and 𝛼 result in the best fitted stress-strain curves, particularly in the 

post-yielding stages of the deformation. As previously discussed, the non-associated flow rule 

is naturally derived from the postulated stress-dependent dissipation function, unless 𝛾 and 𝛼 

values are equal to one. 

The initial fabric parameter (𝛽 ), and the related soil constants 𝐶  and 𝐷  included 

in the fourth set are pertinent to the evolution law related to the fabric parameter (𝛽), provided 

in Equation (4.52). The parameters, 𝐶  and 𝐷 , are mainly associated with the initial size and 

degree of rotation of the critical surface accounting for the previous stress and strain history of 

the soil deformation. The in-situ rotary state of the critical surface is observed when the 

previous history of the soil is limited to one-dimensional straining to a normally consolidated 
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or lightly overconsolidated condition. However, the changes in the in-situ inclination of the 

critical surface are expected during the unloading stage, as the stress path during unloading 

process may have reached the critical surface in the triaxial extension region, for the case of 

heavily overconsolidated state. Hence, the initial inclination of the critical surface corresponds 

to the situation resulting from 𝐾 -consolidation to a normally consolidated state, in which the 

initial rotary state of the critical surface is not influenced by any elastic unloading to a lightly 

overconsolidated state. Therefore, the initial 𝛽 value is approximated from 𝐾 -consolidated 

state, i.e. 휀 = 0, from which the following expression is derived using Equations (4.2c) and 

(4.2d): 

휀
휀 =

(휀 + 2휀 )
2(휀 − 휀 )

3

=
휀
2휀
3

=
3
2 

(4.54) 

Assuming that the elastic strains are much smaller than the viscoplastic strains, the 

Equation (4.54) can be approximated by 휀̇ 휀̇ = 3 2⁄ . In most of the existing EVP models, 

(see – for example, Zhou et al., 2005; Rezania et al., 2016), the initial value of 𝛽 (i.e. 𝛽 ) 

corresponding to the one-dimensional consolidation is generally determined using the 

commonly adopted assumption based on the associated flow rule from the traditional MCC 

model, which is widely accepted as a reasonable approximation for natural clays when 

combined with an initial rotatory state of the critical surface. In stark contrast, the proposed 

model employs the non-associated flow expression derived in Equation (4.51), with an 

intention to maintain the internal consistency of the proposed constitutive framework. 

Accordingly, the initial rotatory value 𝛽  is derived, adopting the definition of the parametric 

angle (𝜔) based on the non-associated flow rule (See - Appendix D for more details) in 

combination with Equation (4.54), which yields: 
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�

𝛽 = 𝛽 =
𝐵
𝐴 cot 𝜔 −

3
2�
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where, 𝜔 is denoted as a parametric angle, determined at an initial 𝐾 -consolidation stress 

ratio (i.e. 휂 ), as shown in Figure 4.7. The stress ratio 휂  is calculated using 휂 =

3𝑀 (6 − 𝑀 )⁄ , derived from the estimated value of 𝐾  from Jaky’s simplified formula (i.e. 

𝐾 ≈ 1 − sin𝜙 ), as 𝑀 is related to the friction angle 𝜙 . The equilibrium value of 𝛽 for any 

provided value of 휂 can be found by setting �̇� = 0 in Equation (4.53) and combining with the 

adoption of non-associated flow rule derived in Equation (4.51) using the parametric angle (𝜔) 

defined based on the non-associated flow rule, as discussed in Appendix D, which sets the 

proposed model apart from the existing EVP models. 

 

Figure 4.7: Definition of the parametric angle 𝜔 

Besides, a specific value of 𝐷  results in a value of 𝛽 corresponding to 𝛽  from Equation 

(5.55) for loading at the normally consolidated 𝐾  stress ratio (i.e. 휂 ). It follows from the 

combination of Equations (4.52) and (5.55) that: 
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𝐷 =
3(3휂 − 4𝛽 )
4(휂 − 3𝛽 )

𝐵 cot 𝜔 − 𝛽 ∙ 𝐴
𝐴

 (4.56) 

Although the procedure seems to be circuitous, the analysis has demonstrated that it is 

sensitive, in particular, to the value assumed for volumetric target value (i.e. 3휂 4⁄ ). This 

represents a significant advantage over the existing EVP models in that a specific value for 𝐷  

can be selected using the aforementioned procedure, which results in improved accuracy in 

aligning with the normally consolidated value of 𝐾 . 

In comparison with the indirect method to determine 𝐷 , it is difficult to suggest a 

possible route to estimate the value of 𝐶  for a given soil, as also pointed out in Yin and 

Karstunen (2011) and Zhang (2018), unless model simulations with different values of 𝐷  can 

be performed. Therefore, the appropriate value for 𝐶  is estimated from the curve fitting based 

on simulations, particularly when the ‘fabric’ effects rein in either isotropic compression or 

triaxial extension tests. In the absence of a suitable experimental data, the range for 𝐶  value 

lies between 10 𝜆∗⁄  to 15 𝜆∗⁄  for a particular soil, suggested by Zenter et al. (2002b). 

Alternatively, if there are no significant changes in the extent of coupling is expected, 𝐶  could 

be set to zero by explicitly, assuming that an initial rotary state of the critical surface is fixed. 

Although, ideally, specialised testing and numerous numerical simulations are required 

to calibrate the model parameters controlling the degree of rotation of the critical surface, close 

approximations for the initial inclination of the critical surface, i.e. 𝛽 , and the material constant 

𝐷 , are estimated using a simple empirical relation based on the normally consolidated value 

of 𝐾 , which in turn, can be estimated from friction angle 𝜙 , as previously discussed. 

Therefore, the proposed model has a great potential for geotechnical applications, as it does 

not require advanced soil testing compared to the existing models that require additional 

parameters in order to predict such a level of sophisticated behaviour of soils. 
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5.3 Application of the Proposed H-Creep Model to Stress-controlled and 

Strain-controlled Compression and Extension Tests 

In this section, the application of the proposed H-Creep model in predicting the rate-

dependent behaviour of HKMD clay, Osaka clay and Kaolin and Bentonite mixture subjected 

to stress-controlled and strain-controlled compression and extension tests is investigated. The 

required model parameters employed in the current section for the numerical implementations 

were calibrated based on the procedure detailed in Section 5.2, which are summarised in the 

following table. 

Table 5.1: Values of Model Parameters for HKMD Clay, Osaka Clay and Kaolin and Bentonite Clay 

Mixture 

Model 

Properties 

Soil Types 

HKMD Clay Osaka Clay 
Kaolin and Bentonite 

Clay Mixture 

𝜆∗ 0.1987 0.355 0.1507 

𝜅∗ 0.0451 0.047 0.0194 

𝜇 0.0063 0.0142 0.006 

𝑀  1.265 1.278 1.2479 

𝑀  0.89 - - 

𝑒  1.506266 2.41 0.6207 

𝜐 0.3 0.3 0.3 

D 1 1 1 

J 0.85 – 0.95 0.95 - 1 0.83-0.85 

𝑚 1.0881 1 1 
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5.3.1 Stress-controlled Undrained Compression Tests on HKMD Clay 

Firstly, the calibrated model is used to predict the stress-strain behaviour of consolidated 

undrained compression test sheared at a constant deviatoric stress rate on HKMD clay, which 

was performed by Yin and Zhu (1999). The consolidation pressure of 400kPa was used to 

isotropically and normally consolidate the soil specimens, which was then followed by 

shearing at a constant deviatoric stress rate of 30kPa/h. 

5.3.1.1 Model Performance 

Figures 5.1a and 5.1b depict the measured and predicted results for the relationship 

between deviatoric stress versus axial strain and the effective stress paths, respectively, from 

the stress-controlled undrained compression tests on HKMD clay. Although it is apparent from 

Figure 5.1a that the proposed model results in slight over-prediction of the non-linear response 

at small strain levels, the predictions start to closely match the laboratory observations when 

the axial strain levels reach 4% onwards. The over-predictions could be rectified if hysteretic 

responses are to be modelled, based on discussions provided in Whittle and Kavvadas (1994) 

and Jiang et al. (2012), however, at the undesirable necessity of additional model parameters. 

Despite some minor discrepancies, the predictions, in general, are in good agreement with the 

measurements.  

Moreover, Figures 5.1a and 5.1b demonstrate the comparisons between the predictions 

of the proposed H-Creep model and the enhanced EVP model proposed by Yin and Zhu (1999). 

Compared to the predictions reported by Yin and Zhu (1999), the proposed model in this study 

provides improved predictions for the deviatoric stresses and the effective stress paths, 

particularly while matching the laboratory trend of the latter in approaching the Critical State 

Line (CSL). 
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Figure 5.1: Comparison between the measured and predicted results for consolidated undrained shear 

test at a constant deviatoric stress rate on HKMD clay: (a) deviatoric stress (𝑞) versus axial strain 

(휀 ); and (b) effective stress paths 
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5.3.2 Strain-controlled Drained Compression Tests on HKMD Clay 

Here, the calibrated hyper-viscoplasticity model is applied to predict the stress-strain 

behaviour of consolidated drained compression tests with controlled strain rates on HKMD 

clay, which was conducted by Yin and Zhu (1999).  The two consolidated drained compression 

tests were performed, in which the test specimens were isotropically and normally consolidated 

using the normal consolidation pressures of 300 kPa and 400 kPa, while subjected to similar 

axial strain rate of 0.0065%/min under test conditions. 

5.3.2.1 Model Performance 

The predictions generated by the numerical simulations for the relationships between 

deviatoric stress versus axial strain and volumetric strain versus axial strain are illustrated in 

Figures 5.2a and 5.2b, respectively. Overall, the predicted results are in good agreement with 

the laboratory measurements for the former relationship, whilst some discrepancies are 

observed with slight over-prediction for the latter one, with the predicted volumetric strains 

being larger than the measured data, particularly for the test corresponding to the consolidation 

pressure of 300 kPa. However, it is evident that the predicted trend for the volumetric strains 

followed exactly the same path as the experimental observations. It can be observed from 

Figure 5.2b that the predicted volumetric strain for both tests with different consolidation 

pressures were almost identical, whereas the volumetric strain test data for both effective 

pressures were very close for the axial strain up to 6% and began to slightly differ when the 

axial strains exceeded 6%. Therefore, referring to Figure 5.2b, the changes in the effective 

pressures have insignificant effect on the volumetric strains, which is also evident from the 

predictions reported by Yin and Zhu (1999). As it is concluded from Figure 5.2c, the proposed 

H-Creep model effectively captures the effective stress paths for both compression tests.  



150 | P a g e  
 

In order to further testify the applicability and usefulness of the proposed H-Creep model, 

the comparisons are made between the model’s predictions and the enhanced EVP model 

proposed by Yin and Zhu (1999). Despite the relative simplicity of the proposed model with 

standardised procedure, improved predictions for the deviatoric stresses as well as the 

volumetric strains are observed when compared to predictions reported by Yin and Zhu 

(1999)’s enhanced EVP models. 
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Figure 5.2: Comparison between the measured and predicted results for two consolidated drained 

shear tests on HKMD clay: (a) deviatoric stress (𝑞) versus axial strain (휀 ); (b) volume strain (휀 ) 

versus axial strain (휀 ) and (c) effective stress paths 
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5.3.3 Strain-controlled Undrained Compression Tests on Osaka Clay 

The proposed H-Creep model is used to predict the proposed model with the strain-

controlled undrained triaxial compression test data on natural clays, in particular, the Osaka 

clay, using two confining pressures, reported by Adachi et al. (1995). The simulations using 

the calibrated model for the laboratory data from strain-controlled (0.01%/minute) undrained 

triaxial compression tests are depicted in Figures 5.3a and 5.3b.  

5.3.3.1 Model Performance 

The performance of the proposed model is evaluated by comparing the predictions of the 

proposed model with the experimental data. As shown in Figure 5.3a, the proposed model 

results in minor over-prediction of 5-7% for the deviatoric stresses at small strain levels below 

4%, while the predictions start to match up with the laboratory measurements for strain levels 

greater than 4%. The consideration of hysteretic effects could resolve this particular issue, as 

previously discussed. On the other hand, the predicted effective stress paths are also compared 

with the laboratory data in the accompanying Figure 5.3b, in which it is identifiable that the 

proposed model provides improved predictions for the effective stress paths, as they gradually 

follow a ‘narrow region’ after attaining the peak deviatoric stress, which is also reflected in the 

experimental observations. Moreover, Figures 5.3a and 5.3b display comparisons between the 

predictions by the proposed model and the EVP model developed by Islam (2014) for the 

undrained triaxial compression test performed on Osaka clay. Following the simplified 

procedure with strong theoretical foundation, it is evident from Figure 5.3a that the proposed 

model in this study provides better predictions for the deviatoric stresses particularly for large 

axial strains (i.e. exceeding 4%). Furthermore, the proposed model reproduces better 

simulations compared to the predictions generated by a relatively contemporary EVP model.  
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Figure 5.3: Comparison between the measured and predicted results for undrained triaxial tests on 

Osaka clay (Data from Adachi et al., 1995): (a) deviatoric stress (𝑞) versus axial strain (휀 ); and (b) 

effective stress paths 
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In addition, the proposed model reinforces the ‘narrow region’ phenomena emphasised 

in Adachi et al. (1995) by demonstrating that critical state concepts are applicable to natural 

soft clays even at large strain levels, as highlighted in Figure 5.3b. 

5.3.4 Strain-controlled Consolidated Undrained Triaxial Compression Tests 

using various OCRs on Kaolin and Bentonite mixture 

The application of the proposed H-Creep model is further investigated to predict four 

strain-controlled consolidated-undrained triaxial compression tests with various OCRs on a 

mixture of kaolin and bentonite carried out by Herrmann et al. (1981). The pre-consolidation 

pressure of 392 kPa was applied on the test specimens with OCRs of 1, 1.3 and 2 and the axial 

strain rate applied during shearing was 0.6%/hr. 

5.3.4.1 Model Performance 

Figures 5.4a and 5.4b depict the comparisons between the proposed model’s predictions 

and the laboratory results after Kutter and Sathialingam, 1992; Dafalias and Herrmann, 1986) 

for the CIU tests on the mixture of kaolin and bentonite. It is apparent from Figure 5.4a that 

the proposed model competently captures the rate-dependent stress-strain response to a 

reasonable level before reaching the peak deviatoric stress and after 4% axial strain level. As 

in the previous tests, slight discrepancies are observed for 1% to 4% axial strain levels. In 

Figure 5.4b, the comparisons of the experimental and predicted stress paths are depicted, where 

it is apparent that the model marginally over-predicted the stress paths for OCR = 1 and 1.3 but 

the predictions were markedly close to measurements for OCR = 2 and overall, in good and 

satisfactory agreement.  
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Figure 5.4: Comparisons between the measured and predicted consolidated undrained triaxial test 

results on a mixture of kaolin and bentonite: (a) deviatoric stress (𝑞) versus axial strain (휀 ); (b) 

effective stress paths; and (c) axial strain (휀 ) versus pore-water pressure (𝑢) 

In addition, the proposed model is applied to predict the induced pore-water pressure 

response under various axial strain values, which is illustrated in Figure 5.4c. Since the current 

study does not consider the effect of the generation of a shear band within the specimen and 

inherent suction at failure, along with the fabric effects and the transitional yielding when the 

normally consolidated stress state is approached, for the sake of simplicity, some discrepancies 

are apparent between the proposed model’s predictions and the laboratory results for different 

OCR values. 
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5.4 Application of the Proposed H-Creep Model to Undrained Triaxial 

Shearing Tests Using Various Strain Rates 

The adopted model parameters related to Haney clay and HKMD clay for examining the 

performance and applicability of the proposed model in this section, were derived following 

the procedure described in the previous Section 5.2, while the ones related to HKMD clay are 

referred from Table 5.1. Both sets of parameters are summarised in Table 5.2. 

Table 5.2: Values of Model Parameters for Haney Clay and HKMD Clay 

Model 

Properties 

Soil Types 

Haney Clay HKMD Clay 

𝜆∗ 0.1055 0.1987 

𝜅∗ 0.01635 0.0451 

𝜇 0.004 0.0063 

𝑀  1.2872 1.265 

𝑀  - 0.89 

𝑒  0.896 1.506266 

𝜐 0.15 0.3 

D 1 1 

J 0.7 - 0.75 0.85 – 0.95 

𝑚 1 1.0881 
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5.4.1 Undrained Triaxial Shearing Tests Using Various Strain Rates on Haney 

Clay 

The capability of the proposed model is further investigated against the laboratory data 

recorded by Vaid and Campanella (1977) on the undrained triaxial shearing tests using multi 

strain rates on Haney clay. In these tests, the soil specimens were consolidated using the 

effective confining pressure of 525 kPa for 36 hours and allow to stand for 12 hours under 

undrained conditions before the commencement of the shearing stage. The undrained triaxial 

compression tests were performed under constant rates of axial strain and constant confining 

pressure by applying prescribed displacement for three specific durations, i.e. a total of 12% 

axial strain over 8.865 days (0.00094%/min), 0.0556 days (0.15%/min) and 0.00758 days 

(1.10%/min).  

5.4.1.1 Model Performance 

Figure 5.5 demonstrates the applicability of the proposed model to reproduce the rate-

dependent behaviour of Haney clay, capturing the deviatoric stress versus axial strain responses 

reasonably well. Moreover, the improved predictions are to be observed for the test samples 

with lower axial strain rates among the three testing conditions. Overall, the model predictions 

are in good agreement with the experimental data for the subsequent axial strain levels for all 

the reported aforementioned axial strain rates. 
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Figure 5.5: Comparison between the measured and predicted results for the relationship between 

deviatoric stress (𝑞) and axial strain (휀 ) using undrained triaxial test results on Haney clay 

5.4.2 Undrained Triaxial Shearing Tests at Various Strain Rates on HKMD 

Clay 

The application of the proposed model is also assessed in simulating the behaviour of 

strain-rate effects of soils using six consolidated-undrained triaxial tests on the HKMD 

conducted by Yin et al. (2002). The effective consolidation pressure of 400 kPa (i.e. 𝑝  = 400 

kPa) and a back pressure of 200 kPa were used to isotropically consolidate the test specimens 

for 36 hours and 48 hours in compression and extension tests, respectively. In Figures 5.6a and 

5.6b, the proposed model is used to predict the behaviour of the consolidated specimens being 

sheared at different axial strain rates of ±0.15, ±1.5 and ±15%/hr under compression and 

extension.  
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5.4.2.1 Model Performance 

Here, the relationships between the normalised deviatoric stress (𝑞/𝑝 ) and the axial 

strain (휀 ) and the effective stress paths, are recorded from the numerical simulations and 

illustrated in Figures 5.6a and 5.6b, respectively. The proposed model predictions have reached 

the acceptable level for compression tests, with only the under-predictions being observed 

within 2% to 5% of the axial strain level. However, discrepancies can be observed for the 

deviatoric stresses in extension when the axial strain levels progress from 3% due to the fact 

that the proposed model has not taken into account of destructuration effects, which might be 

responsible for the extension tests (Karstunen et al., 2005). Although disparities are apparent 

from the prediction of effective stress paths from Figure 5.6b, the general trend in stress-strain 

behaviour between the proposed model predictions and the laboratory measurements are in 

good accord to a justifiable extent. 
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Figure 5.6: Comparison between the measured and predicted results for constant strain rate triaxial 

shearing tests on the HKMD under compression and extension tests: (a) normalised deviatoric stress 

(𝑞 𝑝⁄ ) versus axial strain (휀 ); and (b) normalised effective stress paths 

5.5 Application of the Proposed H-Creep Model to Undrained Triaxial 

Shearing Tests with Stress-Relaxation and Constant Rate of Strain 

In this section, the required model parameters for investigating the capability of the 

proposed model in its application for predicting stress- and strain-dependent characteristics of 

HKMD clay are used from Table 5.1. 
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5.5.1 Undrained Triaxial Shearing Tests using Step-changed Strain Rates on 

HKMD Clay 

Here, the application of the proposed model is further testified using a step-changed, 

constant strain rate, undrained triaxial shearing test combined with stress relaxation to 

demonstrate its capability in describing the stress relaxation behaviour. Yin et al. (2002) 

conducted an isotropically consolidated undrained triaxial compression tests using step-

changed constant strain rates on normally consolidated HKMD clay. In these tests, the soil 

specimens were consolidated using an effective cell pressure of 300 kPa and a back pressure 

of 200 kPa to ensure the saturation of the specimens. The testing procedure and steps taken for 

predictions are recorded in Table 5.3.  

Table 5.3: Test Procedure for Step-changed Triaxial Shearing Test with Constant Strain Rate and 

Stress Relaxation on HKMD Clay 

Stage 1 2 3 4 5 6 7 8 
Test 

Types 
Shear Unload Reload Relax Shear Relax Shear Relax 

휺̇풂 
(%/hr) 

6.00 -6.00 6.00 0 0.60 0 0.06 0 

풕 (min) 29 7 20 2540 232 1320 830 705 
 

 

5.5.1.1 Model Performance 

The comparisons between the test results and the simulated predictions, using the 

proposed model are illustrated in Figure 5.7,  in terms of the relationship between deviatoric 

stress (𝑞) and the axial strain (휀 ) and the effective stress paths, respectively. It can be deduced 

that the numerical outcomes generated by the proposed model are in conformity with the 

laboratory data to an acceptable accuracy, demonstrating its applicability and pertinence in 

capturing the stress relaxation effects in addition to the strain rate response of HKMD clay.  
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Figure 5.7: Comparison between the measured and predicted results for undrained triaxial tests for 

step-changed axial strain rate combined with stress relaxation on HKMD clay: (a) deviatoric stress 

(𝑞) versus axial strain (휀 ); (b) effective stress paths; and (c) axial strain (휀 ) versus pore-water 

pressure (𝑢) 

Besides, Figure 5.7c illustrates the relationship of pore-water pressure variation 

corresponding to various axial strain values. It is apparent from Figure 5.7 that the undrained 

shear strength of the soil increases with the increasing strain rate, while reducing the excess 

pore water pressure dissipation. Considering the fact that the testing procedure was rather 

complicated, the predictions are in a good agreement with the measured results and by and 

large, can be considered as satisfactory. 
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5.6 Application of the Extended Model to Strain-controlled Undrained 

Triaxial Tests 

In this section, the extended model described in Section 4.4 is applied to predict the 

undrained triaxial loading tests with constant rate of strain.  

Table 5.4: Values of Model parameters for Soft Wenzhou Marine Clay and Shanghai Soft Clay 

Model Properties 

Soil Types 

Soft Wenzhou Marine Clay Shanghai Soft Clay 

𝜆∗ 0.384 0.212 

𝜅∗ 0.042 0.046 

𝜇 0.005212 0.007218 

𝐾  0.4896 0.6 

𝑀 (Compression) 1.23 1.277 

𝑀  (Extension) 0.872 0.9 

𝑒  1.89 1.402 

𝜐 0.25 0.2 

D (Compression) 0.9 – 0.95 0.95 

D (Extension) 1 - 

J (Compression) 0.7 – 0.75 0.55 

J (Extension) 1 - 

𝑚 1 1 

𝛽  0.581 0.41 

𝐷  0.039 0.0082 

𝐶  10 𝜆∗⁄  – 15 𝜆∗⁄  10 𝜆∗⁄  – 15 𝜆∗⁄  

The summary of the model parameters employed in the extended model with the addition 

of fabric parameters were determined based on the procedure described in Section 5.2. The 
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required model parameters related to soft Wenzhou Marine clay and Shanghai soft clay for this 

section are summarised in Table 5.4. 

5.6.1 Strain-controlled Undrained Triaxial Tests on Soft Wenzhou Marine 

Clay 

In this section, the performance of the extended model is investigated by applying 

towards a series of consolidated undrained triaxial tests in compression and extension on 𝐾 -

consolidated soft Wenzhou Marine clay samples at constant axial strain rates, conducted by 

Yin et al. (2015). The effective cell pressure of 205 kPa was applied in increments, along with 

a back pressure of 200kPa, to ensure that all the test specimens were properly saturated. This 

was followed by consolidating the specimens under 𝐾 -condition with final effective vertical 

pressures of 75.4 kPa, or 150 kPa, or 300 kPa whilst axially compressed without lateral 

deformation (or zero radial strain). Afterwards, the 𝐾 -consolidated test specimens were 

sheared at constant axial strain rates of ±0.2, ±2 and ±20%/hr under compression and 

extension conditions. 

5.6.1.1 Model Performance 

The predicted stress-strain behaviour of the 𝐾 -consolidated test specimens being 

sheared at the aforementioned controlled axial strain rates are illustrated in Figures 5.8-5.12, 

in which the comparisons between the numerical results and the experimental measurements 

for the relationships between the deviatoric stress versus axial strain, along with the effective 

stress paths are exhibited. It is observable that the stress-strain curves reach their respective 

peak values after approximately 1-2% of axial strain level in the undrained compression tests 

on anisotropically consolidated test specimens. On the other hand, the predicted effective stress 
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paths converge towards the ultimate undrained strengths on the CSL, which is always a good 

indication.  

 

 

Figure 5.8: Comparison between the measured and predicted results for K0-consolidated undrained 

triaxial CRS tests at an effective pressure of 75.4 kPa on soft Wenzhou Marine clay in extension: (a) 

effective stress paths; and (b) deviatoric stress (𝑞) versus axial strain (휀 )  
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Figure 5.9: Comparison between the measured and predicted results for K0-consolidated undrained 

triaxial CRS tests at an effective pressure of 150 kPa on soft Wenzhou Marine clay in compression: 

(a) effective stress paths; and (b) deviatoric stress (𝑞) versus axial strain (휀 ) 
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Figure 5.10: Comparison between the measured and predicted results for K0-consolidated undrained 

triaxial CRS tests at an effective pressure of 150 kPa on soft Wenzhou Marine clay in extension: (a) 

effective stress paths; and (b) deviatoric stress (𝑞) versus axial strain (휀 ) 
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Figure 5.11: Comparison between the measured and predicted results for K0-consolidated undrained 

triaxial CRS tests at an effective pressure of 300 kPa on soft Wenzhou Marine clay in compression: 

(a) effective stress paths; and (b) deviatoric stress (𝑞) versus axial strain (휀 ) 
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Figure 5.12: Comparison between the measured and predicted results for K0-consolidated undrained 

triaxial CRS tests at an effective pressure of 300 kPa on soft Wenzhou Marine clay in extension: (a) 

effective stress paths; and (b) deviatoric stress (𝑞) versus axial strain (휀 ) 
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Although slight overpredictions can be observed for small strain levels owing to the fact 

that hysteretic effects are not being considered due to the requirement of additional parameters, 

the predictions begin to match closely with the measured results for axial strain levels greater 

than 2%, as shown in Figures 5.8b-5.12b. It can be observed from Figures 5.8b-5.12b that slight 

discrepancies occur in the predictions of the effective stress paths, particularly in the initial test 

durations but matches closely towards the experimental observations thereafter until the critical 

state line is reached. In the compression tests, the extended model is capable of capturing the 

changes in the deviatoric stresses against the axial strains for all three constant strain rates, 

apart from the slight deviations observed for 0.2% and 2%/hr tests between 1% and 2.5% of 

the axial strain levels. Similarly, the predictions related to the relationships between the 

deviatoric stress and axial strain have aligned with the laboratory data throughout the extension 

tests, with under-predictions to be observed between 2% and 6% of the axial strain levels. 

However, the extended model possesses the capability to effectively capture the rate-dependent 

effects on the changes in deviatoric stresses against the axial strain, highlighting the strain-

softening and hardening effects, as overall, a good agreement with a reasonable accuracy is 

achieved between the laboratory data and the predicted outcomes for both compression and 

extension tests. 

5.6.2 Strain-controlled Undrained Triaxial Loading Tests on Shanghai Soft 

Clay 

This section enlightens further application of the extended calibrated model using the 

stress-strain behaviour of consolidated undrained triaxial loading tests at constant strain rate 

on Shanghai natural soft clay, performed by Huang et al. (2011). The natural undisturbed soil 

samples were extracted at depths of 10m, followed by the isotropic and anisotropic 
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consolidation under 𝐾 -condition (i.e. 𝐾 = 0.6) using the initial horizontal and vertical 

reconsolidation stresses, provided in Table 5.5. Accordingly, the application of the extended 

model employing the corresponding model parameters outlined in Table 5.4 to reproduce the 

stress-strain behaviour of two undrained compression tests on 𝐾 -consolidated test specimens 

with two different consolidation pressures of 50 and 100 kPa are elaborated. 

Table 5.5: Experimental Conditions for Undrained Triaxial Loading Tests on Shanghai Soft Clay 

Test 

Number 

Horizontal Reconsolidation Stress 

(kPa) 

Vertical Reconsolidation Stress 

(kPa) 

CAU-1 41 68.60 

CAU-2 81.80 136.4 

CAU-3 245 408.3 

5.6.2.1 Model Performance 

As illustrated in Figures 5.13a and 5.13b, the relationships between the deviatoric stress 

versus the axial strain, and the behavioural trend for the effective stress paths are credibly 

captured by the extended model. It is also evident from Figure 5.13b that the extended model 

accurately captures not only the decrease in effective stress with an increase in axial strain once 

the effective stress reaches its peak value, i.e. the strain softening behaviour, but also the 

characteristics of high stiffness observed in natural soft clays. As shown in Figure 5.13a, the 

extended model successfully reproduces the effective stress paths, which gradually reach their 

peak strength, followed by approaching a narrow zone in the stress space; thus, demonstrating 

the application of critical state phenomenon employed in the extended model to conclusively 

predict the stress-strain behaviour of natural clays at large strains. 
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Figure 5.13: Comparison between the measured and predicted results for K0-consolidated undrained 

triaxial compression tests on Shanghai soft clay: (a) effective stress paths; and (b) deviatoric stress 

(𝑞) versus axial strain (휀 ) 
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Moreover, Figure 5.13 displays comparisons between the simulations generated by the 

extended model and the MCC model for the undrained compression behaviour of Shanghai 

natural soft clay. In general, the MCC model predictions were less acceptable due to the 

negligence of the structural effects. Although slight over-predictions of non-linear responses 

at small strain levels are apparent, this could be rectified with the consideration of hysteretic 

response, as in Jiang et al. (2012), but rather at the expense of including additional model 

parameters, which was beyond the scope of the extended model. However, the predictions start 

to align with the laboratory results for axial strain levels higher than 2%; thus, highlighting the 

proposed model’s capability in capturing the strain softening behaviour observed in natural 

soft soils. 

5.7 Application of the Extended Model to Undrained Triaxial Shearing 

Tests Using Step-changed Strain Rates 

In this section, the necessary model parameters related to 𝐾 -consolidated HKMD clay, 

which were determined according to the descriptions provided in Section 5.2, are provided in 

the following table. 
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Table 5.6: Values of Model Parameters for 𝐾 -consolidated HKMD Clay 

Model Properties 

Soil Types 

Hong Kong Marine Deposit (HKMD) Clay 

𝜆∗ 0.1988 

𝜅∗ 0.04712 

𝜇 0.00637 

𝐾  0.4851 

𝑀 (Compression) 1.2431 

𝑀  (Extension) 0.879 

𝑒  1.506266 

𝜐 0.3 

D (Compression) 0.95 – 1 

D (Extension) 1 

J (Compression) 0.65 – 0.7 

J (Extension) 0.95 – 1 

𝑚 1 

𝛽  0.6203 

𝐷  0.1348 

𝐶  10 𝜆∗⁄  – 15 𝜆∗⁄  

 

5.7.1 𝑲ퟎ-consolidated Undrained Triaxial Shearing Tests on HKMD Clay 

The capability of the extended model is further validated against the laboratory 

measurements outlined by Zhou et al. (2005) on the 𝐾 -consolidation and undrained triaxial 

shearing tests performed at various step-changed strain rates with unloading and reloading on 

HKMD clay. The soil specimens were saturated using a cell pressure up to 205 kPa and back-

pressure up to 200 kPa by following the BS 1377 (BS 1990). Once the specimens were properly 
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saturated, the consolidation of each soil specimen was performed under an initial isotropic 

stress state with a small effective confining pressure of 10 kPa under 𝐾 -consolidation, i.e. zero 

radial strain, until three final effective confining pressures of 50, 150, 400 kPa have been 

reached in the corresponding tests. After 𝐾 -consolidation, the cell pressure was held constant, 

which was followed by shearing the test specimens at a step-changed strain rate, in a specified 

sequence from +2%/hr to +0.2%, +20%, -2% (unloading), and +2%/hr (reloading) for all the 

compression tests; and from -2%/hr to -0.2%, -20%, +2% (unloading), and -2%/hr (reloading) 

for all the extension tests. The initial inclination of the critical surface is estimated using the 

effective frictional angle 𝜙 , as outlined in the previous section. 

5.7.1.1 Model Performance 

The comparisons between the laboratory measurements and the predicted simulations for 

all the aforementioned step-changed strain rates for both triaxial compression and extension 

tests are demonstrated in the following Figures 5.14 - 5.19. The relationships for the deviatoric 

stress versus the axial strain and the excess pore water pressure versus the axial strain are 

illustrated and analysed. It is evident from Figures 5.14a-5.19a that the extended model 

successfully captures the strain rate effects in both compression and extension, particularly 

before +2%/hr (unloading), and -2%/hr (reloading) strain rates. Moreover, the obvious gradual 

decrease in deviatoric stress and pore-water pressure against high axial strain rate of 20%/hr, 

particularly in the extension tests, are credibly predicted. However, discrepancies are observed 

in simulating the unload-reload loop, since the hysteretic effects are not considered due to the 

requirement of additional parameters, as previously been pointed out.  



178 | P a g e  
 

 

 

Figure 5.14: Comparison between the measured and predicted results for K0-consolidated step-

changed axial strain compression test with unloading/reloading at effective pressure of 50kPa on 

HKMD clay: (a) deviatoric stress (𝑞) versus axial strain (휀 ); (b) axial strain (휀 ) versus pore-water 

pressure (𝑢) 
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Figure 5.15: Comparison between the measured and predicted results for K0-consolidated step-

changed axial strain compression test with unloading/reloading at effective pressure of 150kPa on 

HKMD clay: (a) deviatoric stress (𝑞) versus axial strain (휀 ); (b) axial strain (휀 ) versus pore-water 

pressure (𝑢) 
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Figure 5.16: Comparison between the measured and predicted results for K0-consolidated step-

changed axial strain compression test with unloading/reloading at effective pressure of 400kPa on 

HKMD clay: (a) deviatoric stress (𝑞) versus axial strain (휀 ); (b) axial strain (휀 ) versus pore-water 

pressure (𝑢) 
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Figure 5.17: Comparison between the measured and predicted results for K0-consolidated step-

changed axial strain extension test with unloading/reloading at effective pressure of 50kPa on HKMD 

clay: (a) deviatoric stress (𝑞) versus axial strain (휀 ); (b) axial strain (휀 ) versus pore-water pressure 

(𝑢) 
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Figure 5.18: Comparison between the measured and predicted results for K0-consolidated step-

changed axial strain extension test with unloading/reloading at effective pressure of 150kPa on 

HKMD clay: (a) deviatoric stress (𝑞) versus axial strain (휀 ); (b) axial strain (휀 ) versus pore-water 

pressure (𝑢) 
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Figure 5.19: Comparison between the measured and predicted results for K0-consolidated step-

changed axial strain extension test with unloading/reloading at effective pressure of 400kPa on 

HKMD clay: (a) deviatoric stress (𝑞) versus axial strain (휀 ); (b) axial strain (휀 ) versus pore-water 

pressure (𝑢) 
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As emphasised in Zhou et al. (2005), there were a few issues encountered during the 

tests, in which the employed triaxial system could not automatically run a following phase of 

test with a different loading condition after finishing the previous test phase, in the step-

changed experiments. Since a manual reset was compulsory to run the next test phase in the 

employed controlling computer program and electronic hardware, certain unforeseen loading 

disturbances could likely affect the stress-strain behaviour and the pore-water pressure 

dissipation response of the testing specimens. Due to these negative influences on the 

laboratory observations, it is to be considered that there is, in general, a reasonably acceptable 

agreement between the proposed model predictions and the laboratory measurements for both 

compression and extension tests, provided that the testing procedure was also rather 

sophisticated.  

5.8 Summary and Observations 

In this chapter, the applications of the proposed H-Creep model and its extended 

counterpart are extensively elaborated to investigate the predictive performance and 

capabilities towards a variety of laboratory experiments. The model parameters required for 

the numerical implementations have been summarised, along with the details on their 

corresponding determination procedure. Taking into consideration of the illustrations and 

demonstrations, the following observations are concluded from this chapter: 

(i) the proposed H-Creep model contains a total of 10 parameters, whereas the extended 

model consists of 11 parameters in total, with the addition of one parameter related to 

‘fabric’ arrangements, for which the determination of all the model parameters is 

relatively straightforward; 
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(ii) the proposed model demonstrates its versatile capabilities in predicting time- and strain 

rate- dependent behaviour of soils under different loading and drainage conditions 

within a single framework with tight standardised theoretical structure; 

(iii) the extended model is capable and competent to capture the loading-rate or strain-rate 

dependent stress-strain behaviour, highlighting the strain-softening/hardening effects, 

observed in natural soft soils and assessed against, but not limited to, undrained triaxial 

shearing tests using step-changed strain rates with stress-relaxation and consolidated 

strain-controlled undrained triaxial compression and extension tests using various strain 

rates, reported in the existing literature; 

(iv) Although some discrepancies can be noticeable due to a few limitations, the extended 

model signified its multi-faceted capabilities and boundless potential in predicting 

time-dependency of undrained strength in natural soils subjected to various loading and 

drainage conditions within hyper-viscoplastic foundation with standardised theoretical 

structure. 

On the other hand, the following limitations and recommendations are to be bestowed based 

on the observations deduced from this chapter: 

(i) The proposed model might not be applicable for modelling scenarios, in which 

modelling stress-strain behaviour of soils under cyclic loading conditions, entailing 

hysteretic effects, and smooth transition from the elastic to the elasto-viscoplastic 

behaviour, is of paramount necessity. 

(ii) If interpretation of more localised effects and dissipation of excess pore-water pressure 

through drainage boundaries during the testing would be of considerable importance, 

finite element approach could be implemented to simulate the laboratory observations 

by adopting the proposed model. 
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(iii) Not only the relative difficulty of EVP models could be resolved, but also the 

predictions of the proposed model might be enhanced if more meticulous numerical 

optimisation techniques (e.g. TRRLS algorithm in Le et al. (2016)) is adopted for the 

emphasis on the importance of employing non-linear creep formulation. 
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CONCLUSIONS AND 

RECOMMENDATIONS 
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6.1 Summary 

The fundamental intention of this study was not to propose a new constitutive soil model 

right from the very beginning, but rather to study the existing constitutive models and identify 

the associated drawbacks and requirements in order to remove those limitations by building 

upon a reliable foundation and consistent framework. Accordingly, the major objective of this 

study is to develop a series of mixed hardening rate-dependent constitutive soil models within 

a single framework with tight standardised theoretical structure based on the fundamental laws 

of thermodynamics to simulate time- and strain rate- dependent behaviour of soft soils under 

different loading and drainage conditions, together with the intention to capture the variation 

in the shapes of the yield loci by pursuing non-associated flow rules and accounting for 

isotropic and kinematic hardening effects. The most distinctive characteristic of the proposed 

model is their compliance with the physical phenomena, such as the conservation of mass and 

energy and the fundamental laws of thermodynamics, whilst circumventing the drawbacks of 

having to introduce a substantial number of assumptions. This is in stark contrast to most of 

the existing soil constitutive models, which often require a considerable number of ‘ad hoc’ 

assumptions without being related to the physical phenomena of real soils.  

 Chapter 1 has outlined the introduction to the current study, with the emphasis on the 

importance of modelling time- and rate-dependent behaviour of geomaterials, particularly 

for the long-term settlement deformations. This has been followed by the problem 

statement, highlighting the fact that the constitutive soil models must comply with certain 

principles or axioms that govern the physical phenomena, such as the fundamental laws of 

thermodynamics and conservation of mass and energy. According to Houlsby and Puzrin 

(2006), 
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“The constitutive models that do not comply with the laws of thermodynamics may not be 

used with any confidence to predict the material behaviour.” 

Based on the strong theoretical foundation, the objectives and scope of the current study 

have been presented. 

 Chapter 2 has provided a comprehensive literature review on the importance of modelling 

time- and rate- dependent stress-strain behaviour, including creep, stress relaxation and 

strain-rate dependency, of geomaterials, particularly soils. Moreover, the challenges 

associated with the development of constitutive soil models have been discussed, along 

with the study and investigation on the number of existing advanced constitutive soil 

modelling frameworks, with regards to the emphasis on the problem statement of the 

current study. 

 In Chapter 3, the underlying principles of the Hyperplasticity theory, signifying its essential 

components and requisite foundation towards the development of a new Hyper-

viscoplasticity theory have been elaborated. Moreover, the fundamental laws of 

thermodynamics have been discussed. This has been accompanied by the practical 

summary of rate-independent hyperplasticity approach, from which the rate-dependent 

hyperplasticity framework has been built upon using a constructive and consistent approach 

and thus, highlighting the rigidity, compactness and reliability acting as a strong foundation 

for the development of hyper-viscoplastic soil models in the current study.  

 Chapter 4 has presented the development of a unique, yet simple mixed hardening hyper-

viscoplasticity (H-Creep) model for the simulation of rate-dependent stress-strain 

behaviour of soils incorporating non-linear creep rate, while considering the variations in 

the shapes of the yield loci by pursuing non-associated flow behaviour, with the 

incorporation of important hardening effects. The important characteristics include, but not 

limited to, the encapsulation of the entire constitutive viscoplastic stress-strain response 
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within two thermodynamic potential functions, the derivation of critical surface and non-

associated flow rule as necessary consequences of the viscoplastic dissipation potential 

function, whilst the latter is derived as a natural outcome if the postulated viscoplastic 

dissipation potential function is stress-dependent and the postulation of novel non-linear 

creep formulation acknowledging the experimental evidence of residual void ratio not 

being equal to zero as part of the creep strain limit. Moreover, the logical and rational 

extension towards the proposed H-Creep model has been presented by addressing a few of 

the observed limitations, particularly the need to consider for the arrangement of particles 

and the bonding between the particles during the time-dependent delayed deformation, 

which is considerably pronounced in natural soft soils. The extended model retains all the 

important characteristics of the H-Creep model, whilst augmenting with the enhanced 

capabilities in capturing the variations in the fundamental shapes of critical surface with a 

𝛽-line defining the inclination of the non-symmetrical elliptical critical surface in the 𝑝 -𝑞 

plane, whilst describing the additional rotational effects to the kinematic hardening 

behaviour and strain-softening/hardening effects of soft soils. 

 In Chapter 5, the summary of all the model parameters required for the proposed and 

extended models has been provided, along with the description on the associated 

determination procedure. It has been documented that the proposed model is applicable to 

qualitatively and quantitatively capture the time- and rate- dependent stress-strain 

responses related to Osaka clay, Hong Kong marine deposit (HKMD) clay, Haney clay and 

Kaolin and Bentonite mixture. Furthermore, it has been demonstrated that the extended 

model is capable of predicting the stress-strain behaviour of 𝐾 -consolidated soft Wenzhou 

Marine clay, Shanghai soft clay and Hong Kong marine deposit (HKMD) clay. 

The proposed H-Creep model, along with its extended component, offer significant 

improvements on the predictive capabilities of the MCC model, and considerable 
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enhancements on the relatively recent EVP models developed by Yin and Zhu (1999) and Islam 

(2014). 

6.2 Conclusions 

During the past few decades, there have been a large number of constitutive soil models 

developed based on a variety of approaches and concepts and often, each constitutive model 

claims its advantages and superiority compared to the other existing models. However, the 

reality is that there is still no explicit model that has yet been acknowledged in possessing the 

capability to fully describe the behaviour of soil subjected to all possible conditions under 

general construction procedures. Moreover, it is important to emphasise on the previously 

highlighted point that all the constitutive models must obey certain principles or axioms that 

govern the physical phenomena of materials, such as the conservation of mass and energy and 

the fundamental laws of thermodynamics and so on. Based on the comprehensive literature 

review on the constitutive soil models, mainly related to the modelling of time- and rate- 

dependent behaviour of soils, many existing variants of plasticity approaches are yet flexible 

enough to violate the fundamental laws of thermodynamics, as they often have had to 

compensate with arbitrary assumptions without being related to physical aspects of the soil 

behaviour. In order to minimise the number of ‘ad hoc’ assumptions and with the need to 

comply with certain physical principles, the current study has been solely focused on the 

hyperplasticity approach, in which the extraction of plasticity theory is based on the 

fundamental laws of thermodynamics. The important feature of this approach is the 

encapsulation of the entire constitutive behaviour, entailing the yield condition and flow rule, 

along with the isotropic and kinematic hardening laws, as well as the elasticity law, within two 

thermodynamic potential functions, i.e. free-energy and dissipation potential functions.  
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Since this framework provides a rigorous, compact and consistent standardised 

procedure with the considerable use of potential functions and internal variables related to the 

physical phenomena of materials, a unique, yet simple and versatile constitutive soil model is 

developed based on rate-dependent hyperplasticity theory for the simulation of non-linear 

creep behaviour, along with the prediction of both isotropic and kinematic hardening behaviour 

of soils. Besides, the non-associated flow rule is derived as a necessary consequence of 

dissipation potential functions, explicitly dependent on the actual stress components. 

Moreover, there is no need to introduce an arbitrary plastic flow potential function, compared 

to the conventional plasticity models in which it is usual to express the plastic strain increments 

in terms of a plastic potential function to instigate the non-associated flow rule. Therefore, the 

derivation of non-associated flow rule as a natural outcome from the hyperplastic approach is 

demonstrated as more general, in which the transition between the yield surface and the flow 

rule is more seamless and coherent. Furthermore, the inclusion of viscoplastic strains in the 

inelastic free-energy function, by explicitly acknowledging the fact that not all the plastic work 

is dissipated, but some portion is stored, differentiates the proposed model from most of the 

existing traditional plasticity models, which generally assumes that the energy associated with 

inelastic strains to be irrecoverable. The additional viscoplastic free-energy function results in 

the ‘shift’ stress and the ‘dissipative’ stress, within the context of hyperplasticity, is used to 

describe the translational, kinematic hardening and the isotropic hardening or softening 

behaviour, respectively. It has also been demonstrated that the shift and dissipative stress 

components share an important role, in tandem, for the formulation of mixed hardening 

constitutive soil models of geomaterials. In addition, a novel non-linear creep formulation 

acknowledging the experimental observation of residual void ratio not being exactly equal to 

zero, with regards to the creep strain limit, is postulated and incorporated into the time-

dependent viscosity scaling function employed within the dissipation potential function. On 
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the other hand, the required model parameters have been classified into three major categories, 

provided with the description on the determination procedure. Using the calibrated model 

parameters, it has been demonstrated that the presented model possesses the capability to 

predict the laboratory measurements from the consolidated and overconsolidated undrained 

strain-controlled and stress-controlled triaxial compression and extension tests, undrained 

triaxial shearing tests with stress-relaxation and constant rate of strain tests. Overall, the 

model’s predictions are in satisfactory agreement, which is evident from the provided figures, 

capturing the stress- and strain- rate dependent behaviour of soils, including Osaka clay, 

HKMD clay, Haney clay and Kaolin and Bentonite mixture, while reinforcing the ‘narrow 

region’ phenomena by demonstrating that the critical state concepts are applicable to natural 

soft clays even at large strain levels. Moreover, comparisons are provided for the predictions 

of the proposed model in this current study and the predictions produced by the recent EVP 

model developed by Islam (2014) and the refined EVP model developed by Yin and Zhu 

(1999), exhibiting that the presented H-Creep model offers improved predictions, highlighting 

the reliability of the model in modelling time and strain-rate effects under different loading and 

drainage conditions. 

Due to the advantages of having a strong theoretical foundation with rigorous, compact 

and consistent procedure, this allows for the resulting models to be developed within a single 

framework enabling efficient, yet convenient comparisons for further improvements. Since the 

composition of clayey soils, such as the irregularity of the clay platelets, one-dimensional 

consolidation and deposition procedures and so on, has a considerable influence on the 

associated stress-strain behaviour, it has become increasingly important to consider the effects 

of structure in soils, particularly for natural soft soils, due to the structural arrangement and the 

interparticle bonding among the particles. The consequence of neglecting such structural 

effects could result in rather inaccurate predictions of the stress-strain response of natural soft 
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clays, especially when they are subjected to different loading conditions, as have been pointed 

out in Zhou et al. (2005), Karstunen and Koskinen (2008) and Rezania et al. (2016). 

Consequently, there has been a substantial interest in attempting to merge ‘fabric’ effects and 

time-dependent delayed deformation in predicting the viscoplastic stress-strain response of soft 

clays, as an extension towards isotropic creep models (e.g. Zhou et al., 2005; Leoni et al.,2008), 

the MCC model with structured Cam-clay models (e.g. Horpibulsuk et al., 2010; Suebsuk et 

al., 2010), the traditional bounding surface plasticity models (e.g. Gajo and Muir, 2001; 

Dafalias et al., 2006; Yao et al., 2009) and the existing EVP models (e.g. Sivasithamparam et 

al., 2015; Jiang et al., 2017; Castro et al., 2018). Although the aforementioned approaches have 

paved the way to account for the modelling of structural effects for time-dependent 

deformation behaviour, most of the existing EVP models have not been constructed based on 

a strong thermodynamic foundation, but rather from an empirical or semi-empirical approach 

and thus, they are flexible enough to break the fundamental physical principles related to the 

real soil behaviour. Therefore, it is logical and rational for the presented H-Creep model to be 

extended based on the hyper-viscoplasticity concept by incorporating the ‘fabric’ effects, 

accounting for the arrangement of particles and the bonding between the particles, particularly 

observed in soft natural soils when subjected to different loading conditions.  

The extended study highlights the emphasis on the strain-softening behaviour for certain 

natural soils and more prominently, the power and capability of working within the relatively 

modern hyperplasticity approach with a tight theoretical structure. As previously emphasised, 

the comprehensive incorporation of structural effects requires a sizeable number of additional 

model parameters, which makes it highly impractical, the extended model has been intended 

to minimise the number of required parameters, whilst having careful consideration on 

maintaining the acceptable level of accuracy in simulating the corresponding time- and rate-

dependent behaviour of natural soft soils. Accordingly, the viscoplastic free-energy and 
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dissipation potential functions have been extended, in which not only the former incorporates 

the dependence on both volumetric and deviatoric viscoplastic strains, but also the fabric 

coupling parameter is introduced into both potential functions. The extended viscoplastic free-

energy function results in the modified shift stress, supplementing the kinematic hardening 

behaviour with rotational effects by incorporating rotational kinematic evolution based on the 

discussions provided in Sivasithamparam and Castro (2016) and Zhang (2018), which is 

important in the retention of a unique asymptotic critical state surface for stress paths that also 

involve unloading. Hence, the extended model has been intended to capture the loading-rate or 

strain-rate dependent behaviour of soils, while still considering the variations in the 

fundamental shapes of critical surface with a 𝛽-line defining the inclination of the non-

symmetrical elliptical critical surface in the 𝑝 -𝑞 plane, along with rotational, kinematic 

hardening effects and non-associated behaviour, derived as a natural consequence of this 

approach. The extended model consists of 11 parameters in total, with only one additional 

important parameter compared to its original counterpart, and thus, maintaining a relatively 

straightforward parameter determining procedure, considering the fact that the incorporation 

of fabric effects generally require a substantial number of additional model parameters, as 

highlighted above. Although some discrepancies could be observed from the comparisons 

between the model predictions and the experimental data on the time-dependent stress-strain 

behaviour of 𝐾 -consolidated soft Wenzhou Marine clay, Shanghai soft clay and Hong Kong 

marine deposit (HKMD) clay, the extended model has exhibited its wide range of capabilities 

and boundless potential in predicting the rather complicated creep behaviour of natural soft 

soils under a variety of loading conditions and different drainage circumstances.  

One of the prime features of the proposed model and its extended counterpart, which is 

of paramount importance, is the hierarchical nature, in which a viscoplastic version of the MCC 

model is recovered when the coupling factor 𝛽 is set to zero and the value of parameters, 𝛼 and 
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𝛾, are equal to one, whilst in combination with a sufficiently small creep parameter could 

eventually result in the universally acclaimed elastoplastic MCC model. As previously 

emphasised, the non-associated flow rule is naturally derived as a necessary consequence from 

the stress-inclusive dissipation potential function, which further promotes the versatility and 

usefulness of the current study in predicting the behaviour of a wider class of soils. 

6.3 Recommendations for Future Studies 

With the robustness of the theoretical foundation, the proposed model is an ideal 

dependable basis for further research in the following directions: 

 The extensions towards the free-energy and dissipation potential functions, with the 

incorporation of ‘breakage mechanics’ into the proposed constitutive model, as recent 

studies have also suggested that the viscoplastic deformation of granular geomaterials may be 

influenced by numerous microscopic processes at low and/or high pressures (Tatsuoka et al., 2002; 

2008) and thus, the deformation is controlled by the fragility of the grains resulting in the delayed 

breakage of individual particles in the rearrangement of the skeleton over time, as well as the rates 

of creep and stress relaxation (Karimpour & Lade, 2010). As a result, the understanding of such 

phenomena has led the way to study not only the detailed measurements of evolving particle size 

distribution during creep and relaxation tests (Leung et al., 1997; Lade et al., 2010) but also the 

micromechanical interpretations of environment-dependent creep based on the theory of crack 

growth kinetics (Oldecop and Alonso, 2001; 2007). Based on Hyperplasticity framework, the 

entire constitutive behaviour that undergoes plasticity and damage can be expressed 

through the definition of two thermodynamic potentials. This, again, ensures consistency 

with the fundamental laws of thermodynamics.  
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 The examination on the feasibility of a direct link between the evolving material fabric 

considered in the proposed study and the degree of anisotropy could also be conducted, 

particularly if it would be possible to use imaging techniques to identify and trace the 

movements of the grains and platelets throughout the loading procedure. This could offer 

improved relationships between the physical phenomena of geomaterials, especially soils, 

for instance, the liquid and plastic limits, and the numerical models of macroscopic 

behaviour of soils, which in turn serving as a point of departure on the development of 

continuum constitutive models based on micro-mechanical fabric interaction, rather than 

on an abstract representation of the behaviour of geomaterials. 

 If the analyses of more localised effects and in-situ conditions, in which the evaluation of 

the model against boundary value problems is critical, the proposed models in this study 

can be adopted as a dependable basis for the implementation of final element approach. 

 Numerical applications could also be implemented using the commercially available 

software packages, such as FLAC, ABAQUS and the developed constitutive codes in 

MATLAB, for simulating the field case studies to make comparisons with the 

corresponding undertaken measurements for further investigation of the performance and 

capabilities of the proposed model and its extended counterpart. 

 The simulations would be enhanced if more rigorous numerical optimisation techniques, 

such as the trust-region reflective least square (TRRLS) algorithm applied in Le et al. 

(2016), are performed, which would not only augment the importance of the postulated 

non-linear creep formulation but also overcome the relative difficulty of elastic-

vsicoplastic (EVP) models in determining the non-linear creep parameters.  
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APPENDICES 

Appendix A: Relationship between Non-Associated Flow Rule and Stress-

dependent Dissipation Potential Function 

In the proposed model, the dissipation increment function takes the form 𝛿Φ 휀 , 휀̇ , 𝜎  

instead of 𝛿Φ 휀 , 휀̇  that depends explicitly on the effective stress components, as defined in 

Equation (4.14).  

Considering the modelling of rate-dependent behaviour, the dissipation function in 

Equation (4.14) is separated into the force potential function and flow potential function, 

inspired by the discussions provided in Houlsby and Puzrin (2002). Thus, the force potential 

function 𝑧 휀 , 휀̇ , 𝜎  is determined from the dissipation function in Equation (4.14), which 

is provided in Equation (4.17).  

To take into account of rate-dependent behaviour, i.e., 𝛿Φ is homogeneous but not first 

order in 휀̇ , the following generalisation for the definition of the dissipative stress is adopted, 

which is given by: 

χ =
∂z 휀 , 휀̇ , 𝜎

∂ 휀̇
 (A-1) 
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A Legendre-Fenchel transformation is performed on the force potential function 

𝑧 휀 , 휀̇ , 𝜎  to introduce its dual function, 𝑤 휀 , 𝜒 , 𝜎 , which is provided in Equation 

(4.18) and is termed as ‘flow potential function’.  

The following property from Legendre-Fenchel transformation can be deduced, such 

that: 

휀̇ =
𝜕𝑤 휀 , 𝜒 , 𝜎

𝜕𝜒
 (A-2) 

Since 𝑤 휀 , 𝜒 , 𝜎  is denoted as plastic flow potential function, the expression 

determined in Equation (A-2) has a clear analogy with the associated flow rule in the 

conventional plasticity. Moreover, the dual relationships for the passive variables provided by 

Legendre-Fenchel transformation can also be deduced as follows: 

δ𝑧 휀 , 휀̇ , 𝜎
∂휀

= −
∂𝑤 휀 , 𝜒 , 𝜎

∂휀
 (A-3a) 

δ𝑧 휀 , 휀̇ , 𝜎
∂𝜎 = −

∂𝑤 휀 , 𝜒 , 𝜎
∂𝜎  (A-3b) 

However, the viscoplastic flow rules determined in Equation (A-2) are expressed in the 

dissipative stress space, not in the actual stress space. These expressions are required to be 

transformed to the actual stress space. In other words, it is required to replace 𝜒  in 

w 휀 , 𝜒 , 𝜎  by 𝜎  with the adoption of the Orthogonality principle. The adoption of the 

Orthogonality principle results in the fact that the effective stress 𝜎  is the sum of the shift 

stress 𝜌  and the dissipative stress 𝜒 , as discussed in Aung et al. (2016). The shift stress 

component exists due to the additional plastic free-energy function, which is important to 

accommodate the effect of stress history of stiffness of soils. The resulting shift stress 
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component can determine the kinematic hardening behaviour of soils. The adoption of the 

Orthogonality principle yields: 

w 휀 ,𝜎 = w 휀 , 𝜒 , 𝜎 = w 휀 , 𝜎 − 𝜌 , 𝜎 = 0 (A-4) 

Differentiating (A-4) with respect to the stress components, (i.e. actual and dissipative 

stress components), yields: 

∂w
∂𝜎 =

∂w
∂χ +

∂w
∂𝜎  (A-5) 

Considering Equation (A-2), Equation (A-3b) and Equation (A-5), it can be deduced as 

follows: 

휀̇ =
∂w
∂𝜎

+
δz

∂𝜎
 (A-6) 

Referring to Equation (A-6), the flow rule becomes non-associated in the actual stress 

space due to the presence of additional term on the right-hand side of the equation, as 𝛿Φ 

depends explicitly on effective stress component. If the dissipation increment function does 

not depend on the effective stress, the second term on the right-hand side of the equation (A-

6) can then be ignored, thus retaining the associated flow rule in both dissipative and actual 

stress spaces. It can be deduced that the non-associated flow rule is derived naturally from the 

standardised procedure using Hyperplastic approach by postulating the stress-dependent δΦ 

function. 
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Appendix B: Derivation of Non-Associated Flow Rule for proposed H-

Creep Model 

When viscosity parameter (𝜓 ) is equal to zero (i.e. without the consideration of time-

dependent and coupling effects, Λ = 0), the homogeneous first order dissipation function in 

Equation (4.14) can be written as follows: 

𝛿Φ = 𝐴 휀̇ + 𝐵 휀̇  (B-1) 

As discussed in Nguyen et al. (2014), the internal plastic energy per unit volume (𝑑𝑊 ) 

available for the energy dissipation of a soil sample in the triaxial test under the applied mean 

effective stress (𝑝′) and the deviatoric stress (𝑞) can be expressed as follows: 

𝑑𝑊 = 𝑝′ ∙ 휀̇ + 𝑞 ∙ 휀̇  (B-2) 

Combining Equations (B-1) and (B-2), the resulting energy equation proposed in this 

study can be expressed as follows: 

𝑝′ ∙ 휀̇ + 𝑞 ∙ 휀̇ = 𝐴 휀̇ + 𝐵 휀̇  (B-3) 

Substituting the stress-like quantities (i.e. functions 𝐴 and 𝐵), which are defined in 

Equation (4.14), into Equation (B-3), along with the expansion and simplification, yields:  

2𝑝′𝑞 ∙ 휀̇ 휀̇ + 𝑞 ∙ 휀̇ = (𝑀𝑝′[1 − 𝛼 + 𝛼𝛾]) ∙ 휀̇  (B-4) 

Dividing both sides by 휀̇  leads to: 

2𝑝′𝑞 ∙ 휀̇ + 𝑞 ∙ 휀̇ = (𝑀𝑝′[1 − 𝛼 + 𝛼𝛾]) ∙ 휀̇  (B-5) 

By re-arranging Equation (B-5), the flow rule can be obtained as follows: 
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휀̇
휀̇

=
(𝑀𝑝′[1 − 𝛼 + 𝛼𝛾]) − 𝑞

2𝑝′𝑞  (B-6) 

Substituting the stress ratio (i.e. 휂 = 𝑞 𝑝⁄ ) into Equation (B-6) results in the flow rule 

taking the following form: 

휀̇
휀̇

=
(𝑀[1 − 𝛼 + 𝛼𝛾]) − 휂

2휂
 (B-7) 

When 𝛼 = 1 and 𝛾 = 1, the following relationship can be deduced from Equation (B-7): 

휀̇
휀̇

=
𝑀 − 휂

2휂  (B-8) 

As determined in Equation (B-8), the associated flow rule obtained in the Modified Cam-

clay model can be recovered only when 𝛼 = 1 and 𝛾 = 1. If 𝛼 and 𝛾 values are other than one, 

i.e. the functions 𝐴 and 𝐵 consisting of effective stress components, it can be stated that the 

dissipation function in Equation (B-1) depends explicitly on effective stress component. As 

discussed earlier, the non-associated flow rule is derived naturally by postulating the stress-

dependent dissipation (δΦ) function. 
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Appendix C: Derivation of Non-Associated Flow Rule for extended Model 

Without considering time- or rate-dependent effects, i.e. time-dependent viscosity 

scaling function Λ = 0, the dissipation increment function in Equation (4.38) is expressed as 

follows: 

𝛿Φ = 𝐴 휀̇ + 𝛽휀̇ + 𝐵 휀̇  (C-1) 

When a soil sample is subjected to the applied mean effective stress (𝑝′) and the 

deviatoric stress (𝑞) in a triaxial test, the internal plastic energy per unit volume (𝑑𝑊 ) 

available for the energy dissipation (Lai et al., 2016) is conveyed as follows: 

𝑑𝑊 = 𝑝′ ∙ 휀̇ + 𝑞 ∙ 휀̇  (C-2) 

Combining Equations (C-1) and (C-2), the resulting energy equation in the extended 

model is expressed as follows: 

𝑝′ ∙ 휀̇ + 𝑞 ∙ 휀̇ = 𝐴 휀̇ + 𝛽휀̇ + 𝐵 휀̇  (C-3) 

Substituting functions 𝐴 and 𝐵, defined in Equation (4.38), into Equation (C-3), along 

with the expansion and simplification, results as follows: 

2𝑝 𝑞 ∙ 휀̇ 휀̇ + 𝑞 ∙ 휀̇  

= 2𝛽(𝑝′) ∙ 휀̇ 휀̇ + 𝛽 (𝑝′) ∙ 휀̇ +(𝑀𝑝′[1 − 𝛼 + 𝛼𝛾]) ∙ 휀̇  
(C-4) 

Dividing both sides by 휀̇  leads to: 

2𝑝 𝑞 ∙ 휀̇ + 𝑞 ∙ 휀̇  
= 2𝛽(𝑝′) ∙ 휀̇ + 𝛽 (𝑝 ) ∙ 휀̇ + (𝑀𝑝′[1 − 𝛼 + 𝛼𝛾]) ∙ 휀̇  

(C-5) 

Re-arranging Equation (C-5) results in the viscoplastic flow rule being derived as 

follows:  
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휀̇
휀̇

=
𝛽 (𝑝 ) + (𝑀𝑝′[1 − 𝛼 + 𝛼𝛾]) − 𝑞

2𝑝 𝑞 − 2𝛽(𝑝′)  (C-6) 

Substituting the stress ratio (i.e. 휂 = 𝑞 𝑝⁄ ) into Equation (C-6) results in the flow rule 

taking the following form: 

휀̇
휀̇

=
𝛽 + (𝑀[1 − 𝛼 + 𝛼𝛾]) − 휂

2(휂 − 𝛽)  (C-7) 

When 𝛼 and 𝛾 values are equal to 1 and 𝛽 = 0 in Equation (C-7), the following familiar 

expression can be obtained: 

휀̇
휀̇

=
𝑀 − 휂

2휂  (C-8) 

Therefore, the associated flow rule obtained in the MCC model can be retraced only 

when 𝛼 = 1, 𝛾 = 1 and 𝛽 = 0. Therefore, dissipation function in Equation (C-1) being 

dependent explicitly upon the inclusion of effective stress components, as part of functions 𝐴 

and 𝐵, i.e. when 𝛼 and 𝛾 values are other than one, results in the natural derivation of non-

associated flow behaviour.  
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Appendix D: Non-Associated Flow Rule using Parametric Representation 

When 𝜓 = 0, (i.e. without the consideration of time-dependent and coupling effects), the 

homogeneous first order dissipation function in Equation (4.38) results in: 

𝛿Φ = 𝐴 휀̇ + 𝛽휀̇ + 𝐵 휀̇  (D-1) 

The volumetric and deviatoric components of the dissipative stresses, (i.e. 𝑝  and 𝑞 ), 

can then be derived from the force potential function determined in Equation (D-1) as follows: 

𝑝 =
𝜕(𝛿Φ)
𝜕(휀̇ )

=
𝐴 휀̇ + 𝛽휀̇

𝛿Φ  (D-2) 

𝑞 =
𝜕(𝛿Φ)
𝜕(휀̇ )

=
𝐴 ∙ 𝛽 휀̇ + 𝛽휀̇ + 𝐵 휀̇

𝛿Φ
 (D-3) 

From Equations (D-2) and (D-3), it follows that: 

𝑞 − 𝑝 ∙ 𝛽 =
𝐵 휀̇
𝛿Φ  

(D-4) 

Re-arranging Equation (D-2) provides: 

휀̇ =
𝑝 ∙ 𝛿Φ

𝐴
− 𝛽휀̇  (D-5) 

Re-arranging Equation (D-4) provides: 

휀̇ =
(𝑞 − 𝑝 ∙ 𝛽)𝛿Φ

𝐵  (D-6) 

Substituting Equation (D-6) into Equation (D-5), it follows that: 

휀̇ = 𝛿Φ
𝑝
𝐴 − 𝛽

(𝑞 − 𝑝 ∙ 𝛽)
𝐵  (D-7) 
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Substituting Equations (D-6) and (D-7) into Equation (D-1) and eliminating the plastic 

strain increments provides: 

𝑝
𝐴 +

(𝑞 − 𝑝 ∙ 𝛽)
𝐵 − 1 = 0 (D-8) 

It can be noted that the above expression in Equation (D-8) is identical to the critical 

surface equation obtained in Equation (4.44). 

Using the expressions for viscoplastic strain increment vectors, 휀̇  and 휀̇  from 

Equations (D-7) and (D-6), respectively, the flow rule can be obtained as follows: 

−
휀̇𝑣
𝑣𝑝

휀̇𝑞
𝑣𝑝 =

𝛿Φ
𝑝𝐷
𝐴2 − 𝛽

𝑞𝐷 − 𝑝𝐷 ∙ 𝛽
𝐵2

𝑞𝐷 − 𝑝𝐷 ∙ 𝛽 𝛿Φ
𝐵2

= −

𝑝𝐷
𝐴2

𝑞𝐷 − 𝑝𝐷 ∙ 𝛽
𝐵2

+ 𝛽 (D-9) 

The resulting expression in Equation (D-9) is inconvenient for calculations and it is 

preferable to take advantage of the elliptical shape of the critical surface in dissipative stress 

space (Collins & Hilder, 2002). 

From Figure 4.7, the parametric angle ω is chosen so that it is zero on the positive 𝑞  

axis. It follows that: 

𝑝 = 𝐴 𝑐𝑜𝑠𝜔 (D-10a) 

𝑞 = 𝐴 𝑐𝑜𝑠𝜔 ∙ 𝛽 + 𝐵 𝑠𝑖𝑛𝜔 (D-10b) 

Simplifying Equation (D-9), the following relationship between the dilation and 

parametric angles can be obtained: 

tan 𝜓 ≡ −
휀̇
휀̇

= 𝛽 − 𝐵
𝐴 cot 𝜔 (D-11) 
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Appendix E: Sample MATLAB Codes for the Application of Proposed 

Hyper-viscoplastic Constitutive Models 

E.1 MATLAB Code for Strain-controlled Undrained Compression Tests 

on Osaka Clay 

 
function UndrainedShearing_StrainControlled_OsakaClay 
  
%% For Strain-controlled Undrained Compression Tests on Osaka Clay 
close all; 
clear; 
clc; 
  
%% Undrained Compression Test - Strain-Controlled 
  
%     Lambda = input('Enter the Lambda value (eg., 0.355) = '); 
%     Kappa = input('Enter the Kappa value (eg., 0.047) = '); 
%     Mu = input('Enter the Mu value (eg., 0.006) = '); 
%     M_c = input('Enter the value for M in compression (eg., 1.278) = '); 
%     M_e = input('Enter the value for M in extension (eg., 0.95) = '); 
%     e0 = input('Enter the initial void ratio (eg., 2.41) = '); 
%     nu = input('Enter the value for Poisson Ratio (eg.,0.3) = '); 
%     p0 = input('Enter the value for initial Applied pressure (kPa) = '); 
%     Pc0 = input('Enter the value for initial Pre-consolidation pressure 
(kPa = '); 
%     q0 = input('Enter the value for initial Deviatoric Pressure (kPa) = 
'); 
%      
%     Alpha = input('Enter the Alpha value (0<=Alpha<=1) = '); 
%     Gamma = input('Enter the Gamma value (0<=Gamma<=1) = ');   
%     theta = input('Enter the initial inclination angle value for Coupling 
= '); 
%      
%     StrainQ_Rate = input('Enter the value for Controlled Deviatoric 
Strain Rate = '); 
%     t = input('Enter the value for reference time parameter = '); 
     
%% Model Parameters  
    Lambda = 0.355; 
    Kappa = 0.047; 
    M_c = 1.278; 
    e0 = 2.41; 
    nu = 0.3; 
    Mu = 0.0142; % Determined from C-Alpha Value 
     
    Alpha = 1; 
    Gamma = 0.95; 
    theta = 0; 
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%% Test Number - 1     
    p0 = 176.4;        % OCR=1 
    Pc0 = 176.4; 
  
%% Test Number - 2 
%     p0 = 235.2;      % OCR=1 
%     Pc0 = 235.2; 
  
    q0 = 0; 
     
    StrainQ_Rate = 0.144; % 14.40%/Day 
    t = 1; % Day 
     
    V0 = e0+1; 
    eR = 0; 
    m = 1; 
  
    Omega = (Lambda-Kappa)/Mu; 
     
    % Undrained Shearing - No Volume Change 
    dV = 0; 
    V = V0; 
    e = e0; 
     
    % Coupling 
    theta_radian=theta*(pi/180); 
    Beta = tan(theta_radian); 
     
    %% Determine Initial Values 
    Stress_R0 = q0/p0; 
     
    K0 = (V/Kappa)*p0; 
    G0 = (3*(1-2*nu)*K0)/(2*(1+nu)); 
     
    syms Peq0 
     
    A0 = (1-Gamma)*p0 + 0.5*Gamma*Peq0; 
    B0 = (1-Alpha)*M_c*p0 + 0.5*Alpha*Gamma*M_c*Peq0; 
    C_Surface = sqrt((((p0-0.5*Gamma*Peq0)^2)/A0^2) + (((q0-
Beta*p0)^2)/B0^2)) - 1; 
    eqn = C_Surface == 0; 
    Peq0 = vpasolve(eqn,Peq0); 
    Peq0 = double(Peq0); 
     
    % Applied Shear Strain Rate - 30%/Day 
    StrainQ = 0; % Initial Shear Strain 
     
    t0 = 0.0001; 
  
    dStrainQ0 = StrainQ_Rate*t0; 
     
    dStrain_vpQ_Rate0 = 0; 
    dStrain_vpQ0 = dStrain_vpQ_Rate0*t0; 
    dStrain_eQ0 = dStrainQ0 - dStrain_vpQ0; 
    dq0 = dStrain_eQ0*3*G0; 
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    dStrain_vpV_Rate0 = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R0^2)./(M_c^2-Beta^2)).*(Peq0./Pc0).^Omega; 
  
    dStrain_vpV0 = dStrain_vpV_Rate0*t0; 
    dStrain_eV0 = -dStrain_vpV0; 
    dp0 = dStrain_eV0.*K0; 
     
    dPc0 = ((Pc0*V)./(Lambda-Kappa)).*(dStrain_vpV0 + Beta.*dStrain_vpQ0); 
     
    % Initial Values at t0 
    dp = dp0; 
    p = p0+dp; 
    dq = dq0; 
    q = dq; 
    dPc = dPc0; 
    Pc = Pc0+dPc; 
    StrainQ = StrainQ+dStrainQ0; 
    Stress_R = q/p; 
     
    K = (V/Kappa)*p; 
    G = (3*(1-2*nu)*K)/(2*(1+nu)); 
     
    syms Peq 
     
    A = (1-Gamma)*p + 0.5*Gamma*Peq; 
    B = (1-Alpha)*M_c*p + 0.5*Alpha*Gamma*M_c*Peq; 
    C_Surface = sqrt((((p-0.5*Gamma*Peq)^2)/A^2) + (((q-Beta*p)^2)/B^2)) - 
1; 
    eqn = C_Surface == 0; 
    Peq = vpasolve(eqn,Peq); 
    Peq = double(Peq); 
    
    % Write Initial Values into Excel File 
    y01 = sprintf('%6.4f', t0); 
    y02 = sprintf('%18.15f',dStrainQ0); 
    y03 = sprintf('%18.15f',StrainQ); 
    y04 = sprintf('%18.15f',dStrain_vpQ_Rate0); 
    y05 = sprintf('%18.15f',dStrain_vpQ0); 
    y06 = sprintf('%18.15f',dStrain_eQ0); 
    y07 = sprintf('%18.15f',dq0); 
    y08 = sprintf('%18.15f',q); 
    y09 = sprintf('%18.15f',dStrain_vpV_Rate0); 
    y010 = sprintf('%18.15f',dStrain_vpV0); 
    y011 = sprintf('%18.15f',dStrain_eV0); 
    y012 = sprintf('%18.15f',dp0); 
    y013 = sprintf('%18.15f',p); 
    y014 = sprintf('%18.15f',dPc0); 
    y015 = sprintf('%18.15f',Pc); 
    y016 = sprintf('%18.15f',Stress_R); 
    y017 = sprintf('%18.15f',Peq); 
    filename='Test Simulations for Osaka Clay_Test Number_1.xls'; 
    
Y0={y01,y02,y03,y04,y05,y06,y07,y08,y09,y010,y011,y012,y013,y014,y015,y016,
y017}; 
    sheet=1; 
    z0=sprintf('E%d',9); 
    xlswrite(filename,Y0,sheet,z0) 
     
    %% Commence Integration Procedure 
    tol = 1e-9; 
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    i_size = 0.0001; 
         
    % Viscoplastic Strain Rates at t=0.002 
     dStrain_vpQ_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
     dStrain_vpV_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
         
    dt = 0.0001; 
    a = 1; 
 
    StrainQ = dStrainQ0; 
     
    tf = 1; 
    iter = tf/dt; 
    iter = round(iter); 
     
    coder.varsize('Y1'); 
    Y1 = zeros(iter,17); 
     
    while dt < tf 
        i_size = min(i_size, tf-dt); 
         
        dStrainQ = i_size*StrainQ_Rate; 
        StrainQ = StrainQ+dStrainQ; 
         
        Qk1 = i_size*Q_f(dt,dStrain_vpQ_Rate); 
        Qk2 = i_size*Q_f(dt+i_size/4, dStrain_vpQ_Rate+Qk1/4); 
        Qk3 = i_size*Q_f(dt+3*i_size/8, 
dStrain_vpQ_Rate+3*Qk1/32+9*Qk2/32); 
        Qk4 = i_size*Q_f(dt+12*i_size/13, dStrain_vpQ_Rate+1932*Qk1/2197-
7200*Qk2/2197+7296*Qk3/2197); 
        Qk5 = i_size*Q_f(dt+i_size, dStrain_vpQ_Rate+439*Qk1/216-
8*Qk2+3680*Qk3/513-845*Qk4/4104); 
        Qk6 = i_size*Q_f(dt+i_size/2, dStrain_vpQ_Rate-8*Qk1/27+2*Qk2-
3544*Qk3/2565+1859*Qk4/4104-11*Qk5/40); 
        Q_w1 = dStrain_vpQ_Rate + 25*Qk1/216+1408*Qk3/2565+2197*Qk4/4104-
Qk5/5; 
        Q_w2 = dStrain_vpQ_Rate + 
16*Qk1/135+6656*Qk3/12825+28561*Qk4/56430-9*Qk5/50+2*Qk6/55; 
        Q_R = abs(Q_w1-Q_w2)/i_size; 
        Q_delta = 0.84*(tol./Q_R).^(1/4); 
         
        Vk1 = i_size*V_f(dt,dStrain_vpV_Rate); 
        Vk2 = i_size*V_f(dt+i_size/4, dStrain_vpV_Rate+Vk1/4); 
        Vk3 = i_size*V_f(dt+3*i_size/8, 
dStrain_vpV_Rate+3*Vk1/32+9*Vk2/32); 
        Vk4 = i_size*V_f(dt+12*i_size/13, dStrain_vpV_Rate+1932*Vk1/2197-
7200*Vk2/2197+7296*Vk3/2197); 
        Vk5 = i_size*V_f(dt+i_size, dStrain_vpV_Rate+439*Vk1/216-
8*Vk2+3680*Vk3/513-845*Vk4/4104); 
        Vk6 = i_size*V_f(dt+i_size/2, dStrain_vpV_Rate-8*Vk1/27+2*Vk2-
3544*Vk3/2565+1859*Vk4/4104-11*Vk5/40); 
        V_w1 = dStrain_vpV_Rate + 25*Vk1/216+1408*Vk3/2565+2197*Vk4/4104-
Vk5/5; 
        V_w2 = dStrain_vpV_Rate + 
16*Vk1/135+6656*Vk3/12825+28561*Vk4/56430-9*Vk5/50+2*Vk6/55; 
        V_R = abs(V_w1-V_w2)/i_size; 
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        V_delta = 0.84*(tol./V_R).^(1/4); 
         
        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
        end 
         
        dStrain_vpQ = dStrain_vpQ_Rate*i_size; 
        dStrain_eQ = dStrainQ - dStrain_vpQ; 
        dq = dStrain_eQ*3*G; 
        q = q + dq; 
         
        dStrain_vpV = dStrain_vpV_Rate*i_size; 
        dStrain_eV = -dStrain_vpV; 
        dp = dStrain_eV.*K; 
        p = p + dp; 
         
        K = (V/Kappa)*p; 
        G = (3*(1-2*nu)*K)/(2*(1+nu)); 
         
        Stress_R = q/p; 
         
        dPc = ((Pc*V)./(Lambda-Kappa)).*(dStrain_vpV + Beta.*dStrain_vpQ); 
        Pc = Pc + dPc; 
        
        syms Peq 
     
        A = (1-Gamma).*p + 0.5*Gamma.*Peq; 
        B = (1-Alpha).*M_c.*p + 0.5*Alpha.*Gamma.*M_c.*Peq; 
        C_Surface = sqrt((((p-0.5*Gamma*Peq).^2)./A.^2) + (((q-
Beta*p).^2)./B.^2)) - 1; 
        eqn = C_Surface == 0; 
        Peq = vpasolve(eqn,Peq); 
        Peq = double(Peq); 
         
          %% Plot Data 
%         figure(1); 
%         hold on 
%         plot(StrainQ,q,'o'); 
%         xlabel('\epsilon_q'); 
%         ylabel('q (kPa)'); 
%         ax = gca; 
%         ax.XAxisLocation = 'origin'; 
%         ax.YAxisLocation = 'origin'; 
         
     %% Write Data into Excel File 
%         y1 = sprintf('%6.4f', dt+0.001); 
%         y2= sprintf('%18.15f',dStrainQ); 
%         y3= sprintf('%18.15f',StrainQ); 
%         y4 = sprintf('%18.15f',dStrain_vpQ_Rate); 
%         y5 = sprintf('%18.15f',dStrain_vpQ); 
%         y6 = sprintf('%18.15f',dStrain_eQ); 
%         y7 = sprintf('%18.15f',dq); 
%         y8 = sprintf('%18.15f',q); 
%         y9 = sprintf('%18.15f',dStrain_vpV_Rate); 
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%         y10 = sprintf('%18.15f',dStrain_vpV); 
%         y11 = sprintf('%18.15f',dStrain_eV); 
%         y12 = sprintf('%18.15f',dp); 
%         y13 = sprintf('%18.15f',p); 
%         y14 = sprintf('%18.15f',dPc); 
%         y15 = sprintf('%18.15f',Pc); 
%         y16= sprintf('%18.15f',Stress_R); 
%         y17= sprintf('%18.15f',Peq); 
%         Y1={y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16,y17}; 
%         sheet=1; 
%         z1=sprintf('E%d',a+10); 
%         xlswrite(filename,Y1,sheet,z1)    
 
        Y1(a,:)= [dt+0.0001 dStrainQ StrainQ dStrain_vpQ_Rate dStrain_vpQ 
dStrain_eQ dq q dStrain_vpV_Rate dStrain_vpV dStrain_eV dp p dPc Pc 
Stress_R Peq]; 
  
        dStrain_vpQ_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
        dStrain_vpV_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
          
        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 

i_size = 2*i_size; 
            dt = dt+i_size; 
            a = a+1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dt = dt+i_size; 
            a = a+1; 
             
        elseif rms(Q_delta) < 1 
            i_size = 0.5*i_size; 
            dt = dt + i_size; 
            a = a+1; 
        end 
  
    end 
     
    %% Write Data into Excel File 
    xlswrite(filename,Y1,sheet,'E10'); 
        
    function dStrain_vpQ = Q_f(dt,dStrain_vpQ_Rate) 
        dStrain_vpQ = dStrain_vpQ_Rate*dt;  
    end 
            
    function dStrain_vpV = V_f(dt,dStrain_vpV_Rate) 
        dStrain_vpV = dStrain_vpV_Rate*dt; 
    end    
  
end 
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E.2 MATLAB Code for Stress-controlled Undrained Compression Tests 

on HKMD Clay 

function UndrainedShearing_StressControlled_HKMD 
  
%% For Stress-controlled Undrained Compression Tests on HKMD Clay 
close all; 
clear; 
clc; 
  
%% Undrained Compression Test - Stress-Controlled 
  
%     Lambda = input('Enter the Lambda value (eg., 0.1987) = '); 
%     Kappa = input('Enter the Kappa value (eg., 0.0451) = '); 
%     Mu = input('Enter the Mu value (eg., 0.00627) = '); 
%     M_c = input('Enter the value for M in compression (eg., 1.265 = '); 
%     M_e = input('Enter the value for M in extension (eg., 0.95) = '); 
%     V0 = input('Enter the initial Specific Volume (eg., 2.506266) = '); 
%     nu = input('Enter the value for Poisson Ratio (eg.,0.3) = '); 
%     p0 = input('Enter the value for initial Applied pressure (kPa) = '); 
%     Pc0 = input('Enter the value for initial Pre-consolidation pressure 
(kPa = '); 
%     q0 = input('Enter the value for initial Deviatoric Pressure (kPa) = 
'); 
%      
%     Alpha = input('Enter the Alpha value (0<=Alpha<=1) = '); 
%     Gamma = input('Enter the Gamma value (0<=Gamma<=1) = ');   
%     theta = input('Enter the initial inclination angle value for Coupling 
= '); 
%      
%     StressQ_Rate = input('Enter the value for Controlled Deviatoric 
Stress Rate = '); 
%     t = input('Enter the value for reference time parameter = '); 
     
    %% Model Parameters 
    Lambda = 0.1987; 
    Kappa = 0.0451; 
    M_c = 1.265; 
    V0 = 2.506266;    
    nu = 0.3; 
    Mu = 0.00627; 
     
    Alpha = 1; 
    Gamma = 0.925; 
    theta = 0; 
  
    %% Applied Pressures 
    p0 = 400; 
    Pc0 = 400; 
    q0 = 0; 
  
    StressQ_Rate = 0.125; % Deviatoric stress rate of 30kPa/Hour 
    t = 24; % Hour 
     
    e0 = V0-1; 
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    eR = 0; 
    m = 1.0881; 
  
    Omega = (Lambda-Kappa)/Mu; 
     
    % Undrained Shearing - No Volume Change 
    dV = 0; 
    V = V0; 
    e = e0; 
     
    % Coupling 
    theta_radian=theta*(pi/180); 
    Beta = tan(theta_radian); 
     
    %% Determine Initial Values 
    Stress_R0 = q0/p0; 
     
    K0 = (V/Kappa)*p0; 
    G0 = (3*(1-2*nu)*K0)/(2*(1+nu)); 
     
    syms Peq0 
     
    A0 = (1-Gamma)*p0 + 0.5*Gamma*Peq0; 
    B0 = (1-Alpha)*M_c*p0 + 0.5*Alpha*Gamma*M_c*Peq0; 
    C_Surface = sqrt((((p0-0.5*Gamma*Peq0)^2)/A0^2) + (((q0-
Beta*p0)^2)/B0^2)) - 1; 
    eqn = C_Surface == 0; 
    Peq0 = vpasolve(eqn,Peq0); 
    Peq0 = double(Peq0); 
     
    % Applied Shear Strain Rate - 30%/Day 
    Strain_Qi = 0; % Initial Shear Strain 
    Stress_Qi = 0; % Initial Shear Stress 
    Strain_Vi = 0; % Intial Volumetric Strain 
     
    t0 = 0.02; 
    dq0 = StressQ_Rate*t0; %     dStrainQ0 = StrainQ_Rate*t0; 
  
    dStrain_vpV_Rate0 = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R0^2)./(M_c^2-Beta^2)).*(Peq0./Pc0).^Omega; 
    dStrain_vpV0 = dStrain_vpV_Rate0*t0; 
    dStrain_eV0 = -dStrain_vpV0; 
    dp0 = dStrain_eV0.*K0; 
     
    dStrain_eQ0 = dq0/(3*G0); % dStrain_eQ0 = dStrainQ0 - dStrain_vpQ0; 
    dStrain_vpQ_Rate0 = 0; 
    dStrain_vpQ0 = dStrain_vpQ_Rate0*t0; 
    dStrain_Q0 = dStrain_eQ0 + dStrain_vpQ0;  
    Strain_Q0 = Strain_Qi + dStrain_Q0; 
     
    dPc0 = ((Pc0*V)./(Lambda-Kappa)).*(dStrain_vpV0 + Beta.*dStrain_vpQ0); 
     
    % Initial Values at t0 
    dp = dp0; 
    p = p0+dp; 
    dq = dq0; 
    q = Stress_Qi+dq; 
    dPc = dPc0; 
    Pc = Pc0+dPc; 
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    Stress_R = q/p; 
    Strain_Q = Strain_Q0; 
     
    K = (V/Kappa)*p; 
    G = (3*(1-2*nu)*K)/(2*(1+nu)); 
     
    syms Peq 
     
    A = (1-Gamma)*p + 0.5*Gamma*Peq; 
    B = (1-Alpha)*M_c*p + 0.5*Alpha*Gamma*M_c*Peq; 
    C_Surface = sqrt((((p-0.5*Gamma*Peq)^2)/A^2) + (((q-Beta*p)^2)/B^2)) - 
1; 
    eqn = C_Surface == 0; 
    Peq = vpasolve(eqn,Peq); 
    Peq = double(Peq); 
        
    % Write Initial Values into Excel File     
    y01 = sprintf('%18.15f',t0); 
    y02 = sprintf('%18.15f',dq0); 
    y03 = sprintf('%18.15f',q); 
    y04 = sprintf('%18.15f',dStrain_vpV_Rate0); 
    y05 = sprintf('%18.15f',dStrain_vpV0); 
    y06 = sprintf('%18.15f',dStrain_eV0); 
    y07 = sprintf('%18.15f',dp0); 
    y08 = sprintf('%18.15f',p); 
    y09 = sprintf('%18.15f',dStrain_eQ0); 
    y010 = sprintf('%18.15f',dStrain_vpQ_Rate0); 
    y011 = sprintf('%18.15f',dStrain_vpQ0); 
    y012 = sprintf('%18.15f',dStrain_Q0); 
    y013 = sprintf('%18.15f',Strain_Q0); 
    y014 = sprintf('%18.15f',Peq); 
    y015 = sprintf('%18.15f',dPc0); 
    y016 = sprintf('%18.15f',Pc); 
    y017 = sprintf('%18.15f',Stress_R); 
    y018 = sprintf('%18.15f',V); 
     
    filename='Test Simulations_Stress-controlled for HKMD Clay.xls'; 
    
Y0={y01,y02,y03,y04,y05,y06,y07,y08,y09,y010,y011,y012,y013,y014,y015,y016,
y017,y018}; 
    sheet=2; 
    z0=sprintf('E%d',9); 
    xlswrite(filename,Y0,sheet,z0) 
     
    %% Commence Integration Procedure 
    tol = 1e-9; 
    i_size = 0.02; 
       
    % Viscoplastic Strain Rates at t=0.002 
     dStrain_vpQ_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
     dStrain_vpV_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
         
    dt = 0.02; 
    a = 1; 
     
    tf = 400; 
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    iter = tf/dt; 
     
    coder.varsize('Y1'); 
    Y1 = zeros(iter,18); 
     
    while dt < tf 
        i_size = min(i_size, tf-dt); 
         
        dq = i_size*StressQ_Rate; 
        q = q+dq; 
         
   Qk1 = i_size*Q_f(dt,dStrain_vpQ_Rate); 
        Qk2 = i_size*Q_f(dt+i_size/4, dStrain_vpQ_Rate+Qk1/4); 
        Qk3 = i_size*Q_f(dt+3*i_size/8, 
dStrain_vpQ_Rate+3*Qk1/32+9*Qk2/32); 
        Qk4 = i_size*Q_f(dt+12*i_size/13, dStrain_vpQ_Rate+1932*Qk1/2197-
7200*Qk2/2197+7296*Qk3/2197); 
        Qk5 = i_size*Q_f(dt+i_size, dStrain_vpQ_Rate+439*Qk1/216-
8*Qk2+3680*Qk3/513-845*Qk4/4104); 
        Qk6 = i_size*Q_f(dt+i_size/2, dStrain_vpQ_Rate-8*Qk1/27+2*Qk2-
3544*Qk3/2565+1859*Qk4/4104-11*Qk5/40); 
        Q_w1 = dStrain_vpQ_Rate + 25*Qk1/216+1408*Qk3/2565+2197*Qk4/4104-
Qk5/5; 
        Q_w2 = dStrain_vpQ_Rate + 
16*Qk1/135+6656*Qk3/12825+28561*Qk4/56430-9*Qk5/50+2*Qk6/55; 
        Q_R = abs(Q_w1-Q_w2)/i_size; 
        Q_delta = 0.84*(tol./Q_R).^(1/4); 
         
        Vk1 = i_size*V_f(dt,dStrain_vpV_Rate); 
        Vk2 = i_size*V_f(dt+i_size/4, dStrain_vpV_Rate+Vk1/4); 
        Vk3 = i_size*V_f(dt+3*i_size/8, 
dStrain_vpV_Rate+3*Vk1/32+9*Vk2/32); 
        Vk4 = i_size*V_f(dt+12*i_size/13, dStrain_vpV_Rate+1932*Vk1/2197-
7200*Vk2/2197+7296*Vk3/2197); 
        Vk5 = i_size*V_f(dt+i_size, dStrain_vpV_Rate+439*Vk1/216-
8*Vk2+3680*Vk3/513-845*Vk4/4104); 
        Vk6 = i_size*V_f(dt+i_size/2, dStrain_vpV_Rate-8*Vk1/27+2*Vk2-
3544*Vk3/2565+1859*Vk4/4104-11*Vk5/40); 
        V_w1 = dStrain_vpV_Rate + 25*Vk1/216+1408*Vk3/2565+2197*Vk4/4104-
Vk5/5; 
        V_w2 = dStrain_vpV_Rate + 
16*Vk1/135+6656*Vk3/12825+28561*Vk4/56430-9*Vk5/50+2*Vk6/55; 
        V_R = abs(V_w1-V_w2)/i_size; 
        V_delta = 0.84*(tol./V_R).^(1/4); 
         
        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
        end 
         
        dStrain_vpV = dStrain_vpV_Rate*i_size; 
        dStrain_eV = -dStrain_vpV; 
        dp = dStrain_eV.*K; 
        p = p + dp; 
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        dStrain_vpQ = dStrain_vpQ_Rate*i_size; 
        dStrain_eQ = dq/(3*G); 
        dStrain_Q = dStrain_eQ + dStrain_vpQ;  
        Strain_Q = Strain_Q + dStrain_Q; 
         
        K = (V/Kappa)*p; 
        G = (3*(1-2*nu)*K)/(2*(1+nu)); 
          
        Stress_R = q/p; 
         
        dPc = ((Pc*V)./(Lambda-Kappa)).*(dStrain_vpV + Beta.*dStrain_vpQ); 
        Pc = Pc + dPc; 
         
        syms Peq 
     
        A = (1-Gamma).*p + 0.5*Gamma.*Peq; 
        B = (1-Alpha).*M_c.*p + 0.5*Alpha.*Gamma.*M_c.*Peq; 
        C_Surface = sqrt((((p-0.5*Gamma*Peq).^2)./A.^2) + (((q-
Beta*p).^2)./B.^2)) - 1; 
        eqn = C_Surface == 0; 
        Peq = vpasolve(eqn,Peq); 
        Peq = double(Peq); 
         

    %% Plot Data 
%         figure(1); 
%         hold on 
%         plot(StrainQ,q,'o'); 
%         xlabel('\epsilon_q'); 
%         ylabel('q (kPa)'); 
%         ax = gca; 
%         ax.XAxisLocation = 'origin'; 
%         ax.YAxisLocation = 'origin'; 
%          
          %% Write Data into Excel File 
%         y1 = sprintf('%6.4f', dt+0.001); 
%         y2= sprintf('%18.15f',dStrainQ); 
%         y3= sprintf('%18.15f',StrainQ); 
%         y4 = sprintf('%18.15f',dStrain_vpQ_Rate); 
%         y5 = sprintf('%18.15f',dStrain_vpQ); 
%         y6 = sprintf('%18.15f',dStrain_eQ); 
%         y7 = sprintf('%18.15f',dq); 
%         y8 = sprintf('%18.15f',q); 
%         y9 = sprintf('%18.15f',dStrain_vpV_Rate); 
%         y10 = sprintf('%18.15f',dStrain_vpV); 
%         y11 = sprintf('%18.15f',dStrain_eV); 
%         y12 = sprintf('%18.15f',dp); 
%         y13 = sprintf('%18.15f',p); 
%         y14 = sprintf('%18.15f',dPc); 
%         y15 = sprintf('%18.15f',Pc); 
%         y16= sprintf('%18.15f',Stress_R); 
%         y17= sprintf('%18.15f',Peq); 
%         Y1={y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16,y17}; 
%         sheet=1; 
%         z1=sprintf('E%d',a+10); 
%         xlswrite(filename,Y1,sheet,z1)    
  
        Y1(a,:)= [dt+0.02 dq q dStrain_vpV_Rate dStrain_vpV dStrain_eV dp p 
dStrain_eQ dStrain_vpQ_Rate dStrain_vpQ dStrain_Q Strain_Q Peq dPc Pc 
Stress_R V]; 
 



236 | P a g e  
 

        dStrain_vpQ_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
        dStrain_vpV_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
          
        dt = dt+i_size; 
        a = a+1; 
  
  if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 

i_size = 2*i_size; 
            dt = dt+i_size; 
            a = a+1; 
  
       elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dt = dt+i_size; 
            a = a+1; 
             
       elseif rms(Q_delta) < 1 
            i_size = 0.5*i_size; 
            dt = dt + i_size; 
            a = a+1; 
       end 
 
    end 
     
    %% Write Data into Excel File 
    xlswrite(filename,Y1,sheet,'E10'); 
        
end 
 
  



237 | P a g e  
 

E.3 MATLAB Code for Strain-controlled Drained Compression Tests on 

HKMD Clay 

function DrainedShearing_StrainControlled_HKMDClay 
  
%% For Strain-controlled Drained Compression Tests on HKMD Clay 
close all; 
clear; 
clc; 
  
%% Drained Compression Test - Strain-Controlled 
  
%     Lambda = input('Enter the Lambda value (eg., 0.1987) = '); 
%     Kappa = input('Enter the Kappa value (eg., 0.0451) = '); 
%     Mu = input('Enter the Mu value (eg., 0.00627) = '); 
%     M_c = input('Enter the value for M in compression (eg., 1.265 = '); 
%     M_e = input('Enter the value for M in extension (eg., 0.95) = '); 
%     V0 = input('Enter the initial Specific Volume (eg., 2.506266) = '); 
%     nu = input('Enter the value for Poisson Ratio (eg.,0.3) = '); 
%     p0 = input('Enter the value for initial Applied pressure (kPa) = '); 
%     Pc0 = input('Enter the value for initial Pre-consolidation pressure 
(kPa = '); 
%     q0 = input('Enter the value for initial Deviatoric Pressure (kPa) = 
'); 
%      
%     Alpha = input('Enter the Alpha value (0<=Alpha<=1) = '); 
%     Gamma = input('Enter the Gamma value (0<=Gamma<=1) = ');   
%     theta = input('Enter the initial inclination angle value for Coupling 
= '); 
%      
%     StrainQ_Rate = input('Enter the value for Controlled Deviatoric 
Strain Rate = '); 
%     t = input('Enter the value for reference time parameter = '); 
     
    %% Model Parameters 
    Lambda = 0.1987; 
    Kappa = 0.0451; 
    M_c = 1.265; 
    V0 = 2.506266;    
    nu = 0.3; 
    Mu = 0.00627; 
     
    Alpha = 1; 
    Gamma = 0.9; 
    theta = 0; 
  
    %% Applied Pressures 
    p0 = 200; 
    Pc0 = 200; 
    q0 = 0; 
     
    StrainQ_Rate = 0.0936; % 9.36%/Day 
    t = 1; % Day 
     
    e0 = V0-1; 
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    eR = 0; 
    m = 1.0881; 
  
    Omega = (Lambda-Kappa)/Mu; 
     
    % Undrained Shearing - No Volume Change 
    dV = 0; 
    V = V0; 
    e = e0; 
     
    % Coupling 
    theta_radian=theta*(pi/180); 
    Beta = tan(theta_radian); 
     
    %% Determine Initial Values 
    Stress_R0 = q0/p0; 
     
    K0 = (V/Kappa)*p0; 
    G0 = (3*(1-2*nu)*K0)/(2*(1+nu)); 
     
    syms Peq0 
     
    A0 = (1-Gamma)*p0 + 0.5*Gamma*Peq0; 
    B0 = (1-Alpha)*M_c*p0 + 0.5*Alpha*Gamma*M_c*Peq0; 
    C_Surface = sqrt((((p0-0.5*Gamma*Peq0)^2)/A0^2) + (((q0-
Beta*p0)^2)/B0^2)) - 1; 
    eqn = C_Surface == 0; 
    Peq0 = vpasolve(eqn,Peq0); 
    Peq0 = double(Peq0); 
     
    % Applied Shear Strain Rate - 30%/Day 
    StrainQ = 0; % Initial Shear Strain 
    Strain_Vi = 0.2041; % Initial Volumetric Strain 
     
    t0 = 0.0005; 
 
    dStrainQ0 = StrainQ_Rate*t0; 
     
    dStrain_vpQ_Rate0 = 0; 
    dStrain_vpQ0 = dStrain_vpQ_Rate0*t0; 
    dStrain_eQ0 = dStrainQ0 - dStrain_vpQ0; 
    dq0 = dStrain_eQ0*3*G0; 
     
    dStrain_vpV_Rate0 = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R0^2)./(M_c^2-Beta^2)).*(Peq0./Pc0).^Omega; 
  
    dStrain_vpV0 = dStrain_vpV_Rate0*t0; 
    dp0 = dq0*(1/3); 
    dStrain_eV0 = (Kappa/V)*(dp0/p0); 
    dStrain_V0 = Strain_Vi + dStrain_eV0 + dStrain_vpV0; 
    dV = -V*dStrain_V0; 
    dPc0 = ((Pc0*V)./(Lambda-Kappa)).*(dStrain_vpV0 + Beta.*dStrain_vpQ0); 
     
    % Initial Values at t0 
    dp = dp0; 
    p = p0+dp; 
    dq = dq0; 
    q = dq; 
    V = V+dV; 
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    dPc = dPc0; 
    Pc = Pc0+dPc; 
    StrainQ = StrainQ+dStrainQ0; 
    Stress_R = q/p; 
     
    e = V-1; 
    K = (V/Kappa)*p; 
    G = (3*(1-2*nu)*K)/(2*(1+nu)); 
     
    syms Peq 
     
    A = (1-Gamma)*p + 0.5*Gamma*Peq; 
    B = (1-Alpha)*M_c*p + 0.5*Alpha*Gamma*M_c*Peq; 
    C_Surface = sqrt((((p-0.5*Gamma*Peq)^2)/A^2) + (((q-Beta*p)^2)/B^2)) - 
1; 
    eqn = C_Surface == 0; 
    Peq = vpasolve(eqn,Peq); 
    Peq = double(Peq); 
    
    % Write Initial Values into Excel File 
    y01 = sprintf('%18.15f', t0); 
    y02 = sprintf('%18.15f',dStrainQ0); 
    y03 = sprintf('%18.15f',StrainQ); 
    y04 = sprintf('%18.15f',dStrain_vpQ_Rate0); 
    y05 = sprintf('%18.15f',dStrain_vpQ0); 
    y06 = sprintf('%18.15f',dStrain_eQ0); 
    y07 = sprintf('%18.15f',dq0); 
    y08 = sprintf('%18.15f',q); 
    y09 = sprintf('%18.15f',dStrain_vpV_Rate0); 
    y010 = sprintf('%18.15f',dStrain_vpV0); 
    y011 = sprintf('%18.15f',dStrain_eV0); 
    y012 = sprintf('%18.15f',dp0); 
    y013 = sprintf('%18.15f',p); 
    y014 = sprintf('%18.15f',dPc0); 
    y015 = sprintf('%18.15f',Pc); 
    y016 = sprintf('%18.15f',Stress_R); 
    y017 = sprintf('%18.15f',Peq); 
    y018 = sprintf('%18.15f',dV); 
    y019 = sprintf('%18.15f',V); 
    y020 = sprintf('%18.15f',e); 
    filename='Test Simulations_Strain-controlled for HKMD Clay.xls'; 
    
Y0={y01,y02,y03,y04,y05,y06,y07,y08,y09,y010,y011,y012,y013,y014,y015,y016,
y017,y018,y019,y020}; 
    sheet=1; 
    z0=sprintf('E%d',9); 
    xlswrite(filename,Y0,sheet,z0) 
     
    %% Commence Integration Procedure 
    tol = 1e-9; 
    i_size = 0.0005; 
         
    % Viscoplastic Strain Rates at t=0.002 
     dStrain_vpQ_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
     dStrain_vpV_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
         
    dt = 0.0005; 
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    a = 1; 
    StrainQ = dStrainQ0; 
     
    tf = 2.2; 
    iter = tf/dt; 
    iter = round(iter); 
     
    coder.varsize('Y1'); 
    Y1 = zeros(iter,20); 
     
    while dt < tf 
        i_size = min(i_size, tf-dt); 
         
        dStrainQ = i_size*StrainQ_Rate; 
        StrainQ = StrainQ+dStrainQ; 
         
        Qk1 = i_size*Q_f(dt,dStrain_vpQ_Rate); 
        Qk2 = i_size*Q_f(dt+i_size/4, dStrain_vpQ_Rate+Qk1/4); 
        Qk3 = i_size*Q_f(dt+3*i_size/8, 
dStrain_vpQ_Rate+3*Qk1/32+9*Qk2/32); 
        Qk4 = i_size*Q_f(dt+12*i_size/13, dStrain_vpQ_Rate+1932*Qk1/2197-
7200*Qk2/2197+7296*Qk3/2197); 
        Qk5 = i_size*Q_f(dt+i_size, dStrain_vpQ_Rate+439*Qk1/216-
8*Qk2+3680*Qk3/513-845*Qk4/4104); 
        Qk6 = i_size*Q_f(dt+i_size/2, dStrain_vpQ_Rate-8*Qk1/27+2*Qk2-
3544*Qk3/2565+1859*Qk4/4104-11*Qk5/40); 
        Q_w1 = dStrain_vpQ_Rate + 25*Qk1/216+1408*Qk3/2565+2197*Qk4/4104-
Qk5/5; 
        Q_w2 = dStrain_vpQ_Rate + 
16*Qk1/135+6656*Qk3/12825+28561*Qk4/56430-9*Qk5/50+2*Qk6/55; 
        Q_R = abs(Q_w1-Q_w2)/i_size; 
        Q_delta = 0.84*(tol./Q_R).^(1/4); 
         
        Vk1 = i_size*V_f(dt,dStrain_vpV_Rate); 
        Vk2 = i_size*V_f(dt+i_size/4, dStrain_vpV_Rate+Vk1/4); 
        Vk3 = i_size*V_f(dt+3*i_size/8, 
dStrain_vpV_Rate+3*Vk1/32+9*Vk2/32); 
        Vk4 = i_size*V_f(dt+12*i_size/13, dStrain_vpV_Rate+1932*Vk1/2197-
7200*Vk2/2197+7296*Vk3/2197); 
        Vk5 = i_size*V_f(dt+i_size, dStrain_vpV_Rate+439*Vk1/216-
8*Vk2+3680*Vk3/513-845*Vk4/4104); 
        Vk6 = i_size*V_f(dt+i_size/2, dStrain_vpV_Rate-8*Vk1/27+2*Vk2-
3544*Vk3/2565+1859*Vk4/4104-11*Vk5/40); 
        V_w1 = dStrain_vpV_Rate + 25*Vk1/216+1408*Vk3/2565+2197*Vk4/4104-
Vk5/5; 
        V_w2 = dStrain_vpV_Rate + 
16*Vk1/135+6656*Vk3/12825+28561*Vk4/56430-9*Vk5/50+2*Vk6/55; 
        V_R = abs(V_w1-V_w2)/i_size; 
        V_delta = 0.84*(tol./V_R).^(1/4); 
         
        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
        end 
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        dStrain_vpQ = dStrain_vpQ_Rate*i_size; 
        dStrain_eQ = dStrainQ - dStrain_vpQ; 
        dq = dStrain_eQ*3*G; 
        q = q + dq; 
         
        dStrain_vpV = dStrain_vpV_Rate*i_size; 
        dp = dq*(1/3); 
        dStrain_eV = (Kappa/V)*(dp/p); 
        p = p + dp; 
        dStrain_V = dStrain_eV + dStrain_vpV; 
        dV = -V*dStrain_V; 
         
        K = (V/Kappa)*p; 
        G = (3*(1-2*nu)*K)/(2*(1+nu)); 
         
        Stress_R = q/p; 
         
        dPc = ((Pc*V)./(Lambda-Kappa)).*(dStrain_vpV + Beta.*dStrain_vpQ); 
        Pc = Pc + dPc; 
        
        V = V+dV; 
        e = V-1; 
         
        syms Peq 
     
        A = (1-Gamma).*p + 0.5*Gamma.*Peq; 
        B = (1-Alpha).*M_c.*p + 0.5*Alpha.*Gamma.*M_c.*Peq; 
        C_Surface = sqrt((((p-0.5*Gamma*Peq).^2)./A.^2) + (((q-
Beta*p).^2)./B.^2)) - 1; 
        eqn = C_Surface == 0; 
        Peq = vpasolve(eqn,Peq); 
        Peq = double(Peq); 
         
          %% Plot Data 
%         figure(1); 
%         hold on 
%         plot(StrainQ,q,'o'); 
%         xlabel('\epsilon_q'); 
%         ylabel('q (kPa)'); 
%         ax = gca; 
%         ax.XAxisLocation = 'origin'; 
%         ax.YAxisLocation = 'origin'; 
          
          %% Write Data into Excel File 
%         y1 = sprintf('%6.4f', dt+0.001); 
%         y2= sprintf('%18.15f',dStrainQ); 
%         y3= sprintf('%18.15f',StrainQ); 
%         y4 = sprintf('%18.15f',dStrain_vpQ_Rate); 
%         y5 = sprintf('%18.15f',dStrain_vpQ); 
%         y6 = sprintf('%18.15f',dStrain_eQ); 
%         y7 = sprintf('%18.15f',dq); 
%         y8 = sprintf('%18.15f',q); 
%         y9 = sprintf('%18.15f',dStrain_vpV_Rate); 
%         y10 = sprintf('%18.15f',dStrain_vpV); 
%         y11 = sprintf('%18.15f',dStrain_eV); 
%         y12 = sprintf('%18.15f',dp); 
%         y13 = sprintf('%18.15f',p); 
%         y14 = sprintf('%18.15f',dPc); 
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%         y15 = sprintf('%18.15f',Pc); 
%         y16= sprintf('%18.15f',Stress_R); 
%         y17= sprintf('%18.15f',Peq); 
%         Y1={y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16,y17}; 
%         sheet=1; 
%         z1=sprintf('E%d',a+10); 
%         xlswrite(filename,Y1,sheet,z1)    
  
        Y1(a,:)= [dt+0.0005 dStrainQ StrainQ dStrain_vpQ_Rate dStrain_vpQ 
dStrain_eQ dq q dStrain_vpV_Rate dStrain_vpV dStrain_eV dp p dPc Pc 
Stress_R Peq dV V e]; 
 
        dStrain_vpQ_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
        dStrain_vpV_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
          
        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 

i_size = 2*i_size; 
            dt = dt+i_size; 
            a = a+1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dt = dt+i_size; 
            a = a+1; 
             
        elseif rms(Q_delta) < 1 
            i_size = 0.5*i_size; 
            dt = dt + i_size; 
            a = a+1; 
        end 
  
    end 
     
    %% Write Data into Excel File 
    xlswrite(filename,Y1,sheet,'E10'); 
        
    function dStrain_vpQ = Q_f(dt,dStrain_vpQ_Rate) 
        dStrain_vpQ = dStrain_vpQ_Rate*dt;  
    end 
            
    function dStrain_vpV = V_f(dt,dStrain_vpV_Rate) 
        dStrain_vpV = dStrain_vpV_Rate*dt; 
    end    
  
end 
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E.4 MATLAB Code for Undrained Triaxial Shearing Tests using 

Various Constant Strain Rates on Haney Clay 

function UndrainedShearing_StrainControlled_HaneyClay 
  
%% For Undrained Triaxial Shearing Tests using Various Constant Strain 
Rates on Haney Clay 
close all; 
clear; 
clc; 
  
%% Undrained Triaxial Shearing Test - Strain-Controlled 
  
%     Lambda = input('Enter the Lambda value (eg., 0.1055) = '); 
%     Kappa = input('Enter the Kappa value (eg., 0.01635) = '); 
%     Mu = input('Enter the Mu value (eg., 0.004) = '); 
%     M_c = input('Enter the value for M in compression (eg., 1.2872) = '); 
%     M_e = input('Enter the value for M in extension (eg., 0.95) = '); 
%     e0 = input('Enter the initial void ratio (eg., 0.0896) = '); 
%     nu = input('Enter the value for Poisson Ratio (eg.,0.15) = '); 
%     p0 = input('Enter the value for initial Applied pressure (kPa) = '); 
%     Pc0 = input('Enter the value for initial Pre-consolidation pressure 
(kPa = '); 
%     q0 = input('Enter the value for initial Deviatoric Pressure (kPa) = 
'); 
%      
%     Alpha = input('Enter the Alpha value (0<=Alpha<=1) = '); 
%     Gamma = input('Enter the Gamma value (0<=Gamma<=1) = ');   
%     theta = input('Enter the initial inclination angle value for Coupling 
= '); 
%      
%     StrainQ_Rate = input('Enter the value for Controlled Deviatoric 
Strain Rate = '); 
%     t = input('Enter the value for reference time parameter = '); 
; 
     
    %% Model Parameters 
    Lambda = 0.1055; 
    Kappa = 0.01635; 
    e0 = 0.896;    
    nu = 0.15; 
    M_c = 1.2872; 
    Mu = 0.004; 
%     Mu = 0.00001; 
 
    Alpha = 1; 
    Gamma = 0.75; 
    theta = 0; 
     
    p0 = 525; 
    Pc0 = 525; 
    q0 = 0; 
     
%% Various Constant Strain Rates  
 
%% Various Constant Strain Rate - 1  
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% %     StrainQ_Rate = 9.4e-06; % 0.00094%/Min 
% %     StrainQ_Rate = 5.64e-04; % 0.0564%/Hr 
    StrainQ_Rate = 0.013536; % 1.3536%/Day 
  
%% Various Constant Strain Rate - 2 
%     StrainQ_Rate = 0.0015; % 0.15%/Min 
%     StrainQ_Rate = 0.09; % 9%/Hr 
%     StrainQ_Rate = 2.16; % 216%/Day 
  
%% Various Constant Strain Rate - 3    
%         StrainQ_Rate = 0.011; % 1.10%/Min 
%     StrainQ_Rate = 0.66; % 66%/Hr 
%     StrainQ_Rate = 15.84; % 1584%/Day 
 
    t = 1;  
 
    V0 = e0+1; 
    eR = 0; 
    m = 1; 
  
    Omega = (Lambda-Kappa)/Mu; 
     
    % Undrained Shearing - No Volume Change 
    dV = 0; 
    V = V0; 
    e = e0; 
     
    % Coupling 
    theta_radian=theta*(pi/180); 
    Beta = tan(theta_radian); 
     
    %% Determine Initial Values 
     
    Stress_R0 = q0/p0; 
     
    K0 = (V/Kappa)*p0; 
    G0 = (3*(1-2*nu)*K0)/(2*(1+nu)); 
     
    syms Peq0 
     
    A0 = (1-Gamma).*p0 + 0.5*Gamma.*Peq0; 
    B0 = (1-Alpha).*M_c.*p0 + 0.5*Alpha.*Gamma.*M_c.*Peq0; 
    C_Surface = sqrt((((p0-0.5*Gamma.*Peq0)^2)./A0^2) + (((q0-
Beta.*p0)^2)./B0^2)) - 1; 
    eqn = C_Surface == 0; 
    Peq0 = vpasolve(eqn,Peq0); 
    Peq0 = double(Peq0); 
     
    % Applied Shear Strain Rate - 30%/Day 
    StrainQ = 0; % Initial Shear Strain 
     
    t0 = 0.0001; 
    dStrainQ0 = StrainQ_Rate*t0; 
     
    dStrain_vpQ_Rate0 = 0; 
    dStrain_vpQ0 = dStrain_vpQ_Rate0*t0; 
    dStrain_eQ0 = dStrainQ0 - dStrain_vpQ0; 
    dq0 = dStrain_eQ0*3*G0; 
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    dStrain_vpV_Rate0 = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R0^2)./(M_c^2-Beta^2)).*(Peq0./Pc0).^Omega; 
  
    dStrain_vpV0 = dStrain_vpV_Rate0*t0; 
    dStrain_eV0 = -dStrain_vpV0; 
    dp0 = dStrain_eV0.*K0; 
     
    dPc0 = ((Pc0*V)./(Lambda-Kappa)).*(dStrain_vpV0 + Beta.*dStrain_vpQ0); 
     
    % Initial Values at t0 
    dp = dp0; 
    p = p0+dp; 
    dq = dq0; 
    q = dq; 
    dPc = dPc0; 
    Pc = Pc0+dPc; 
    StrainQ = StrainQ+dStrainQ0; 
    Stress_R = q/p; 
     
    K = (V/Kappa)*p; 
    G = (3*(1-2*nu)*K)/(2*(1+nu)); 
     
    syms Peq 
     
    A = (1-Gamma).*p + 0.5*Gamma.*Peq; 
    B = (1-Alpha).*M_c.*p + 0.5*Alpha.*Gamma.*M_c.*Peq; 
    C_Surface = sqrt((((p-0.5*Gamma.*Peq)^2)./A^2) + (((q-Beta*p)^2)./B^2)) 
- 1; 
    eqn = C_Surface == 0; 
    Peq = vpasolve(eqn,Peq); 
    Peq = double(Peq); 
    
    % Write Initial Values into Excel File 
    y01 = sprintf('%18.15f', t0); 
    y02 = sprintf('%18.15f',dStrainQ0); 
    y03 = sprintf('%18.15f',StrainQ); 
    y04 = sprintf('%18.15f',dStrain_vpQ_Rate0); 
    y05 = sprintf('%18.15f',dStrain_vpQ0); 
    y06 = sprintf('%18.15f',dStrain_eQ0); 
    y07 = sprintf('%18.15f',dq0); 
    y08 = sprintf('%18.15f',q); 
    y09 = sprintf('%18.15f',dStrain_vpV_Rate0); 
    y010 = sprintf('%18.15f',dStrain_vpV0); 
    y011 = sprintf('%18.15f',dStrain_eV0); 
    y012 = sprintf('%18.15f',dp0); 
    y013 = sprintf('%18.15f',p); 
    y014 = sprintf('%18.15f',dPc0); 
    y015 = sprintf('%18.15f',Pc); 
    y016 = sprintf('%18.15f',Stress_R); 
    y017 = sprintf('%18.15f',Peq); 
    filename='Test Simulations for Haney Clay_Constant Strain Rate_1.xls'; 
    
Y0={y01,y02,y03,y04,y05,y06,y07,y08,y09,y010,y011,y012,y013,y014,y015,y016,
y017}; 
    sheet=11; 
    z0=sprintf('E%d',9); 
    xlswrite(filename,Y0,sheet,z0) 
     
    %% Commence Integration Procedure 
    tol = 1e-5; 
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    i_size = 0.0001; 
         
    % Viscoplastic Strain Rates at t=0.002 
     dStrain_vpQ_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2.*(1-
Alpha+Alpha.*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
     dStrain_vpV_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
     
    dt = 0.0001; 
    a = 1; 
    StrainQ = dStrainQ0; 
     
    tf = 2; 
    iter = tf/dt; 
    iter = round(iter); 
     
    coder.varsize('Y1'); 
    Y1 = zeros(iter,17); 
     
    while dt < tf 
        i_size = min(i_size, tf-dt); 
         
        dStrainQ = i_size*StrainQ_Rate; 
        StrainQ = StrainQ+dStrainQ; 
         
        Qk1 = i_size*Q_f(dt,dStrain_vpQ_Rate); 
        Qk2 = i_size*Q_f(dt+i_size/4, dStrain_vpQ_Rate+Qk1/4); 
        Qk3 = i_size*Q_f(dt+3*i_size/8, 
dStrain_vpQ_Rate+3*Qk1/32+9*Qk2/32); 
        Qk4 = i_size*Q_f(dt+12*i_size/13, dStrain_vpQ_Rate+1932*Qk1/2197-
7200*Qk2/2197+7296*Qk3/2197); 
        Qk5 = i_size*Q_f(dt+i_size, dStrain_vpQ_Rate+439*Qk1/216-
8*Qk2+3680*Qk3/513-845*Qk4/4104); 
        Qk6 = i_size*Q_f(dt+i_size/2, dStrain_vpQ_Rate-8*Qk1/27+2*Qk2-
3544*Qk3/2565+1859*Qk4/4104-11*Qk5/40); 
        Q_w1 = dStrain_vpQ_Rate + 25*Qk1/216+1408*Qk3/2565+2197*Qk4/4104-
Qk5/5; 
        Q_w2 = dStrain_vpQ_Rate + 
16*Qk1/135+6656*Qk3/12825+28561*Qk4/56430-9*Qk5/50+2*Qk6/55; 
        Q_R = abs(Q_w1-Q_w2)/i_size; 
        Q_delta = 0.84*(tol./Q_R).^(1/4); 
         
        Vk1 = i_size*V_f(dt,dStrain_vpV_Rate); 
        Vk2 = i_size*V_f(dt+i_size/4, dStrain_vpV_Rate+Vk1/4); 
        Vk3 = i_size*V_f(dt+3*i_size/8, 
dStrain_vpV_Rate+3*Vk1/32+9*Vk2/32); 
        Vk4 = i_size*V_f(dt+12*i_size/13, dStrain_vpV_Rate+1932*Vk1/2197-
7200*Vk2/2197+7296*Vk3/2197); 
        Vk5 = i_size*V_f(dt+i_size, dStrain_vpV_Rate+439*Vk1/216-
8*Vk2+3680*Vk3/513-845*Vk4/4104); 
        Vk6 = i_size*V_f(dt+i_size/2, dStrain_vpV_Rate-8*Vk1/27+2*Vk2-
3544*Vk3/2565+1859*Vk4/4104-11*Vk5/40); 
        V_w1 = dStrain_vpV_Rate + 25*Vk1/216+1408*Vk3/2565+2197*Vk4/4104-
Vk5/5; 
        V_w2 = dStrain_vpV_Rate + 
16*Vk1/135+6656*Vk3/12825+28561*Vk4/56430-9*Vk5/50+2*Vk6/55; 
        V_R = abs(V_w1-V_w2)/i_size; 
        V_delta = 0.84*(tol./V_R).^(1/4); 
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        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
        end 
         
        dStrain_vpQ = dStrain_vpQ_Rate*i_size; 
        dStrain_eQ = dStrainQ - dStrain_vpQ; 
        dq = dStrain_eQ*3*G; 
        q = q + dq; 
         
        dStrain_vpV = dStrain_vpV_Rate*i_size; 
        dStrain_eV = -dStrain_vpV; 
        dp = dStrain_eV.*K; 
        p = p + dp; 
         
        K = (V/Kappa)*p; 
        G = (3*(1-2*nu)*K)/(2*(1+nu)); 
         
        Stress_R = q/p; 
         
        dPc = ((Pc*V)./(Lambda-Kappa)).*(dStrain_vpV + Beta.*dStrain_vpQ); 
        Pc = Pc + dPc; 
        
        syms Peq 
     
        A = (1-Gamma).*p + 0.5*Gamma.*Peq; 
        B = (1-Alpha).*M_c.*p + 0.5*Alpha.*Gamma.*M_c.*Peq; 
        C_Surface = sqrt((((p-0.5*Gamma*Peq).^2)./A.^2) + (((q-
Beta*p).^2)./B.^2)) - 1; 
        eqn = C_Surface == 0; 
        Peq = vpasolve(eqn,Peq); 
        Peq = double(Peq); 
         
          %% Plot Data 
%         figure(1); 
%         hold on 
%         plot(StrainQ,q,'o'); 
%         xlabel('\epsilon_q'); 
%         ylabel('q (kPa)'); 
%         ax = gca; 
%         ax.XAxisLocation = 'origin'; 
%         ax.YAxisLocation = 'origin'; 
          
          %% Write Data into Excel File 
%         y1 = sprintf('%6.4f', dt+0.001); 
%         y2= sprintf('%18.15f',dStrainQ); 
%         y3= sprintf('%18.15f',StrainQ); 
%         y4 = sprintf('%18.15f',dStrain_vpQ_Rate); 
%         y5 = sprintf('%18.15f',dStrain_vpQ); 
%         y6 = sprintf('%18.15f',dStrain_eQ); 
%         y7 = sprintf('%18.15f',dq); 
%         y8 = sprintf('%18.15f',q); 
%         y9 = sprintf('%18.15f',dStrain_vpV_Rate); 
%         y10 = sprintf('%18.15f',dStrain_vpV); 
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%         y11 = sprintf('%18.15f',dStrain_eV); 
%         y12 = sprintf('%18.15f',dp); 
%         y13 = sprintf('%18.15f',p); 
%         y14 = sprintf('%18.15f',dPc); 
%         y15 = sprintf('%18.15f',Pc); 
%         y16= sprintf('%18.15f',Stress_R); 
%         y17= sprintf('%18.15f',Peq); 
%         Y1={y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16,y17}; 
%         sheet=1; 
%         z1=sprintf('E%d',a+10); 
%         xlswrite(filename,Y1,sheet,z1)    
  
        Y1(a,:)= [dt+0.0001 dStrainQ StrainQ dStrain_vpQ_Rate dStrain_vpQ 
dStrain_eQ dq q dStrain_vpV_Rate dStrain_vpV dStrain_eV dp p dPc Pc 
Stress_R Peq]; 
  
        dStrain_vpQ_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
        dStrain_vpV_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
          
        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 
            i_size = 2*i_size; 
            dt = dt+i_size; 
            a = a+1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dt = dt+i_size; 
            a = a+1; 
             
        elseif rms(Q_delta) < 1 
            i_size = 0.5*i_size; 
            dt = dt + i_size; 
            a = a+1; 
        end 
  
    end 
     
    %% Write Data into Excel File 
    xlswrite(filename,Y1,sheet,'E10'); 
        
    function dStrain_vpQ = Q_f(dt,dStrain_vpQ_Rate) 
        dStrain_vpQ = dStrain_vpQ_Rate*dt;  
    end 
            
    function dStrain_vpV = V_f(dt,dStrain_vpV_Rate) 
        dStrain_vpV = dStrain_vpV_Rate*dt; 
    end    
  
end 
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E.5 MATLAB Code for Strain-controlled Undrained Compression Tests 

using Various OCRs on Kaolin and Bentonite Mixture 

function UndrainedShearing_StrainControlled_KB Mixture 
  
%% For Strain-controlled Undrained Compression Tests on KB Mixture 
close all;  
clear;  
clc; 
  
%% Undrained Compression Test - Strain-Controlled 
  
%     Lambda = input('Enter the Lambda value (eg., 0.093) = '); 
%     Kappa = input('Enter the Kappa value (eg., 0.012) = '); 
%     Mu = input('Enter the Mu value (eg., 0.0037) = '); 
%     M_c = input('Enter the value for M in compression (eg., 1.2479) = '); 
%     M_e = input('Enter the value for M in extension (eg., 0.95) = '); 
%     e0 = input('Enter the initial void ratio (eg., 0.6207) = '); 
%     nu = input('Enter the value for Poisson Ratio (eg.,0.3) = '); 
%     p0 = input('Enter the value for initial Applied pressure (kPa) = '); 
%     Pc0 = input('Enter the value for initial Pre-consolidation pressure 
(kPa = '); 
%     q0 = input('Enter the value for initial Deviatoric Pressure (kPa) = 
'); 
%      
%     Alpha = input('Enter the Alpha value (0<=Alpha<=1) = '); 
%     Gamma = input('Enter the Gamma value (0<=Gamma<=1) = ');   
%     theta = input('Enter the initial inclination angle value for Coupling 
= '); 
%      
%     StrainQ_Rate = input('Enter the value for Controlled Deviatoric 
Strain Rate = '); 
%     t = input('Enter the value for reference time parameter = '); 
     
    %% Model Parameters 
    Lambda_V = 0.093; 
    Kappa_V = 0.012; 
    M_c = 1.2479; 
    e0 = 0.6207;   % Determined from Strain Limit 
    nu = 0.3; 
    Mu_V = 0.0037; 
     
    Alpha = 1; 
    Gamma = 0.85; 
    theta = 0; 
     
%% Various OCRs 
%     p0 = 392;    % OCR=1 
%     p0 = 301.5;    % OCR=1.3 
    p0 = 196;    % OCR=2 
%     p0 = 65.33;    % OCR=6 
     
    Pc0 = 392; 
    q0 = 0; 
     
    StrainQ_Rate = 0.006; % 0.6%/Hr 
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    t = 24; % Hour 
    V0 = e0+1; 
    eR = 0; 
    m = 1; 
  
    Omega = (Lambda_V-Kappa_V)/Mu_V; 
     
    % Undrained Shearing - No Volume Change 
    dV = 0; 
    V = V0; 
    e = e0; 
     
    % Coupling 
    theta_radian=theta*(pi/180); 
    Beta = tan(theta_radian); 
     
    %% Determine Initial Values     
    Stress_R0 = q0/p0; 
     
    K0 = (1/Kappa_V)*p0; 
    G0 = (3*(1-2*nu)*K0)/(2*(1+nu)); 
     
    syms Peq0 
     
    A0 = (1-Gamma)*p0 + 0.5*Gamma*Peq0; 
    B0 = (1-Alpha)*M_c*p0 + 0.5*Alpha*Gamma*M_c*Peq0; 
    C_Surface = sqrt((((p0-0.5*Gamma*Peq0)^2)/A0^2) + (((q0-
Beta*p0)^2)/B0^2)) - 1; 
    eqn = C_Surface == 0; 
    Peq0 = vpasolve(eqn,Peq0); 
    Peq0 = double(Peq0); 
     
    % Applied Shear Strain Rate - 30%/Day 
    StrainQ = 0; % Initial Shear Strain 
     
    t0 = 0.005; 
 
    dStrainQ0 = StrainQ_Rate*t0; 
     
    dStrain_vpQ_Rate0 = 0; 
    dStrain_vpQ0 = dStrain_vpQ_Rate0*t0; 
    dStrain_eQ0 = dStrainQ0 - dStrain_vpQ0; 
    dq0 = dStrain_eQ0*3*G0; 
     
    dStrain_vpV_Rate0 = (Mu_V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R0^2)./(M_c^2-Beta^2)).*(Peq0./Pc0).^Omega; 
  
    dStrain_vpV0 = dStrain_vpV_Rate0*t0; 
    dStrain_eV0 = -dStrain_vpV0; 
    dp0 = dStrain_eV0.*K0; 
     
    dPc0 = (Pc0./(Lambda_V-Kappa_V)).*(dStrain_vpV0 + Beta.*dStrain_vpQ0); 
     
    % Initial Values at t0 
    dp = dp0; 
    p = p0+dp; 
    dq = dq0; 
    q = dq; 



251 | P a g e  
 

    dPc = dPc0; 
    Pc = Pc0+dPc; 
    StrainQ = StrainQ+dStrainQ0; 
    Stress_R = q/p; 
     
    K = (1/Kappa_V)*p; 
    G = (3*(1-2*nu)*K)/(2*(1+nu)); 
     
    syms Peq 
     
    A = (1-Gamma)*p + 0.5*Gamma*Peq; 
    B = (1-Alpha)*M_c*p + 0.5*Alpha*Gamma*M_c*Peq; 
    C_Surface = sqrt((((p-0.5*Gamma*Peq)^2)/A^2) + (((q-Beta*p)^2)/B^2)) - 
1; 
    eqn = C_Surface == 0; 
    Peq = vpasolve(eqn,Peq); 
    Peq = double(Peq); 
    
    % Write Initial Values into Excel File 
    y01 = sprintf('%18.15f',t0); 
    y02= sprintf('%18.15f',dStrainQ0); 
    y03= sprintf('%18.15f',StrainQ); 
    y04 = sprintf('%18.15f',dStrain_vpQ_Rate0); 
    y05 = sprintf('%18.15f',dStrain_vpQ0); 
    y06 = sprintf('%18.15f',dStrain_eQ0); 
    y07 = sprintf('%18.15f',dq0); 
    y08 = sprintf('%18.15f',q); 
    y09 = sprintf('%18.15f',dStrain_vpV_Rate0); 
    y010 = sprintf('%18.15f',dStrain_vpV0); 
    y011 = sprintf('%18.15f',dStrain_eV0); 
    y012 = sprintf('%18.15f',dp0); 
    y013 = sprintf('%18.15f',p); 
    y014 = sprintf('%18.15f',dPc0); 
    y015 = sprintf('%18.15f',Pc); 
    y016= sprintf('%18.15f',Stress_R); 
    y017= sprintf('%18.15f',Peq); 
    filename='Draft_Test Simulations for KB Mixture_JH Yin_Fig9_VS2.xls'; 
    
Y0={y01,y02,y03,y04,y05,y06,y07,y08,y09,y010,y011,y012,y013,y014,y015,y016,
y017}; 
    sheet=6; 
    z0=sprintf('E%d',9); 
    xlswrite(filename,Y0,sheet,z0) 
     
    %% Commence Integration Procedure 
    tol = 1e-9; 
     
    i_size = 0.005; 
         
    % Viscoplastic Strain Rates at t=0.002 
     dStrain_vpQ_Rate = (Mu_V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
     dStrain_vpV_Rate = (Mu_V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
         
    dt = 0.005; 
     
    a = 1; 
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    StrainQ = dStrainQ0; 
     
    tf = 25;    
    iter = tf/dt; 
    iter = round(iter); 
     
    coder.varsize('Y1'); 
    Y1 = zeros(iter,17); 
         
    while dt < tf 
        i_size = min(i_size, tf-dt); 
         
        dStrainQ = i_size*StrainQ_Rate; 
        StrainQ = StrainQ+dStrainQ; 
         
        Qk1 = i_size*Q_f(dt,dStrain_vpQ_Rate); 
        Qk2 = i_size*Q_f(dt+i_size/4, dStrain_vpQ_Rate+Qk1/4); 
        Qk3 = i_size*Q_f(dt+3*i_size/8, 
dStrain_vpQ_Rate+3*Qk1/32+9*Qk2/32); 
        Qk4 = i_size*Q_f(dt+12*i_size/13, dStrain_vpQ_Rate+1932*Qk1/2197-
7200*Qk2/2197+7296*Qk3/2197); 
        Qk5 = i_size*Q_f(dt+i_size, dStrain_vpQ_Rate+439*Qk1/216-
8*Qk2+3680*Qk3/513-845*Qk4/4104); 
        Qk6 = i_size*Q_f(dt+i_size/2, dStrain_vpQ_Rate-8*Qk1/27+2*Qk2-
3544*Qk3/2565+1859*Qk4/4104-11*Qk5/40); 
        Q_w1 = dStrain_vpQ_Rate + 25*Qk1/216+1408*Qk3/2565+2197*Qk4/4104-
Qk5/5; 
        Q_w2 = dStrain_vpQ_Rate + 
16*Qk1/135+6656*Qk3/12825+28561*Qk4/56430-9*Qk5/50+2*Qk6/55; 
        Q_R = abs(Q_w1-Q_w2)/i_size; 
        Q_delta = 0.84*(tol./Q_R).^(1/4); 
         
        Vk1 = i_size*V_f(dt,dStrain_vpV_Rate); 
        Vk2 = i_size*V_f(dt+i_size/4, dStrain_vpV_Rate+Vk1/4); 
        Vk3 = i_size*V_f(dt+3*i_size/8, 
dStrain_vpV_Rate+3*Vk1/32+9*Vk2/32); 
        Vk4 = i_size*V_f(dt+12*i_size/13, dStrain_vpV_Rate+1932*Vk1/2197-
7200*Vk2/2197+7296*Vk3/2197); 
        Vk5 = i_size*V_f(dt+i_size, dStrain_vpV_Rate+439*Vk1/216-
8*Vk2+3680*Vk3/513-845*Vk4/4104); 
        Vk6 = i_size*V_f(dt+i_size/2, dStrain_vpV_Rate-8*Vk1/27+2*Vk2-
3544*Vk3/2565+1859*Vk4/4104-11*Vk5/40); 
        V_w1 = dStrain_vpV_Rate + 25*Vk1/216+1408*Vk3/2565+2197*Vk4/4104-
Vk5/5; 
        V_w2 = dStrain_vpV_Rate + 
16*Vk1/135+6656*Vk3/12825+28561*Vk4/56430-9*Vk5/50+2*Vk6/55; 
        V_R = abs(V_w1-V_w2)/i_size; 
        V_delta = 0.84*(tol./V_R).^(1/4); 
         
        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
        end 
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        dStrain_vpQ = dStrain_vpQ_Rate*i_size; 
        dStrain_eQ = dStrainQ - dStrain_vpQ; 
        dq = dStrain_eQ*3*G; 
        q = q + dq; 
         
        dStrain_vpV = dStrain_vpV_Rate*i_size; 
        dStrain_eV = -dStrain_vpV; 
        dp = dStrain_eV.*K; 
        p = p + dp; 
         
        K = (1/Kappa_V)*p; 
        G = (3*(1-2*nu)*K)/(2*(1+nu)); 
         
        Stress_R = q/p; 
         
        dPc = (Pc./(Lambda_V-Kappa_V)).*(dStrain_vpV + Beta.*dStrain_vpQ); 
        Pc = Pc + dPc; 
        
        syms Peq 
     
        A = (1-Gamma).*p + 0.5*Gamma.*Peq; 
        B = (1-Alpha).*M_c.*p + 0.5*Alpha.*Gamma.*M_c.*Peq; 
        C_Surface = sqrt((((p-0.5*Gamma*Peq).^2)./A.^2) + (((q-
Beta*p).^2)./B.^2)) - 1; 
        eqn = C_Surface == 0; 
        Peq = vpasolve(eqn,Peq); 
        Peq = double(Peq); 
         
          %% Plot Data 
%         figure(1); 
%         hold on 
%         plot(StrainQ,q,'o'); 
%         xlabel('\epsilon_q'); 
%         ylabel('q (kPa)'); 
%         ax = gca; 
%         ax.XAxisLocation = 'origin'; 
%         ax.YAxisLocation = 'origin'; 
        
          %% Write Data into Excel File 
%         y1 = sprintf('%18.15f', dt+0.00001); 
%         y2= sprintf('%18.15f',dStrainQ); 
%         y3= sprintf('%18.15f',StrainQ); 
%         y4 = sprintf('%18.15f',dStrain_vpQ_Rate); 
%         y5 = sprintf('%18.15f',dStrain_vpQ); 
%         y6 = sprintf('%18.15f',dStrain_eQ); 
%         y7 = sprintf('%18.15f',dq); 
%         y8 = sprintf('%18.15f',q); 
%         y9 = sprintf('%18.15f',dStrain_vpV_Rate); 
%         y10 = sprintf('%18.15f',dStrain_vpV); 
%         y11 = sprintf('%18.15f',dStrain_eV); 
%         y12 = sprintf('%18.15f',dp); 
%         y13 = sprintf('%18.15f',p); 
%         y14 = sprintf('%18.15f',dPc); 
%         y15 = sprintf('%18.15f',Pc); 
%         y16= sprintf('%18.15f',Stress_R); 
%         y17= sprintf('%18.15f',Peq); 
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        Y1(a,:)= [dt+0.005 dStrainQ StrainQ dStrain_vpQ_Rate dStrain_vpQ 
dStrain_eQ dq q dStrain_vpV_Rate dStrain_vpV dStrain_eV dp p dPc Pc 
Stress_R Peq]; 
 
        dStrain_vpQ_Rate = (Mu_V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
        dStrain_vpV_Rate = (Mu_V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
  
         
        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 
            i_size = 2*i_size; 
            dt = dt+i_size; 
            a = a+1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dt = dt+i_size; 
            a = a+1; 
             
        elseif rms(Q_delta) < 1 
            i_size = 0.5*i_size; 
            dt = dt + i_size; 
            a = a+1; 
        end 
  
    end 
 
    %% Write Data into Excel File        
    xlswrite(filename,Y1,sheet,'E10'); 
     
    function dStrain_vpQ = Q_f(dt,dStrain_vpQ_Rate) 
        dStrain_vpQ = dStrain_vpQ_Rate*dt;  
    end 
            
    function dStrain_vpV = V_f(dt,dStrain_vpV_Rate) 
        dStrain_vpV = dStrain_vpV_Rate*dt; 
    end    
          
end 
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E.6 MATLAB Code for Strain-controlled Undrained Triaxial Loading 

Tests on Shanghai Soft Clay 

function UndrainedS_StrainC _Shanghai_SC_CAU1 
  
%% For Strain-controlled Undrained Triaxial Loading Tests on Shanghai Soft 
Clay 
% 2%/Hr (Compression) 
% Test Number: CAU-1 
close all; 
clear; 
clc; 
  
%% Undrained Triaxial Shearing Test - Strain-Controlled 
  
%     Lambda = input('Enter the Lambda value (eg., 0.212) = '); 
%     Kappa = input('Enter the Kappa value (eg., 0.046) = '); 
%     Mu = input('Enter the Mu value (eg., 0.007218) = '); 
%     M_c = input('Enter the value for M in compression (eg., 1.277) = '); 
%     M_e = input('Enter the value for M in extension (eg., 0.95) = '); 
%     e0 = input('Enter the initial Void Ratio (eg., 1.402) = '); 
%     nu = input('Enter the value for Poisson Ratio (eg.,0.2) = '); 
%     p0 = input('Enter the value for initial Applied pressure (kPa) = '); 
%     Pc0 = input('Enter the value for initial Pre-consolidation pressure 
(kPa = '); 
%     q0 = input('Enter the value for initial Deviatoric Pressure (kPa) = 
'); 
%      
%     Alpha = input('Enter the Alpha value (0<=Alpha<=1) = '); 
%     Gamma = input('Enter the Gamma value (0<=Gamma<=1) = ');   
%     theta = input('Enter the initial inclination angle value for Coupling 
= '); 
%     phi = input('Enter the value for Friction Angle (degree) = '); 
%      
%     Strain_Rate = input('Enter the value for Controlled Deviatoric Strain 
Rate = '); 
%     t = input('Enter the value for reference time parameter = '); 
     
      
%% Model Parameters for Shanghai Soft Clay  
    Lambda = 0.212; 
    Kappa = 0.046; 
    M_c = 1.277; 
%     M_c = 0.9; % Extension 
    phi = 31.77; % Determined from M_c Value 
    e0 = 1.402; 
    nu = 0.2; 
     
    Mu = 0.007218; % Determined from C-Alpha Value 
     
    Alpha = 0.95; 
    Gamma = 0.55;  
     
    p0 = 72.50;        % OCR=1 
    Pc0 = 72.50; 
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    %% Part i 
%     StrainQ_Rate = 3.333e-03; % 0.3333%/Min 
% %     StrainQ_Rate = 0.2; % 20%/Hr 
% %     StrainQ_Rate = 4.8; % 480%/Day 
  
%     t = 1440; % Mins 
% %     t = 24; % Hour 
% %     t = 1; % Day 
     
    %% Part ii 
    StrainQ_Rate = 3.333e-04; % 0.03333%/Min 
%     StrainQ_Rate = 0.02; % 2%/Hr 
%     StrainQ_Rate = 0.48; % 48%/Day 
  
    t = 1440; % Mins 
%     t = 24; % Hour 
%     t = 1; % Day 
  
    %% Part iii 
%     StrainQ_Rate = 3.333e-05; % 0.003333%/Min 
% %     StrainQ_Rate = 0.002; % 0.2%/Hr 
% %     StrainQ_Rate = 0.048; % 4.8%/Day 
  
%     t = 1440; % Mins 
% %     t = 24; % Hour 
% %     t = 1; % Day 
     
    V0 = e0+1; 
    eR = 0; 
    m = 1; 
  
    Omega = (Lambda-Kappa)/Mu; 
     
    % Undrained Shearing - No Volume Change 
    dV = 0; 
    V = V0; 
    e = e0;     
     
    %% Determine Initial Values 
    phi_radian = phi*(pi/180); 
    K0 = 1 - sin(phi_radian); 
 
    Stress_R_K0 = (3*(1-K0))/(1+2*K0);   
    q0 = Stress_R_K0*p0;    
         
    K_0 = (V/Kappa)*p0; 
    G_0 = (3*(1-2*nu)*K_0)/(2*(1+nu)); 
         
%% Determine Initial Fabric Paramater 
%% Associated Flow Rule 
%     beta0 = Stress_R_K0 - ((M_c^2 - Stress_R_K0^2)/3); 
%     D_beta = (3*(4*M_c^2 - 4*Stress_R_K0^2 - 
3*Stress_R_K0))/(8*(Stress_R_K0^2 - M_c^2 + 2*Stress_R_K0)); 
% %     C_beta = (1/Lambda)*log((10*M_c^2 - 2*beta0*D_beta)/(M_c^2 - 
2*beta0*D_beta)); 
%     C_beta = 56.60; % 12/Lambda    
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%% Non-associated Flow Rule 
    syms beta_S 
    eqn_beta1 = beta_S^2 + 3*beta_S; 
    eqn_beta2 = Stress_R_K0^2 - M_c^2.*(1-Alpha+Alpha*Gamma).^2 + 
3*Stress_R_K0; 
    beta_S = vpasolve(eqn_beta1 == eqn_beta2,beta_S); 
    beta_S = double(beta_S); 
     
    beta0 = beta_S(2); 
  
    D_beta = (3*(3*Stress_R_K0 - 4*beta0)*(beta0^2 + (M_c^2.*(1-
Alpha+Alpha*Gamma).^2) - Stress_R_K0^2))/(8*(Stress_R_K0-
(3*beta0)).*(Stress_R_K0 - beta0)); 
    C_beta = 56.60;    % 12/Lambda    
  
    syms Peq0 
     
    A0 = (1-Gamma)*p0 + 0.5*Gamma*Peq0; 
    B0 = (1-Alpha)*M_c*p0 + 0.5*Alpha*Gamma*M_c*Peq0; 
    C_Surface0 = sqrt((((p0-0.5*Gamma*Peq0).^2)./A0.^2) + (((q0-
beta0*p0).^2)./B0.^2)) - 1; 
    eqn = C_Surface0 == 0; 
    Peq0 = vpasolve(eqn,Peq0); 
    Peq0 = double(Peq0); 
     
    % Applied Shear Strain Rate - 30%/Day 
    StrainQ = 0; % Initial Shear Strain    
     
    t0 = 0.007; 
  
    dStrainQ0 = StrainQ_Rate*t0; 
     
    %     dStrain_vpQ_Rate0 = 0; 
    dStrain_vpQ_Rate0 = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R_K0^2)./(M_c^2-beta0^2)).*((2*(Stress_R_K0-
beta0))./(beta0^2+(M_c^2*(1-Alpha+Alpha*Gamma).^2)-
Stress_R_K0^2)).*(Peq0./Pc0).^Omega; 
     
    dStrain_vpQ0 = dStrain_vpQ_Rate0*t0; 
    dStrain_eQ0 = dStrainQ0 - dStrain_vpQ0; 
    dq0 = dStrain_eQ0*3*G_0; 
     
    dStrain_vpV_Rate0 = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R_K0^2)./(M_c^2-beta0^2)).*(Peq0./Pc0).^Omega; 
  
    dStrain_vpV0 = dStrain_vpV_Rate0*t0; 
    dStrain_eV0 = -dStrain_vpV0; 
    dp0 = dStrain_eV0.*K_0; 
     
    dPc0 = ((Pc0*V)./(Lambda-Kappa)).*(dStrain_vpV0 + beta0.*dStrain_vpQ0); 
     
    % Initial Values at t0 
    dp = dp0; 
    p = p0+dp; 
    dq = dq0; 
    q = q0+dq; 
    dPc = dPc0; 
    Pc = Pc0+dPc; 
    StrainQ = StrainQ+dStrainQ0; 
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    Stress_R = q/p; 
     
    % Macaulay bracket for volumetric viscoplastic strain rate 
    if dStrain_vpV0 < 0  
        dStrain_vpV0_MB0 = 0; 
    else  
        dStrain_vpV0_MB0 = dStrain_vpV0; 
    end 
     
    beta_Rate0 = C_beta.*(((((3/4).*Stress_R) - beta0).*dStrain_vpV0_MB0) + 
(D_beta.*(((1/3).*Stress_R) - beta0).*abs(dStrain_vpQ0))); 
     
    Beta = beta0 + beta_Rate0; 
  
    K = (V/Kappa)*p; 
    G = (3*(1-2*nu)*K)/(2*(1+nu)); 
     
    syms Peq 
     
    A = (1-Gamma)*p + 0.5*Gamma*Peq; 
    B = (1-Alpha)*M_c*p + 0.5*Alpha*Gamma*M_c*Peq; 
    C_Surface = sqrt((((p-0.5*Gamma*Peq).^2)./A^2) + (((q-
Beta*p).^2)./B^2)) - 1; 
    eqn = C_Surface == 0; 
    Peq = vpasolve(eqn,Peq); 
    Peq = double(Peq); 
    
    % Write Initial Values into Excel File 
    y01 = sprintf('%18.15f',t0); 
  
    y02 = sprintf('%18.15f',dStrainQ0); 
    y03 = sprintf('%18.15f',StrainQ); 
    y04 = sprintf('%18.15f',dStrain_vpQ_Rate0); 
    y05 = sprintf('%18.15f',dStrain_vpQ0); 
    y06 = sprintf('%18.15f',dStrain_eQ0); 
    y07 = sprintf('%18.15f',dq0); 
    y08 = sprintf('%18.15f',q); 
    y09 = sprintf('%18.15f',dStrain_vpV_Rate0); 
    y010 = sprintf('%18.15f',dStrain_vpV0); 
    y011 = sprintf('%18.15f',dStrain_eV0); 
    y012 = sprintf('%18.15f',dp0); 
    y013 = sprintf('%18.15f',p); 
    y014 = sprintf('%18.15f',dPc0); 
    y015 = sprintf('%18.15f',Pc); 
    y016 = sprintf('%18.15f',Stress_R); 
    y017 = sprintf('%18.15f',Peq); 
    y018 = sprintf('%18.15f',beta0); 
    y019 = sprintf('%18.15f',beta_Rate0); 
    filename='Simulations_Shanghai_SC_CAU1.xls'; 
    
Y0={y01,y02,y03,y04,y05,y06,y07,y08,y09,y010,y011,y012,y013,y014,y015,y016,
y017,y018,y019}; 
    sheet=1; 
    z0=sprintf('E%d',9); 
    xlswrite(filename,Y0,sheet,z0) 
     
    %% Commence Integration Procedure 
    tol = 1e-9; 
    i_size = 0.007;     
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    % Viscoplastic Strain Rates at t=0.002 
     dStrain_vpQ_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
     dStrain_vpV_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
         
    dt = 0.007; 
    a = 1; 
     
    tf = 105; 
     
    iter = tf/dt; 
    iter = round(iter); 
     
    coder.varsize('Y1'); 
    Y1 = zeros(iter,19); 
     
    while dt < tf 
        i_size = min(i_size, tf-dt); 
         
        dStrainQ = i_size*StrainQ_Rate; 
        StrainQ = StrainQ+dStrainQ; 
         
        Qk1 = i_size*Q_f(dt,dStrain_vpQ_Rate); 
        Qk2 = i_size*Q_f(dt+i_size/4, dStrain_vpQ_Rate+Qk1/4); 
        Qk3 = i_size*Q_f(dt+3*i_size/8, 
dStrain_vpQ_Rate+3*Qk1/32+9*Qk2/32); 
        Qk4 = i_size*Q_f(dt+12*i_size/13, dStrain_vpQ_Rate+1932*Qk1/2197-
7200*Qk2/2197+7296*Qk3/2197); 
        Qk5 = i_size*Q_f(dt+i_size, dStrain_vpQ_Rate+439*Qk1/216-
8*Qk2+3680*Qk3/513-845*Qk4/4104); 
        Qk6 = i_size*Q_f(dt+i_size/2, dStrain_vpQ_Rate-8*Qk1/27+2*Qk2-
3544*Qk3/2565+1859*Qk4/4104-11*Qk5/40); 
        Q_w1 = dStrain_vpQ_Rate + 25*Qk1/216+1408*Qk3/2565+2197*Qk4/4104-
Qk5/5; 
        Q_w2 = dStrain_vpQ_Rate + 
16*Qk1/135+6656*Qk3/12825+28561*Qk4/56430-9*Qk5/50+2*Qk6/55; 
        Q_R = abs(Q_w1-Q_w2)/i_size; 
        Q_delta = 0.84*(tol./Q_R).^(1/4); 
         
        Vk1 = i_size*V_f(dt,dStrain_vpV_Rate); 
        Vk2 = i_size*V_f(dt+i_size/4, dStrain_vpV_Rate+Vk1/4); 
        Vk3 = i_size*V_f(dt+3*i_size/8, 
dStrain_vpV_Rate+3*Vk1/32+9*Vk2/32); 
        Vk4 = i_size*V_f(dt+12*i_size/13, dStrain_vpV_Rate+1932*Vk1/2197-
7200*Vk2/2197+7296*Vk3/2197); 
        Vk5 = i_size*V_f(dt+i_size, dStrain_vpV_Rate+439*Vk1/216-
8*Vk2+3680*Vk3/513-845*Vk4/4104); 
        Vk6 = i_size*V_f(dt+i_size/2, dStrain_vpV_Rate-8*Vk1/27+2*Vk2-
3544*Vk3/2565+1859*Vk4/4104-11*Vk5/40); 
        V_w1 = dStrain_vpV_Rate + 25*Vk1/216+1408*Vk3/2565+2197*Vk4/4104-
Vk5/5; 
        V_w2 = dStrain_vpV_Rate + 
16*Vk1/135+6656*Vk3/12825+28561*Vk4/56430-9*Vk5/50+2*Vk6/55; 
        V_R = abs(V_w1-V_w2)/i_size; 
        V_delta = 0.84*(tol./V_R).^(1/4); 
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        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dStrain_vpQ_Rate = Q_w1; 
            dStrain_vpV_Rate = V_w1; 
        end 
         
        dStrain_vpQ = dStrain_vpQ_Rate*i_size; 
        dStrain_eQ = dStrainQ - dStrain_vpQ; 
        dq = dStrain_eQ*3*G; 
        q = q + dq; 
         
        dStrain_vpV = dStrain_vpV_Rate*i_size; 
        dStrain_eV = -dStrain_vpV; 
        dp = dStrain_eV.*K; 
        p = p + dp; 
         
        K = (V/Kappa)*p; 
        G = (3*(1-2*nu)*K)/(2*(1+nu)); 
         
        Stress_R = q/p; 
         
        % Macaulay bracket for volumetric viscoplastic strain rate 
        if dStrain_vpV < 0  
            dStrain_vpV_MB = 0; 
        else  
            dStrain_vpV_MB = dStrain_vpV; 
        end 
         
        beta_Rate = C_beta.*(((((3/4).*Stress_R) - Beta).*dStrain_vpV_MB) + 
(D_beta.*(((1/3)*Stress_R) - Beta).*abs(dStrain_vpQ))); 
 
        Beta = Beta + beta_Rate; 
  
        dPc = ((Pc*V)./(Lambda-Kappa)).*(dStrain_vpV + Beta.*dStrain_vpQ); 
        Pc = Pc + dPc; 
        
        syms Peq 
     
        A = (1-Gamma).*p + 0.5*Gamma.*Peq; 
        B = (1-Alpha).*M_c.*p + 0.5*Alpha.*Gamma.*M_c.*Peq; 
        C_Surface = sqrt((((p-0.5*Gamma*Peq).^2)./A.^2) + (((q-
Beta*p).^2)./B.^2)) - 1; 
        eqn = C_Surface == 0; 
        Peq = vpasolve(eqn,Peq); 
        Peq = double(Peq); 
         
          %% Plot Data 
%         figure(1); 
%         hold on 
%         plot(StrainQ,q,'o'); 
%         xlabel('\epsilon_q'); 
%         ylabel('q (kPa)'); 
%         ax = gca; 
%         ax.XAxisLocation = 'origin'; 
%         ax.YAxisLocation = 'origin'; 
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          %% Write Data into Excel File 
%         y1 = sprintf('%6.4f', dt+0.001); 
%         y2= sprintf('%18.15f',dStrainQ); 
%         y3= sprintf('%18.15f',StrainQ); 
%         y4 = sprintf('%18.15f',dStrain_vpQ_Rate); 
%         y5 = sprintf('%18.15f',dStrain_vpQ); 
%         y6 = sprintf('%18.15f',dStrain_eQ); 
%         y7 = sprintf('%18.15f',dq); 
%         y8 = sprintf('%18.15f',q); 
%         y9 = sprintf('%18.15f',dStrain_vpV_Rate); 
%         y10 = sprintf('%18.15f',dStrain_vpV); 
%         y11 = sprintf('%18.15f',dStrain_eV); 
%         y12 = sprintf('%18.15f',dp); 
%         y13 = sprintf('%18.15f',p); 
%         y14 = sprintf('%18.15f',dPc); 
%         y15 = sprintf('%18.15f',Pc); 
%         y16= sprintf('%18.15f',Stress_R); 
%         y17= sprintf('%18.15f',Peq); 
%         Y1={y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15,y16,y17}; 
%         sheet=1; 
%         z1=sprintf('E%d',a+10); 
%         xlswrite(filename,Y1,sheet,z1)    
  
        Y1(a,:)= [dt+0.007 dStrainQ StrainQ dStrain_vpQ_Rate dStrain_vpQ 
dStrain_eQ dq q dStrain_vpV_Rate dStrain_vpV dStrain_eV dp p dPc Pc 
Stress_R Peq Beta beta_Rate]; 
  
        dStrain_vpQ_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*((2*(Stress_R-Beta))./(Beta^2+(M_c^2*(1-
Alpha+Alpha*Gamma).^2)-Stress_R^2)).*(Peq./Pc).^Omega; 
        dStrain_vpV_Rate = (Mu./V).*(((e-eR)./e0).^m).*(1./t).*((M_c^2-
Stress_R^2)./(M_c^2-Beta^2)).*(Peq./Pc).^Omega; 
  
        if (rms(Q_delta) >= 2) && (rms(V_delta) >= 2) 
            i_size = 2*i_size; 
            dt = dt+i_size; 
            a = a+1; 
  
        elseif (rms(Q_delta) >=1) && (rms(Q_delta) >=1) 
            dt = dt+i_size; 
            a = a+1; 
             
        elseif rms(Q_delta) < 1 
            i_size = 0.5*i_size; 
            dt = dt + i_size; 
            a = a+1; 
        end 
  
    end 
 
    %% Write Data into Excel File 
    xlswrite(filename,Y1,sheet,'E10'); 
        
    function dStrain_vpQ = Q_f(dt,dStrain_vpQ_Rate) 
        dStrain_vpQ = dStrain_vpQ_Rate*dt;  
    end 
            
    function dStrain_vpV = V_f(dt,dStrain_vpV_Rate) 
        dStrain_vpV = dStrain_vpV_Rate*dt; 
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    end    
  
end 
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