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Abstract. This paper presents Moodoo, a system that models how teachers make 

use of classroom spaces by automatically analysing indoor positioning traces. We 

illustrate the potential of the system through an authentic study aimed at enabling 

the characterisation of teachers’ instructional behaviours in the classroom. Data 

were analysed from seven teachers delivering three distinct types of classes to 

+190 students in the context of physics education. Results show exemplars of 

how teaching positioning traces reflect the characteristics of the learning designs 

and can enable the differentiation of teaching strategies related to the use of class-

room space. The contribution of the paper is a set of conceptual mappings from 

x-y positional data to meaningful constructs, grounded in the theory of Spatial 

Pedagogy, and its implementation as a composable library of open source algo-

rithms. These are to our knowledge the first automated spatial metrics to map 

from low-level teacher’s positioning data to higher-order spatial constructs.  

Keywords: Spatial Modelling, Indoor Localisation, Learning Spaces 

1 Introduction 

Classroom activity is ephemeral, and has largely remained opaque to computational 

analysis [38], with only a small number of artificial intelligence (AI) innovations tar-

geting physical aspects of teaching and learning [16, 38, 47, 54]. However, despite the 

online learning revolution, physical classrooms remain pervasive across all educational 

levels [7]. There is a growing interest in using novel sensing technologies (e.g. wearable 

and computer vision systems) to automatically analyse classroom activity traces to 

model behaviours such as engagement [30], teacher-student interactions [10] and stu-

dents’ physical activity [1, 53]. Previous research has found that teachers’ positioning 

in the classroom and proximity to students can strongly influence critical aspects such 

as students’ engagement [14], motivation [19], disruptive behaviour [27], and self-ef-

ficacy [31] (see review in [43]). Yet, most research focused on studying spatial aspects 
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of teaching rely on observations or peer/self-assessments [11] that are hard to scale up 

[21], with the purpose supporting teachers, and are susceptible to bias [49]. 

Tracking systems have emerged recently, enabling the automated capture of posi-

tioning and proximity traces from authentic classrooms using wearables attached to 

students’ shoes [48], computer-vision [1] and positioning trackers [18]. Some systems 

even summarise the time a teacher has spent in close proximity to a student or group of 

students, to raise an alarm if a threshold is reached (e.g. [5, 37]). However, very little 

work has been done in exploring what kinds of metrics researchers can generate from 

low-level x-y positioning data that could be useful to characterise classroom activity in 

ways that are meaningful to educators.  

This paper presents Moodoo, a system for modelling spatial teaching dynamics. We 

build on the foundations of Spatial Analysis [20] and Spatial Pedagogy [33] (SP), to 

explore and propose a set of metrics that can identify teaching positioning strategies in 

a classroom space. We set the system in an authentic physics education study, in which 

seven teachers wore indoor positioning trackers while teaching in pairs (see Fig. 1). In 

total we analysed 18 classes and used the findings to map the x-y positional data to 

higher-order spatial constructs and propose a composable library of algorithms that can 

be used to study instructional behaviour of teachers in different teaching scenarios. 

 

 

2 Background and Related Work 

2.1 Foundations of Spatial Pedagogy 

Although fragmented across multiple areas [40], research investigating the relationship 

between classroom spaces and teaching processes has a long history. In the 19th century, 

observational studies by Barnard [8] informed the design of the teacher-centric lecture 

classroom to maximise surveillance of students. More contemporary works also used 

systematic observations to investigate how teachers’ proximity to students influences 

aspects that can impact learning such as effective communication [46], disruptive be-

haviours [27, 32], sense of ownership of students’ own work [25], and motivation [12].  

Lim et al. [33] recently coined the term Spatial Pedagogy (SP) to refer to the mean-

ing of certain spaces in the classroom depending on the positions and distances between 

teachers, students and classroom resources. Authors observed two teachers using the 

same classroom to differentiate pedagogical strategies and created state diagrams to 

 
Fig. 1. Physics laboratory classroom taught by two teachers while wearing indoor positioning 

sensors contained in a badge (bottom-right).  
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represent the spaces of the classroom in which the teacher was moving, frequency to 

which a space was visited, and transitions. Chin et al. [14] conducted a similar study 

with four teachers. The authors of these studies suggested the need for automated ap-

proaches that could help scale up their analysis, given the potential to support teachers.  

In sum, although the literature suggests that teachers’ classroom positioning can 

have a significant effect on learning, most analyses have been based on self-report ques-

tionnaires, and observations made on some classes, visualised until recently mostly 

through manually produced diagrams (e.g.  [33]). Automating the analysis of spatial 

classroom dynamics has the potential to enable new research in learning spaces that can 

directly support teachers with objective, accurate, and timely feedback. In the next sec-

tion, we elaborate on current approaches that automatically study teachers’ positioning. 

2.2 Spatial Analysis and Positioning Technology in the Classroom 

There has been a growing interest in exploring physical aspects of the classroom [16]. 

For example, authors have used automated video analysis to model students’ posture 

[45] and gestures [1], teacher’s walking [10], interactions between teachers and stu-

dents [1, 53] during a lecture, and characterising the types of social interactions of stu-

dents in makerspaces [15]. Wearable sensors have also been used to track teachers’ 

orchestration tasks by using a combination of sensors (eye tracker, accelerometer, and 

a camera) [44] and students’ mobility strategies while working in teams in the contexts 

of primary education [48], healthcare simulation [18] and firefighting training [51]. 

Some work has attempted to close the feedback loop by displaying some positioning 

traces back to teachers. For example, ClassBeacons [5] summarises the amount of time 

a teacher has spent in close proximity to groups of students and displays it through a 

lamp located at each group’s table. Similar work displayed the same information on a 

screen with alarms indicating potentially neglected students [37], or simple graphs [48] 

and heatmaps [4] showing what parts of the classroom teachers visited the most.  

The above studies indicate that there is an emerging interest in using sensing tech-

nologies to analyse teachers’ positioning traces. Yet, none of these works have ad-

dressed the need for creating spatial metrics (beyond counting the times a teacher comes 

close to certain students) from the large amounts of indoor positioning data, that may 

be relevant for teachers’ professional development. Whilst we can learn from metrics 

used in broader areas such as Spatial Analysis [20], these are commonly applied to 

outdoor data, in which the granularity of the positioning is coarse and the particularities 

of the educational context are not considered. In fact, there is an identified dearth of 

indoor positioning analytics tools also in non-educational contexts [13, 35, 42]. To the 

best of our knowledge, this paper is the first to document the implementation, and em-

pirical validation, of automated spatial metrics that map from low-level x-y teacher’s 

positioning data to higher-order spatial constructs.  

3 The Learning Context 

The authentic learning situation the illustrative study focuses on was part of the regular 

classes of a first-year undergraduate unit at the University of technology Sydney. This 
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includes weekly 2½ hour laboratory classes (labs) in which students run experiments. 

A teacher and a teaching assistant both co-teach each lab in the physical classroom (see 

Fig. 1). Each lab typically has between 30 and 40 students working in 10-13 small teams 

of 2-3 students each. Eighteen labs were randomly chosen (1-18) for the study. All labs 

were conducted in the same (16.8 x 10 metres) classroom equipped with workbenches, 

a lectern, a whiteboard, and multiple laboratory tools. Seven teachers (T1-T7) were 

involved in these classes. T1, the unit coordinator, designed the learning tasks and did 

not teach any class. T2 and T3 were the main teachers for 12 and 6 classes respectively, 

and T4-T7  supported T2 and T3 as teaching assistants in various combinations.  

Each lab exhibited one of three possible learning designs (LD1-3). LD1 was a pre-

scribed lab, in which all students had to do the same experiment following a step-by-

step guide. LD2 was a project-based lab, in which students were asked to formulate a 

testing project, with each team working with a different appliance, such as vacuum 

cleaners or pedestal fans. Finally, LD3 was a theory-testing lab, in which 4-5 experi-

ments were set up by the teacher and students had to move to one experiment at a time 

and predict the outcome of each without further guidance.  

The labs were conducted with the same students (and not necessarily with the same 

teachers) in the same classroom for three consecutive weeks (enacting a different LD 

in each). This means LD1 was enacted in classes 1-6 in week 4 of the term. LD2 was 

enacted in classes 7-12 in week 5 with the same students from week 4. LD3 was enacted 

in classes 13-18 in week 6 with the same students from the previous two weeks.  

4 Apparatus  

The x and y positions of the two teachers in each lab were automatically recorded 

through wearable badges (Fig. 1, right) based on the Pozyx ultra-wideband (UWB) 

system, at a 2Hz average sampling rate (with an error rate of 10 cm). Eight anchors 

were affixed to the classroom walls to estimate the positions of the badges. UWB sen-

sors do not require a straight line of sight and are not affected by signals of students’ 

personal devices [2]. The cost of the equipment is relatively low (~1.5 K AUD) making 

it affordable and portable. Given the large number of teams in each lab (10-12), the 

positions of students’ experiments were captured by an observer using an observation 

tool (i.e., iPad) whenever there was a change in the position of teams. For LD1 and 

LD2, students mostly stayed at the benches where they installed their experiments. For 

LD3, students moved to each experiment setup, so these were recorded by the observer. 

 

 

 
Fig. 2. Floor plan of the classroom with data points from two teachers (in blue and orange). 
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5 Moodoo: Indoor Positioning Metrics 

This subsection presents the metrics defined for teachers’ positioning, grounded in the 

notion of SP [33]. The metrics have been implemented into a composable open source 

library in Python (https://gitlab.erc.monash.edu.au/rmat0024/moodoo).  

5.1 Metrics related to teachers’ stops 

A teacher’s stop can be defined as a sequence of positioning data points that are short 

distance apart in space and time. According to the notion of SP, this can denote a period 

in which the teacher is “positioned to conduct formal teaching” or stands “alongside 

the students’ desk or between rows” of seats to interact with students ([33], pp. 237).  

Thus, a stop can be modelled from x-y teacher’s data grouping data points based on 

a centroid C(x,y) point, distance d and time t parameters; where d is the maximum dis-

tance from the current data point to C, and t is the minimum time to group consecutive 

points (see Fig. 3). For example, for our illustrative study we chose d=1 meter, since 

this distance is considered within a teacher’s personal space [50]; and t=10 seconds to 

disregard very short stops. These parameters can be further calibrated according to the 

context and the tracking technology used. From the defined stop construct, other met-

rics can be calculated, such as the total or partial number of stops, average stopping 

time; or more complex metrics in relation to other sources of evidence, such as student  

locations and classroom resources (e.g. work-benches). 

 

 

5.2 Metrics related to teachers’ transitions 

A teacher’s transition is defined as a sequence of positioning data points that follow a 

trajectory between two stops. This includes all those positioning traces generated while, 

for example, the teacher moves from attending one group of students to another group, 

or, according to the notion of SP, the teacher paces “alongside the rows of students’ 

desks as well as up and down the side of the classroom transforming these sites into 

supervisory spaces” ([33], pp. 238).  

Although a smoothing algorithm can be used by the sensing software when capturing 

positioning data [41], each data point is always an estimate (with its associated error) 

of the actual position. Hence, a linear quadratic estimation algorithm [52] (i.e. Kalman 

filtering) was applied to the x-y data points as a pre-processing step. Then, the teacher’s 

walking trajectory is modelled as the transition between two consecutive stops in rela-

tion to their centroids (see Fig. 3, right). From teachers’ transitions, other related met-

rics can also be calculated, such as the distance walked, speed and acceleration, and the 

transitions between specific groups of students or classroom areas.  

 
Fig. 3. Modelling from raw x-y positioning data (left) to teachers’ stops and transitions (right).  
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5.3 Metrics related to teacher-student interactions 

Lim et al. [33] proposed that a space in the classroom becomes interactional when the 

teacher is in close proximity to students to enable conversations or consultation. Alt-

hough this space may be shaped by the learning task, furniture, and preferences [6], 

extensive work studying cultural aspects of space has identified that a distance from 

0.75 to 1.2 meters creates optimal opportunities for social interaction [28, 36]. Hence, 

a teacher standing within the interactional space of students (iDis) can be considered as 

a potential teacher-student interaction. In our study, we accounted for the parameter 

iDis=1 meter (based on [36]) as the maximum distance to define a teacher’s stop within 

certain students’ interactional space. From this construct, other metrics can be calcu-

lated, such as teachers’ total attention time per student/group, frequency and duration 

of teachers attending certain students, and sequencing of teacher-student interactions.  

 Additionally, an index of dispersion can be calculated to identify how evenly teach-

ers’ attention was distributed in terms of the number of visits and the total time teachers 

spent with each student or group. In our illustrative study, we calculated the Gini index 

[23], which is commonly used to model inequality or dispersion (with a single coeffi-

cient output ranging from 0 to 1, where 0 represents perfect equality).  

5.4 Metrics related to proximity to classroom resources of interest 

Teachers’ proximity to certain resources in the classroom also gives meaning to x-y 

data. For example, “the space behind the teacher’s desk can be described as the per-

sonal space where the teacher … prepares for the next stage of the lesson” ([33], pp. 

238) similarly, a space can become authoritative “where the teacher is positioned to 

conduct formal teaching as well as to provide instructions to facilitate the lesson ([33], 

pp. 237). In our study, close proximity to teacher’s lectern or a whiteboard, can be in-

dicative of particular activities such as lecturing to the whole class or explaining for-

mulas. For this purpose, the parameter dObj delimits the proximity of objects of inter-

ests that are close to the teacher (calibrated to 1 meter in the study) 

5.5 Metrics related to co-teaching 

Having more than one teacher in the classroom is not an uncommon practice [22]; an 

example is our illustrative study where pairs of teachers co-taught classes in different 

combinations. Modelling the instances when both teachers are within each other’s inter-

personal spaces (dTeacher) can assist teachers to reflect how often and where these 

events happen in the classroom space, or whether the teachers jointly attend a team of  

students (i.e. parameter dTeacher=1 following the same heuristic as above [36]).      

5.6 Metrics related to focus of positional presence (spatial entropy) 

In a qualitative study [39], teachers contrasted two extreme mobility behaviours: 1) a 

teacher walking around the classroom mostly supervising, without engaging much with 

students (unfocused positional presence), and 2) a teacher focusing most of his/her at-

tention on a small number of students or remaining only in specific spaces of the class-

room (focused presence). From the x-y positioning data, the spectrum between these 

two extreme behaviours can be modelled based on the notion of spatial entropy [9] 
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which has been used to measure information density in spatial data [3]. To calculate the 

entropy, we create a m-by-m grid (m = 1 meter in our illustrative study) from the two-

dimensional x-y data. The proportion of data points in each cell of the grid is calculated, 

creating a matrix of proportions.  This is then vectorised and Shannon entropy is calcu-

lated (resulting into a positive number in bits). The closer the number is to zero, the 

more focused teacher’s positioning was to specific students or spaces in the classroom. 

6 Illustrative Study: Analysis and Results 

This section demonstrates the potential of the metrics related to the constructs presented 

above through exemplars of how positioning traces i) reflect the characteristics of the 

learning design, and ii) can be used to characterise contrasting instructional behaviours. 

6.1 Dataset, pre-processing and analysis 

A total of 835,033 datapoints were captured by the indoor positioning system used in 

the 18 classes taught by pairs of teachers. Each datapoint consisted of i) an identifier of 

the teacher, ii) a timestamp and iii) x-y coordinates of the classroom position of that 

teacher in millimetres (e.g., {teacher1, 18/02/2019 9:39:20.34, 5600, 8090}).  

Three pre-processing steps were conducted before analysing the data using Moodoo. 

1) Sampling normalisation: the positioning data was down sampled to 1Hz by calculat-

ing the average position of a teacher per second. 2) Interpolation: as sensors are sus-

ceptible to missing readings for a few seconds [26], a linear interpolation was applied 

to fill gaps for cases in which there was not at least 1 datapoint per second. The resulting 

dataset contained 60 positioning data points per minute and per teacher. 3) Segmenta-

tion: each class was segmented into three phases according to a common macro-script 

for the three LDs defined by the unit coordinator. Phase 1 includes the main teacher of 

the class giving instructions from the lectern (average duration 13 ±8 minutes, n=18). 

Phase 2 corresponds to the period in which all students start working on the experi-

ment(s) of the day in small teams (1.5 hours ±18 min). Phase 3 corresponds to the time 

when some teams complete their experiments and start leaving the class (33 ±22 min). 

The analysis of this paper focuses on Phase 2, which enables comparison across the 

classes considered. The resulting dataset comprised a total of 290,228 datapoints.  

 The data analysis involves processing the x-y positioning data from teachers enacting 

each learning design (LD1-3) using Moodoo. We report Moodoo’s metrics for each 

teacher by LD, and normalising the results according to the class with the shortest Phase 

2 which lasted 1:07 hr. We ran a Mann-Whitney's U test to evaluate differences in the 

metrics among each pair of learning designs (i.e. LD1-LD2; LD1-LD3 and LD2-LD3). 

Therefore, the median and interquartile range (IQR) values are reported accordingly.  

6.2 Results  

An overview of the resulting teachers’ positioning metrics per learning design (LD) are 

presented in Tables 1 and 2, below. The median and IQR (Q3-Q1) values are presented 

by metric (columns/cols) and LD (rows). Bar charts are shown at the bottom of each 
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table to facilitate comparison. Significant differences among pairs of LDs (p < 0.05) 

are emphasised in blue and orange (representing higher and lower values, respectively).  

Overall, when teachers enacted LD1 they featured a higher number of stops (median 

45 stops) than when enacting LD2 and LD3 (35 stops). This difference was not signif-

icant given the high variability of teachers’ behaviours (see col 1, IQR values, in Table 

1). Yet, stops were significantly longer for LD2 (U=35, p = 0.02) and LD3 (U=37, p = 

0.02). For example, every time a teacher stopped while enacting LD2 s/he spent a me-

dian of 1.4 (IQR 1.6-1) minutes in that position before moving to the next space in the 

classroom. In contrast, most of the stops during LD1 were briefer (0.8, 1-0.7 min). This 

can be explained by the nature of students’ task. In LD2 and LD3, students worked on 

more complex projects. In LD1, all students conducted the same (prescribed) experi-

ment with teachers mostly providing corrective feedback, resulting in shorter pauses.  

  
In terms of distance walked and speed, there were no significant differences by learn-

ing design (cols 4 and 5). This means that the learning designs did not strongly shape 

the way the teachers walked in the classroom as a cohort, in this study. However, there 

were differences between teachers at a per case (exemplified below).   

Table 2 shows more results for those cases in which teachers were in close proximity 

to students (cols 1-4) and classroom resources (5-6). There was a significant difference 

between the three LDs regarding the number of visits to students’ experiments (LD1-

LD2, U=36, p = 0.02; LD2-L3, U=33, p = 0.01; LD1-LD3, U=13, p = 0.001).  

 
There was a larger number of visits for LD1, in comparison to LD2 (col 2), which 

contributes to describing a supervisory pedagogical approach [9] provoked by the pre-

scribed learning task. However, the total attention time to experiments was very similar 

Table 1. Positioning metrics related to teachers’ stops and transitions – median (Q3-Q1). 

Stops 
Total stop 

time (mins) 

Time per 

stop (min) 

Distance 

walked (m) 
Speed (m/s) 

Dispersion 

(gini index) 

LD1 42 (44-40) 52.5 (56-47) 0.8 (1-0.7) 370 (502-340) 0.5 (0.6-0.4) 0.5 (0.6-0.3) 

LD2 35 (43-31) 58.4 (61-54) 1.4 (1.6-1) 303 (389-272) 0.6 (0.6-0.5) 0.4 (0.5-0.3) 

LD3 35 (44-26) 58.1 (62-50) 1.1 (1.5-1) 440 (618-177) 0.5 (0.6-0.4) 0.4 (0.5-0.2) 

  0

620 m

0

0.6 m/s

0

0.6

Table 2. Metrics related to teacher-student interactions and proximity to objects in the classroom. 

 

 

Attention 
time (min) 

Visits to 
experiments 

Visit 
duration 

Visits per 
experiment 

Time at 
lectern 

Time at 
whiteboard 

LD1 41.5 (50-38) 37 (40-30) 0.9 (1.4-0.7) 3 (3-2.4) 0.6 (5.3-0) 0.3 (1-0) 

LD2 42.7 (57-37) 29 (33-26) 1.3 (2-1) 2.5 (3-2) 3.5 (12-0.5) 1 (2-0) 

LD3 34 (44-24) 23 (27-13) 0.9 (1.4-0.6) 5 (7-3) 7.3(16-3) 2.9 (5.9-0.6) 
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between LD1 and LD2 (column 1, 41.5 and 42.7 min, respectively). In contrast, for the 

theory-testing lab (LD3) teachers acted as demonstrators, dividing their attention (34, 

44-24 minutes, col 1) visiting around 5 times each of the 4-5 experiments (col 4). 

Regarding proximity to objects of interest, teachers significantly spent more time at 

the lectern and the whiteboard for LD3 compared to LD1 (U=28, p = 0.01) and LD2 

(U=42, p = 0.04). This can be because in LD1 classes the task is prescribed so teachers 

did not need to show additional information through the computer (lectern) or white-

board. For LD2 and LD3, teachers commonly had to explain formulas using the white-

board. Additionally, classes enacting LD3 occurred later in the semester after student 

partial results were published, with students often asking clarification questions regard-

ing these LD3 classes. This explains the longer presence of teachers at the lectern.  

Finally, the computed index of dispersion (Table 1, col 6) and entropy, did not show 

any significant difference between LDs. Yet, they enabled the characterisation of con-

trasting instructional approaches of individual teachers. For example, Fig. 4 shows 

heatmaps and selected metrics obtained from positioning data of a focused (T6) and an 

unfocused teacher (T5) in Phase 2 of two LD2 classes. T6 focused on two benches of 

the classroom (Fig. 4, left), stopping almost half the number of times compared to T5 

(25 versus 46 stops). Evidently, the main teacher had to attend students sitting at the 

remaining desks. This was captured by the metric that counted the times both teachers 

got close to each other (3 versus 10) suggesting two different co-teaching strategies.  

 
In contrast, T5 remained constantly circulating (see Fig. 4, right), making the space 

between the work-benches his supervisory zone. The measure of spatial entropy cap-

tured this behaviour. T6 featured the lowest entropy among the teachers in the dataset 

(3.2 bits) whilst for T5 it was the second highest (6.2 bits), pointing at the more spread 

distribution of datapoints in the classroom space. The index of dispersion, calculated in 

relation to students’ experiments, contributes to characterise the contrasting behaviours 

with a resulting coefficient very close to 1 for T6 (0.83 - highly unequal distribution of 

teacher’s attention) compared to T5 (0.14 – more even distribution of attention). Fi-

nally, teacher-student attention time was higher for the first teacher, who spent much 

of his time attending 3-4 teams out of the 12 in the class.  

In sum, this characterisation of instructional behaviour should provoke reflection 

among teachers about the different teaching approaches, as it has been previously per-

formed from observations (e.g. [14, 33]). Due to space limitations, providing additional 

metrics and examples is beyond the purpose of this paper. Yet, some additional illus-

trative examples are provided in the library documentation.  

 

Fig. 4. Contrasting spatial pedagogical approaches. Left: a teacher focusing on certain students 

during a class. Right: a second teacher mostly walking around the classroom, supervising.  



10 

7 Discussion and Conclusion 

Metrics proposed in the paper helped characterise three learning designs using quanti-

fiable observations of classroom positioning data. Such metrics can uncover and bring 

to the attention of teachers and learning designers certain characteristics that are inher-

ent to learning activities – for instance, increased teacher-student time ratio for a hands-

on experiment design versus a lecture delivery.  

Our work conveys several implications for research and practice. Teachers can use 

the resulting metrics to reflect on the proportion of different types of learning activities 

comprising a teaching session, which can then lead to changes in the learning design as 

needed. Decisions to intervene and make changes are not automated by algorithms de-

liberately, as this involves another layer of human interpretation and understanding that 

suits the learning context in hand. Rather, the metrics can act as tools to aid teachers to 

make informed decisions [24], which can contribute to the expansion of teachers’ class-

room capabilities, as envisaged in Luckin’s work [34] regarding AI in education. While 

we note that the teachers would require some form of training to best utilise SP, we also 

identify the potential for teachers and other stakeholders to identify best teaching prac-

tices, as illustrated in our example of contrasting the different pedagogical approaches 

of two teachers. Finally, the data provided by emerging indoor positioning, along with 

the metrics proposed in this paper, can contribute to the assessment of specific learning 

spaces, which is an identified gap in learning spaces research [29].  

In terms of limitations of our illustrative study, we note that the parameters might 

need tuning to work with other types of learning spaces and learning designs, in partic-

ular, the thresholds set for defining certain metrics might vary across contexts. For this 

reason, other classroom spaces that make use of the metrics need to test them for the 

right fit in their learning contexts. This points at the opportunity to generate learning 

design-aware classroom positioning metrics, that can guide instructional behavior in 

ways productive for learning. Moreover, the analysis of significance of the metrics was 

not intended to support strong claims about what pedagogical approach is better given 

the size of the dataset and the authentic conditions of the study which introduced several 

confounding variables. Controlled experimental studies are not recommended as they 

can hardly replicate emergent and often unexpected classroom situations that occur in 

authentic classes [17]. Yet, future work could focus on the analysis of a larger dataset 

with the aim of mining the positioning data to identify patterns that could be used to 

differentiate instructional behaviours.  

In conclusion, this paper presented a set of conceptual mappings from x-y positional 

data of teachers to higher-order spatial constructs (namely: teacher’s stops, transitions, 

teacher-student interactions, proximity to objects of interest, instances of co-teaching 

and entropy of teachers’ movement), informed by the concept of Spatial Pedagogy [33]. 

The resulting metrics related to such constructs can facilitate the study of classroom 

activity in novel ways, which can lead to the expansion of current knowledge about 

teacher-student proximity and physical behaviours at various learning settings. Future 

research should certainly further test the applicability of the metrics in other learning 

settings (i.e. in multi-class open spaces or lecture halls) and, expand the library with 

metrics that can better model how teachers and students move in such classrooms.   
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