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Abstract  28 

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organic sulfur compound that underpins sulfur cycling in the 29 

marine environment and is the precursor to the climatically active gas dimethylsulfide (DMS). Modelling studies 30 

have identified the Southern Ocean as a DMS hot spot during summer, yet except for the bloom forming 31 

haptophyte Phaeocystis, little is known about sulfur production by other important members of the marine 32 

microbial community. Here, we measured DMSP concentrations and DMSP lyase activity (DLA), with 33 

corresponding carbon, nitrogen and Chl a content, in 15 species of Antarctic phototrophic phytoplankton (14 34 

microalgae species and one cyanobacterium) and one phagotrophic flagellate. We found that 11 of the 16 species 35 

were able to produce DMSP and eight possess DLA. DMSP content ranged from 0.06 – 73 fmol cell-1 and 36 

estimated DMSP production rates ranged from 0.008 – 12.42 fmol cell-1 day-1. As expected, Phaeocystis was 37 

amongst the highest producers, however, contrary to expectation DMSP concentrations were high in several 38 

pennate diatom species, with intracellular concentrations between 1.85 and 46.6 mM. Here we present the first 39 

evidence that the cyanobacterium Synechococcus may be a DMSP producer, with the potential to contribute 40 

significantly to the DMSP pool. This study has provided the first analysis of DMSP production and DLA in a 41 

suite of phototrophic and phagotrophic species isolated from Antarctica, revealing the variability in DMSP 42 

concentrations across multiple strains and within genera and delivered new evidence for potential DLA in diatoms.  43 
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Introduction  58 

Phytoplankton derived dimethylsulfoniopropionate (DMSP) is fundamental in the global sulfur cycle. It is the 59 

precursor of dimethylsulfide (DMS), the largest biological source of sulfur to the Earth’s troposphere (Andreae 60 

and Crutzen 1997). The oxidation of DMS results in volatile sulfate aerosols that form cloud condensation nuclei 61 

(CCN) scattering solar radiation and influencing the Earth’s radiative energy budget (Charlson et al. 1987). In the 62 

marine environment, both DMSP and DMS can form chemical cues that facilitate key inter-species interactions 63 

in the marine microbial food-web (Seymour et al. 2010; Garcés et al. 2013), making these compounds relevant 64 

for understanding atmospheric-ocean coupling and marine trophic interactions. 65 

Ecologically, DMSP is a critical source of sulfur and an important carbon source for marine 66 

microorganisms (Kiene et al. 2000) accounting for the majority of organic sulfur fluxes from primary to secondary 67 

producers (Malin 1996; Simó 2001; Vila-Costa et al. 2006). As a zwitterion, DMSP can only be released from 68 

cells with damaged membranes or through active transport (Simó et al. 1998), meaning that for transfer and 69 

transport through the food web it has to be released into the surrounding waters through exudation, grazing or cell 70 

lysis. Alternatively, DMSP can leave the cell  as DMS after conversion by DMSP lyase enzymes (Alcolombri et 71 

al. 2015). Once in the water column, DMSP can be assimilated into protein by bacteria, cleaved to DMS by 72 

bacterial or algal DMSP lyase or sink to ocean depths as faecal and detrital matter after grazing by zooplankton 73 

(Simo 2001). Dissolved DMS  can either be taken up by bacterioplankton and used as a sulfur source (Alcolombri 74 

et al. 2015), photo-oxidised into non-volatile sulfur or ventilated into the atmosphere (Simo 2001). Despite some 75 

phytoplankton possessing the capacity to release DMS into the water column, the majority of the DMS pool in 76 

the ocean is believed to be derived from the lyase activity of bacteria (Curson et al. 2008; 2011), and as such, 77 

bacteria exert a controlling role over the production efficiency of DMS and sulfur fluxes in the marine 78 

environment. 79 

While not all marine microalgae produce DMSP, research has revealed that the most prolific producers 80 

of DMSP can be found within two phytoplankton classes, the Dinophyceae (dinoflagellates) (Caruana and Malin 81 

2014) and the Prymnesiophyceae, with studies focussed on two main taxa, the coccolithophore Emiliana huxleyi 82 

(Levasseur et al. 1996; Matrai and Keller 1993; Steinke et al. 1998) and species from the genus Phaeocystis (Liss 83 

et al. 1994; Mohapatra et al. 2013; Stefels and Van Boekel 1993). Both of these classes include common bloom-84 

forming species and have been shown to possess DMSP lyase (Franklin et al. 2010; Stefels and Van Boekel 1993; 85 

Stefels and Dijkhuizen 1996).  86 



The world’s oceans contribute the majority of the biogenic sulfur to the atmosphere, however the flux of 87 

DMS from the oceans is regionally specific, being highly dependent on latitude and season (Lana et al. 2012; 88 

Yoch 2002). Antarctica is a recognised hot spot for DMSP (Galí et al. 2015) and DMS emissions (Kettle et al. 89 

1999; Lana et al. 2012), yet species-specific data on DMSP production from these regions is poor (Fiddes et al. 90 

2018). Species from the genus Phaeocystis are considered amongst the greatest DMSP producers in Antarctic 91 

waters, and indeed most studies on sulfur dynamics or cycling attribute the high DMSP concentrations and large 92 

fluxes of DMS in the region to the extensive Phaeocystis blooms that occur in coastal waters (DiTullio et al. 93 

2000). However, high levels of DMSP have also been recorded at the sea ice margins (Carnat et al. 2016; Damm 94 

et al. 2016; Gabric et al. 2018; Stefels et al. 2018), where diatoms often dominate the community (Trevena and 95 

Jones 2006) and other studies have shown that Antarctic diatoms can produce substantial amounts of DMSP 96 

(Baumann et al. 1994; Tison et al. 2010). Therefore, while temperate diatoms are not generally considered 97 

prominent DMSP producers, there is some evidence to suggest that diatoms may make a significant contribution 98 

to sulfur cycling in high latitude regions. 99 

The sea ice zone is an important source of DMS and DMSP in Polar Regions (Trevena and Jones 2006; 100 

Asher et al. 2011; Galindo et al. 2014, 2016; Damm et al. 2016; Gabric et al. 2018; Stefels et al. 2018). Each 101 

winter, Antarctic sea ice covers ~19 million square kilometres of the Southern Ocean entraining many 102 

microorganisms into its frozen matrix as it forms. This seasonal freeze and thaw cycle means that many Antarctic 103 

microalgae are acclimated to withstand extremely low temperatures (Morgan-Kiss et al. 2006), high salinity 104 

(Halsey and Jones 2015) and variable light and UV conditions (Vance et al. 2013). Production of DMSP along 105 

the sea ice edge is very high (Trevena and Jones 2006; Tison et al. 2010), and is often associated with the release 106 

of sea ice algal species as the ice melts seeding the water column, or directly from the algae which reside within 107 

the sea ice itself (Asher et al. 2011; Galindo et al. 2014, 2016). In these organisms, DMSP is suspected to act as a 108 

potential cryoprotectant or osmolyte (Kirst et al. 1991; Karsten et al. 1996) enabling these species to survive the 109 

freezing and hypersaline conditions over winter. 110 

To accurately predict the influence of phytoplankton communities on DMSP concentrations and DMS 111 

emissions, we need to understand the individual contributions of the species that make up those communities, in 112 

particular those present in high abundance. Currently however, for Antarctic waters, which are often dominated 113 

by diatoms, limited knowledge exists on which taxa synthesise DMSP, what their intracellular concentrations are 114 

and whether they possess DMSP lyase capacity (Steiner et al. 2012). Here, we measured DMSP concentrations 115 



and DMS-producing enzyme activity, with corresponding carbon, nitrogen and Chl a content, in 15 species of 116 

Antarctic phototrophic phytoplankton (14 microalgae species and one cyanobacterium) and one phagotrophic 117 

flagellate (Telonema sp.), with the aim to increase our understanding of the contribution of Southern Ocean 118 

phytoplankton to DMSP and DMS production in high latitude regions. 119 

 120 

Materials and Methods 121 

Cell culturing, experimentation, cell counts and growth rates 122 

Thirteen phytoplankton strains were isolated from seawater collected in Prydz Bay, Davis Station, Antarctica 123 

(66°S, 77°E) during the Austral Summer (2014). Water was collected from the ice-free waters of Prydz Bay using 124 

the underway seawater line on the RV Aurora Australis from a depth of ~7 m. Since isolation in 2014, cultures 125 

have been maintained in 0.2 µm filtered natural seawater (salinity 35) enriched with nutrients (Table 1) at low 126 

irradiances and temperature (50 µmol photons m-2 s-1 on a 14:10 h light: dark cycle at 3 ± 1 °C) and transferred 127 

into new medium bi-monthly. These conditions were determined as optimal for cell growth and used in this study 128 

as cells had been acclimated to these light and temperature conditions for more than three years. Three additional 129 

phytoplankton cultures (Dunaliella sp., Phaeocystis cf. pouchettii, and Synechococcus sp.) were obtained from 130 

the CSIRO Australian National Algae Culture Collection (Table 1). Cultures (non-axenic) were acclimated over 131 

six generations to an irradiance of 50 µmol photons m-2 s-1 (14:10 h light: dark cycle) and maintained at 3 ± 1 °C. 132 

For experimental sampling, batch cultures were grown in quadruplicate and aliquots of culture (1 mL) 133 

taken every second day and fixed in 1% glutaraldehyde for growth rate determination. Cell counts were performed 134 

using a Neubauer hemocytometer (Swastik Scientific, Mumbai, India) counting chamber (0.5 x 0.5 x 1 mm3), and 135 

cell density estimated according to Guillard and Sieracki (2005), and specific growth rates (μ) calculated. 136 

Sampling for strain characterisation was undertaken at one time point during the exponential growth phase of a 137 

subsequent growth curve. This was done to ensure that all cells sampled were in balanced growth, avoiding any 138 

nutrient limitation. All sampling was performed mid-way through the photoperiod (~12 noon) to reduce 139 

physiological variation due to diel activity. Each replicate was subsampled for analyses of sulfur compounds, as 140 

well as Chl a and C:N ratio. For bacterial enumeration, a 2 mL aliquot was subsampled and fixed in 1% 141 

glutaraldehyde, snap frozen in liquid N2 and stored at -80 °C until analysis. Bacterial cell counts were performed 142 

using flow cytometry (CytoFLEX S; Beckman Coulter, Inc., USA). The aliquot was rapidly thawed in hot water 143 

and cells were counted as both unstained (control) and stained (SYBR Green I Nucleic Acid Gel Stain (1:10,000), 144 



15 min, Invitrogen, ThermoFisher Scientific, USA). The total bacterial density was calculated by subtracting the 145 

unstained cell count from the stained cell count and used to calculate DMSP lyase activity rates.  146 

 147 

Chlorophyll a content and cell volume 148 

Samples for chlorophyll a determination were filtered (6-15 mL - depending on culture density) onto GF/C filters, 149 

which were then snap frozen in liquid N2 and stored at -80 °C until analysis. Pigments were extracted in 90% 150 

acetone and incubated at 4 °C in the dark for 24 h. Chlorophyll a content was determined using a 151 

spectrophotometer (Cary50: Varian, Santa Clara, CA, USA) and calculated using the equations of Jeffery and 152 

Humphrey (1975), modified by Ritchie (2006).  To estimate cell volumes, fixed samples of cells in mid-153 

exponential growth were imaged on a calibrated microscope (Nikon Eclipse Ci-L, Japan) and the length, width 154 

and height of ~10 cells determined using ImageJ (Schneider et al. 2012) software. Cell biovolume was then 155 

calculated according to the cell shape and corresponding equations as described in Hillebrand et al. (1999). In the 156 

case of Synechococcus, some cells may have passed through the filter due to their small size, resulting in a possible 157 

underestimation of chlorophyll a quota. 158 

 159 

C:N analysis  160 

For determination of cellular carbon and nitrogen, aliquots (5-20 mL) of culture were filtered onto GF/F filters 161 

(pre-combusted at 450°C for 4 h) and snap frozen in liquid N2 until analysis. Prior to analysis, the sample and 162 

blank (filters with medium only) filters were dried at 35 °C for 48 h before being wrapped in tin foil and placed 163 

in ceramic boats with nickel boat liners (LECO Corporation, USA) and combusted at 1300 °C. Analyses were run 164 

on a Leco TruMac Carbon Nitrogen Analyser (LECO Corporation, USA). Concentrations were quantified using 165 

a series of soil reference material standards (LECO Corporation, USA) with calibration limits of 0.1 – 6 mg N 166 

and 1.2 – 223 mg C. Carbon and nitrogen concentrations were corrected against blanks and normalised to filtered 167 

volume and cell density.  168 

 169 

Quantification of demethylated sulfur compounds 170 

For quantification of dimethylsulphide (DMS), a 2 mL sample of culture was gravity filtered and placed into an 171 

amber vial, which was then sealed with a butyl rubber stopper, crimped capped, and analysed immediately. Care 172 

was taken during gravity filtration to ensure that the filter did not dry out and samples were manipulated gently to 173 

minimise any loss of DMS via ventilation. To measure total DMSP (DMSPt), 1 mL of culture was transferred 174 



directly into a 20 mL amber vial containing 1 mL of 0.75 M NaOH (used to hydrolyse DMSP into DMS), sealed, 175 

crimp capped and left to react at room temperature. For dissolved DMSP (DMSPd), a maximum of 3 mL of culture 176 

was gravity filtered through a 2 µm filter and a 1 mL aliquot of filtrate pipetted into an amber vial containing 1 177 

mL of 0.75 M NaOH, before the vial was immediately capped, crimped and stored at room temperature in the 178 

dark. For all DMSP samples, vials were left to equilibrate for a minimum of 12 h before analysis. Intracellular 179 

DMSP (DMSPp) used to determine DMSP quotas and cellular concentrations, was calculated by subtracting the 180 

dissolved DMSP (DMSPd) and DMS fractions from the total DMSP (DMSPt). 181 

Analyses of all sulfur compounds were performed on a gas chromatograph (GC-2010 Plus, Shimadzu, 182 

Japan) coupled with a flame photometric detector (FPD) set at 160°C with hydrogen and air flow rates of 40 and 183 

60 mL min-1, respectively. Samples were analysed using a purge and trap system (Simó et al. 1993), where samples 184 

were sparged with helium, extracting all the volatile gas (including DMS) from the sample while trapping the 185 

DMS in a PTFE loop immersed in liquid nitrogen. After sparging, the sample was released from the cryotrap by 186 

heating the loop and allowing the volatiles to desorb and then injected into the GC. DMS was eluted onto a 187 

capillary column (30 m x 0.32 mm x 5 μm) set at 120°C, using high purity helium as the carrier gas with a flow 188 

rate of 12 mL min-1 and a split ratio of five. In instances of very high sulfur concentrations established during pilot 189 

tests (e.g. Phaeocystis spp.), the direct injection method was used, where a 500 µL sample of the DMS contained 190 

within the headspace of the vial was sampled using a gas tight syringe and injected directly into the GC. The peak 191 

area integration against a calibration curve allowed for the quantification of DMS. Each calibration curve was 192 

made of fresh standards prepared from DMSP chloride crystals (Sigma-Aldrich), hydrolysed to DMS using NaOH 193 

and loaded into the GC with the same injection mode as the samples. To estimate DMSP production rates, we 194 

used DMSPp per cell (pg cell-1) multiplied by the specific growth rate (µ) of the culture. 195 

 196 

DMSP lyase activity (DLA) 197 

Estimates of DLA in the isolates were measured as described by Harada et al. (2004), while maintaining low 198 

incubation and measuring temperatures (~0°C) throughout the analysis to obtain ecologically relevant rates of 199 

lyase. Briefly, 2 mL of culture was gently filtered onto a 2.0 µm polycarbonate filter, rinsed with media, snap 200 

frozen in liquid N2 and stored at -80 °C until analysis. Prior to analysis, filters were thawed slowly on ice and then 201 

transferred facedown into a glass vial in 1 mL of pH 8.2 TRIS buffer, capped with a rubber stopper and vortexed 202 

for 10 s. After 20 min incubation in iced water, 20 µL of DMSP-HCl (Sigma Aldrich, USA) was added to a final 203 

concentration of 5 mM, and the vial sealed and crimp capped. The vial was vortexed vigorously for 10 s, put back 204 



in the iced water, the timer started and 100 µL of headspace immediately extracted using a gas tight syringe, which 205 

was then injected directly onto the GC for quantification of DMS. DMS production was monitored over time with 206 

4-5 sequential measurements and the exact time of headspace removal recorded. DMS production if linear over 207 

time was corrected for the abiotic cleavage activity found in buffer controls. Bacterial DMSP lyase activity was 208 

measured by filtering the 2.0 µm filtrate from the culture and gently filtering it onto a 0.2 µm polycarbonate filter 209 

(SterliTech, USA), that was flash frozen liquid N2 and stored at -80 °C until analysis. Enzyme activity was then 210 

measured as described above, with the assumption that no bacterial production of DMSP was occurring. 211 

 212 

Data analysis 213 

To compare distributions between taxa for dimethylated sulfur compounds, cell volume, carbon, nitrogen and Chl 214 

a content, a two sample Kolmogorov-Smirnov tests was used with a significance cut off of 0.05. When data were 215 

compared between two strains only, a t-test on the mean was used to verify significance at p <0.05. All statistical 216 

analyses were run using the statistical package in R (R Core team, 2019). All plotting and curve fitting were 217 

performed in SigmaPlot v.12 (Systat Software Inc, UK). 218 

 219 

Results  220 

Growth rates across the 16 strains ranged from 0.12 to 0.49 day-1 with the green algae Dunaliella sp. and large 221 

centric diatom Odontella weissflogii exhibiting the slowest growth rates, while the diatom Chaetoceros simplex 222 

and cyanobacterium Synechococcus sp. exhibited the fastest growth rates (Figure 1; Table 2). Mean cell volume 223 

ranged several orders of magnitude between taxa (Table 2), where Synechococcus sp. was the smallest species (3 224 

µm3), and Odontella weissflogii was the largest (10,086 µm3). Within diatoms there was a 100-fold difference in 225 

cell volume between the smallest (Nitzschia acicularis, 97 µm3) and largest species (Odontella weissflogii). As 226 

with cell volume, particulate organic carbon (C), nitrogen (N) and Chl a per cell ranged three orders of magnitude 227 

across all species (Table 2; Figure 2A). However, when expressed per cell volume (CV), this variation was 228 

reduced (Figure 2B). Diatoms possessed much higher Chl a, C and N content than the other species, with an 229 

average of 6.11 ± 3.4 pg Chl a cell-1, 294 ± 157 pg C cell-1 and 51 ± 32 pg N cell-1, respectively, but being larger 230 

cells, this pattern reversed when expressed per cell volume (Table 2). For C:N ratios, with the exception of F. 231 

pseudonana and P. pouchetti, most of the taxa had a C:N ratio between 0.5-6.4 g g-1 (Table 2).  232 



Grouped data showed significant differences in N content (D = 0.64, p = 0.0105) and cell volume (D = 233 

0.55, p = 0.009) between centric and pennate diatoms (Figure 3A), and when normalised to cell volume, only a 234 

significant difference in chlorophyll a (D = 0.64, p = 0.0006) was detected (Figure 3B). The two Phaeocystis 235 

species had significantly lower N (t17 = -2.91, p = 0.0096) and Chl a (t15 = -3.50, p = 0.0032) content compared 236 

with the ‘other’ group. However, Synechococcus sp. showed the lowest C (t12 = -2.53, p = 0.0264), N (t15 = -3.59, 237 

p = 0.0265) and Chl a (t15 = -3.38, p = 0.004) content, as well as cell volume (t15 = -3.64, p = 0.0024) of all three 238 

groups (Figure 3C), but a C:N ratio greater than ‘other’ (t14 = 2.36, p = 0.0326), but the same as the haptophytes. 239 

When expressed per cell volume however, N and chl a concentrations were significantly lower in the haptophytes 240 

(t18 = -4.03, p = 0.0008; t16 = -8.24, p < 0.0001, respectively) than the ‘other’ group (Figure 3D), while 241 

Synechococcus sp. had the highest mean C (t15 = -5.15, p = 0.0001) and chl a concentrations (t17 = -6.82, p < 242 

0.0001) of all three groups.  243 

DMSP was detected in 11 out of the 16 species (Table 3) ranging from 0.004 pg cell-1 in Synechococcus 244 

to 9.82 pg cell-1 in Phaeocystis cf. pouchetii (Table 3). As observed for the two Chaetoceros species, no detectable 245 

levels of DMSP were recorded for the chrysophyte, Dunaliella sp. and Telonema sp. (Table 3). Of all the DMSP 246 

producing species tested, P. cf. pouchetii and Fragilariopsis pseudonana had the highest amounts (73 and 59 fmol 247 

cell-1, respectively), followed by Nitzschia lecointei (10.3 fmol cell-1; Figure 4A). Interestingly, Phaeocystis 248 

antarctica was the fourth lowest producer within the 11 species tested (Figure 4A). Due to the difference in cell 249 

size however, when DMSPp was expressed per cell volume, the rank order changed (Figure 4B). While P. cf. 250 

pouchetii remained the species with the highest DMSP concentration (1460 mM), this was followed by N. 251 

lecointei, F. pseudonana and then Phaeocystis antarctica. This normalisation also altered positions of both 252 

Synechococcus sp., which exhibited higher intracellular concentrations than P. gelidicola, two pennate diatoms, 253 

and all three centric diatoms, Odontella weissflogii and the two Thalassiosira species (Figure 4B).  254 

Grouping all 11 species, DMSPp per CV spanned four orders of magnitude (0.04 – 1460 mM) (Figure 255 

5A) and variability of the interquartile range was lowest when DMSPp was normalised to carbon (Figure 5A). 256 

Separating the data into functional groups, large differences in all DMSP-related parameters between the centric 257 

and pennate diatoms were evident (Figure 5B), where pennate diatoms had significantly higher intracellular 258 

concentrations of DMSP (t15 = 3.93, p = 0.001) and more DMSP per cell (t15 = 2.74, p = 0.015), C (t14 = 2.91, p = 259 

0.011), N (t15 = 3.97, p = 0.001) and Chl a (t15 = 3.36, p = 0.004; Figure 5B), highlighting a strong potential 260 

difference in the ecological and physiological role of DMSP in these two important groups of diatoms. There were 261 

equally large discrepancies between the two Phaeocystis species, with P. cf. pouchettii expressing much higher 262 



DMSP concentrations than P. antarctica (DMSP:CV, t3 = -17.24, p = 0.0004; DMSP:cell, t3 = -17.29, p = 0.0004) 263 

and higher DMSP:C (t3 = -10.18, p = 0.002) and DMSP:Chl a (t3 = -4.91, p = 0.016) ratios (Figure 5C). Comparing 264 

P. gelidicola and Synechococcus sp., which both generally expressed low levels of DMSP, Synechococcus sp. 265 

showed significantly higher DMSP:CV (t4 = -3.78, p = 0.019), per C (t4 = 13.69, p <0.0001), N (t4 = 5.51, p = 266 

0.005), and Chl a (t5 = 12.54, p <0.0001), but significantly lower values for DMSP per cell (t3 = 28.08, p = 267 

<0.0001; Figure 5D). 268 

Of the 16 species screened, dissolved DMS was detected in nine of the cultures, ranging from 6 - 1527 269 

pmol mL-1 (Table 4). The same cultures had detectable algal DMSP lyase activity (DLA), including both 270 

Phaeocystis cultures, P. gelidicola and four diatom species (Table 4).  Unexpectedly, bacterial DMSP lyase 271 

activity was detected in only three of the cultures, but was consistently higher on a per cell basis than their 272 

respective microalgal cultures (Table 4). The highest DLA rate was measured in the bacterial fraction of P. cf. 273 

pouchetti, supporting the very high DMS concentrations measured in that culture.  274 

 275 

Discussion  276 

In the marine environment DMSP is one of the most important sources of sulfur for marine organisms (Kiene et 277 

al. 2000), including heterotrophic bacteria, many of which can metabolise DMSP to produce amino acids and/or 278 

cleave DMSP to DMS (Todd et al. 2009). Thus, knowledge on who produces DMSP is important for 279 

understanding the ecology and sulfur cycling in the environment. Of the 16 Antarctic strains tested in this study, 280 

11, spanning four different taxonomic groups, had detectable levels of DMSP, suggesting that the production of 281 

DMSP in Antarctic waters is the domain of phytoplankton species from multiple functional groups. 282 

Considerable DMSP levels were measured in all pennate diatoms in this study, where Fragilariopsis spp. 283 

and Nitzschia spp. had higher levels of DMSP per cell and cell volume than any of the DMSP-producing centric 284 

diatoms (Odontella weissflogii and both Thalassiosira spp.). This is consistent with a previous study that found 285 

Arctic pennate diatoms to have DMSPp/Chl a ratios two times higher than centric diatoms (Galindo et al. 2014). 286 

For the nine diatom strains tested, the two Chaetoceros species were the only diatoms that had no detectable 287 

DMSP. However, this general prevalence of DMSP production by Antarctic diatoms adds new weight to their 288 

potential role in sulfur cycling in high latitude waters. The two Phaeocystis strains in this study differed from one 289 

another, where the high intracellular concentrations in P. cf. pouchetii (1460 mM), while greater than those 290 

measured for temperate species (261 mM; Keller 1989) or North Sea isolates (71 - 150 mM; Stefels and Van 291 

Boekel 1993), did match the levels of DMSP observed previously in Antarctic Phaeocystis sp. (~1500 mM), 292 



collected from Davis Station, Antarctica (Gibson et al. 1990). Interestingly, the P. antarctica strain in this study 293 

had DMSP levels much lower than many lower latitudes isolates, which typically range from 2-13 fmol cell-1 294 

(Liss et al. 1994). These data reveal that high variability exists both inter- and intra-specifically for Phaeocystis, 295 

with the possible ecological implication that some strains may only be partially responsible for high latitude 296 

DMSP/DMS hot spots.  297 

The green flagellate Pyramimonas gelidicola, which had DMSP concentrations in the mid-range (7.1 298 

mM) and an estimated production rate equal to P. antarctica, has been seen to dominate under ice communities 299 

alongside Phaeocystis spp. (Vance et al. 2013), thus it may support much of the DMSP production in the water 300 

column at the marginal ice edge. As with the diatoms and P. cf. pouchetti, DMSP levels measured in the P. 301 

gelidicola of this study were higher than those measured previously in a temperate strain of Pyramimonas sp. 302 

(0.5mM; Keller 1989). Taken together, these latitudinal differences (seen in diatoms, P. cf. pouchetti and 303 

Pyramimonas) propose that Antarctic isolates may commonly produce more DMSP than their temperate 304 

counterparts and prompts some revision of the key producers across latitudes and ecological niches. The DMSP 305 

lyase activity detected in P. gelidicola contrasts with a previous study on another Antarctic isolate of Pyramimonas 306 

sp. in which no DLA was detected (Harada and Kiene 2011). In an ecological context, our data suggest that this 307 

species, which can occur in high numbers (7 x 104 cells L-1; Garibotti et al 2003; Vance et al. 2013), may contribute 308 

substantially to DMSP production and possibly even DMS flux in polar waters, especially in the sea ice margins.  309 

An important observation of this study was the detection of DMSP lyase activity in four of the diatom 310 

cultures, supporting the DMS concentrations measured. With the exception of N. lecointei, DLA was not detected 311 

in the bacterial fraction, which was unexpected, given the general prevalence of DMSP degradation genes in 312 

bacteria (Todd et al. 2009). To our knowledge, these data represent the first measurements of DLA by diatoms 313 

and suggest that diatoms may play a larger role in sulfur cycling than previously recognised. However, it is 314 

important to note that these cultures were non-axenic and although attempts were made to separate the bacterial 315 

component, potential contribution from attached bacteria to the DMSP lyase activity of the algal component 316 

cannot be ruled out. Therefore, these findings offer a starting point from which to explore further the possibility 317 

of DMSP lyase activity in diatoms and their potential role in DMS flux from polar systems.  318 

The cyanobacterium, Synechococcus, is a known consumer of DMSP (Malmstrom et al. 2005; Vila-319 

Costa et al. 2006), and in the absence of any obvious external source of DMSP, the relatively high intracellular 320 

DMSP in the Synechococcus in this study suggests that this organism may also be a DMSP producer, which to 321 

our knowledge has not been reported previously. It is possible, however, that the DMSP may have originated from 322 



other bacteria in the culture and was then subsequently taken up by the Synechococcus. We were able to confirm 323 

no conversion of DMSP to DMS via DLA, a finding supported by Malmstrom et al. (2005), who found axenic 324 

cultures of Synechococcus did not produce DMS.  325 

The absence of lyase activity in the bacterial fraction (<2 µm) of the majority of the cultures is surprising, 326 

given their dominant role in DMS production (Curson et al 2008; 2011). This could be due to the low DMSPd 327 

concentrations in many of the cultures not meeting bacterial sulfur and carbon requirements. In marine 328 

ecosystems, DMSP plays a key role in bacterial cell metabolism satisfying up to 95% of the sulfur and 15% of the 329 

carbon demands (Zubkov et al. 2001). Thus, it is possible that the available DMSP in these cultures was 330 

preferentially taken up and utilised to produce protein for bacterial growth, rather than cleaved into DMS and 331 

acrylate. The cultures in which bacterial DLA was detected corresponded with relatively high DMSPd 332 

concentrations, supporting the idea of bacteria prioritising DMSP demethylation over DMS production (Kiene et 333 

al. 1999). 334 

Assuming the data presented here are representative of Southern Ocean phytoplankton, using DMSP 335 

production rates (Table 3) we can start to estimate the contributions of certain species to the DMSP pool in the 336 

Southern Ocean. For example, a community dominated by Fragilariopsis sp., a ubiquitous pelagic genus in 337 

southern waters (Waters et al. 2000; Cefarelli et al. 2010; Petrou et al. 2016), would produce substantially more 338 

DMSP than one dominated by a bloom-forming species from the genus Chaetoceros sp.. Average cell densities 339 

for Fragilariopsis spp. (>20 µm) around East Antarctica have been recorded as 1.8 x 105 cell L-1 (Waters et al. 340 

2000), and mean concentrations of Fragilariopsis spp. in the Weddell Sea recorded as ~1.1 x 105 cells L-1 of which 341 

up to 50% is F. pseudonana (Cefarelli et al. 2010). Using these numbers, DMSP production by F. pseudonana 342 

alone, could be in the order of 6.9 nmol L-1 day-1. The prolific DMSP producer Phaeocystis, which can bloom in 343 

numbers exceeding 1 x 106 cells L-1 (Smith Jr et al. 2003), would have an estimated DMSP production rate ranging 344 

from 0.14 – 25 nmol L-1 day-1. From these estimates, we can start to see the potentially significant contribution 345 

diatoms may make to the DMSP pool in Antarctic waters. If we then add to that the possibility for diatom driven 346 

conversion of DMSP to DMS, the potential influence of diatoms on sulfur cycling in the Southern Ocean could 347 

prove substantial. 348 

A new potential contributor to DMSP production could come from the cyanobacterium, Synechococcus 349 

sp.. Although generally found in low abundance in Antarctic waters, if the DMSP concentrations in this study are 350 

representative of other Synechococcus strains, its contribution to DMSP production at lower latitudes could also 351 

be significant. Synechococcus abundances can be as high as 3.7 x 107 cells L-1 (Saito et al. 2005), which would 352 



make the estimated DMSP production ~0.5 nmol L-1 day-1.  Furthermore, with warming and tropicalisation of 353 

oceans, the projected Synechococcus abundance and distribution for the end of this century predict cell densities 354 

exceeding 10,000 cell mL-1 as far as 60°S (Flombaum et al. 2013) making its future potential contribution to 355 

DMSP in polar regions considerably greater. Indeed, in the Arctic (79°N), Synechococcus abundance has already 356 

exceeded 21,000 cells mL-1 (Paulsen et al. 2016), suggesting that its geographical range may not be as limited by 357 

temperature as previously thought. 358 

The combination of these varying contributions have implications for trophic interactions and DMSP 359 

availability, both for bacterial metabolism and through the act of grazing, whereby more grazable species such as 360 

P. gelidicola, may actually make a greater overall contribution to the dissolved DMSP pool than the silica walled 361 

diatoms that are harder to prey upon. This available pool has even wider reaching implications, as DMSP has also 362 

been shown to be available for uptake by other phytoplankton species (Vila-Costa et al. 2006), including diatoms 363 

(Petrou and Nielsen 2018), thereby linking the ecological role of DMSP into a potential physiological role, 364 

whereby uptake could assist with physiological adjustments. 365 

Physiologically, DMSP is a secondary metabolite that has been shown to function as an osmoprotectant, 366 

cryoprotectant (Stefels 2000) and antioxidant (Sunda et al. 2002). The shift in species rank when data were 367 

normalised to intracellular concentrations of DMSP (Figure 5), could indicate differences in the physiological role 368 

DMSP has for those cells. We found pennate diatoms to possess much higher concentrations of DMSP than the 369 

centric diatoms in this study, reflecting potential differences in the needs for cryoprotection. Recent work in the 370 

Arctic showed clear differences in DMS and DMSP production in under ice blooms depending on whether the 371 

community was dominated by centric or pennate diatoms, with pennate diatoms recently released from the sea ice 372 

having higher intracellular DMSP concentrations (Galindo et al 2014). Alternatively, these differences in DMSP 373 

concentration could reflect the advantage of sea ice pennate diatoms to acclimate to sudden increases in UV and 374 

high light as sea ice breaks up (Vance et al. 2013; Galindo et al. 2016), by using DMSP as an antioxidant. The 375 

higher concentrations found in the Phaeocystis species and pennate diatoms may indicate that their cell physiology 376 

is more reliant on DMSP than in centric diatoms. The notably high intracellular concentrations found in 377 

Synechococcus is of particular interest, suggesting that perhaps this cyanobacterium has some dependence on this 378 

compound for cell maintenance. This is further supported by the fact that it is known to take up and assimilate 379 

DMSP from the environment as well (Malmstrom et al. 2005; Vila-Costa et al. 2006). It is important to note 380 

however, that this strain was isolated from Ace Lake, a meromictic lake in the Vestfold Hills, Antarctica, so while 381 

a potentially significant producer, it is not necessarily representative of truly pelagic species. 382 



 In addition to species and functional group comparisons, intra-genera comparisons can also be made. 383 

Between the two Fragilariopsis strains, F. pseudonana had much higher levels of DMSP (59 fmol cell-1, 17 mM) 384 

than the smaller Fragilariopsis sp. (1.4 fmol cell-1) and comparable to intracellular concentrations (16-18 mM) 385 

measured previously in the Antarctic diatom Fragilariopsis cylindrus (Lyon et al. 2016). Fragilariopsis 386 

pseudonana is found both in open waters and in the pack ice, suggesting that, like F. cylindrus, it has a broad 387 

ecological niche, suggesting that DMSP may play a role in their physiological plasticity. The two species of 388 

Nitzschia also varied greatly in DMSP production. Again, it was the larger of the two species, N. lecointei that 389 

had much higher DMSP levels, suggesting possible niche differentiation between the two species and thus 390 

environmentally driven differences in DMSP requirement. Given that Nitzschia acicularis is generally found in 391 

pelagic, offshore environments, whereas N. lecointei is commonly found on the under-surface of ice 392 

(tychopelagic) or near the sea ice edge (Scott and Marchant 2005), it is possible that the lower temperatures or 393 

more variable conditions experienced in the sea ice, means a greater physiological requirement for the 394 

cryoprotective or osmolytic properties of DMSP. Differences were also detected in the two Thalassiosira strains, 395 

where the larger strain also had the highest DMSP content and concentration. These data suggest that smaller cells 396 

may have reduced requirements for DMSP or reduced capacity to synthesise and store metabolites and together 397 

show that there is considerable strain variability even amongst genera. 398 

To maximise the comparability of the data presented in this study, we have expressed DMSP not only 399 

per cell and cell volume, but also per C, N and Chl a content. This is because when measuring DMSP in the field, 400 

Chl a is often used for normalisation and as a proxy for phytoplankton biomass, and while it can be hard to 401 

determine the exact input of specific species, it is an easy and readily available parameter, making it especially 402 

attractive to modellers (Huot et al. 2007). Similarly, optical measurements of phytoplankton biomass can be 403 

expressed as carbon biomass (Behrenfeld and Boss 2006), with many global DMS/P models presented in units of 404 

carbon (Gali et al. 2015; Lana et al. 2011). This study has demonstrated the variability that exists in using different 405 

normalisation parameters (cell, Chl a, C and N) across functional groups and mixed communities, which is useful 406 

when standardising DMS/P at a regional scale (Figure 5).  407 

This study has provided the first comprehensive data on DMSP production and DLA in a suite of 408 

phototrophic and phagotrophic species isolated from Antarctica. Among the species characterised, our species-409 

specific results demonstrate the challenges in generalising across a genus or a community and the complexity of 410 

understanding sulfur dynamics in Antarctic waters. Our results highlight that DMSP concentration varies not only 411 

across species, but also among strains from the same genus, linking production with possible niche occupation or 412 



environmental constraints and demonstrates how any conclusions or extrapolations to the environment are 413 

challenging. However, these data have started to reveal who the producers are within the Antarctic marine 414 

environment, how taxonomically broad DMSP and DMS production can be and provide a first insight into the 415 

species-specific variability that can be expected from mixed community samples.  416 
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Tables 607 

Table 1: A summary table of the Antarctic phytoplankton cultures investigated. All cultures were grown at 50 608 
µmol photons m-2 s-1 and 3°C ± 1°C. Grouping column shows species used for functional group comparisons. For 609 
the diatoms, c = centric, p = pennate. 610 
 611 

Species Strain code Collection site Medium Grouping 

Chaetoceros castracanei PZB010 Prydz Bay L1 Diatom (c) 

Chaetoceros simplex - Prydz Bay L1 Diatom (c) 

Chrysophyte sp. PZB025 Prydz Bay L1 Other 

Dunaliella sp. CS-635 Organic Lake F2 Other 

Fragilariopsis sp. PZB060 Prydz Bay L1 Diatom (p) 

Fragilariopsis pseudonana PZB009 Prydz Bay L1 Diatom (p) 

Nitzschia acicularis PZB063 Prydz Bay L1 Diatom (p) 

Nitzschia lecointei PZB001 Prydz Bay L1 Diatom (p) 

Odontella weissflogii AAD015 Antarctica L1 Diatom (c) 

Phaeocystis antarctica PZB016 Prydz Bay L1 Haptophyte 

Phaeocystis cf. pouchetti CS-243 Antarctica F2 Haptophyte 

Pyramimonas gelidicola PZB033 Prydz Bay L1 Other 

Synechococcus sp. CS-601 Ace Lake F2 Cyanobacterium 

Telonema sp. PZB013 Prydz Bay L1 Other 

Thalassiosira sp. PZB048 Prydz Bay L1 Diatom (c) 

Thalassiosira sp. PZB062 Prydz Bay L1 Diatom (c) 

612 



Table 2: Specific growth rate (µ), mean cell volume, carbon, nitrogen and Chl a concentration measured in 16 Antarctic phytoplankton species, diatoms are in bold. Data are 

displayed as means (n=4) ± standard error in parentheses. Note: numbers in square brackets for Thalassiosira sp. indicate strain number from table 1. 

 

Species 
Specific 

growth rate µ 
Volume C  N  C:N ratio Chl a   

 (div. day-1) (µm3) pg cell-1 pg µm-3 pg cell-1 pg µm-3   pg cell-1 fg µm-3 

C. castracanei 0.20 (0.02) 334 (14) 78 (11.5) 0.23 (0.03) 24 (2.2) 0.07 (0.007) 3.4 (0.5) 0.52 (0.059) 1.6 (0.18) 

C. simplex 0.49 (0.02) 17 (2) 1 (0.4) 0.04 (0.02) - - - - - - 0.16 (0.006) 9.2 (0.34) 

Chrysophyte sp. 0.15 (0.02) 22 (3) 5 (3.3) 0.24 (0.15) 10 (0.7) 0.48 (0.034) 0.5 (0.3) 0.26 (0.014) 11.9 (0.66) 

Dunaliella sp. 0.12 (0.00) 15 (1) 10 (0.8 0.67 (0.06) 5 (0.4) 0.31 (0.029) 2.2 (0.3) 0.32 (0.005) 20.8 (0.30) 

Fragilariopsis sp. 0.36 (0.01) 250 (15) 72 (14.7) 0.29 (0.06) 19 (0.9) 0.07 (0.004) 3.8 (0.6) 0.48 (0.028) 1.9 (0.11) 

F. pseudonana 0.21 (0.05) 3392 (242) 650 (58.1) 0.19 (0.02) 49 (5.4) 0.01 (0.002) 13.5 (1.1) 8.16 (0.329) 2.4 (0.10) 

N. acicularis 0.15 (0.01) 97 (11) 6 (2.5) 0.06 (0.03) 6 (0.9) 0.06 (0.009) 0.9 (0.3) 0.17 (0.004) 1.7 (0.05) 

N. lecointei 0.23 (0.03) 221 (16) 18 (1.8) 0.08 (0.01) 7 (0.5) 0.03 (0.002) 2.8 (0.3) 0.33 (0.019) 1.5 (0.09) 

O. weissflogii 0.12 (0.01) 10086 (930) 1426 (230) 0.14 (0.02) 240 (13) 0.02 (0.001) 5.9 (0.9) 31.75 (1.806) 3.1 (0.18) 

P. antarctica 0.23 (0.01) 31 (2) 3 (1.7) 0.10 (0.06) - - - - - - 0.01 (0.002) 0.4 (0.05) 

P. cf. pouchetti 0.16 (0.03) 50 (4) 38 (5.7) 0.76 (0.11) 4 (1.1) 0.08 (0.015) 12.7 (1.2) 0.08 (0.016) 1.5 (0.32) 

P. gelidicola 0.14 (0.02) 75 (8) 26 (1.2) 0.35 (0.02) 4 (0.4) 0.06 (0.006) 6.4 (0.6) 0.49 (0.019) 6.5 (0.25) 

Synechococcus sp. 0.45 (0.00) 3 (0.6) 3 (0.1) 0.89 (0.03) 1 (0.0) 0.16 (0.008) 5.5 (0.2) 0.07 (0.002) 23.2 (0.79) 

Telonema sp. 0.14 (0.02) 238 (67) 139 (48.0) 0.58 (0.20) 31 (8.3) 0.13 (0.035) 3.6 (1.2) 2.48 (0.125) 10.4 (0.52) 

Thalassiosira [48] 0.14 (0.02) 2302 (225) 155 (67.4) 0.07 (0.03) 13 (13) 0.01 (0.006) - - 6.06 (0.876) 2.6 (0.38) 

Thalassiosira [62] 0.19 (0.03) 1765 (391) 239 (147) 0.14 (0.08) - - - - - - 7.36 (1.412) 4.2 (0.80) 

Averages                   

          Diatoms 0.23 (0.04) 2051 (1080) 294 (157) 0.14 (0.03) 51 (32) 0.04 (0.011) 5.0 (1.8) 6.11 (3.396) 3.1 (0.82) 

          All species 0.22 (0.03) 1181 (644) 179 (92.6) 0.30 (0.07) 32 (18) 0.12 (0.038) 5.1 (1.2) 3.67 (1.997) 6.4 (1.75) 

 

 

 



Table 3: DMSP data for 16 Antarctic phytoplankton species, diatoms shown in bold. DMSP is expressed per cell, C, N and chl a. C-DMSP:C indicates proportion of the 

DMSP-carbon to total C (%), DMSP production is estimated as from DMSP content (fmol cell-1) multiplied by the specific growth rate (µ) and expressed as DMSP fmol cell-1 

day-1. For each species, the mean value for all replicates (n=4) is shown ± standard error in parentheses. Note: numbers in square brackets for Thalassiosira sp. indicate strain 

number from table 1. 

Species DMSP:cell DMSP:C DMSP:N DMSP:Chl a C-DMSP:C DMSP production 
 pg cell-1 mmol mol-1 mmol mol-1 mmol g-1 % fmol cell-1 day-1 

C. castracanei BDL  -  -  -  -  -  

C. simplex BDL  -  -  -  -  -  

Chrysophyte sp. BDL  -  -  -  -  -  

Dunaliella sp. BDL  -  -  -  -  -  

Fragilariopsis sp. 0.19 (0.015) 0.26 (0.031) 1.07 (0.04) 3.01 (0.08) 0.13 (0.02) 0.517 (0.036) 

F. pseudonana 8.03 (0.438) 1.12 (0.086) 17.76 (2.17) 7.37 (0.58) 0.56 (0.04) 12.42 (2.772) 

N. acicularis 0.02 (0.001) -  0.48 (0.08) 1.07 (0.00) -  0.027 (0.002) 

N. lecointei 1.38 (0.040) 7.04 (0.852) 22.07 (2.04) 31.81 (1.50) 3.52 (0.43) 2.335 (0.275) 

O. weissflogii 0.15 (0.029) 0.01 (0.003) 0.06 (0.01) 0.03 (0.01) 0.01 (0.00) 0.139 (0.034) 

P. antarctica 0.04 (0.004) -  -  30.72 (5.73) -  0.072 (0.007) 

P. cf. pouchetti 9.82 (0.565) 23.89  (2.276) 302.1 (58.35) 1092 (216) 11.95 (1.14) 12.33 (2.691) 

P. gelidicola 0.07 (0.002) 0.24 (0.004) 1.81 (0.16) 1.10 (0.05) 0.12 (0.00) 0.074 (0.006) 

Synechococcus sp. 0.004 (0.000) 0.13 (0.007) 0.82 (0.07) 0.41 (0.03) 0.06 (0.00) 0.013 (0.001) 

Telonema sp. BDL  -  -  -  -  -  

Thalassiosira [48] 0.05 (0.006) -  -  0.06 (0.00) -  0.047 (0.005) 

Thalassiosira [62] 0.01 (0.007) -  -  0.01 (0.01) -  0.008 (0.007) 

Averages  

          Diatoms 1.40 (1.119) 2.11 (1.662) 8.29 (4.80) 6.19 (4.39) 1.05 (0.74) 3.088 (2.731) 

          All species 1.80 (1.076) 4.67 (3.342) 305.9 (298.7) 106.1 (98.60) 2.34 (1.67) 2.544 (0.273) 

*BDL = Below Detection Limit   
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Table 4: Dissolved DMS concentrations and DMSP lyase activity measured at 0ºC for 16 Antarctic phytoplankton 

strains and associated bacterial consortia. Diatoms shown in bold. For DMS, the mean value for all replicates 

(n=4) is shown with standard error in parentheses. For DLA, the mean rate from replicates (n=3-4) is given with 

standard error in parentheses. Note: numbers in square brackets for Thalassiosira sp. indicate strain number from 

table 1. 

Species 
DMS  

pmol mL-1 

DLAalgae 

fmol cell h-1 

DLAbacteria 

fmol cell h-1 

C. castracanei BDL - ND  ND  

C. simplex 7.0 (0.37) 1.32 (0.10) ND  

Chrysophyte sp. BDL - ND  ND  

Dunaliella sp. 9.0 (0.21) 0.02 (0.005) ND  

Fragilariopsis sp. 6.0 (0.12) 0.05 (0.01) ND  

F. pseudonana BDL - ND  ND  

N. acicularis BDL  ND  ND  

N. lecointei 26.0 (0.28) 0.04 (0.01) 0.17 (0.01) 

O. weissflogii BDL - ND  ND  

P. antarctica 12.0 (0.49) 0.002 (0.001) ND  

P. cf. pouchetii 1527 (57.3) 0.56 (0.10) 272 (52) 

P. gelidicola 11.0 (2.51) 0.025 (0.002) 3.3 (0.6) 

Synechococcus sp. BDL - ND  ND  

Telonema sp. BDL - ND  ND  

Thalassiosira [48] BDL - ND  ND  

Thalassiosira [62] 9.0 (0.41) 1.67 (0.52) ND  

*BDL = Below detection limit. *ND = Not detected. 
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Figure legends 

 

Fig. 1 Growth curves for 16 Antarctic phytoplankton species used in this study, listed alphabetically. Cell density 

is presented in cells mL-1 (x104) ± SE (n=4). Note: differences in X-axes. Sigmoidal curves (3 parameter) were 

fitted to the data using the equation f = a/(1+exp(-(x-x0)/b)). Samples for characterisation were taken during a 

subsequent growth curve. Red boxes indicate growth phase and cell density of sample 

 

Fig. 2 A) The quantity of C, N, and Chl a in pg cell-1 as well as range of C:N and cell volume in µm3 for 16 

Antarctic species and B) concentrations of C, N per cell volume in pg µm-3 and fg µm-3 for Chl a. Boxplots show 

the range of data, the 1st and 3rd quartile (box) and median (black horizontal line). Note: Y-axis is a log scale 

 

Fig. 3 The quantity of C, N, and Chl a in pg cell-1 as well as C:N and cell volume in µm3 by functional group. A) 

Centric (grey) and pennate (white) diatoms; C) Haptophytes Phaeocystis (grey), other - consisting of Chrysophyte, 

Dunaliella, Pyramimonas gelidicola and Telonema (white) and Synechococcus sp. (yellow diamond). 

Concentrations of C and N per cell volume in pg µm-3 and Chl a fg µm-3 by functional group. B) Centric (grey) 

and pennate (white) diatoms; and D) Haptophytes Phaeocystis (grey), other - consisting of Chrysophyte, 

Dunaliella, Pyramimonas gelidicola and Telonema (white) and Synechococcus sp. (yellow diamond). Boxplots 

show the range of data, the 1st and 3rd quartile (box) and median (black horizontal line). Diamonds for 

Synechococcus sp. represent mean ± SE (n=4) 

 

Fig. 4 DMSP per cell (DMSPp) and intracellular concentrations in 16 Antarctic species, data arranged in 

descending order. A) DMSP content in fmol per cell-1 ± SE (n=4) by functional group. Diatoms – orange, centric 

(circles) pennate (triangles), haptophytes – pink (hexagon), P. gelidicola – green (square), Synechococcus sp. – 

yellow (diamond). B) Intracellular DMSP concentrations (mM ± SE, n=4) arranged by functional group. Diatoms 

– orange, centric (circles) pennate (triangles), haptophytes – pink (hexagon), P. gelidicola – green (square), 

Synechococcus sp. – yellow (diamond). BDL, below detection limit 

 

Fig. 5 The DMSPp data for 11 species combined and by functional groupings. A) all 11 species, B) Diatoms - 

centric (grey) and pennate (white); C) Haptophytes – P. cf. pouchetti (black), P. antarctica (grey); D) P. gelidicola 
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(black) and Synechococcus sp. (grey). The data are presented in the following units: DMSP:CV – DMSP per cell 

volume (CV) in mM; DMSP:cell – DMSP per cell in pmol cell-1; DMSP:C – DMSP per carbon in mmol mol-1; 

DMSP:N – DMSP per nitrogen in mmol mol-1; DMSP:Chl a -  DMSP per chlorophyll a in mmol g-1. Boxplots 

show the range of data, the 1st and 3rd quartile (box) and median (black horizontal line). Data in dot plots represent 

mean ± SE (n=4). Note: differences in Y-axes 
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Figures 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 

 

 

 

 


