

How do Colombian software companies evaluate software product quality?

by Wilder Perdomo-Charry

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Associate Professor Julia Prior and Adjunct Professor John Leaney

University of Technology Sydney Faculty of Engineering and Information Technology

February 2020

© 2020 by Wilder Perdomo-Charry All Rights Reserved

AUTHOR'S DECLARATION

, Wilder Perdomo-Charry declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Computer Science, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by Colfuturo Colombia and University of Technology Sydney.

This research is supported by the Australian Government Research Training Program.

Production Note: SIGNATURE: Signature removed prior to publication.

[Wilder Perdomo-Charry]

DATE: 12th February, 2020

PLACE: Sydney, Australia

ABSTRACT

S oftware developers confuse product quality with process quality, leading them to think they are measuring product quality when they are not. This is the main finding of this study of software developers in young small to medium companies in Colombia.

Software product quality reflects two perspectives: conformance to specifications, and satisfying expectations when it is used under specified conditions. Measuring product quality still remains a problem for software development companies in relation to factors such as cost, effort, time and competitiveness. There are few studies that show the current state of software product quality in companies, how companies evaluate product quality, and which measures they use to develop and launch products that meet high-quality criteria.

This research presents a study of software product quality in seven young software development companies in a developing country. The candidate used a qualitative research approach to understand, through their experiences and knowledge, how 20 employees—developers, testers, and project managers—and their companies evaluate software product quality, and which measures they apply in their companies.

The results demonstrate that software process quality is better understood, and applied, by these software companies than software product quality. A greater difficulty is that most study participants 'overlaid' the idea of product quality with process quality, i.e. they talked about product quality as if it were process quality. This confusion leads them to think that they are measuring product quality when they are not.

These findings have implications for companies that wish to increase competitiveness and productivity as they must develop a working knowledge of software product quality that is not confused with software process quality. It also has implications for educators, to ensure that the distinction between process and product quality is explicitly taught.

DEDICATION

To God who is present in every place, moment and circumstance, and who always accompanies me on the path of life. To my mother, my father (rip), and Maria my wife, who are proof of love, persistence, and family union. Fundamental criteria to achieve a goal.

Wilder Perdomo...

ACKNOWLEDGMENTS

ompletion of this doctoral thesis would not have been possible without a number of people whom I would like to acknowledge and thank for their support, advice, and encouragement.

Firstly, an enormous thank you to the participant developers, testers, and project managers from the seven software development companies in Colombia who so generously allowed me to know their experiences in the companies. The CEO from each company gave exceptional help and was present during our contact with good enthusiasm and interest in this research, giving me access to whomever and whatever I deemed necessary to understand and carry out my fieldwork. I am extremely grateful to them all. I trust that the stories of their work experiences in this Phenomenological research and the findings of the research will make them proud to have played such a crucial part in the development of this project.

I also want to thank to Fedesoft (Federación Colombiana de la Industria de Software), Procolombia, and MinTIC (Ministerio de las Tecnologías de la Información y la Comunicación) in Colombia for allowing me to introduce my research and to be open to help me carry out my fieldwork with some Clusters and companies from different Colombian cities.

My UTS supervisor, Julia Prior who believed in me and recognised my research capabilities to develop this research and help me out to execute this journey. We know that this journey has had its up and down situations, but she was a good advisor in each step of my thesis. I would like to thank her for challenging me to think about epistemologies and research methodologies, interview techniques, reflection, software development in practice, software product quality, and a host of other disciplines. Her support and enthusiasm for my work never faltered. Most of all I would like to thank her for being able to readily understand my goal.

My mentor and UTS co-supervisor, John Leaney, was essential in this journey, as his experience and rigour in the research were vital for developing my project. I would like to thank him for challenging me to think critically, focusing on my topic and how my contributions can help Colombia and the young software development companies. John is the type of supervisor who is dedicated, responsible, enthusiastic, generous, and with enough knowledge to share in areas related to software development and software quality. I am glad to find people like him who always keep an eye on my research and on the clear cohesion of my problem with the research method, data analysis, and findings.

I have the honour to have been supervised in this research by two great people. Julia and John showed me alternative approaches to research in general, and software engineering practice in particular, two great aspects I had not previously experienced or had not realised were scholarly options. They were dedicated and engaged with me and my research topic with the best practice to advice PhD students from both professional and personal aspects. Thank you both for your commitment and belief in me.

I was privileged to share the joys and despairs of the PhD journey with my dear friends Muhammad Awais Bajwa and Avirup Dasgupta. We travelled this journey together over some years, although in different types of research. Muhammad's encouragement and advice helped me over many a hump in the road and Avirup and I debated software development topics and methodologies to apply in our studies. In particular, they helped me work through new ways of thinking about knowledge and our understanding of the world. I thank you all.

I also thank other members of UTS and friends for contributing to and being part of this research journey. I thank Marie Manidis for her role as my mentor during my hard days at UTS, her encouragement and advice helped me over many a hump in the road. MaryAnn McDonald from UTS:HELPS and Wendy Boynton from ABC News who believed in my English skills and helped me to improve those skills to increase my knowledge and understanding in this journey. Tom McBride for his role as my acting supervisor at the beginning of my candidature particularly, but also for his advice and determination. I would like to thank Jing Zhao from Graduate Research School (GRS) who listened to me when I was up and down and especially for her advice during my scholarship process. Thanks a lot to Carol Charman for your tremendous help during the reviewing of my thesis; she was incredible at checking my English and editing my draft and final thesis document. My dear friends, Nick, Asma, Tazin, Felipe, Luke, Wang, Federico, Kamal, Durga, Carlos, Suman, Gautum, Joanne, and James who helped me in different emotional, personal, and professional ways to focus my efforts on this PhD journey. Thank you all.

I want to thank to my principal sponsor, COLFUTURO Colombia (Fundación para el Futuro de Colombia) who award me a Doctoral Research Scholarship to do my PhD studies in Sydney and gave me the opportunity to live this fantastic experience in a developed and multicultural country. Furthermore, I would like to thank the University of Technology Sydney (UTS), especially to the Graduate Research Program for awarding me the UTS–International Research Scholarship to continue my PhD research.

I would like to thank and apologise to my family especially my beloved parents, Leo Charry and Serafin Perdomo (RIP) for my long absences —both physical and mental absences during these years when I could not drag my head out of the work. I am very grateful to them for inspiring me every moment of my life and showing me that education is an essential tool in life. Thank you all for your support and strength. Finally, it is my privilege to thank my wife and hero, who gave me her unconditional support, experience, and knowledge to address this goal that we have always considered 'ours'. Thanks a lot. I have always thought that working as a team, with vision and persistence helps us move forward and achieve great goals.

LIST OF PUBLICATIONS

RELATED TO THE THESIS:

- 1. Perdomo, W., Prior, J., Leaney, J. (2019), 'Software product quality (SPQ) evaluation at young software companies from a developing country.' In: School of Computer Science HDR Student Research Showcase 2019.
- Perdomo, W., Prior, J. Leaney, J. (2020), *How do Colombian software companies evaluate software product quality?*, in Proceedings of the 30th international Workshop on Software Measurement (IWSM) and the 15th international Conference on Software Process and Product Measurement (MENSURA), CEUR-WS, Mexico City, pp. 1-16.
- Perdomo, W., Prior, J., Leaney, J. (2020), 'Evaluation and measurement of software product quality in the new Colombian software companies —A Systematic Literature Review', *Ingeniare X(XX)*, *In review*.

TABLE OF CONTENTS

Li	st of	Publications	xi
Li	st of	Figures	xvii
Li	st of	Tables	xix
1	INT	RODUCTION	1
	1.1	What is the Problem?	2
	1.2	Why is this Problem Significant?	3
	1.3	Why is it Critical to Solve this Problem?	3
	1.4	Where is this Problem Impacting?	4
	1.5	Who are the Impacted Stakeholders?	4
	1.6	Scope of the Final Problem	4
	1.7	Aim and Objectives	6
		1.7.1 Thesis Conduct	6
	1.8	Structure of this Thesis	7
2	LIT	ERATURE REVIEW	9
	2.1	Software Development and its Positioning in the Markets	12
	2.2	Customer Satisfaction is the Objective of Quality	14
	2.3	Software Quality Evaluated through Different Models	15
	2.4	Measurement of Software Product Quality and Success Cases $\ldots \ldots \ldots$	17
	2.5	Measures to Improve Software Product Quality Evaluation	19
	2.6	Improving the Competitiveness of Colombian Software Companies \ldots .	24
	2.7	Some Studies on Issues of Software Product Quality	28
		2.7.1 A New Model Based on Soft Computing for Evaluation and Selec-	
		tion of Software Products	29

3

	2.7.2	Usability and Accessibility as Quality Factors of a Secure Web	
		Product	30
	2.7.3	A SQuaRE-Based Software Quality Evaluation Framework and Its	
		Case Study	31
	2.7.4	Software Reliability Modeling Based on ISO/IEC SQuaRE	32
	2.7.5	Diagnostic on the Appropriation of Metrics in Software Medium	
		Enterprises of Medellin City	33
	2.7.6	Software Quality Modeling Experiences at an Oil Company	33
	2.7.7	A Model for Measuring Agility in Small and Medium Software	
		Development Enterprises	34
	2.7.8	A Framework for Evaluating the Software Product Quality of Preg-	
		nancy Monitoring Mobile Personal Health Records	35
	2.7.9	Evaluation of Software Product Functional Suitability: a Case Study	36
	2.7.10	Improving Software Product Line Configuration: a Quality Attribute-	
		Driven Approach	37
	2.7.11	Certification Process and Product Quality: Route Colombian SME	
		Manufacturing Software	38
	2.7.12	Assessment of Quality Factors in Enterprise Application Integration	38
2.8	Summ	ary	39
RES	SEARC	H DESIGN	41
3.1	Quant	itative Research Design	42
	3.1.1	Research Question and Hypothesis	42
	3.1.2	Quantitative Method	43
3.2	Qualit	ative Research Design	45
3.3	Episte	mology Informs the Theoretical Perspective	47
3.4	Pheno	menological Research as a Methodology	48
3.5	Metho	dology Governs Our Choice and Use of Methods	49
3.6	Resear	rch Method Proposed	49
	3.6.1	Selection of Interviewees	50
	3.6.2	Discovering Meanings	50
3.7	Will th	ne Results be Valid?	50
	3.7.1	Data Saturation	50
	3.7.2	Validity of Analysis	51
3.8	Ethica	l Issues	52

TABLE OF CONTENTS

	3.9	Summ	ary	52
4	QUA	ANTITA	ATIVE FINDINGS [STUDY I]	53
	4.1	Questi	on Design	53
	4.2	Analys	sis	54
	4.3	Findin	gs	54
	4.4	New R	esearch Method	58
	4.5	Summ	ary	60
5	QUA	ALITAT	TVE ANALYSIS APPROACH [STUDY II]	61
	5.1	Overvi	ew of the Approach	61
	5.2	Data A	Analysis Process	63
		5.2.1	Data Collection	63
		5.2.2	Participant Selection	63
		5.2.3	Thematic Analysis	65
		5.2.4	NVivo Data Analysis Process	71
		5.2.5	Resulting Patterns	74
	5.3	Summ	ary	74
6	FIN	DINGS	5	75
	6.1	Patter	ns	75
		6.1.1	Pattern A - Customer Satisfaction	77
		6.1.2	Pattern B - Fulfilling Customers' Functional Requirements	81
		6.1.3	Pattern C - Customized Protocols and Methodologies $\hfill \ldots \ldots \ldots$	85
		6.1.4	Pattern E - Manual and Automation Tests	95
		6.1.5	Pattern F - Measures and Indicators Evaluated	102
		6.1.6	Pattern G - Process Quality over Product Quality	108
		6.1.7	Pattern H - Existing Procedures, Best Practices, Guidelines, and	
			Policies	115
		6.1.8	Pattern I - Project Management Skills	120
		6.1.9	Pattern K - Software Quality Characteristics	124
		6.1.10	Pattern L - The Quality Environment is Not Well	130
	6.2	An Ov	erall Understanding of the Patterns	134
	6.3	Summ	ary	135
7	DIS	CUSSI	ON	137
	7.1	Dattor	n Discussion	197

		7.1.1 Relating Patterns to Software Product Quality	138
	7.2	The Theme "Process Quality over Product Quality"	140
	7.3	Consequences and Benefits	143
	7.4	Summary	144
8	CON	NCLUSIONS AND FUTURE WORK	145
	8.1	Contributions to Field	145
	8.2	Limitations	146
	8.3	Industry Adoption	147
	8.4	Challenges	147
		8.4.1 Lack of Standardisation	147
		8.4.2 Lack of Education in SPQs	148
	8.5	Recommendations	148
	8.6	Future Work	150
A	Sur	vey - Quantitative Design (QtD)	151
B	Con	sent Form (QtD)	161
С	Invi	tation Letter (QtD)	163
D	Par	ticipant Information Sheet (QtD)	165
E	Inte	erview - Qualitative Design (QlD)	169
F	Agr	eement letter (QlD)	173
G	Participant information sheet for company representative (QlD) 1		175
н	Con	sent Form (QlD)	179
Ι	Par	ticipant information sheet (QlD)	181
Re	efere	nces	185

LIST OF FIGURES

FIGURE

Page

2.1	Model for assessment and selection of software products (Fernandez et al. 2018)	30
2.2	Usability definition framework according to ISO 9241-11 (Baquero et al. 2018)	31
2.3	${ m SQuaRE}$ -based software quality evaluation framework (Nakai et al. 2016)	32
2.4	Reliability assessment schema (Febrero et al. 2016)	33
2.5	GQM abstraction sheet for the design of external dependencies (Lampasona	
	et al. 2012)	34
2.6	Proposed agility assessment model (Escobar & Linares 2012)	35
2.7	Impact of each block of requirements on the external sub-characteristics (Idri	
	et al. 2016)	36
2.8	Environment quality evaluation (Rodriguez et al. 2016)	37
2.9	SPAF execution process (Guana & Correal 2013)	38
3.1	Research Process, adapted from Crotty (1998)	46
5.1	Components of data analysis. adapted from (Bazeley 2013, Miles et al. 2014)	62
5.2	Path for exploring data in NVivo (Alase 2017, Pietkiewicz & Smith 2014)	72
5.3	Map - Customer satisfaction	73
5.4	Map - Fulfilling customer requirements	73
6.1	Customer satisfaction	78
6.2	Fulfilling customer functional requirements	83
6.3	Customized protocols and methodologies	88
6.4	Manual and automation tests	97
6.5	Measures and indicators evaluated	104
6.6	Process quality over product quality	112
6.7	Existing procedures, best practices, guidelines, and policies	117
6.8	Project management skills	122

6.9	Software quality characteristics	127
6.10	The quality environment is not well	132
7.1	Theme as Related to Patterns	141

LIST OF TABLES

	TABLE	age
2.1	Characteristics and sub-characteristics (ISO25023 2016)	17
2.2	Software Quality measures (1 of 2)	20
2.3	Software Quality measures (2 of 2)	21
2.4	Characteristics most used by experts	22
2.5	Characteristics vs industries	25
2.6	Characteristics and attributes measured by Colombian software companies .	26
2.7	Search Engines Used	28
2.8	Keywords and strings	29
4.1	Quantitative data results (1 of 3)	55
4.2	Quantitative data results (2 of 3)	56
4.3	Quantitative data results (3 of 3)	57
4.4	Non-functional characteristic/requirement concepts (1 of 2) (ISO25023 2016)	58
4.5	Non-functional characteristic/requirement concepts (2 of 2) (ISO25023 2016)	59
5.1	Participants classification	64
5.2	Extra questions to the participants	66
5.3	Coding Examples	67
5.4	Pattern and common ideas by colour	68
5.5	Definitions	68
5.6	Similarities and connections (1 of 3)	69
5.7	Similarities and connections (2 of 3)	70
5.8	Similarities and connections (3 of 3)	71
6.1	List of patterns	76
6.2	List of measures and indicators	107