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Abstract: Previously, we used a lentiviral vector to deliver furin-cleavable human insulin (INS-FUR)
to the livers in several animal models of diabetes using intervallic infusion in full flow occlusion (FFO),
with resultant reversal of diabetes, restoration of glucose tolerance and pancreatic transdifferentiation
(PT), due to the expression of beta (β)-cell transcription factors (β-TFs). The present study aimed to
determine whether we could similarly reverse diabetes in the non-obese diabetic (NOD) mouse using
an adeno-associated viral vector (AAV) to deliver INS-FUR ± the β-TF Pdx1 to the livers of diabetic
mice. The traditional AAV8, which provides episomal expression, and the hybrid AAV8/piggyBac
that results in transgene integration were used. Diabetic mice that received AAV8-INS-FUR became
hypoglycaemic with abnormal intraperitoneal glucose tolerance tests (IPGTTs). Expression of
β-TFs was not detected in the livers. Reversal of diabetes was not achieved in mice that received
AAV8-INS-FUR and AAV8-Pdx1 and IPGTTs were abnormal. Normoglycaemia and glucose tolerance
were achieved in mice that received AAV8/piggyBac-INS-FUR/FFO. Definitive evidence of PT was
not observed. This is the first in vivo study using the hybrid AAV8/piggyBac system to treat Type 1
diabetes (T1D). However, further development is required before the system can be used for gene
therapy of T1D.
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1. Introduction

Type 1 diabetes (T1D) is characterised by the autoimmune destruction of pancreatic beta (β)
cells, resulting in a lack of insulin secretion and hyperglycaemia [1]. Currently, a patient’s blood
glucose levels are controlled by multiple daily injections of insulin or by insulin pumps [2] and the
development of fast and long-acting insulin analogues has provided more physiological control than
older insulins [3]. However, this approach also results in susceptibility to severe hypoglycaemia,
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insulin resistance, and mild obesity and does not eliminate complications such as nephropathy,
retinopathy, cardiovascular disorders and various neurological problems, which increase morbidity
and mortality [4]. Continuous glucose sensors and insulin pumps have led to the development of the
artificial pancreas, which can provide better glycaemic control [5]. However, issues such as the high
costs of the systems, scar tissue associated with microneedle insertion and sensor failure limit their
current usefulness [6]. Transplantation therapy of whole pancreas, human islets or combinations of
islets and mesenchymal stem cells [7] are other alternatives to exogenous insulin treatment. However,
the limitations of lack of donors, complications of immunosuppressive therapy and issues such as
blood-mediated inflammatory reactions [8] underscore the need for alternative treatment approaches.

Gene therapy offers an alternative approach to the treatment/cure of T1D, whereby an “artificial β
cell” that is capable of synthesising insulin in response to the normal metabolic signals is genetically
engineered from the patient’s own cells. This approach would avoid the problem of rejection seen
with both allogeneic transplantation of islets and pancreas and would release T1D patients from
daily insulin injections, the risk of hypo- and hyperglycaemia episodes and the long-term chronic
complications that lower quality of life and cost the community millions of dollars in patient care.
As the patient’s own cells will become insulin-secreting cells, adverse allogeneic immune responses
will be avoided. Additionally, there will be no requirement for the ex vivo manipulation of a patient’s
liver, and subsequent adoptive transfer of artificial β cells. Hepatocytes have been shown to be suitable
candidates for the generation of artificial β cells [9–25]. In most cases, hyperglycaemia has been
ameliorated by the expression of various β-cell transcription factors in liver cells, delivered most
commonly by adenoviral vectors [13,16,17,19]. However, a number of problems have been encountered
using adenoviral vectors. These include the development of exocrine cells in the liver [13,16] and
resultant hepatitis following the delivery of Pdx1 [17]. Other attempts to deliver combinations of
transcription factors, such as Pdx1 and Neurogenin 3 (Ngn3), improved the blood glucose levels of
diabetic mice, but could not fully cure diabetes [18,19].

Our laboratory has established that the dual expression of insulin and specific β-cell transcription
factors in liver cell lines and primary hepatocytes has a synergistic effect causing pancreatic
transdifferentiation, storage of insulin in granules, regulated insulin secretion to glucose and otherβ-cell
secretogogues, and, most importantly, the ability to permanently reverse diabetes [9,10,20,25]. In order
to obtain consistently high transduction rates and transgene isolation to the liver in diabetic animals,
we developed a novel microsurgical procedure of intervallic infusion in full flow occlusion (FFO) to
deliver a lentiviral vector. This technique involved clamping the major veins and arteries to stop blood
flow to the liver whilst the vector was injected into the portal circulation. This allowed the vector,
containing the insulin gene, to remain isolated to the liver with resultant high transduction rates: 60%
in streptozotocin (STZ)-diabetic rats [9] and 42% in spontaneously diabetic non obese diabetic (NOD)
mice [10]. These results are likely attributable to the FFO technique, eliminating significant quantities
of blood that would have rapidly inactivated the vector by a complement-mediated mechanism. In a
world first, we have also observed the expression of human β-cell transcription factors in primary
human hepatocytes engrafted into the liver of the humanised FRG mouse [25], in which chimeric
human/mouse livers can be generated [26,27].

However, this approach of using the second-generation lentiviral vector in combination with
the FFO technique has limitations due to clinical concerns, such as susceptibility to complement
inactivation [28] and the invasiveness of the surgical procedure. Ultimately, a more clinically applicable
vector system to deliver insulin is required for the translation of this technology. Therefore, in the
present study, we endeavoured to design a protocol for the reversal of diabetes using liver-directed
gene therapy without the requirement of invasive surgery. For this, we initially used a non-integrating
recombinant adeno-associated vector (rAAV). These vectors are attractive candidates for gene therapy
as they show long-term gene expression and lack both pathogenicity and immunogenicity.The rAAVs
can transduce liver cells with high efficiency and are showing promise in clinical trials [29,30]. In this
project we utilised the highly murine liver trophic type 8 capsid [31], with the incorporation of a liver
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specific promoter (LSP) [32] to the AAV8 vector, which allowed the systemic delivery by intraperitoneal
(i.p.) injection to mouse livers.

We transduced the livers of diabetic NOD mice via i.p. injections of AAV8-INS-FUR and
AAV8-containing the β-cell transcription factor, Pdx1 (AAV8-Pdx1), with the intention of inducing
pancreatic transdifferentiation in the livers. Diabetic mice that received i.p. injections of AAV8-INS-FUR
became hypoglycaemic with abnormal responses to (i.p.) glucose tolerance tests (IPGTTs). In addition,
expression of β-cell transcription factors was not detected in the livers, indicating that this approach
was not able to induce β-cell transdifferentiation as anticipated.

In previous successful studies, the lentiviral vector system stably incorporated the INS-FUR
gene into liver cells [9–11,25]. In an attempt to investigate whether it was the episomal expression of
INS-FUR using the AAV8 system that resulted in the absence of pancreatic transdifferentiation and
persistence of abnormal glucose tolerance, we also employed the AAV8/piggyBac system, which can
mediate the transposition of transgenes into the host genome [33–35]. As the piggyBac system has
shown sustained gene expression in adult mice [35], we hypothesised that the AAV8-INS-FUR-piggyBac
system would result in somatic integration and long-term gene expression, therby reversing their
diabetes in a similar manner to the lentiviral system [9,10,25]. Expression of INS-FUR resulted in
euglycaemia and normal IPGTTs in the mice that received AAV8/piggyBac-INS-FUR and these were
subsequently subjected to FFO surgery. The INS-FUR gene and the pancreatic hormones, somatostatin
and pancreatic polypeptide, were detected in the livers. However, wider evidence of pancreatic
transdifferentiation was not seen. This is the first in vivo study using the hybrid AAV8/piggyBac system
in an attempt to cure autoimmune T1D. However, whilst integration of the AAV8/piggyBac vector
produced superior results compared to the episomal AAV8 system, it is apparent that the lentiviral
system possesses a certain factor(s) that enables widespread pancreatic transdifferentiation to occur in
the animal livers that was not seen with either AAV vector.

2. Materials and Methods

2.1. Vector Construction and Production

2.1.1. AAV Vectors

AAV vector constructs (Figure S1) were prepared using a previously reported construct [36],
where a powerful liver-specific promoter drives transgene expression. New constructs were built using
an In-Fusion cloning kit (Takara-bio, Scientifix Pty Ltd., Clayton, Australia), where the GFP transgene
was replaced by sequences encoding INS-FUR or murine Pdx1 with a downstream IRES. AAV vector
stocks were produced by triple transfection of HEK 293 cells, as previously described [36]. The titre
was acquired using real-time quantitative PCR (qPCR) (Table S1) [37]. The vectors were diluted with
phosphate-buffered saline to the required concentration for injection. When combinations of vectors
were used, the vectors were mixed and delivered in a single (i.p.) injection.

2.1.2. HIV/MSCV Lentiviral Vector

The HIV/MSCV (HMD) lentiviral vector, which expresses the enhanced green fluorescent protein
(EGFP), has a HIV/murine stem cell virus (MSCV) hybrid long-terminal repeat as the promoter [38].
The vector was produced by calcium phosphate precipitation in 293T cells using conditioned medium,
as previously described [9]. The culture medium was harvested 48 h after transfection and subjected
to syringe and tangential flow filtration, followed by centrifugation to pellet the vector (50,000× g,
2 h). Virus titre was determined by transducing 293T cells (5 × 105) with serially diluted vector
stocks and quantifying numbers of EGFP-positive cells by flow cytometry, as previously described [2].
Viral replication-competency was also assessed by RT-PCR [9].
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2.2. Transduction of Liver Tissue

Female NOD mice were obtained from the Animal Resources Centre, Perth, Australia and were
housed at the Ernst Facility, University of Technology Sydney, Sydney, Australia). The housing and
experimental conditions complied with the Australian Code for the Care and Use of Animals for
Scientific Purposes. Experiments were approved by the Animal Care and Ethics Committee, University
of Technology Sydney (ETH17-1559). The mice received treatments after they had spontaneously
developed diabetes (blood glucose levels ≥ 10 mmol/L for at least 3 consecutive days).

The vector dose used for a mouse was 5 × 1010 vector genomes (vg). To study the effect
of the AAV8-LSP system, the mice were divided into groups of seven and injected i.p. with
AAV8 vectors expressing appropriate marker genes: AAV8-INS-FUR-mCherry or a combination of
AAV8-INS-FUR-venus and AAV8-Pdx1 at equivalent doses. Untreated female diabetic and non-diabetic
NOD mice were used as controls. To determine whether the FFO technique had a stimulatory effect on
pancreatic transdifferentiation of the livers, the surgery was performed 7 days after the mice received
i.p. injections of AAV8-INS-FUR-venus in order to allow expression from AAV8-INS-FUR prior to
performing the FFO technique.

To determine whether the lentiviral capsid/promoter combination was capable of stimulating
pancreatic transdifferentiation in the livers expressing AAV8-INS-FUR-mCherry, a further group of
diabetic NOD mice (n = 6) received 5 × 106 transduction units (TU) of HMD/MSCV-eGFP infusion via
the portal vein during FFO surgery 7 days after i.p. injections of AAV in order to enable expression
from the AAV vector to develop prior to injecting the lentiviral vector.

The AAV8/piggyBac vector system is comprised of two different vectors: a transposon vector
carrying the INS-FUR-mCherry construct and a transposase vector, which works by a ‘cut and paste’
mechanism [33]. To determine whether FFO surgery could induce pancreatic transdifferentiation,
FFO surgery was carried out 7 days after the diabetic NOD mice received i.p. injections of the
AAV8/piggyBac-INS-FUR-mCherry (transposon and transposase dose was 3 × 1010 vg and 3.5 × 1010

vg, respectively). It was anticipated that the mild injury induced by the FFO surgery [9–11,25] would
stimulate hepatocyte regeneration thereby clearing the transposase to avoid the continuous excision
and insertion of the transgene on the chromosomes.

2.3. Functional Analysis

Mouse body weights and blood glucose levels (BGLs) were monitored daily after the AAV8
treatments. IPGTTs were performed under anaesthesia after fasting the mice for 6 h with water ad
libitum. For the IPGTTs, glucose was injected i.p. at a dose of 2 g/kg body weight. Blood was collected
and glucose levels were measured at 0, 5, 15, 30, 60, 90 and 120 min after i.p. glucose injection.
Human insulin in sera was quantitated using an Invitron Insulin ELISA Kit (IV2-102E, Invitron Ltd.,
Monmouth, UK), according to the manufacturer’s protocol.

2.4. Microscopic Analysis

Serial frozen sections (15 µm) of the livers were prepared and fixed using acetone. Mounting
medium containing DAPI (Vector Laboratories, Burlingame, CA, USA) was applied to the fixed sections
to visualise nuclei. Images were acquired using a fluorescent microscope and camera (Olympus
BX60, Olympus Imaging, Macquarie Park, Australia). The excitation and emission ranges of the
marker genes were as follows: 400–550 and 500–650 nm for venus, and 540–590 and 550–650 nm for
mCherry, respectively.

2.5. Vector Copy Number Analysis

Livers were collected for analysis of vector copy number (VCN) at the end of the experiment.
Finely diced tissue pieces (25 mg) were homogenized in 500 µL of lysis buffer (10 mM Tris-Cl (pH 8),
0.1 M EDTA (pH 8), 20 mg/mL RNase A) and incubated for 1 h at 37 ◦C. Proteinase K (Sigma-Aldrich,
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North Ryde, Australia) was then added at a final concentration of 100 µg/mL, and the digestion was
continued overnight at 55 ◦C. DNA was extracted by adding phenol/chloroform/isoamyl alcohol
(25:24:1) (Thermo Fisher Scientific, Macquarie Park, Australia). The mixture was then centrifuged
(16,000× g, 5 min), after which the aqueous phase containing the DNA was collected. This extraction
process was performed twice and was followed by two extractions with chloroform/isoamyl alcohol
(24:1). The DNA was precipitated with ice-cold 100% ethanol containing 1.7 M ammonium acetate
and was washed with 70% ethanol. The DNA was dissolved in 10% TE buffer. The amount of DNA
extracted from each of the samples was quantified using the Nanodrop spectrophotometer (Thermo
Fisher, Macquarie Park, Australia).

The VCN for the mice that received AAV-INS-FUR-mCherry was quantified using primers
and probes specific to the woodchuck hepatitis post-transcriptional regulatory element (WPRE) [39].
Quantitative PCR was carried out using Platinum® Taq DNA polymerase enzyme (Invitrogen/ Thermo
Fisher Scientific, Macquarie Park, Australia), as per the manufacturer’s instructions. WPRE primers
and probe concentrations were 0.8 and 0.2 µM, respectively (Table S1). The initial denaturation was
carried out at 95 ◦C for 10 min (1 cycle), followed by 40 cycles of 95 ◦C for 15 s, and 60 ◦C for 60 s.
Fluorescence was acquired at 60 ◦C and all the analyses were performed on the Rotorgene 8000 system
(Qiagen, Chadstone Centre, Australia). The VCN in all samples was normalised against a qPCR specific
for mouse GAPDH [34]. All standards consisted of linearised plasmids. The details of the primer and
probe (Sigma-Aldrich, North Ryde, Australia) sequences are presented in Table S1.

The VCNs for the mice that received the combination of AAV-INS-FUR-venus and AAV8-Pdx1
were analysed in two steps. Firstly, to determine the total VCN, the copy number of the internal
ribosome re-entry site (IRES) sequence was determined using the SYBR®Premix Ex Taq™ system
(Takara Bio, Scientifix, Clayton, Australia). Each of the samples was analysed in duplicate. The reaction
(25 µL) contained 0.4 µM final concentrations of each primer, 50 ng of DNA template and 12.5 µL of
the 2x SYBR premix. The reactions were carried out at 95 ◦C for 30 s (1 cycle), followed by 40 cycles
of 95 ◦C for 5 s, 60 ◦C for 20 s, and 72 ◦C for 20 s. Fluorescence was acquired at 72 ◦C. In the next
step, the copy numbers of INS-FUR and Pdx1 were analysed separately using the respective primers.
The VCN for the transposon vectors in the mouse livers was determined by real-time qPCR. The VCN
was expressed as vector copies/50 ng DNA.

2.6. Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) Analysis

For RT-PCR analysis, liver and pancreas were collected at experimental end points and frozen
in dry ice. Control pancreas and liver tissues were obtained from NOD mice that did not develop
diabetes. Total RNA was extracted using the MaxWell®RSC instrument and the MaxWell®RSC
Simply RNA Tissue Kit (Promega, Madison, WI, USA). RNA samples were treated with DNase I
(Applied BioSystems, Thermo Fisher, Macquarie Park, Australia), according to the manufacturer’s
protocol. Reverse transcription was performed using the Tetro cDNA Synthesis Kit (Bioline, Everleigh,
Australia) and random primers, as per the manufacturer’s protocol. PCRs were performed using
GoTaq Green PCR® Master Mix (Promega, Madison, WI, USA) with PCR parameters optimised for
the amplification of the following genes: Beta-Actin, INS-FUR, Pdx1, NeuroD1, Nkx2.2, Nkx6.1, MafA,
Pax6, P48, Mouse Insulin 1 and Insulin 2, Glut 2, pancreatic polypeptide and somatostatin (Table S2).
Primers used were designed to cross intron exon boundaries to avoid amplification of any residual
genomic DNA.

2.7. Statistical Analysis

Data were analysed using GraphPad Prism 8 software (GraphPad Software, San Diego, CA, USA).
Two-way ANOVA followed by Tukey’s multiple comparison tests were performed to compare the
BGLs during the IPGTTs and the weekly random BGLs of the treated mice with that of the control
groups. The Mann–Whitney test was applied when comparing the vector dosages and the VCN
between the experimental groups. For the mice that were transduced by a combination of INS-FUR
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and Pdx1, a paired t-test was applied when comparing the AAV8-INS-FUR-venus and AAV8-Pdx1
copy numbers. The differences were considered significant when p < 0.05.

3. Results

3.1. Microscopic Analysis

Immunoflourescent expression of the flurophores, mCherry and venus was examined in frozen
sections of the transduced livers to examine transduction efficiency. Figure 1A shows expression
of the mCherry marker gene (AAV8-INS-FUR-mCherry), Figure 1B,C show DAPI-stained nuclei
and a merged image, respectively, 9 weeks after initial transduction with the non-integrating
AAV8 vector. Figure 1D–F shows images of the venus marker gene (AAV8-INS-FUR-venus) and
DAPI-stained nuclei at the experimental end point of 9 weeks after initial transduction with the
non-integrating AAV8 vector. Figure 1A–F indicates widespread hepatocyte transduction as seen
in our previous studies [39]. By comparison, normal liver tissue showed no expression of venus
or mCherry (Figure 1G–I), with only the DAPI-stained nuclei evident. Likewise, expression of the
AAV8/piggyBac-INS-FUR-mCherry transposon/transposase system was also extensive in the liver tissue
(Figure 1J–L) at 15 weeks post-transduction.
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Figure 1. Immunofluorescence detection of marker gene expression in NOD mouse livers following
transduction with AAV vectors. Frozen sections of mouse liver were prepared for immunofluorescence
detection and visualised by fluorescence microscopy. (A) m-Cherry-INS-FUR immunofluorescence 9
weeks after intial transduction, (B) DAPI-stained nuclei of A and (C) is a merged image of A and B.
(D) Venus-INS-FUR immunofluorescence 9 weeks after INS-FUR and Pdx1 were delivered together.
(E) shows the DAPI-stained nuclei of D and (F) is a merged image of D and E. (G) is a normal
liver section showing no immunofluorescence for either venus or mCherry and (H) is an image of
DAPI-stained nuclei of (G) and (I) is a merged image of (G) and (H). (J) piggyBac-INS-FUR-mCherry
immunofluorescence 15 weeks after initial transduction, (K) is the DAPI-stained nuclei of (J) and (L) is
a merged image of (J) and (K). Bar = 20 µm.

3.2. Delivery of AAV8 Expressing INS-FUR ± Pdx1 Fails to Reverse Diabetes

In order to determine whether expression of INS-FUR alone would reverse hyperglycaemia in
the diabetic NOD mice and establish normal glucose tolerance, the animals received an i.p. injection
of the AAV8-INS-FUR-mCherry vector. The animals exhibited normalisation of BGLs on week 3,
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but became hypoglycaemic on week 5 (Figure 2A). The copy number of AAV8-INS-FUR-mCherry in
the livers of these mice was 3.33 ± 0.18 × 105 copies per 50 ng of DNA (Figure 2C). At all the time
points during the IPGTTs, the BGLs of the mice which received AAV8-INS-FUR-mCherry were lower
than those of the diabetic mice (p < 0.05) (Figure 2B). During IPGTTs, the BGLs of the mice which
received AAV8-INS-FUR-mCherry were also lower than those of the non-diabetic control mice at 0, 5,
15, 30 and 120 min (i.e., all time points sampled excluding 60 and 90 min; p < 0.05) (Figure 2B).Cells 2020, 9, x FOR PEER REVIEW 7 of 16 
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+ AAV8-Pdx1 did not reverse hyperglycaemia in diabetic mice. (A) The mean weekly blood glucose
levels of diabetic (n = 7), normal (non-diabetic) (n = 7) and treated diabetic mice that received i.p.
injections of either AAV8-INS-FUR-mCherry (n = 4), or AAV8-INS-FUR-venus + AAV8-Pdx1 (n = 5)
are shown. (B) Blood glucose levels following an IPGTT of diabetic (n = 3), non-diabetic (n = 7)
and treated diabetic mice that received i.p. injections of either AAV8-INS-FUR-mCherry (n = 3) or
AAV8-INS-FUR-venus + AAV8-Pdx1 (n = 4). (C) AAV8 vector copy numbers of the diabetic mice
transduced by AAV8-INSFUR-mCherry (n = 4) or AAV8-INSFUR-venus + AAV8-Pdx1 (n = 5). Results
are expressed as the means ± SEMs. * indicates a significant difference of p < 0.05 when comparing
the VCNs.

In an attempt to force pancreatic transdifferentiation, the β-cell transcription factor Pdx1 [13]
(AAV8-Pdx1) was expressed in the livers together with the INS-FUR gene (AAV8-INS-FUR-venus).
Mice that received the combination of AAV8-INS-FUR-venus and AAV8-Pdx1 remained hyperglycaemic
(Figure 2A). At all the time points (0–120 min) during the IPGTTs, the BGLs of the mice that received the
combination of INS-FUR and Pdx1 were not significantly different from the diabetic mice (Figure 2B).
At the end point of the experiment, the mean AAV8-INS-FUR-venus copy numbers in the livers were
2.41 ± 0.37 × 104 copies per 50 ng of DNA, and the mean AAV8-Pdx1 copy numbers were 3.41 ± 1.12 ×
103 copies per 50 ng of DNA (Figure 2C). The paired t-test showed that the AAV8-INS-FUR-venus
copy number was significantly higher than the AAV8-Pdx1 copy number (p < 0.05) in the livers of
the animals.

We have previously hypothesised that since liver and pancreas are from the same endodermal
origin, it is likely that the FFO procedure represents an insult to the liver that stimulates differentiation
of the hepatocytes to an immature phenotype. It is this differentiation process that causes expression
of the β-cell transcription factors, allowing pancreatic transdifferentiation to occur in the presence of
insulin and a hyperglycaemic environment [9–11,25]. Given the previous efficacy of using the FFO
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surgical technique and the lentiviral delivery of INS-FUR alone to reverse diabetes, we attempted
to induce pancreatic transdifferentiation and normalise BGLs of diabetic mice by performing this
procedure subsequent to the i.p. injection of AAV8-INS-FUR-venus. Unfortunately, BGLs were not
normalised (Figure 3A). This group of mice had significantly lower VCNs (5.12 ± 1.06 × 104 per 50 ng
DNA) (Figure 3C) compared to the mice that received i.p. injections of AAV8-INS-FUR-mCherry (3.33
± 0.18 × 105 copies per 50 ng DNA) (p < 0.001) (Figure 2C). The higher BGLs and the lower AAV8
VCNs of the mice that had AAV8-INS-FUR-venus (i.p.) and FFO surgery, as compared to the mice
that only received an i.p. injection of AAV8-INS-FUR-mCherry supported the hypothesis that the FFO
surgery may have induced tissue damage, leading to the regeneration of hepatocytes and, therefore,
the reduction in AAV8 VCNs. Despite having high BGLs, during the IPGTTs, the BGLs of the mice that
received AAV8-INS-FUR-venus and FFO surgery were not significantly different from those of the
normal controls (Figure 3B).

1 

 

 

Figure 3. Blood glucose levels, IPGTT and AAV8 vector copy numbers of NOD mice after
AAV8-mediated expression of INS-FUR in combination with the FFO surgical procedure, with or
without dual expression of the lentiviral HMD vector. NOD mice were transduced with AAV8-INS-FUR
in combination with the FFO surgery, as well as with dual expression of HMD. Blood glucose levels
and results of subsequent IPGTT tests of the mice are shown. (A) Mean weekly blood glucose
levels of the diabetic (n = 7), normal, non-diabetic (n = 7), and diabetic NOD mice that received
i.p. injections of AAV8-INS-FUR-venus + FFO surgery (n = 6) and diabetic NOD mice that received
AAV8-INS-FUR-mCherry + HMD-EGFP (n = 6). (B) Blood glucose levels following an IPGTT of diabetic
(n = 3), non-diabetic (n = 7) and diabetic mice that received i.p. injections of AAV8-INS-FUR-mCherry
(n = 3). The symbols for each group are indicated in the accompanying legend. Results are expressed as
the means ± SEMs at each time point. (C) AAV8 vector copy numbers of the diabetic mice that received
i.p. injections of AAV8-INS-FUR-venus + FFO surgey (n = 6) and diabetic NOD mice that received
AAV8-INS-FUR-mCherry + HMD-EGFP (n = 5). Results are expressed as the means ± SEMs.

To determine whether the lentiviral capsid/promoter combination was capable of inducing
pancreatic transdifferentiation in the livers expressing INS-FUR, NOD mice received HMD/MSCV-eGFP
as an infusion via the portal vein during FFO surgery 7 days after having i.p. injections of AAV
INS-FUR-mCherry. The BGLs of the mice were normalised on week 2, but they became hyperglycaemic
from week 4 onwards (Figure 3A). The general health of the mice also deteriorated and symptoms
of chronic hyperglycaemia, such as polyuria and polydipsia, persisted, leading to termination of the
experiment before IPGGTs were performed.



Cells 2020, 9, 2227 9 of 16

3.3. Reversal of Autoimmune Diabetes Using the AAV8/piggyBac-LSP-INS-FUR Vector System and
FFO Surgery

The piggyBac transposition system, which allows for the stable expression of transgenes over
time [33], was employed to determine whether the episomal (non-integrating) expression provided
by the traditional AAV8 system was insufficient to stimulate pancreatic transdifferentiation in the
mouse livers. Firstly, we examined if the hyperglycaemia of the diabetic NOD mice could be
normalised by injection of INS-FUR alone. The BGLs of the mice that received an i.p. injection of
the AAV8/piggyBac-INS-FUR-mCherry without FFO surgery were reduced, but normoglycaemia was
not reached (Figure 4A). The transposon and transposase copy numbers in the livers of the mice that
received i.p. injections of the AAV8/piggyBac-INS-FUR-mCherry vector system were 1.89 ± 0.05 and
1.57 ± 0.05 × 105 copies per 50 ng DNA, respectively, and were not significantly different (Figure 4B).Cells 2020, 9, x FOR PEER REVIEW 9 of 16 
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Figure 4. Blood glucose levels and AAV8 vector copy numbers of NOD mice after
piggyBac/AAV8-mediated expression of INS-FUR and INS-FUR combined with the FFO surgical
procedure. Diabetic NOD mice were transduced with either INS-FUR or INS-FUR in combination with
the FFO surgical procedure at 7 days after transduction. (A) The mean weekly blood glucose levels of
untreated diabetic (n = 7), normal, non-diabetic (n = 7) and treated diabetic NOD mice that received either
i.p. injections of AAV8-piggyBac/INS-FUR-mCherry (n = 7) alone, or AAV8-piggyBac/INS-FUR-mCherry
with FFO surgery (n = 7). (B) Transposon and transposase copy numbers of diabetic NOD mice that
received i.p. injections of AAV8/piggyBac-INS-FUR or i.p. injection of AAV8/piggyBac-INS-FUR and
FFO sugery. The results are expressed as the means ± SEMs.

Interestingly, despite abnormal BGLs, the IPGTT results for the animals that received an i.p.
injection of the AAV8/piggyBac-INS-FUR-mCherry without FFO surgery were not significantly different
from those for the controls (Figure 5A). This was possibly related to this vector favouring integrated
expression of INS-FUR. Alternatively, the constitutive expression of insulin may have reached a
balanced level in response to rising glucose levels in these animals as normal IPGTTs were also seen
when the non-integrating AAV8 was used to deliver INS-FUR (Figure 3B).

In order to determine whether the FFO procedure had a stimulatory effect on pancreatic
transdifferentiation of the livers and correction of hyperglycemia, diabetic mice received the
AAV8/piggyBac-INS-FUR-mCherry vector and FFO surgery 7 days later. These animals showed
a reduction in BGLs at three weeks post-treatment that was then maintained at concentrations not
significantly different to normal controls (experimental end point, week 15) (Figure 4A). Additionally,
for animals that reverted to normoglycaemia, the BGLs during IPGTTs were not statistically different
from values observed for the control mice (Figure 5B). Analysis of human insulin concentrations
in sera obtained during the IPGTTs showed that the levels of human insulin for mice that had
received AAV8/piggyBac-INS-FUR-mCherry and the FFO procedure peaked 15 min after glucose
delivery and returned to baseline levels by 60 min (Figure 5C). These results indicated that the
AAV8/piggyBac-INS-FUR-mCherry and the FFO procedure normalised BGLs for a significant period
of time with normal glucose tolerance on IPGTT and human insulin peaked at levels seen in normal
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animals [40]. In the livers of the mice that received the AAV/piggyBac-INS-FUR-mCherry system
and FFO surgery, the copy numbers of the transposon (2.6 ± 0.05 × 105 copies per 50 ng DNA) and
transposase (1.9 ± 0.03 × 105 copies per 50 ng DNA), were not significantly different (Figure 4B).

Cells 2020, 9, x FOR PEER REVIEW 9 of 16 

 

 
Figure 4. Blood glucose levels and AAV8 vector copy numbers of NOD mice after piggyBac/AAV8-
mediated expression of INS-FUR and INS-FUR combined with the FFO surgical procedure. Diabetic 
NOD mice were transduced with either INS-FUR or INS-FUR in combination with the FFO surgical 
procedure at 7 days after transduction. (A) The mean weekly blood glucose levels of untreated 
diabetic (n = 7), normal, non-diabetic (n = 7) and treated diabetic NOD mice that received either i.p. 
injections of AAV8-piggyBac/INS-FUR-mCherry (n = 7) alone, or AAV8-piggyBac/INS-FUR-mCherry 
with FFO surgery (n = 7). (B) Transposon and transposase copy numbers of diabetic NOD mice that 
received i.p. injections of AAV8/piggyBac-INS-FUR or i.p. injection of AAV8/piggyBac-INS-FUR and 
FFO sugery. The results are expressed as the means ± SEMs. 

Interestingly, despite abnormal BGLs, the IPGTT results for the animals that received an i.p. 
injection of the AAV8/piggyBac-INS-FUR-mCherry without FFO surgery were not significantly 
different from those for the controls (Figure 5A). This was possibly related to this vector favouring 
integrated expression of INS-FUR. Alternatively, the constitutive expression of insulin may have 
reached a balanced level in response to rising glucose levels in these animals as normal IPGTTs were 
also seen when the non-integrating AAV8 was used to deliver INS-FUR (Figure 3B). 

 
Figure 5. Normalisatiion of glucose tolerance of diabetic NOD mice after expression of INS-FUR by 
the integrating piggyBac/AAV8 vector combined with the FFO surgical procedure. Diabetic NOD mice 
were transduced with INS-FUR, or INS-FUR in combination with the FFO surgical procedure at 7 
days after transduction, using the integrating piggyBac/AAV8. (A) Blood glucose levels following an 
IPGTT of diabetic (n = 3), non-diabetic (n = 7) and diabetic NOD mice that received i.p. injections of 
INS-FUR alone as AAV8-piggyBac/INS-FUR-mCherry (n = 7). (B) Blood glucose levels following an 

Figure 5. Normalisatiion of glucose tolerance of diabetic NOD mice after expression of INS-FUR
by the integrating piggyBac/AAV8 vector combined with the FFO surgical procedure. Diabetic NOD
mice were transduced with INS-FUR, or INS-FUR in combination with the FFO surgical procedure at
7 days after transduction, using the integrating piggyBac/AAV8. (A) Blood glucose levels following
an IPGTT of diabetic (n = 3), non-diabetic (n = 7) and diabetic NOD mice that received i.p. injections
of INS-FUR alone as AAV8-piggyBac/INS-FUR-mCherry (n = 7). (B) Blood glucose levels following
an IPGTT of diabetic (n = 3), non-diabetic (n = 7) and diabetic NOD mice that received i.p. injections
AAV8-piggyBac/INS-FUR-mCherry combined with the FFO surgery (n = 6). (C) Serum concentration
of human insulin following IPGTT of the mice represented in (B), which received i.p. injections of
AAV8-piggyBac/INS-FUR-mCherry combined with FFO surgery. Results are expressed as the means
± SEMs.

3.4. RT-PCR Analysis

It can be seen from Figure 6 that expression ofβ-cell transcription factors was inconsistent across the
experimental groups, indicative of the absence of induction of reproducible β-cell transdifferentiation
in any of the treatment groups. INS-FUR was expressed in all samples transduced with the transgene
and Glut2 was expressed in all tissues. As expected, normal mouse pancreas expressed all genes
with the exception of INS-FUR. The livers of mice that received AAV8-INS-FUR-mCherry expressed
NeuroD1, somatostatin and pancreatic polypeptide. However, the dual transduction of INS-FUR and Pdx1
resulted in expression of only INS-FUR and Pdx1 and the dual transduction of AAV8-INS-FUR-venus +

HMD/MSCV-EGFP, resulted in the expression of INS-FUR alone. Expression of other transcription
factors indicative of β-cell transdifferentiation (Nkx2.2, Nkx6.1, MafA, Pax6, or mouse insulin 1) was not
observed. The exocrine marker p48 was also not expressed (data not shown). Similarly, no evidence
of β-cell transdifferentiation was observed when the piggy/Bac system was used to express INS-FUR.
In this instance, only the INS-FUR was expressed. Use of the piggyBac-INS-FUR system in combination
with FFO surgery only resulted in expression of somatostatin and pancreatic polypeptide.



Cells 2020, 9, 2227 11 of 16

Cells 2020, 9, x FOR PEER REVIEW 10 of 16 

 

IPGTT of diabetic (n = 3), non-diabetic (n = 7) and diabetic NOD mice that received i.p. injections 
AAV8-piggyBac/INS-FUR-mCherry combined with the FFO surgery (n = 6). (C) Serum concentration 
of human insulin following IPGTT of the mice represented in (B), which received i.p. injections of 
AAV8-piggyBac/INS-FUR-mCherry combined with FFO surgery. Results are expressed as the means 
± SEMs. 

In order to determine whether the FFO procedure had a stimulatory effect on pancreatic 
transdifferentiation of the livers and correction of hyperglycemia, diabetic mice received the 
AAV8/piggyBac-INS-FUR-mCherry vector and FFO surgery 7 days later. These animals showed a 
reduction in BGLs at three weeks post-treatment that was then maintained at concentrations not 
significantly different to normal controls (experimental end point, week 15) (Figure 4A). 
Additionally, for animals that reverted to normoglycaemia, the BGLs during IPGTTs were not 
statistically different from values observed for the control mice (Figure 5B). Analysis of human 
insulin concentrations in sera obtained during the IPGTTs showed that the levels of human insulin 
for mice that had received AAV8/piggyBac-INS-FUR-mCherry and the FFO procedure peaked 15 min 
after glucose delivery and returned to baseline levels by 60 min (Figure 5C). These results indicated 
that the AAV8/piggyBac-INS-FUR-mCherry and the FFO procedure normalised BGLs for a significant 
period of time with normal glucose tolerance on IPGTT and human insulin peaked at levels seen in 
normal animals [40]. In the livers of the mice that received the AAV/piggyBac-INS-FUR-mCherry 
system and FFO surgery, the copy numbers of the transposon (2.6 ± 0.05 × 105 copies per 50 ng DNA) 
and transposase (1.9 ± 0.03 × 105 copies per 50 ng DNA), were not significantly different (Figure 4B). 

3.4. RT-PCR Analysis 

It can be seen from Figure 6 that expression of β-cell transcription factors was inconsistent across 
the experimental groups, indicative of the absence of induction of reproducible β-cell 
transdifferentiation in any of the treatment groups. INS-FUR was expressed in all samples transduced 
with the transgene and Glut2 was expressed in all tissues. As expected, normal mouse pancreas 
expressed all genes with the exception of INS-FUR. The livers of mice that received AAV8-INS-FUR-
mCherry expressed NeuroD1, somatostatin and pancreatic polypeptide. However, the dual transduction 
of INS-FUR and Pdx1 resulted in expression of only INS-FUR and Pdx1 and the dual transduction of 
AAV8-INS-FUR-venus + HMD/MSCV-EGFP, resulted in the expression of INS-FUR alone. 
Expression of other transcription factors indicative of β-cell transdifferentiation (Nkx2.2, Nkx6.1, 
MafA, Pax6, or mouse insulin 1) was not observed. The exocrine marker p48 was also not expressed 
(data not shown). Similarly, no evidence of β-cell transdifferentiation was observed when the 
piggy/Bac system was used to express INS-FUR. In this instance, only the INS-FUR was expressed Use 
of the piggyBac-INS-FUR system in combination with FFO surgery only resulted in expression of 
somatostatin and pancreatic polypeptide. 

 

Figure 6. Expression of β-cell transcription factors and pancreatic hormones in the livers of 
transduced NOD mice. Standard end point (non-quantitative RT-PCR) analysis was conducted from 
RNA derived from liver tissues of the NOD mice to detect the expression of INS-FUR, Pdx1, NeuroD1, 
mouse insulin 2, mouse somatostatin, pancreatic polypeptide, Glut 2, and beta-actin (positive control) in 
normal mouse liver (lane 1), liver tissue from diabetic NOD mice expressing INS-FUR via i.p. injection 
of AAV8-INS-FUR-mCherry (lane 2), INS-FUR and Pdx1 via i.p. injection of AAV8-INS-FUR-venus + 

Figure 6. Expression of β-cell transcription factors and pancreatic hormones in the livers of
transduced NOD mice. Standard end point (non-quantitative RT-PCR) analysis was conducted
from RNA derived from liver tissues of the NOD mice to detect the expression of INS-FUR,
Pdx1, NeuroD1, mouse insulin 2, mouse somatostatin, pancreatic polypeptide, Glut 2, and beta-actin
(positive control) in normal mouse liver (lane 1), liver tissue from diabetic NOD mice expressing
INS-FUR via i.p. injection of AAV8-INS-FUR-mCherry (lane 2), INS-FUR and Pdx1 via i.p. injection
of AAV8-INS-FUR-venus + AAV8-Pdx1 (lane 3), AAV8-INS-FUR-venus + FFO surgery (lane 4),
via i.p. injection of AAV8-INS-FUR-venus + HMD/MSCV-EGFP via the portal vein (lane 5),
AAV8/piggyBac-INS-FUR-mCherry (lane 6), AAV8/piggyBac-INS-FUR-mCherry + FFO surgery (lane 7)
and normal mouse pancreas (lane 8).

4. Discussion

Whilst treatment options for T1D are numerous, they are all limited in their long-term
effectiveness [8] and, as a result, the search for more innovative and efficacious ways to treat/cure
T1D is urgently required. Both insulin gene therapy and the reprogramming of liver cells to a β-cell
phenotype have been studied by many groups as potential options [41]. The liver is considered
an appropriate choice for these studies, as the liver and pancreas share a close developmental
origin and the liver has great regenerative capacity. These studies have largely centred on the
delivery of insulin and insulin analogues and/or β-cell transcription factors to liver cells using viral
vectors, which suffer from varying multiple drawbacks. The most commonly used viral vectors are
adenoviral vectors which cannot provide long-term expression of genes and are immunogenic [42].
Retroviral vectors are limited by their inability to transduce non-dividing cells and insertional
mutagenesis has been problematic in a clinical trial of a severe-combined immunodeficiency patient [43].
Lentiviral vectors demonstrate long-term transgene expression but, as an integrating vector, may suffer
from issues of insertional mutagenesis, although third-generation vectors have a much improved
safety profile [44]. Non-integrating adeno-associated vectors show long-term expression and lack
pathogenicity and immunogenicity, together with the ability to transduce liver tissues with high
efficiency [31]. The AAVpiggyBac system is known to confer stable integration, and studies with
the AAV2/piggyBac in our laboratory have shown less frequent integrations in intragenic regions in
comparison to lentiviral vectors [34] and more importantly, the integrations were not found in the loci
of genes associated with hepatocellular carcinoma [36].

The β-cell transcription factor Pdx1 has been shown to induce pancreatic transdifferentiation of
liver tissue when delivered using adenoviral vectors [13,16] and some improvement in hyperglycaemia
when delivered to a humanized mouse model using an AAV2 vector [22]. However, in the
current study, delivery of INS-FUR alone (AAV8-INS-FUR-mCherry) or INS-FUR together with
Pdx1 (AAV8-INS-FUR-venus + AAV8-Pdx1), using the non-integrating AAV8 vector did not
reverse hyperglycaemia and there was no evidence of expression of β-cell transcription factors
that lead to pancreatic transdifferentiation. As noted in the methods, the mice received equal
doses of AAV8-INS-FUR-mCherry, AAV8-INS-FUR-venus and AAV8-Pdx1, but the VCN of the
INS-FUR-mCherry was significantly higher than the INS-FUR-venus at the conclusion of the
experiments and the INS-FUR-venus was significantly higher than the Pdx1. We have much experience
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in quantifying the VCN by quantitative RT-PCR and are thus confident in the values presented.
However, the differences in the VCN of the constructs cannot be attributed to the composition of
the vectors (Figure S1) and, therefore, a definitive explanation is not possible for this observation.
The 10-fold difference in the insulin vectors may be explained by the age of the mice. The NOD mice
used in these experiments spontaneously developed diabetes from 12 to 26 weeks of age and it is thus
not possible to isolate a diabetic cohort that is of exactly the same age. The mice used in the early
experiment with the INS-FUR-mCherry vector that recorded VCNs 10-fold higher than those of the
INS-FUR-venus vector averaged 16 weeks of age, whereas the second group averaged 21 weeks of age,
and there is evidence that the vectors may transduce young animals more efficiently [45]. The lower
transduction efficiency of the Pdx1 vector may be due to some associated toxicity with the Pdx1 vector,
where Pdx1-expressing cells are lost after vector transduction. Another possible scenario may involve
immune reactions against the vector. It has been recently reported that significant barriers to effective
AAV2/8-insulin gene therapy in NOD mice were caused by reactivation of anti-insulin autoimmune
responses as well as immune reactivity against vector components [24]. The researchers found that the
efficacy of AAV-gene therapy in the NOD mouse was improved with anti-CD4 antibody treatment,
indicating that T-helper subsets occurred. Future studies in NOD mice should look more closely at the
immunogenicity of the vector, which may also be age dependent and consideration should be given to
inducing diabetes with multiple low doses of streptozotocin (STZ) so all experimental cohorts are a
similar age.

This is the first study to utilise the AAV8/piggyBac system to deliver human insulin to diabetic
NOD mice. We showed that i.p. delivery of the AAV8/piggyBac-INS-FUR vector, significantly reduced
the BGLs of spontaneously diabetic NOD mice, but did not completely reverse hyperglycaemia.
By comparison, i.p. delivery of this vector, followed 7 days later by a surgical procedure that isolates
the liver from the circulation (FFO), resulted in reversal of diabetes from week 3 to 15 (experimental
end point), without induction of hypoglycaemia and with restoration of normal glucose toleracne.
Interestingly, in both circumstances delivery of the AAV8/piggyBac-INS-FUR vector resulted in normal
glucose tolerance following a 6 h fast. These results occurred without the expression of β-cell
transcription factors, and, therefore, pancreatic transdifferentiation. These observations suggested
that the integration of the INS-FUR gene alone was beneficial for the regulation of BGLs only if
the FFO procedure was also used. This result was likely attributable to efficient integration of
the INS-FUR construct (due to removal of a proportion of the transposase because of cell division)
resulting in higher insulin production and reversal of hyperglcaemia. However, the integration of the
INS-FUR gene induced by the AAV8/piggyBac system was insufficient to stimulate the liver-to-pancreas
transdifferentiation seen with the use of the lentiviral system because the necessary pancreatic
transcription factors were not also expressed. This observation suggested that the FFO surgery and
the presence of a certain element(s) in the HMD vector, which were not present in the AAV8 vector,
were required to induce the transdifferentiation process when INS-FUR was delivered.

Pancreatic transdifferentiation that results in insulin storage and regulated secretion from storage
granules is one gene therapy strategy under investigation to cure T1D. It is likely that for this to occur,
a “pancreatic switch” must be activated [46]. This switch may involve expression of β-cell transcription
factors [9–11,25], transient destruction of some liver tissue by the FFO delivery technique [9–11,25],
and/or factors present in the second generation lentiviral vector [38]. In our previous studies,
the lentiviral vector likely induced pancreatic transdifferentiation in certain lineage(s) of hepatic cells
that displayed plasticity, such as oval cells or stem cells, and/or took advantage of their propensity
to transdifferentiate into different cell types when stressed [47]. A study by Wang et al. [19] using
STZ-diabetic mice indicated that the forced liver-to-pancreas transdifferentiation was not possible
utilising AAV8 vector expression of Pdx1 and NeuroD1. The additional insult of an adenoviral vector
that induced immune responses was required for pancreatic transdifferentiation, and some amelioration
of the diabetic hyperglycaemia. Likewise, a study by Cerad-Esteban et al. [48] reported that the TALE
homeoprotein, TGIF2, acts as a developmental regulator of pancreas versus liver fate in cell lines and
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primary rodent hepatocytes. The AAV-mediated delivery of TGIF2 first represses hepatic identity and
initiates a ‘switch’ that turns on a pancreatic cell identity. We saw a similar pattern in our earlier study
in NOD mice using the lentiviral vector to deliver INS-FUR, where there was significant upregulation
of key β-cell transcription factors (Pdx1, NeuroD1 and Neurog3), and significant down regulation of
hepatic markers (C/EBP-β, G6 PC, AAT and GLUI) at 7 and 10 days post-transduction of the livers,
which was maintained until the experimental end point (150 days) [10].

Based on our work, it would appear that for AAV vectors to induce liver-to-pancreas
transdifferentiation an additional factor(s), such as concomitant immune responses, a minor insult, or a
developmental regulator, is required. A combination of the AAV8/piggyBac system and a cocktail of
β-cell transcription factors may warrant future investigation [49]. The current study suggests that,
with further development of the AAV vector system and a better understanding of the pancreatic
transdifferentiation process, the integrating AAV8/piggyBac system may be useful to at least satisfy
basal insulin requirements, and pancreatic transdifferentiation may not be required to achieve some
advantageous clinical outcomes. Such outcomes may also be achieved with the use of inducible
promoter systems such as the Tet-off system that has been shown to regulate insulin delivered
by an AAV8 system in diabetic NOD.cg-Prkdcscidll2 rgtm1 Wjl/szJ mice [23]. Non-viral delivery
mechanisms such as insulin constructs in minicircle DNA [21] which resulted in glucose-regulated
insulin production from rat livers is a promising system that avoids possible complications of viral
vectors. Haematopoetic stem cell-mediated gene therapy can produce a tolerogenic environment
for islets and prevent destruction on transplantation, by halting antigen-specific memory T-cell
responses [50]. This is one of many other possible gene therapy technologies being examined to treat/
cure T1D.
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