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Abstract

Microalgae and cyanobacteria are considered as important model organisms to investigate

the biology of photosynthesis; moreover, they are valuable sources of biomolecules for sev-

eral biotechnological applications. Understanding the species-specific traits of photosyn-

thetic electron transport is extremely important, because it contributes to the regulation of

ATP/NADPH ratio, which has direct/indirect links to carbon fixation and other metabolic

pathways and thus overall growth and biomass production. In the present work, a cuvette-

based setup is developed, in which a combination of measurements of dissolved oxygen,

pH, chlorophyll fluorescence and NADPH kinetics can be performed without disturbing the

physiological status of the sample. The suitability of the system is demonstrated using a

model cyanobacterium Synechocystis sp. PCC6803, as well as biofuel-candidate microal-

gae species, such as Chlorella sorokiniana, Dunaliella salina and Nannochloropsis limnetica

undergoing inorganic carbon (Ci) limitation. Inorganic carbon limitation, induced by photo-

synthetic Ci uptake under continuous illumination, caused a decrease in the effective quan-

tum yield of PSII (Y(II)) and loss of oxygen-evolving capacity in all species investigated

here; these effects were largely recovered by the addition of NaHCO3. Detailed analysis of

the dark-light and light-dark transitions of NADPH production/uptake and changes in chloro-

phyll fluorescence kinetics revealed species- and condition-specific responses. These

responses indicate that the impact of decreased Calvin-Benson cycle activity on photosyn-

thetic electron transport pathways involving several sections of the electron transport chain

(such as electron transfer via the QA-QB-plastoquinone pool, the redox state of the plasto-

quinone pool) can be analyzed with high sensitivity in a comparative manner. Therefore, the

integrated system presented here can be applied for screening for specific traits in several

significant species at different stages of inorganic carbon limitation, a condition that strongly

impacts primary productivity.
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Introduction

Microalgae are phototrophic organisms that play an essential role in the biogeochemical

cycling of macro and microelements and are thus key components of freshwater and marine

ecosystems. Besides their role in the biosphere, microalgae are also valuable sources of various

compounds that have a great importance for human consumption, such as pharmaceuticals,

nutraceuticals, food supplements etc. However, in order to efficiently utilize microalgae, it is

essential to understand their physiology, life cycle and stress tolerance mechanisms in detail.

Microalgae, as other oxygenic phototrophs, are often exposed to fluctuating environmental

conditions, which can cause imbalances in metabolic reactions that ultimately affect growth

and thus biomass production. The light reactions of photosynthesis, performed by several

components of the photosynthetic electron transport chain, including Photosystem II (PSII),

Cytochrome b6/f, Plastocyanin, Photosystem I (PSI), together with the subsequent carbon fixa-

tion processes provide rapid regulatory mechanisms that can fine-tune the energetic balance

to mitigate the detrimental effects of highly variable stress conditions. Linear electron trans-

port originating from the oxidation of water molecules produces ATP and NADPH, which are

utilized primarily in the Calvin-Benson cycle. ATP and NADPH are produced in a ratio that is

often insufficient for CO2 fixation [1]. Various stress factors can modify the ATP and NADPH

generation pathways and thus the ATP/NADPH ratio, potentially causing imbalances in the

cellular energy stocks. Stress conditions prime metabolism for elevated ATP demand, which

can be provided by alternative electron transport mechanisms (reviewed e.g. in [2]). Cyclic

electron flow around PSI (CEF) is exclusively involved in ATP synthesis without the accumula-

tion of NADPH. Briefly, CEF involves transferring electrons from PSI to the PQ pool, medi-

ated by the NAD(P)H PQ oxidoreductase pathway, namely the type 1 NADH dehydrogenase

(NDH-1) or the type 2 NADPH dehydrogenase (NDH-2), or by the Proton Gradient Regula-

tion/PGR5-Like Photosynthetic Phenotype 1 (PGR5/PGRL1) pathway (reviewed e.g. in [3]).

This cyclic electron transfer mechanism is coupled with proton translocation from the stroma

to the lumen during the Q-cycle [4], and the translocated protons are utilized by ATP synthase

to produce ATP without the net synthesis of NADPH.

Inorganic carbon (Ci) in the form of bicarbonate (HCO3
-) and/or carbon dioxide (CO2) is

the most important and essential macronutrient for the growth of organisms performing oxy-

genic photosynthesis. Although inorganic carbon is crucial to sustain photosynthetic carbohy-

drate synthesis, aquatic photosynthetic organisms are often exposed to randomly fluctuating

Ci availability or sustained Ci limitation that may strongly impact primary productivity and

growth. To overcome Ci limitation, photosynthetic organisms operate carbon concentrating

mechanisms (CCM) that play an important role in the physiological gas-exchange characteris-

tics by increasing the concentration of CO2 at the active site of ribulose-1,5-bisphosphate car-

boxylase oxygenase (Rubisco) [5–8].

In previous works the activation of alternative electron transport mechanisms including

CEF was characterized in cyanobacteria using various non-invasive biophysical methods. Vari-

able chlorophyll fluorescence is a frequently applied tool to monitor the operating efficiency of

PSII (e.g. [9, 10]), as chlorophyll fluorescence is relatively easily measured in standard cuvette

systems as well as in photobioreactors, even in large scale algal cultivation facilities. The influ-

ence of inorganic carbon content on photosynthetic performance can be sensitively monitored

by the Chlorophyll (Chl) fluorescence induction technique in green algae [11, 12] as well as in

cyanobacteria [13, 14]. Advanced Chl fluorescence techniques such as post-illumination rise

in chlorophyll fluorescence and flash-induced fluorescence decay kinetics [15] can also reveal

the electron transfer steps between the QA, QB and the PQ pool. In addition, a wave phenome-

non observed in fluorescence decay was found to be particularly useful to resolve specific
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redox kinetics that reveal the operation of the PQ pool and electron donations towards PSI

during CEF in cyanobacteria [15] and green algae [16]. Combination of Chl fluorescence with

P700 kinetics, NADPH fluorescence and/or transient measurements of carotenoid bandshifts

(electrochromic absorbance changes) have been previously applied to monitor the balance and

shifts between LEF and CEF mechanisms under altered Ci conditions [13, 14, 17–19]. A thin-

layer microcell capable of measuring flash O2 yields and chlorophyll fluorescence by fast repe-

tition rate (FRR) fluorometry allowed the characterization of linear and cyclic electron flow

within PSII in several microalgae and cyanobacteria [20] and the analysis of PSII binding sites

of HCO3
- with different affinities under reversible inorganic carbon limitation [21].

The responses of photosynthetic electron transport to Ci limitation have been characterized

in popular model species and mutants of cyanobacteria, e.g. Synechocystis PCC 6803 and green

algae such as Chlamydomonas reinhardtii [6, 13, 17]. A particularly important and extensively

characterized mutant of Synechocystis PCC 6803 is the ndhB-deficient M55 mutant, which

lacks all the type 1 NADPH-dehydrogenase (NDH-1) complexes [22], and is therefore unable

to perform CEF and CCM. The M55 has a high-CO2-requiring phenotype, its photosynthetic

activity remains low, and the NADP pool is highly reduced under ambient CO2-concentra-

tions [22–24].

The inherent regulation of photosynthesis and the plasticity of the photosynthetic electron

transport chain under variable growth and environmental conditions and abiotic stress factors

remains largely uncharacterized in several microalgae species that have high relevance in bio-

technological applications and biofuel industries, such as Chlorella sorokiniana, Dunaliella
salina and Nannochloropsis limnetica. The green alga Chlorella sorokiniana is considered as a

stress-resilient species, and due to its ability to maintain high growth rates under stress it is

applied in several industrial processes such as wastewater treatment (e.g. [25]) and elevated

CO2 sequestration which enhances lipid production [26]. The species Dunaliella salina, a

highly salt-tolerant green alga is applied for commercial scale β-carotene production in phar-

maceutical and nutraceutical industries (recently reviewed in [27]). Furthermore, this species

is also an important model organism for studying photoacclimation capabilities to enhance

biomass productivity (e.g. [28]).

Nannochloropsis limnetica (Eustigmatophyceae) is a freshwater alga, whose total fatty acid

content can be very high, even double of the fatty acid content of other marine Nannochlorop-
sis species [29]. Despite the high relevance of these species in industrial applications, the

dynamic regulation of their photosynthetic responses, e.g. under transient Ci limitation has

scarcely been characterized.

Precisely designed and operated photobioreactor systems with multiple sensors of physico-

chemical parameters (dissolved oxygen, pH, optical density) and gas control allowed real time

monitoring of the physiological changes and net photosynthesis under Ci limitation [30–33].

However, an integrated analysis system, where the physico-chemical parameters of algae suspen-

sions can be measured along with photosynthetic efficiency parameters and the kinetics of pho-

tosynthetic electron transport in a simple cuvette-based platform has not been established and

utilized for screening for photosynthetic markers in microalgae. A standardized, cuvette-based

platform that allows monitoring dissolved O2 and pH along with non-invasive measurements of

advanced Chl fluorescence and NADPH fluorescence kinetics would allow screening for photo-

synthetic traits of uncharacterized species, under various stages of Ci limitation and recovery.

Therefore the aims of the present work were (i) to establish an integrated cuvette system,

where several parameters (O2 evolution/uptake, pH) and photosynthetic quantum efficiency

and kinetics of photosynthetic electron transport can be simultaneously recorded and moni-

tored, in time-resolved manner under well-defined environmental conditions, and (ii) to com-

prehensively and comparatively monitor and assess the photo-physiological and
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photosynthetic behavior of Synechocystis sp. PCC6803WT (grown with and without CO2), the

M55 mutant of Synechocystis sp. PCC6803, Chlorella sorokiniana, Dunaliella salina and Nan-
nochloropsis limnetica under inorganic carbon limitation and during recovery from inorganic

carbon limitation stress. This integrated approach would allow to investigate photosynthetic

efficiency and operation of photosynthetic electron transport pathways in biofuel-candidate

microalgae undergoing inorganic carbon limitation, a particularly relevant stress condition

that affects photosynthetic performance and primary productivity in short timescales.

Materials and methods

Culture conditions

Synechocystis sp. PCC 6803 WT (wild type) cells were grown in BG-11 medium on a rotary

shaker under continuous illumination of 40 μmol photons m-2 s-1 photon flux density white

light at 30˚C, supplied by 3% CO2 or ambient CO2 (where ‘ambient’ refers to approx. 410 ppm

atmospheric CO2 concentration). The M55 mutant (ΔndhB), deficient in type I NADPH dehy-

drogenase complex, NDH-1 [22] of Synechocystis was grown under the same conditions as the

WT (in 3% CO2) in BG-11 medium supplemented with kanamycin (20 μg mL−1).

Chlorella sorokiniana (Trebouxiophyceae) and Nannochloropsis limnetica (Eustigmatophy-

ceae) were grown in 500 mL Erlenmeyer flasks with 200 mL culture volume in BG-11 medium

with the light intensity of 56 μmol photons m-2 s-1 (white LED light), 12 h: 12 h day: night diur-

nal cycle with continuous shaking at 120 rpm, at a constant temperature of 24˚C.

Dunaliella salina was grown under the same conditions as described above, but in f/2

medium (prepared with artificial seawater) supplemented with 30 gL-1 NaCl and no shaking.

For measurements the cells were harvested in the early exponential growth phase, centri-

fuged at 6,500 g for 5 min at 24˚C and were resuspended in fresh medium to achieve the Chl a
content of 5 μg mL-1.

Measurement of chlorophyll content

For eukaryotic microalgae chlorophyll was determined using acetone and DMSO (1:1). The

samples were centrifuged at 16,000 g for 8 min. The supernatant was discarded and 1 mL of a

1:1 mixture of 90% acetone and 90% DMSO was added to the pellet, then incubated on ice for

5 min, vortexed and centrifuged at 16,000 g for 7 min. The supernatant containing the

extracted pigments was transferred to a glass cuvette with 1 cm path length for measurement.

The absorbance spectrum was measured with a UV-visible spectrophotometer (UV-1601, Shi-

madzu corporation, Japan) at A663 and A645 nm for determining the chlorophyll a content,

according to [34, 35] (see also S1 Table). Eq 1 was used for calculating chlorophyll a content

for microalgae.

Chl a ðmg mL� 1Þ ¼ 11:75�A663 � 2:35�A645 ð1Þ

For cyanobacteria, the chlorophyll a content was determined by 100% methanol extraction.

Eq 2 was used to calculate chlorophyll a content for Synechocystis sp.

Chl a ðmg mL� 1Þ ¼ 16:5�A665:5 � 8:3�A650:5 ð2Þ

Experimental setup

A cuvette-based sample holder (Optical Unit ED-101US/MD, Heinz Walz GmbH, Effeltrich,

Germany) attached to a DUAL-PAM-100 chlorophyll fluorometer (Heinz Walz GmbH, Effel-

trich, Germany) was used for monitoring the physiological response of microalgae. A quartz

cuvette with 1 cm path length (Hellma GmbH, Germany) was used with a custom-designed
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lid, in which various probes were fixed in the following configuration (as shown in Fig 1): (a) a

4 mm outside diameter O2 optode (Fibox 3, Presens GmbH, Aachen, Germany) to measure

the dissolved oxygen content of the sample, (b) a 1.5 mm pH electrode (Microelectrode Inc.,

USA) to log the pH change, (c) a 1.2 mm inlet pipe to provide air bubbling controlled via a

18-gauge blunt tip syringe needle to avoid the buildup of excess oxygen concentration that

may cause oxygen toxicity in the chamber, and (d) an outlet hole for gas exchange and pressure

release.

The lid was designed in two parts: half of the lid could be easily opened and closed when

needed during the experiment without disturbing the O2 optode and the pH electrode, which

can stay stable together with the other half of the lid. The temperature was maintained at 24˚C

for eukaryotic microalgae and 30˚C for cyanobacteria in a temperature-controlled block (ED-

101US/T Heinz Walz GmbH, Effeltrich, Germany) fixed on the Optical Unit ED-101US/MD,

by using a water circulation heater chiller (Pharmacia Biotech GmbH MultiTemp III, Ger-

many). The cuvette was closed for the duration of the O2 evolution measurement, and opened

after the measurement to allow gas exchange and to avoid the buildup of excess levels of dis-

solved oxygen that may cause oxygen toxicity (according to [12]). The culture was continu-

ously stirred with a small magnetic stirrer bar. The sample was illuminated with white actinic

light provided by a fiber optic light source from one side of the cuvette (Schott KL 1500, Schott

AG, Germany). For NADPH measurements the Dual NADPH/9AA module was used (see

below), with the emitter (Dual-ENADPH) and detector (Dual-DNAPH) units placed at right

angle position to avoid the measuring light reaching the photomultiplier and reducing the

level of artificial background signals. Chlorophyll fluorescence was recorded with a Dual-DB/

DR unit, assembled to a right angle position to the Dual-DNADPH detector (Fig 1). Flash-

induced fluorescence decay kinetics and OJIP transient curves were measured using a double-

modulation PSI fluorometer (see below) that was not directly integrated into the Dual-PAM

cuvette unit. The PSI-FL3000 fluorometer was equipped with a fixed measuring head (the so-

Fig 1. Cuvette-based setup with custom-designed lid including (a) O2 optode, (b) pH electrode, (c) Inlet (air/gas bubbling), (d) Outlet, (e) Magnetic

stirrer, (f) NADPH emitter, (g) NADPH detector, (h) Chlorophyll fluorescence detector, (i) Fiber optic white light source.

https://doi.org/10.1371/journal.pone.0236188.g001
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called super-head, containing the cuvette holder and the emitter detector unit), therefore the

cuvette was transferred from the Dual-PAM holder into the PSI super-head.

Experimental procedure

The photophysiological response of microalgae was investigated by using variable chlorophyll

fluorescence via pulse amplitude modulation (PAM) chlorophyll fluorometry, O2 evolution and

pH measurements. 2 mL working volume was loaded in the 1-cm rectangular quartz cuvette

with 5 μg mL-1 Chl a suspended in fresh medium for the measurement. The cuvette was covered

with a customized lid ensuring that the sample was closed, or open to gas exchange with ambi-

ent air, depending on the applied experimental conditions. The dissolved oxygen concentration

was logged continuously, measured at a sampling interval of every 1 s by the manufacturer’s

software (OxyView—PST3-V5.32 02/2004, PreSens GmbH, Germany) via USB connection.

The O2 sensor was calibrated with two points, i.e. air-saturated water ‘Cal 100’ (100% air satura-

tion) and anoxic water ‘Cal 0’ (1 g of Na2SO3 in 100 ml distilled water) before the measurement.

The oxygen evolution/uptake rate was determined from the slope of the linear fitting of the orig-

inal traces and expressed in μmol O2 [mg Chl a]-1 h-1 units. In certain experiments, changes in

O2 evolution/uptake dynamics are displayed as a rate, given by the first derivative of the dis-

solved oxygen traces. pH data were logged every 5 min via the manufacturer’s data logging soft-

ware (Orion Star A300, Thermo Scientific Inc., USA). Effective quantum yield, oxygen

concentration and pH were recorded starting from the 0 min time point. In the first 20–30 min

the sample was kept in the dark with a weak measuring light on to determine the minimum

fluorescence (denoted as F0 in the dark-adapted state or Fs in the light-adapted state). A 600 ms

saturation light pulse (LED with peak emission at 635 nm, PPFD 10,000 μmol photons m-2 s-1)

was applied every 5 min for the determination of maximum fluorescence (denoted as Fm in the

dark-adapted state or Fm’ in the light-adapted state). The effective quantum yield of photochem-

ical energy conversion in PSII in the light-adapted state was calculated as Y(II) = (Fm
’–Fs)/Fm

’

or in analogy, the expression Fv/Fm = (Fm−F0)/Fm was applied to determine the maximum

quantum efficiency of PSII in the dark-adapted state [36]. After a dark period of approx. 25 min

the sample was illuminated with actinic white light with the same irradiance that was applied as

a growth light, to induce inorganic carbon uptake, until cells achieved a Ci-limited state. Each

species required different time periods to reach the Ci-depleted phase, therefore the AL was pro-

vided for specified time periods as indicated at the individual experiments (see below in Fig 2

and S1–S6 Figs). To restore the photosynthetic activity of the cells, 10 mM NaHCO3 was added

at the fully Ci-depleted stage. At defined time points, the NADPH and Chl fluorescence mea-

surements were performed as specified below. The flash-induced fluorescence decay kinetics

and OJIP transient curves were measured by transferring the cuvette to the PSI measuring head

without removing the lid or the sensors, therefore neither the physiological and physico-chemi-

cal conditions of the cell suspensions were disturbed, nor the Ci content of the cells and the

geometry of the cuvette setup were changed throughout the whole process/experiment.

Simultaneous measurement of NADPH and chlorophyll fluorescence

NADPH and chlorophyll fluorescence were simultaneously measured in a Dual-PAM-100

chlorophyll fluorometer (Heinz Walz, Effeltrich, Germany) at 24˚C for green algae and 30˚C

for cyanobacteria. At a specific time point representing either the Ci-replete or -depleted stage

(defined as T points, see Results and Discussion), cells were dark-adapted for 3 min. A slow

induction measuring protocol was initiated and the NADPH/Chl fluorescence signals were

recorded for 30 s in the dark to establish a baseline, then the actinic red light (635 nm peak

intensity) at ~56 μmol photons m-2 s-1 (or near the growth light intensity) was switched on to
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record light-induced NADPH/Chl fluorescence change for 180 s, and subsequently the

NADPH/Chl fluorescence change from light-to-dark was monitored up to 300 s.

NADPH fluorescence was measured using the NADPH/9-AA module of a Dual-PAM-100

instrument (Heinz Walz, Effeltrich, Germany; [37–39]). The NADPH/9-AA module consists

of an emitter unit (DUAL-ENADPH) and a detector unit (DUAL-DNADPH). NADPH fluo-

rescence was excited by UV-A (365 nm) from the DUAL-ENADPH unit and detected by a

blue-sensitive photomultiplier with a filter transmitting light between 420 and 580 nm in the

DUAL-DNADPH unit. The measuring light intensity was set to 20, the measuring light fre-

quency in the absence and presence of red AL was set at 200 and 5,000 Hz, respectively. Chl

fluorescence was detected with a Dual-DB/DR unit (see Fig 1 for the topological arrangement

of the measuring setup and refer to [38] for the technical details of the emitter-detector units).

Measurement of flash-induced chlorophyll fluorescence decay and OJIP

transients

Flash-induced chlorophyll fluorescence decay was measured in the same cuvette that was used

for measuring simultaneous Chl-NADPH fluorescence using a double-modulation

Fig 2. Representative graph of the physiological response of Synechocystis sp. PCC6803 WT during the course of Ci limitation. The cells were

washed and resuspended in fresh HEPES buffered BG11 medium. Simultaneous measurements of (A) Oxygen evolution and (B) Effective quantum

yield of PSII (Y(II)) were performed. Y(II) was measured every 5 min. The cells were kept in the dark for 20 min (grey shade region), then illuminated

with actinic white light at 56 μmol photons m-2 s-1. The dots in panel A represent the defined measuring time points of chlorophyll and NADPH

fluorescence kinetics at: T0 (control) in the dark, T1—initial Ci-replete phase in the light, T2—early phase of Ci depletion, T3—prolonged Ci-depleted

phase, T4—Ci recovery phase in the light (arrow indicates the addition of 10 mM NaHCO3). The red lines represent the phases to determine O2

evolution/uptake rates.

https://doi.org/10.1371/journal.pone.0236188.g002
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fluorometer (FL-3000, Photon System Instruments, Drásov, Czech Republic). The measuring

unit was controlled by the manufacturer’s software (FluorWin, Photon System Instruments,

Drásov, Czech Republic). The timing and duration of the flashes were defined in the FluorWin

experimental protocol and executed by a microprocessor in the control unit of the fluorome-

ter. After 4 measuring flashes (8 μs, 620 nm) to determine minimum fluorescence in the dark,

a single turnover saturating actinic flash (30 μs, 639 nm) was applied, which transfers an elec-

tron from the water oxidizing complex to QA, resulting in a prompt increase in fluorescence as

a result of formation of QA
- [15]. The fluorescence decay resulting from reoxidation of QA

-

was measured by applying measuring flashes in the time range from 150 μs to 100 s on a loga-

rithmic time scale. OJIP transient curves were recorded by applying continuous illumination

with strong actinic light for 3 s (639 nm peak wavelength, PPFD ~3,000 μmol photons m-2 s-1).

Data analysis

Graphs were plotted and analyzed using OriginPro 2018 software. To test statistical differences

between the Ci replete, depleted and recovery, paired-sample t-test was applied using the Ori-

ginPro 2018 software. The flash-induced fluorescence decay curves and the OJIP transients

were double normalized; minimal fluorescence F0 was set to 0 and maximal fluorescence was

set to 1.

Results and discussion

Continuous monitoring of physiological changes under Ci limitation

In a typical experiment in WT Synechocystis cells (Fig 2), after recording the respiratory oxy-

gen uptake in the dark, a significant increase in dissolved oxygen content was observed in the

presence of actinic light, indicating active oxygen evolution by photosynthesis. Upon pro-

longed illumination, the rate of oxygen evolution decreased as cells gradually entered a Ci-

depleted stage. After about 20 min of illumination, oxygen evolving capacity was reversibly

lost as Synechocystis cells became Ci-depleted, and the dissolved oxygen level slightly decreased

as a result of oxygen uptake by the cells, potentially due to the activation of oxygen uptake

mechanisms (e.g. [40]). The effective quantum yield of PSII (Y(II)) in the light-adapted state

(or Fv/Fm, maximum quantum yield of PSII in the dark-adapted state) increased upon illumi-

nation (during dark to light transition), probably due to state 2 to state 1 transition [41], then

after attaining a plateau for 15–20 min, Y(II) decreased gradually during the course of pro-

longed illumination and attained a steady-state level after ~25 min of illumination (Fig 2).

After addition of NaHCO3, Y(II) and oxygen evolution recovered to 80–90% of the values

observed at the beginning of the illumination (initially carbon-replete stage), indicating that

the decrease in oxygen evolution capacity and effective quantum yield occurred as a result of

Ci depletion during illumination (the irradiance was unchanged during NaHCO3 addition).

The results of continuous monitoring of dissolved O2, Y(II), and pH for the entire experiments

for all species are shown in the Supplementary material (S1–S6 Figs). The pH during the exper-

iments remained unchanged in the cultures grown and suspended in BG-11 (pH = 7.5–7.7,

S1–S5 Figs). However, in the case of D. salina cultivated in f/2 medium, the pH showed a pro-

gressive increase from pH = 7.7 to a plateau of 9.2 (S6 Fig), as the cells entered the Ci-limited

stage (for the relationship between extracellular pH and Ci content in algae cultivated in an

artificial seawater based medium, refer to [18, 32]). The simultaneously recorded oxygen and

chlorophyll fluorescence data in the integrated cuvette system allows displaying the dynamic

changes in photosynthetic processes in various stages of Ci limitation/recovery. Dynamic

changes in oxygen evolving capacity (i.e. the rate, given by the first derivative of changes in dis-

solved oxygen level) displayed along with PSII electron transfer rate (ETR) showed a good
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correlation in all species. However, in some cases at the beginning of the experiment, especially

in microalgae, oxygen evolution rate was found to be relatively low as compared to Y(II),

which is possibly due to the operation of active oxygen uptake mechanisms (S7 Fig shows the

original plots for all species investigated here).

The reversible loss of O2 evolution capacity and decrease in PSII quantum yield under

bicarbonate depletion are in agreement with earlier findings that were obtained by simulta-

neous O2 yield and variable Chl fluorescence assays. In Ref. [42] it was found that addition of

10 mM NaHCO3 to Ci-depleted Synechocystis cells caused a 2-fold stimulation of oxygen evo-

lution. In a mutant that is deficient of the arginine binding site of the CP43 protein (R357S),

the stimulating effect of NaHCO3 addition on O2 evolution was much less expressed or

completely missing. Bicarbonate has an important regulatory role in both the donor and

acceptor sides of PSII (reviewed e.g. in [43]). On the donor side, bicarbonate was found to play

a role in photo-induced assembly of the manganese cluster of the water-oxidizing complex,

stabilization of PSII and protection of PSII against photoinhibition and thermoinactivation

(reviewed in [44]). On the acceptor side bicarbonate is coordinated to the non-heme iron

located between QA and QB [45] and therefore plays an important role in the regulation of

electron transport from QA
- to QB, the protonation of QB

2- and the exchange of QBH2 with the

PQ pool (studied extensively by Govindjee and colleagues, reviewed e.g. in [46, 47]).

Comparative analysis of effective quantum yield of PSII under Ci

limitation

Effective quantum yield of PSII (Y(II)) in the initial Ci replete stage (T1 phase) showed specific

differences in Synechocystis sp. PCC6803; cultures grown in the presence of 3% CO2 and at

ambient CO2 exhibited Y(II) = 0.39±0.1 and Y(II) = 0.29±0.01, respectively, whereas the M55

mutant showed Y(II) = 0.05±0.02. Under prolonged Ci-limited stage (T3 phase), Y(II) signifi-

cantly dropped to 0.11±0.04 and to 0.15±0.05 in cells grown at 3% CO2 and at ambient CO2,

respectively (when compared to Ci-replete, p<0.05, Fig 3), while in the M55 mutant Y(II)

remained essentially unchanged (Y(II) = 0.05±0.03). Upon addition of NaHCO3, Y(II) recov-

ered to 0.35±0.07 and to 0.29±0.04 in cultures grown at 3% CO2 and at ambient CO2, respec-

tively, and to 0.36±0.04 in the M55 mutant. This indicates that the M55 cells were probably Ci-

limited from the beginning (even though they were cultivated at 3% CO2), and only after the

addition of 10 mM NaHCO3 did they regain maximal PSII quantum efficiency. This was not

due to lack of functional PSII reaction centres, because dark-adapted Fv/Fm was found to be

0.45±0.02 in the M55 mutant (S3 Fig).

In the species C. sorokiniana, D. salina and N. limnetica, the behavior of Y(II) under Ci

depletion and recovery was similar. With the continuous illumination of actinic white light

(for approx. 3.5h), Y(II) significantly decreased, and upon addition of NaHCO3 Y(II) recov-

ered nearly completely in all three species. The dynamics of the chlorophyll fluorescence

parameters (original chlorophyll fluorescence traces are shown in S8 Fig) indicates that mini-

mal steady-state fluorescence (Fs) in Synechocystis grown at 3% CO2 increases during actinic

illumination and remains at a high level during the onset of Ci limitation, and after addition of

NaHCO3 it recovers to the initial Ci-replete stage (S8A Fig). However, Synechocystis grown at

ambient CO2 exhibited only a small increase in Fs under actinic illumination (S8B Fig), sug-

gesting that the PQ pool remained at a more oxidized state during the Ci limitation experiment

in Synechocystis cells grown at ambient CO2 level as compared to the 3% CO2 growth condi-

tion. This effect is probably due to the operation of an alternative electron flow, such as photo-

respiration [48] (or more likely due to the flavodiiron-mediated O2 consumption [49]). M55

showed a rapid increase in steady-state fluorescence (Fs) (S8C Fig) and a decrease in Fm’ within

PLOS ONE Screening platform to investigate inorganic carbon limitation in cyanobacteria and microalgae

PLOS ONE | https://doi.org/10.1371/journal.pone.0236188 July 23, 2020 9 / 25

https://doi.org/10.1371/journal.pone.0236188


5 min of actinic light illumination that corresponds to the immediate drop in Y(II) in the light

(S3 Fig). Fs remained at high level and Fm’ remained smaller during the onset of Ci limitation,

which was recovered after the addition of NaHCO3 to the initial Ci-replete stage. C. sorokini-
ana (S8D Fig) exhibited a moderate increase in Fs after 60–70 min of actinic illumination,

which coincided with the cessation of oxygen evolution and drop in Y(II). Prolonged illumina-

tion caused a decrease in Fm’, most probably due to the activation of non-photochemical

quenching processes as a potential energy dissipating mechanism under Ci limitation. N. lim-
netica (S8E Fig) also exhibited an increase in Fs under prolonged illumination, however Fm’

remained relatively constant under Ci limitation. D. salina (S8F Fig) exhibited a continuous

and progressive decrease in both Fs and Fm’ probably as a result of activation of non-photo-

chemical quenching mechanisms under Ci limitation.

Comparative analysis of photosynthetic oxygen evolution rates under Ci

limitation

During the course of prolonged illumination significant loss in the O2 evolving capacity was

observed in all species in Ci-depleted state (Fig 4). Oxygen evolution in Ci-replete state was

Fig 3. Effective quantum yield of PSII in Ci-replete (black), -depleted (red) and recovery (green) stages. The values are

presented as a mean ± SD (n = 3) indicated by error bars. The asterisks mark significant difference between the indicated states

(single asterisks (�): p<0.05, double asterisks (��): p<0.01, triple asterisks (���): p<0.001). Abbreviations: S. WT (HC) (Synechocystis
sp. PCC6803 WT High CO2 grown), S. WT (LC) (Synechocystis sp. PCC6803 WT Low (ambient) CO2 grown), S. M55

(Synechocystis M55 mutant), C.s (Chlorella sorokiniana), N.l (Nannochloropsis limnetica), D.s (Dunaliella salina).

https://doi.org/10.1371/journal.pone.0236188.g003
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found to be 239.3±40 μmol O2 (mg Chl a)-1 h-1 (all O2 rate values are expressed in the same

units) in Synechocystis WT PCC6803 3% CO2 grown samples, 139.7±50 in Synechocystis WT
PCC6803 grown at ambient CO2 and 6.55±15.6 in the M55 mutant. Oxygen evolution rate was

69.4±11.25 in Chlorella sorokiniana, 51.9±24.6 in Nannochloropsis limnetica and 249.4±58.1 in

Dunaliella salina. Under Ci-limited conditions, O2 evolution capacity was essentially lost and

negative rates could be observed, indicating that the O2 uptake rate exceeded the rate of O2

evolution under Ci limitation. The O2 evolution capacity was significantly regained in the

recovery phase (after addition of NaHCO3) in Synechocystis grown both at 3% and ambient

CO2. In the case of the M55 mutant, O2 evolution after NaHCO3 addition was significantly

higher, 104.07±39.7 (p<0.05) as compared to the initial ‘Ci-replete’ stage, indicating that the

M55 mutant was heavily Ci-limited during growth and at the beginning of the experiment. In

microalgae, O2 evolution recovered to 113.9±14.7 (p<0.01) in C. sorokiniana, to 138.56±13.18

(p<0.05) in N. limnetica, and to 207.4±33.3 in D. salina.

Fig 4. Rate of O2 evolution or uptake measured in Ci-replete (black), -depleted (red) and recovery (green) stages. Rate of O2 was calculated from the linear

slope of dissolved O2 obtained during Ci limitation (red lines in Fig 2). Values are presented as a mean ± SD (n = 3) indicated by error bars. The asterisks mark

significant difference between the indicated states (single asterisks (�): p<0.05, double asterisks (��): p<0.01, triple asterisks (���): p<0.001). Abbreviations: S. WT

(HC) (Synechocystis sp. PCC6803 WT High CO2 grown), S. WT (LC) (Synechocystis sp. PCC6803 WT Low (ambient) CO2 grown), S. M55 (Synechocystis M55

mutant), C.s (Chlorella sorokiniana), N.l (Nannochloropsis limnetica), D.s (Dunaliella salina).

https://doi.org/10.1371/journal.pone.0236188.g004
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NADPH fluorescence kinetics under Ci limitation

NADPH fluorescence kinetics is a versatile probe to investigate several photosynthetic processes

downstream of PSI, the operation of ferredoxin NADP+ oxidoreductase (FNR), activation and

limitations of the Calvin-Benson cycle. This method has been proven especially useful in the

model cyanobacterium Synechocystis [19, 37, 38, 50] and the green algal model organisms Chlo-
rella vulgaris [38] and Chlamydomonas reinhardtii [51, 52], but rarely applied for diagnostic

purposes in other microalgae that have high relevance in applied research. As employed here,

the integrated cuvette-based photosynthesis analysis system allows recording NADPH kinetics

without disturbing the physiological state of the sample or changing the geometry of the setup,

therefore screening of NADPH fluorescence-based traits can be performed at customarily

selected time points of the experiment. Initial fluorescence was measured in the dark for 30 s to

obtain the steady state level of the NADP pool. An initial rise in NADPH fluorescence at the

onset of actinic illumination represents light-driven NADP reduction via linear electron flow,

which is followed by a pronounced dip phase, before a second rise phase sets in (the complex

phenomenon of the initial NADPH fluorescence kinetics is analyzed and described in [19, 37–

39]). NADPH fluorescence exhibits a local maximum at around about 20 s (Nm), followed by a

fluorescence decrease due to NADPH consumption by activation of the CBB cycle for CO2 fixa-

tion and then attains a plateau phase during which NADPH production and consumption are

in equilibrium (Nt). Under Ci-replete condition, NADPH fluorescence declines from the Nm

to Nt phase within about 50 s, indicating the high uptake capacity of these NADPH-utilizing

pathways. After turning off the actinic light, a sharp decline in NADPH fluorescence could be

observed, as LEF ceases to drive electrons for reducing NADP+, but the NADPH consumption

pathways remain active due to the uptake of NADPH via the CBB cycle, resulting in an under-

shoot of the NADPH signal. The ‘undershoot’ signal plateaued within about 15–20 s, in agree-

ment with the time course of cessation of CO2 assimilation in the darkness after illumination

(e.g. [53]). Finally, NADPH fluorescence recovers to the initial dark-adapted state due to the fill-

ing up of the NADPH pool e.g. via the reductive pentose phosphate pathway [37].

In Synechocystis grown at 3% CO2, a marked change could be observed during the transition

from Ci-replete to -depleted stage; the decline from Nm to Nt was less expressed, indicating the

decreased NADPH uptake capacity by the CBB cycle (Fig 5A). This was partially recovered after

adding 10 mM NaHCO3, and the overall NADPH fluorescence intensity was also observed to

decrease, probably because of the elevated rate of NADPH consumption over NADPH production

upon repletion of the cells with Ci [19]. Synechocystis cells grown at ambient CO2 (Fig 5B) showed

an elevated NADPH fluorescence in the initial Ci-replete state (resuspended in BG11 medium), the

first rapid dip in fluorescence was diminished, and the Nm-Nt fluorescence difference decreased,

indicating that the cells entered the Ci-limited stage. Under prolonged Ci limitation, the first dip in

NADPH fluorescence was absent. Addition of NaHCO3 restored the Ci-replete ‘phenotype’, as the

fast fluorescence dip reappeared and the Nm-Nt difference became more pronounced (and the

overall NADPH fluorescence decreased), indicating a regained CBB cycle activity based on

NADPH fluorescence signature (Fig 5B). It has to be noted that the initial rapid changes in

NADPH fluorescence kinetics (in the first 50 s timescale after the onset of AL) cannot be assigned

to the activity of the CBB cycle, because the activation of the CBB cycle is a slower reaction; Rubisco

activation and CO2 assimilation rates attain their maxima within a few minutes [54, 55]. Moreover,

application of the CBB cycle inhibitor glycolaldehyde (GA) did not affect NADPH fluorescence

kinetics significantly in the short (<min) timescale but inhibited the NADPH fluorescence decrease

after the Nm phase, indicating that NADPH uptake by the CBB cycle was impaired (S9 Fig).

In the case of the M55 mutant (Fig 5C), AL caused only a minor transient increase in

NADPH fluorescence, but the NADPH fluorescence level rapidly decreased below the initial
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dark-adapted level, and a rapid decrease after illumination also occurred. In Ci-limited stage,

the light-induced NADPH fluorescence increase was present, however the dip during the illu-

mination period was diminished, consequently Nt was at a much higher level than in the Ci-

replete control. After replenishing M55 cells with NaHCO3, the initial Ci-replete ‘phenotype’

was even more expressed, i.e. the complete lack of the light-induced transient increase was

accompanied with a very pronounced decrease below the initial level during AL and the

undershoot of the NADPH fluorescence signal after illumination. The absence of NADPH

uptake by the CBB cycle during actinic illumination in Ci-depleted phase is in agreement with

previous studies in the M55 mutant; it was observed that when the CBB cycle was chemically

blocked, light-induced NADPH formation was not significantly influenced, but NADPH

uptake during light in 1–2 min timescale was retarded [37]. However, the current study also

reveals that in the Ci-limited phase in the M55 mutant the light-induced increase in NADPH

fluorescence was more expressed than in the Ci-replete state. This is possibly due to the fact

that in M55 the NADPH level in the dark was lower in Ci-depleted than in Ci-replete state

(and so, the ‘phenotype’ of Ci-limited M55 cells resembled the ‘phenotype’ of WT cells in Ci-

depleted state).

The NADPH fluorescence phenomenology exhibited similar patterns in eukaryotic micro-

algae as well; the characteristic initial rise, a transient dip, a secondary rise to a peak (Nm)

Fig 5. NADPH fluorescence kinetics traces in Ci-replete (black), -depleted (red) and recovery (green) states during the course of Ci limitation, for all

species and conditions. Cells were dark-adapted for 3 min before each measurement. Data acquisition was started in the dark, followed by illumination with

actinic red light at ~56 μmol photons m-2 s-1, and was finished in darkness, as indicated by the black, yellow, and black bars on the X axis, respectively. The first 30

s of traces were measured in the dark, actinic light was turned on at 30 s and turned off at 180 s, and the light-to-dark changes were measured up to 300 s. (A)

Synechocystis sp. PCC6803 WT grown at 3% CO2, (B) Synechocystis sp. PCC6803 WT grown at ambient CO2, (C) Synechocystis M55 mutant, (D) Chlorella
sorokiniana, (E) Nannochloropsis limnetica, (F) Dunaliella salina. Each trace represents the average of three replicates.

https://doi.org/10.1371/journal.pone.0236188.g005
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followed by a decrease upon CBB activation could be observed, in agreement with previous

studies on NADPH fluorescence kinetics in C. vulgaris [38]; however, minor differences in dif-

ferent species could also be identified. Light-induced NADPH fluorescence changes were the

most sensitive to Ci limitation in D. salina (Fig 5F). The fluorescence signal nearly flattened

upon Ci depletion with significant loss in both light-induced NADPH fluorescence increase

and Nm-Nt difference, and the post-illumination fluorescence decrease was diminished as

well. These changes were nearly completely reversible upon Ci repletion. In the species C. soro-
kiniana and N. limnetica (Fig 5D and 5E, respectively) light-induced NADPH fluorescence

kinetics and its changes during transition from Ci-replete to -depleted state (and recovery

after NaHCO3 addition) exhibited similar properties (i.e. the flattening of NADPH fluores-

cence from Nm to Nt under Ci depletion, which was partially reversible after addition of

NaHCO3). However, these changes were less characteristic as compared to D. salina and Syne-
chocystis, even though the onset of Ci limitation based on PSII quantum yield and cessation of

oxygen evolution (see above) was evident. This indicates that alternative NADPH oxidation

mechanisms might be operational even when NADPH oxidation by the CBB cycle under Ci

limitation is hampered (e.g. [56]), and these multiple mechanisms might contribute to

NADPH uptake kinetics to different extents in the different species. Therefore, although the

NADPH fluorescence phenomenology is a sensitive marker of rapid changes in the Ci status of

cells, further studies are required to fully elucidate its applicability under various physiological

conditions in green and eustigmatophycean algae.

Chlorophyll fluorescence induction-recovery kinetics under Ci limitation

Chlorophyll fluorescence kinetics were recorded in parallel with NADPH fluorescence kinet-

ics, therefore this combined approach allowed a close monitoring of changes in photosynthetic

electron transport under Ci limitation. After switching on the actinic light, an increase in chlo-

rophyll fluorescence was observed, the kinetics of which was complex and the underlying phe-

nomena are not fully resolved here. In general, it is related to progressive reduction and

reoxidation of quinone electron acceptors (mainly QA and PQ), which reflects a quasi-steady

state balance of rates corresponding to the actinic excitation rate generating QA
- (QA reduction

rate) and the rate of forward electron transfer of electron into the PQ pool via the PSII QB site

(QA
−oxidation rate) [57, 58]. Upon prolonged illumination (30 s– 150 s) the chlorophyll fluo-

rescence declines, as PQ becomes oxidized due to the activation of photochemical quenching

and the CBB cycle (this phase also corresponds to the initiation of NADPH uptake by the CBB

cycle (see Fig 5). Upon switching off the actinic light at 180 s, chlorophyll fluorescence displays

fluctuations with multiple peaks on different timescales, which are related to the redox changes

in the PQ pool, mediated by the electron transport carriers from the cytosol to the chloroplast

stroma [19, 59, 60]. The fast phase of post-illumination rise was observed within 1–10 s after

actinic light was switched off in Synechocystis PCC 6803 WT: this post-illumination rise can be

attributed to the operation of the cyclic electron flow [19]. In Synechocystis PCC 6803 WT

(grown at 3% CO2) the post-illumination rise was observed within 3–5 s in both in Ci-replete

and -depleted state, and it was diminished in the Ci recovery phase (Fig 6A). Synechocystis
cells grown at ambient CO2 expressed faster post-illumination rise kinetics within 1–3 s (in

agreement with [60]), the amplitude of which, however, did not change during the prolonged

Ci limitation phase (Fig 6B). Post-illumination fluorescence rise was completely missing in the

mutant M55, irrespectively of Ci content (Fig 6C), in agreement with previous studies (e.g.

[61]). A slower post-illumination fluorescence rise signal in the timescale of 20–50 s was also

observed earlier in Synechocystis and was denoted as FR, which could be assigned to enhanced

reductant flow to the PQ pool because of the accumulation of reduced carbon skeletons from
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the operation of the CBB cycle [59]. Synechocystis grown at 3% CO2 displayed this slow rise in

the initial Ci-replete stage, but it was particularly expressed after addition of NaHCO3 after the

Ci-depleted phase (inset of Fig 6A, in agreement with [59]). In Synechocystis grown at ambient

CO2 this slow rise was less expressed, as the post-illumination rise was dominated by the faster

component, likely attributable to elevated CEF. After addition of NaHCO3, the fast post-illu-

mination component disappeared and, interestingly, the slow FR peak could not be observed

either. However, a smaller and faster post-illumination component remained (Fig 6B inset),

indicating altered reductant flow under ambient CO2 cultivation and possibly also due to a

higher reduction state of the PQ pool (see below). Based on the above findings, Chl fluores-

cence characteristics at different stages of actinic illumination and after cessation of illumina-

tion could be a simple indicator of Ci status and possibly also the indicator of the PQ pool’s

redox state mediated by the carbohydrate biosynthesis pathways in cyanobacteria.

The Chl fluorescence induction kinetics was more complex in microalgae, and the results

presented in the current study do not allow a detailed interpretation of the underlying mecha-

nisms. Nevertheless, in general it can be concluded that the fast post-illumination rise signal,

indicative of elevated CEF capacity under Ci limitation, could not be observed in C. sorokini-
ana and N. limnetica (Fig 6D and 6E, respectively), possibly because alternative mechanisms

(pseudo-cyclic electron transport mechanisms, Mehler reaction, plastidial terminal oxidase)

compete with CEF and therefore CEF-mediated PQ reduction is alleviated. D. salina (Fig 6F)

Fig 6. Chlorophyll fluorescence induction kinetics traces in Ci-replete (black), -depleted (red) and recovery (green) states during the course of Ci

limitation. The first 30 s of traces were measured in the dark, actinic light (~56 μmol photons m-2 s-1) was turned on at 30 s and turned off at 180 s, and

subsequently post-illumination kinetics was measured up to 300 s. (A) Synechocystis sp. PCC6803 WT grown at 3% CO2, (B) Synechocystis sp. PCC6803 WT

grown at ambient CO2, (C) Synechocystis M55 mutant, (D) Chlorella sorokiniana, (E) Nannochloropsis limnetica, (F) Dunaliella salina. The insets in each panel

show the post-illumination chlorophyll fluorescence rise during the light to dark transition period. Each trace represents the average of three replicates.

https://doi.org/10.1371/journal.pone.0236188.g006
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exhibited a small but apparent post-illumination rise, which was more pronounced in Ci-

depleted phase and disappeared after NaHCO3 treatment. The appearance of the slow compo-

nent of the fluorescence rise (20–40 s) after addition of NaHCO3 was apparent in C. sorokini-
ana and N. limnetica (inset of Fig 6D and 6E, respectively). The multi-phasic fluorescence

oscillation pattern appeared to behave differently in D. salina; in this species a slow component

could also be observed in Ci-limited phase, whereas in the initial and recovery phases fluores-

cence decreased monotonically without exhibiting any post-illumination peaks (Fig 6F inset).

Therefore, the multiple components of fluorescence oscillations could be employed for obtain-

ing information about the rapid regulation of electron transport (such as CEF), as well as the

redox changes associated with carbohydrate metabolism in eukaryotic algae.

Analysis of forward electron transfer kinetics under Ci limitation

Flash-induced chlorophyll fluorescence decay curves give information about the re-oxidation

kinetics of QA
- via forward electron transfer to QB and the PQ pool, or recombination with the

donor side of PSII. The relaxation is dominated by a fast phase (~300–500 μs) that reflects elec-

tron transfer from QA
− to QB (QB

−). The middle phase (~5–15 ms) arises from reoxidation of

QA
− by PQ that binds to the QB site after flash, whereas the slow phase (~10–20 s) arises from

the S2QAQB
− charge recombination [15]. Flash-induced fluorescence decay profiles showed a

slightly higher fluorescence level in Ci-depleted stage in Synechocystis PCC6803 WT (grown

with and without CO2) on the 5–500 ms timescale (Fig 7A and 7B). In the M55 mutant (Fig

Fig 7. Flash-induced chlorophyll fluorescence decay curve traces at Ci-replete (black), -depleted (red) and recovery (green) stages undergoing Ci limitation.

(A) Synechocystis sp. PCC6803 WT grown at 3% CO2, (B) Synechocystis sp. PCC6803 WT grown at ambient CO2, (C) Synechocystis M55 mutant, (D) Chlorella
sorokiniana, (E) Nannochloropsis limnetica, (F) Dunaliella salina. Traces represent the average of 3 replicates.

https://doi.org/10.1371/journal.pone.0236188.g007
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7C) the fluorescence decay was slow and the fluorescence level remained high in the 2 ms-1 s

timescale in the initial Ci-replete state and the progression to Ci-limited stage did not change

this pattern, indicating that the electron transport capacity was limited, in agreement with the

low effective quantum yield of PSII (Fig 3) and O2 evolution capacity (Fig 4) under this condi-

tion. However, a fast decay is regained after addition of NaHCO3, in agreement with the resto-

ration of linear electron flow and O2 evolving capacity (c.f. Figs 3 and 4, respectively).

Chlorella sorokiniana and Dunaliella salina in the 2 ms-1 s region (Fig 7D and 7F, respectively)

and Nannochloropsis limnetica in the 2–20 ms region (Fig 7E) showed similar patterns after Ci

limitation, which indicated a limited capacity of reoxidation of QA
- by the PQ molecules

bound to the QB site after the flash [15] under Ci-limited condition. These changes were

largely reversible after addition of NaHCO3, in agreement with previous studies that showed

the restoration of electron flow between QA
- to QB after addition of 10 mM NaHCO3 to bicar-

bonate-depleted cells [62, 63]. Taken together, flash fluorescence decay signals indicated

slightly decreased capacity of QA
- reoxidation by the PQ molecules under Ci-limited condition

in all species and conditions, although these changes appeared to be minor under the condi-

tions investigated here.

The polyphasic rise of chlorophyll fluorescence, or commonly referred to as OJIP curves, is

a frequently used method to investigate fast dynamic changes in various components of the

photosynthetic electron transport chain and PSII efficiency from dark to light transition (e.g.

[64, 65]). Transient chlorophyll a fluorescence rise is induced during a dark-to-strong light

transition, where O is equivalent to F0, P is for peak, equivalent to Fm (when measured at satu-

rating light) and J and I (or FJ and FI) are inflection points typically at 2 and 30 ms, respec-

tively, between O and P. The O-J fluorescence rise is the photochemical phase reflecting the

closure of open reaction centers, where the PSII electron acceptors QA and QB become fully

reduced, and the reduction of QA and the reoxidation of QA
- by PQ molecules are in equilib-

rium at the J step (2–3 ms). The J-I phase is a dip due to the partial reduction of intersystem

electron carriers QB, PQ, Cyt b6/f (mainly the PQ pool) and the electron transfer towards the

PSI, and the I-P phase is determined by electron carriers PQH2, PC+, P700+ and PSI electron

acceptors (such as FNR activity) [66, 67]). In ambient CO2-grown Synechocystis (Fig 8B), the J

phase was relatively high as compared to Synechocystis grown at 3% CO2 (Fig 8A), indicating a

slower QA
- reoxidation by PQ molecules. The onset of Ci limitation from the initial Ci-replete

state caused an elevated J step, which was reversible after NaHCO3 addition. The increase in J

step under Ci limitation was not significant in 3% CO2 grown Synechocystis. The M55 mutant

(Fig 8C) already exhibited a high J step in the Ci-replete state, which did not change in Ci-lim-

ited state; however, it significantly dropped after NaHCO3 addition as a result of the restora-

tion of active electron transport (c.f. Figs 3, 4 and 7 and also S3 Fig). The increase in J step

under Ci limitation was also observed in eukaryotic microalgae (Fig 8D–8F), which partially

or fully recovered upon NaHCO3 addition, although the changes in the O-J-I-P phases

appeared to be significant only in the Synechocystis M55 mutant after NaHCO3 addition (the

original OJIP transients and transients normalized to the F0 level are shown in Supplementary

Material S10 and S11 Figs). These results indicate that the OJIP transients are informative to

reveal species- and condition-specific patterns, although the induced CO2 limitation exerted

only minor effects on QA
- reoxidation, except in the M55 mutant of Synechocystis (in agree-

ment with the flash-induced fluorescence decay patterns, Fig 7).

Conclusions

The cuvette system presented in the current study enabled simultaneous real-time monitoring

of several parameters that are indicative of the physiological status of the photosynthetic
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apparatus of cyanobacteria and microalgae. Photosynthetic characterization of the frequently

applied model cyanobacterium Synechocystis sp. PCC6803 under transient CO2 limitation

showed that the integrated cuvette system is applicable to decipher distinct traits of this model

species grown under different CO2 regimes (also in agreement with some of the findings by

[13, 19]). Moreover, the ndhB-deficient M55 mutant, which lacks all NDH-1 complexes (and

is therefore unable to perform CEF and CCM) exhibited very clear phenotypic differences in

Ci-replete vs. -depleted state. Although the M55 mutant has been thoroughly characterized in

the past (e.g. [37, 68–70] reviewed in [71, 72]), applying this mutant in our studies was an

important validation of the suitability of real-time monitoring of several photosynthetic

parameters (changes in O2 and Y(II) dynamics), along with alterations of NADPH synthesis/

uptake kinetics, the redox state of the PQ pool and forward electron transfer kinetics in differ-

ent Ci conditions. Therefore, this system is potentially applicable to the detection of subtle

real-time changes in other Synechocystis mutants. Our results with Synechocystis allowed to

extend physiological monitoring to other species of eukaryotic algae, by measuring not only

the absolute values of PSII quantum yield and/or oxygen evolution rates at arbitrarily selected

time points, but also the dynamic changes of photosynthetic parameters in algal suspensions

subjected to various inorganic carbon regimes (e.g. onset, early and prolonged Ci limitation

and kinetics of recovery from these conditions upon Ci repletion). In addition to the compre-

hensive monitoring of photosynthetic parameters and recording the extracellular pH in the

Fig 8. OJIP transients at Ci-replete (black), -depleted (red) and recovery (green) stage undergoing Ci limitation. Cells were dark-adapted for 3 min before each

measurement. (A) Synechocystis sp. PCC6803 WT grown at 3% CO2, (B) Synechocystis sp. PCC6803 WT grown at ambient CO2, (C) Synechocystis M55 mutant, (D)

Chlorella sorokiniana, (E) Nannochloropsis limnetica, (F) Dunaliella salina. Traces represent the average of 3 replicates.

https://doi.org/10.1371/journal.pone.0236188.g008
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medium (using a pH microsensor), the integrated cuvette system presented here can be

extended with highly sensitive detection of CO2 (using membrane inlet mass spectrometry)

and dynamic modelling of carbon chemistry. In this way the exchange of inorganic carbon

species and the details of the inorganic carbon cycling (e.g. [73]) could also be revealed in

future studies. These integrative approaches would therefore facilitate screening for stress- or

condition-specific traits in industrially important microalgae and cyanobacteria.

Supporting information

S1 Table. Original absorbance readings of acetone:DMSO pigment extracts and the calcu-

lated Chl a and Chl b content, total Chl (a+b) content and the Chl a/b ratio. Eq 1 was used

for calculating Chl a and Eq 2 was used for calculating Chl b.

Chl a (μg mL-1) = 11.75�A663−2.35�A645 (1)

Chl b (μg mL-1) = 18.61�A645−3.96�A663 (2)
#In N. limnetica the calculated Chl b content and Chl a/b ratio cannot be accurately interpreted

due to the lack of Chl b.

(DOCX)

S1 Fig. Representative graph of physiological response of Synechocystis sp. PCC 6803 WT

(3% CO2 grown) during the course of Ci limitation. Simultaneous measurements of (A)

Oxygen evolution and (B) Effective quantum yield of PSII (Y(II)) and (C) pH were performed.

Y(II) and pH was measured every 5 min. The cells were kept in the dark for 30 min (grey

shade region) then illuminated with actinic white light at 56 μmol photons m-2 s-1. The dots in

panel A represent the defined measuring time points of chlorophyll and NADPH fluorescence

kinetics at: T0 (control) after 3 min in the dark; T1—initial Ci-replete phase (30 min) in the

light; T2—early phase of Ci depletion (135 min); T3—prolonged Ci-depleted phase (240 min);

T4—Ci recovery phase (265 min) in the light (arrow indicates the addition of 10 mM

NaHCO3).

(DOCX)

S2 Fig. Representative graph of physiological response of Synechocystis sp. PCC 6803 WT

(Ambient CO2 grown) during the course of Ci limitation. (A) Simultaneous measurements

of A) Oxygen evolution and (B) Effective quantum yield of PSII (Y(II)) and (C) pH were per-

formed. Y(II) and pH was measured every 5 min. The cells were kept in the dark for 25 min

(grey shade region) then illuminated with actinic white light at 56 μmol photons m-2 s-1. The

dots in panel A represent the defined measuring time points of chlorophyll and NADPH fluo-

rescence kinetics at: T0 (control) after 3 min in the dark; T1—initial Ci-replete phase (50 min

in the light); T2—early phase of Ci depletion (125 min in the light); T3—prolonged Ci-

depleted phase (230 min); T4—Ci recovery phase (270 min) in the light (arrow indicates the

addition of 10 mM NaHCO3).

(DOCX)

S3 Fig. Representative graph of physiological response of Synechocystis M55 mutant dur-

ing the course of Ci limitation. Simultaneous measurements of (A) Oxygen evolution and (B)

Effective quantum yield of PSII (Y(II)) and (C) pH were performed. Y(II) and pH was mea-

sured every 5 min. The cells were kept in the dark for 20 min (grey shade region) then illumi-

nated with actinic white light at 56 μmol photons m-2 s-1. The dots in panel A represent the

defined measuring time points of chlorophyll and NADPH fluorescence kinetics at: T0 (con-

trol) after 3 min in the dark; T1—initial Ci-replete phase (55 min) in the light; T2—prolonged

Ci-depleted phase (125 min in the light); T3—Ci recovery phase (175 min) in the light (arrow
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indicates the addition of 10 mM NaHCO3).

(DOCX)

S4 Fig. Representative graph of physiological response of Chlorella sorokiniana the course

of Ci limitation. Simultaneous measurements of (A) Oxygen evolution and (B) Effective

quantum yield of PSII (Y(II)) and (C) pH were performed. Y(II) and pH was measured every 5

min. The cells were kept in the dark for 20 min (grey shade region) then illuminated with

actinic white light at 56 μmol photons m-2 s-1. The dots in panel A represent the defined mea-

suring time points of chlorophyll and NADPH fluorescence kinetics at: T0 (control) after 3

min in the dark; T1—initial Ci-replete phase (80 min) in the light; T2—early phase of Ci deple-

tion (170 min); T3—prolonged Ci-depleted phase (300 min); T4—Ci recovery phase (335

min) in the light (arrow indicates the addition of 10 mM NaHCO3).

(DOCX)

S5 Fig. Representative graph of physiological response of Nannochloropsis limnetica dur-

ing the course of Ci limitation. Simultaneous measurements of (A) Oxygen evolution and (B)

Effective quantum yield of PSII (Y(II)) and (C) pH were performed. Y(II) and pH was mea-

sured every 5 min. The cells were kept in the dark for 20 min (grey shade region) then illumi-

nated with actinic white light at 56 μmol photons m-2 s-1. The dots in panel A represent the

defined measuring time points of chlorophyll and NADPH fluorescence kinetics at: T0 (con-

trol) after 3 min in the dark; T1—initial Ci-replete phase (125 min) in the light; T2—early

phase of Ci depletion (240 min); T3—prolonged Ci-depleted phase (370 min); T4—Ci recov-

ery phase (420 min) in the light (arrow indicates the addition of 10 mM NaHCO3).

(DOCX)

S6 Fig. Representative graph of physiological response of Dunaliella salina during the

course of Ci limitation. Simultaneous measurements of (A) Oxygen evolution and (B) Effec-

tive quantum yield of PSII (Y(II)) and (C) pH were performed. Y(II) and pH was measured

every 5 min. The cells were kept in the dark for 40 min (grey shade region) then illuminated

with actinic white light at 56 μmol photons m-2 s-1. The dots in panel A represent the defined

measuring time points of chlorophyll and NADPH fluorescence kinetics at: T0 (control) after

3 min in the dark; T1—initial Ci-replete phase (85 min) in the light; T2—early phase of Ci

depletion (180 min); T3—prolonged Ci-depleted phase (280 min); T4—Ci recovery phase (335

min) in the light (arrow indicates the addition of 10 mM NaHCO3).

(DOCX)

S7 Fig. Oxygen evolution rate and electron transport rate (ETR) during the course of Ci

limitation. Representative traces of the first derivatives of oxygen evolution (O2, black) and

ETR (red). The blue arrow represents the time of NaHCO3 addition. (A) Synechocystis sp. PCC

6803 WT grown at 3% CO2, (B) Synechocystis sp. PCC 6803 WT grown at ambient CO2, (C)

Synechocystis M55 mutant, (D) Chlorella sorokiniana, (E) Nannochloropsis limnetica, (F)

Dunaliella salina
(DOCX)

S8 Fig. Representative chlorophyll fluorescence traces during the course of Ci limitation.

The blue arrow represents the time of NaHCO3 addition. (A) Synechocystis sp. PCC 6803 WT

grown at 3% CO2, (B) Synechocystis sp. PCC 6803 WT grown at ambient CO2, (C) Synechocys-
tis M55 mutant, (D) Chlorella sorokiniana, (E) Nannochloropsis limnetica, (F) Dunaliella salina
(DOCX)

S9 Fig. Representative NADPH fluorescence traces of WT Synechocystis sp. PCC 6803 WT

in the absence (black line) or presence (red line) of 10 mM GA. Cells were grown in the
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presence of 3% CO2 (as described in Materials and Methods) and dark adapted for 5 min

before the measurements.

(DOCX)

S10 Fig. Representative original OJIP traces (not normalized) at Ci-replete (black),

-depleted (red) and recovery (green) stage undergoing Ci limitation. Cells were dark

adapted 3min before every measurement. (A) Synechocystis sp. PCC 6803 WT grown at 3%

CO2, (B) Synechocystis sp. PCC 6803 WT grown at ambient CO2, (C) Synechocystis M55

mutant, (D) Chlorella sorokiniana, (E) Nannochloropsis limnetica, (F) Dunaliella salina.

(DOCX)

S11 Fig. Representative OJIP traces that were normalized to F0 level (at 50 μs timepoint)

at Ci-replete (black), -depleted (red) and recovery (green) stage undergoing Ci limitation.

Cells were dark adapted 3min before every measurement. (A) Synechocystis sp. PCC 6803 WT

grown at 3% CO2, (B) Synechocystis sp. PCC 6803 WT grown at ambient CO2, (C) Synechocys-
tis M55 mutant, (D) Chlorella sorokiniana, (E) Nannochloropsis limnetica, (F) Dunaliella
salina.

(DOCX)
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Resources: Imre Vass.

Supervision: Milán Szabó.
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